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Scope of Work

Sigma-Point Kalman Filters are commonly used for state and parameter estimation purposes in

various physical domains. In contrast to the classical Kalman Filter or the Luenberger Observer

these filters are also applicable to general nonlinear systems, but, as all Kalman Filters, assume

process and measurement noise to be Gaussian and white. One of those domains is the con-

trol of wind turbines. The implementation in Simulink allows using these filters in a complex

simulation environment as part of advanced control systems.
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Abstract

This thesis discusses the implementation of Sigma-Point Kalman Filters (SPKF) for state estima-

tion of nonlinear wind turbine systems. First, a theoretical review of nonlinear Kalman filtering

is given. Then the different ways of implementing the algorithms and testing them in SIMULINK

are discussed and eventually the developed algorithms are explained and illustrative results

from nonlinear simulations are presented.

This work confirms that the linear Kalman Filter can be efficiently extended to nonlinear sys-

tems by means of Sigma-Point Kalman Filters such as the Unscented Kalman Filter and the

Central Difference Kalman Filter. It is also shown that the performance of the square-root im-

plementations available for SPKF is as accurate as that of the original ones, even if they are

more computationally efficient algorithms.

Keywords: Nonlinear Filtering, Unscented Kalman Filter, Square Root Central Difference

Kalman Filter, Wind Turbine Control, MATLAB/SIMULINK, CSparse/CXSparse
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Symbols and Abbreviations

Model

Symbol Description Dimensions

N Number of states −
M Number of inputs −
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step k
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Px k yk
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S−
x k

Upper Cholesky Factor of Covariance matrix of x k at time step k N × N
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Upper Cholesky Factor of Covariance matrix of y k at time step k r × r
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without process

noise information
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Sigma-Points representing the random variable x−
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with process noise

information

N×2N +1

Yk Sigma-Points representing the random variable y k r × 2N + 1
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d i ith-column of Cholesky downdate matrix DC
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p
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1 Introduction

As the wind energy technology advances, more complex control algorithms are required in order

to make the turbine work within the desired conditions (guaranteeing stability, reducing vibra-

tions or extracting as much energy from the wind as possible). These algorithms usually precise

an accurate knowledge of the system states. However, wind turbines are complex nonlinear sys-

tems, with plenty of variables influencing them and it is not always possible to measure all the

states through sensors (strain gauges, for instance, are often expensive and error-prone[1]).

This work focuses on the implementation of nonlinear observers for the estimation of those

states.

Inputs
System

x 0

Outputs

Kalman Filter

–Model–

x̂ 0

Estimated State

Measurement
Noise

Process
Noise

uk y k

x̂+
k

+

Figure 1.1.: Schematical representation of the Kalman Filter as an observer for systems with

uncertainties.

However, the measurements supplied to the sensors for the estimation of the states are usually

noisy, and there could be some modeling errors or some unknown dynamics happening inside

the plant (see Figure 1.1). It is therefore reasonable to think about the best ways for the ob-

servers to deal with this uncertainty. This question was solved in the early 1960s by Rudolf E.

Kálmán, when he developed what nowadays is known as The Kalman Filter [2].

This algorithm, which in the last 50 years had such different applications as the estimation of

trajectories for the Apollo program or the prediction of the stock market behavior, can also be

employed for the recursive state estimation of a given linear system, out of noisy measurements.

Nevertheless, as wind turbines are highly nonlinear systems, this work will focus on the im-

plementations of variations of the traditional Kalman filtering algorithm for the nonlinear state

estimation of wind turbines. Some of these modified algorithms can be considered as part of

the class of Sigma-Point Kalman Filters.
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1.1 Objectives

The main objective is the generation of efficient code for the implementation of the Unscented

Kalman Filter (UKF), the Central Difference Kalman Filter (CDKF) and their Square-Root types

(SR-UKF, SR-CDKF). This code must be validated within a SIMULINK simulation with a complex

model of a wind turbine and should ideally be programmed in a way, which eases the future

implementation of such algorithms into microcontrollers, for their real life application.

The specific objectives or working packages in which the project was divided to meet the general

goal are the followings:

• Introduction to classical observer theory.

• Literature review for two types of the SPKF algorithms (UKF and CDKF + their SR-types).

• Profound understanding of nonlinear Kalman Filtering techniques.

• Introduction to MATLAB/SIMULINK and setup simulation for a given complex wind turbine

model.

• Development of concepts, how to efficiently implement these algorithms in SIMULINK.

• Testing and validation with a complex nonlinear simulation model of a wind turbine.

• Evaluation of the filter performance.

• Documentation and discussion.

• Outlook to further research topics.

1.2 Overview

The report is structured in six chapters. The first one is the present Introduction, it is followed by

a Review of the Literature, in which all the required algorithms are presented and explained. The

next chapter, entitled Implementation Possibilities discusses the ways in which these algorithms

can be implemented for their simulation in SIMULINK. Afterwards, in Development of the Code,

the generated code is analyzed and explained, getting to the Results and Discussion, where the

algorithms are tested by means of simulations. Eventually, the Conclusion summarizes the entire

project, analyzes the achievements and purposes topics for future research. Some appendices

are included with a description of the employed linearized model and extracts of the generated

code.

2 1. Introduction



2 Review of the Literature

In the following chapter a brief insight into the State of the Art is given. The main goal of the

chapter is to summarize the existing theoretical tools for the accomplishment of the purposed

task. Hence, a brief review on the current theory for state estimation is given, and the Sigma-

Point Kalman filtering algorithms are presented.

2.1 Theoretical Introduction to State Estimation

The problem of estimating the state of a system, from which only the input and the output

values can be observed has been approached in different ways over the last century. One of

those ways is the Kalman Filter, which presents the benefit of being able to deal with noisy

measurements and unknown dynamics represented by process noise. However, the Kalman

Filter makes the following assumptions1:

• The system must be linear and fully-state observable.

• The process and measurement noise must be white and Gaussian and uncorrelated2.

Even if no system satisfies perfectly these conditions in practice, some of them can approach

this behavior, enabling to find very good approximations of their state. Nevertheless, the wind

turbine model, whose state must be estimated, is a highly nonlinear model, so the approach of

the simple linear Kalman Filter is not suitable.

The following step in the state estimation theory is given by the Extended Kalman Filter (EKF).

This was the algorithm of choice over the past four decades when it came to nonlinear state

estimation [5]. The underlying idea of this method consists in recursively linearizing the system

using as linearization point the previous state estimate. By doing so, the filter adapts itself to

the nonlinearities of the plant which leads to acceptable estimations when the system is nearly

linear.

The usefulness of this method, however, gets undermined when it is applied to systems with

severe nonlinearities. And it presents a couple of drawbacks [6]:

• Linearization around highly nonlinear points can lead to highly unstable filters.

• It is not applicable to systems whose Jacobian cannot be computed.

1 If the Kalman Filter is applied to a nonlinear system with non-Gaussian noise, it is still the best linear filtering

algorithm which exists [3], though sub-optimal
2 It has constant power density all over the frequency spectrum and its value follows a Gaussian distribution

with zero mean

3



Linear

Kalman Filter

Extended

Kalman Filter

Sigma-Point

Kalman Filters

x+
k−1

x−
k

F(·)

x̂+
k−1

P+
xk−1

P−
xk

x̂−
k

x+
k−1

x−
k

F(·)

x̂+
k−1

P+
xk−1

P−
xk

x̂−
k

x+
k−1

x−
k

F(·)

x̂+
k−1

P+
xk−1

P−
xk

x̂−
k

Figure 2.1.: Comparison of the working mechanism of the Kalman Filter, the Extended Kalman

Filter and the Sigma-Point Kalman Filters to estimate the mean and covariance of a random

variable passed through a function F(·) (adapted from [4]).

These limitations lead to the development of complexer algorithms, usually grouped under the

name of Sigma-Point Kalman Filters (SPKF).

This family of algorithms deals with the mentioned problems by selecting a set of deterministi-

cally chosen points (Sigma Points) representing the whole distribution of the random variable.

This set of points can be transformed through the nonlinear function in an easier way than the

entire probability density function of the original random variable and the resulting distribution

represents an accurate estimation of the value wanted to be estimated [6]. Figure 2.1 shows a

comparison between the three different algorithms.

2.2 The Kalman Filter

This algorithm is the basic tool employed for signal estimation tasks since its development in

the 1960s. Even if it is restricted to linear models, it is really useful for systems which can

be described as linear or for systems that can be linearized around a usual working point. It

constitutes the foundation over which all the complexer algorithms are built.

This algorithm relies on the recursive propagation of the mean and the covariance of the states

through time [7]. At each time step two estimations are obtained, the a priori estimation

(x̂−
k
,P−

x k
), which is obtained by employing the system’s state model F(·) and the values of the

previous step (x̂+
k−1

,P+
xk−1

) and the a posteriori estimation, which is done by estimating the out-

put of the system ŷ k by means of the system’s measurement model H(·) and comparing it with

the measured output of the system y k to correct the estimation. The Kalman Filter algorithm is

therefore constructed of two recursive steps of Time-update and Measurement-update, which are

depicted in Figure 2.2.

4 2. Review of the Literature



k− 1 k time step

F(·)
H(·)

H(·)
y k−1

y k

a priori a prioria posteriori a posteriori

x̂−
k−1

P−
xk−1

x̂+
k−1

P+
xk−1

x̂−
k

P−
xk

x̂+
k

P+
xk

Measurement

Update

Measurement

Update

Time

Update

Figure 2.2.: Estimation steps in the Kalman filtering algorithm (adapted from [7]).

In order to understand the Kalman Filter, next discrete time linear system is considered, where

both F(·) and H(·) are linear functions3:

x k = Ax k−1 + Buk−1 + w k−1 (2.1)

y k = Cx k + v k (2.2)

Where, for the sake of simplicity, no direct feedthrough between the input uk and the output y k

is assumed. The elements w k and v k represent respectively the process and the measurement

noises; which are white, zero-mean, uncorrelated, and have known covariance matrices Q and

R [7]:

w k~ N (0,Q) (2.3)

v k~ N (0,R) (2.4)

E[w kw T
j
] = Qδk− j (2.5)

E[v kv
T
j
] = Rδk− j (2.6)

E[w kv
T
j
] = 0 (2.7)

Where δk− j is the Kronecker-Delta distribution:

δk− j =







1 if k = j

0 if k 6= j
(2.8)

Initialization

The filter is initialized by setting a value for the mean of the states and their covariance. The

covariance matrix is a measure of how confident we are about these initial conditions. Both
3 The here presented development was mainly adapted from [7]

2.2. The Kalman Filter 5



magnitudes can be fixed based on our previous knowledge of the system (for instance, by means

of past simulations):

x̂+
0
= E[x 0] (2.9)

P+
x0
= E[(x 0 − x̂+

0
)(x 0 − x̂+

0
)T] (2.10)

Time-update

In order to obtain the next a priori estimates of the mean x̂−
k

and covariance P−
x k

out of the

initial values (or in general, the estimations at k−1) the following procedure must be followed:

x̂−
k
= Ax̂+

k−1
+ Buk−1 (2.11)

P−
x k
= AP+

xk−1
AT +Q (2.12)

The propagation of the mean x̂−
k

is done by applying the dynamical equations of the model,

whereas the expression for the propagation of the covariance can be developed from the fol-

lowing reasoning:

P−
x k
= E[(x k − x̂−

k
)(x k − x̂−

k
)T] (2.13)

As the values of the inputs uk−1 are the same for the filters than for the system, if we assume

no modeling errors,

(x k − x̂−
k
) = Ax k−1 + Buk−1 + w k−1 −Ax̂ k−1 − Buk−1 = A(x k−1 − x̂+

k−1
) + w k−1 (2.14)

(x k − x̂−
k
)(x k − x̂−

k
)T = [A(x k−1 − x̂+

k−1
) + w k−1][A(x k−1 − x̂+

k−1
) + w k−1]

T

= A(x k−1 − x̂+
k−1
)(x k−1 − x̂+

k−1
)TAT + w k−1w T

k−1

+A(x k−1 − x̂+
k−1
)w T

k−1
+ w k−1(x k−1 − x̂+

k−1
)TAT (2.15)

And, as there is no correlation between (x k−1 − x̂+
k−1
) and w k−1

4, we obtain the previously

presented result:

P−
x k
= E
�

(x k − x̂−
k
)(x k − x̂−

k
)T
�

= AP+
x k−1

AT +Q (2.16)

This very same reasoning is applied to the equation of the output, getting an expression for the

covariance of ŷ k from the value of P−
x k

:

y k − ŷ k = C(x k − x̂−
k
) + v k (2.17)

4 (x k−1 − x̂+
k−1
) depend on w k−2, but, as w is white noise, there is no correlation between w k−1 and w k−2 and

therefore there is no correlation between (x k−1 − x̂+
k−1
) and w k−1.

6 2. Review of the Literature



Pyk
= E
�

(y k − ŷ k)(y k − ŷ k)
T
�

= E
�

C(x k − x̂−
k
)(x k − x̂−

k
)TCT + v kv

T
k
+C(x k − x̂−

k
)v T

k
+ v k(x k − x̂−

k
)TCT
�

= E
�

C(x k − x̂−
k
)(x k − x̂−

k
)TCT + v kv

T
k

�

= CP−
x k

CT +R (2.18)

And eventually, the cross covariance can be computed as

P−
x k yk

= E
�

(x k − x̂−
k
)(y k − ŷ k)

T
�

= E
�

(x k − x̂−
k
)(x k − x̂−

k
)TCT + (x k − x̂−

k
)v T

k

�

= E
�

(x k − x̂−
k
)(x k − x̂−

k
)TCT
�

= P−
x k

CT (2.19)

Measurement-update

In this step of the algorithm the a posteriori estimates of the mean and covariance (x̂+
k
,P+

x k
) are

inferred out of the a priori estimates (x̂−
k
,P−

x k
) and the current measurement of the system’s

output y k.

x̂+
k
= x̂−

k
+Kk(y k − ŷ k) = x̂−

k
+Kk(y k −Cx̂−

k
) = (I−KkC)x̂−

k
+Kk y k (2.20)

P+
x k
= P−

x k
−KkCP−

x k
= (I−KkC)P−

x k
(2.21)

Knowing the value of the cross covariance for a linear system (Eq. (2.19)) and that every co-

variance matrix is symmetric, this last expression can be generalized to 5:

P+
x k
= P−

x k
−KkPyk

KT
k

(2.22)

Kk is known as the Kalman Gain and it is computed as follows:

Kk = P−
x k

CT(CP−
x k

CT +R)−1 = Px k yk
P−1

yk
(2.23)

The origin of this expressions can be found in the Recursive Least Squares Estimation (see

following section). The Kalman Gain is essentially a matrix which is adapted at every time step

for the minimization of the sum of the expected state estimation error (see Eq. (2.30)).

When the system has direct feedthrough,

x k = Ax k−1 + Buk−1 + w k−1 (2.24)

y k = Cx k +Duk + v k (2.25)

the expression of the estimated output can be adapted to ŷ k = Cx̂−
k
+ Duk, leading to the

following equation for the a posteriori state estimate:

x̂+
k
= x̂−

k
+Kk(y k −Cx̂−

k
−Duk) (2.26)

5 See [3], Appendix A, for a more detailed explanation

2.2. The Kalman Filter 7



Recursive Least Squares Estimation

In this section, a brief overview of the Recursive Least Squares Estimation is given, based on the

deeper development which can be found in [7].

A linear recursive estimator is an algorithm which attempts to estimate a vector x based on the

previous estimate x̂ k−1 and a noisy measurement y k

y k = Cx + v k (2.27)

x̂ k = x̂ k−1 +Kk(y k −Cx̂ k−1). (2.28)

Where the measurement y k is a linear combination of the values of the vector x plus the noise

v k and Kk represents the estimator gain matrix, to be determined. When computing the ex-

pected value of x − x̂ k in this filter, we get to the following result:

E[x − x̂ k] = (I−KkC)E[x − x̂ k−1]−KkE[v k] (2.29)

Therefore, the estimator has the property of being unbiased, because independently of the Kk

chosen, if E[x − x̂ k−1] = 0 and E[v k] = 0, E[x − x̂ k] = 0 too. In other words, an appropriate

set up of the initial value x̂ 0 = E[x ] leads to E[x̂ k] = x ,∀k.

The estimator gain matrix can be chosen according to an optimality criterion; being this a Least

Squares Estimator, this criterion is to have a Kk which minimizes the sum of the variances of

the estimation errors at time k:

M IN
�

E
�

(x 1 − x̂ 1)
2
�

+ ...+ E
�

(x n − x̂ n)
2
�	

(2.30)

Operating with this expression leads to the following result:

Kk = Pxk−1
CT(CPxk−1

CT +R)−1 (2.31)

x̂ k = x̂ k−1 +Kk(y k −Cx̂ k−1) (2.32)

Px k
= (I−KkC)Pxk−1

(I−KkC)T +KkRKT
k

(2.33)

It is now possible to substitute the expression of Kk from Eq. (2.31) into the Eq. (2.33), which,

after operating, leads to an easier expression for Px k
:

Px k
= (I−KkC)Pxk−1

(2.34)

These are the equations for the recursive least squares estimator, however the objective of the

Kalman Filter is not to estimate a constant vector, but to estimate a vector of time varying

signals (the states of the system) so we have to adapt the equations of the recursive least squares

estimator to the notation of the Kalman Filter (see Table 2.1).

Eventually getting the before purposed expressions:

Kk = P−
x k

CT(CP−
x k

CT +R)−1 = Px k yk
P−1

yk

x̂+
k
= x̂−

k
+Kk(y k − ŷ k)

P+
x k
= P−

x k
−KkCP−

x k
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Table 2.1.: Change of notation between algorithms

Least Squares Estimator Kalman Filter

x → x k

x̂ k−1 → x̂−
k

Px k−1
→ P−

x k

x̂ k → x̂+
k

Px k
→ P+

x k

2.3 Sigma-Point Kalman Filters

The Sigma-Point Kalman Filters is the name given by R. van der Merwe et. al. [3] to a family

of Kalman Filters employed for nonlinear estimation. These filters select a set of points to

capture the whole probabilistic distribution of a random variable and pass these points through

the functions F(·) and H(·), which are not restricted to be linear. This process is depicted in

Figure 2.3.

All presented algorithms will assume the additive noise condition, which implies that both

measurement and process noise do not go through the nonlinear function, but are added to

it (see Eq. (2.35) and (2.36)). The sigma-point algorithms are divided in the same steps as the

Kalman Filter: Initialization, Time-update and Measurement-update.

In the Time-update, the distribution of the a priori state x̂−
k

must be estimated based on the a

posteriori estimate of the previous step x̂+
k−1

. In order to do so, a set of sigma points representing

the Probability Density Function (pdf) of x+
k−1

are computed X +
k−1

, and passed through the

nonlinear transformation F(·); getting the sigma points representing the PDF of the a priori

state estimation of next step: ∗X −
k
= F(X +

k−1
,uk−1). The estimated mean x̂−

k
is computed

and a new set of sigma points X −
k

is generated for representing this variable. This is done to

incorporate information about the process noise.

In the Measurement-update, a second nonlinear transformation must be applied. In this case,

the starting sigma points are the ones representing the a priori state estimation, which, by means

of the transformation H(·), turn into the sigma points of the estimated output ŷ k: Yk = H(X −
k
).

This double nonlinear transformation process is depicted in Figure 2.3.

Once the estimated output is computed, the usual equations for the linear Kalman Filter can

be employed. The SPKF are constructed over the same theoretical background as the usual

Kalman Filter in which refers to the Kalman Gain; the only difference comes when evaluating

the function and estimating the pdf of the next random variable.

2.3. Sigma-Point Kalman Filters 9



Time

Update

Measurement

Update

F(·) H(·)

X +
k−1

X −
k

∗X −
k Yk

x+
k−1

x−
k

x−
k

y k

x̂+
k−1

,P+
x k−1

x̂−
k
,P−

x k

x̂−
k

P−
x k ŷ kPyk

Figure 2.3.: Representation of the nonlinear transformations of the sigma-points for the time

and for the measurement update. The algorithms reconstruct a Gaussian distribution from the

transformed sigma-points.

In the following pages the Unscented Kalman Filter (UKF) and the Central Difference Kalman

Filter (CDKF) will be analyzed, as well as the square-root versions of the algorithms (SR-UKF

and SR-CDKF)6.

There are however more algorithms based on a similar working mechanism, such as The Cu-

bature Kalman Filter (CKF) or The Gauss-Hermite Kalman Filter (GHKF). These algorithms use

the so called cubature points [1]. A deeper insight in the mentioned algorithms can be found,

for instance, in [8].

2.3.1 The Unscented Kalman Filter

The Unscented Kalman Filter, proposed by Julier et. al. in 1997 [6] is a computationally

better approach than the more traditional solutions, such as the Extended Kalman Filter, when

it comes to nonlinear state estimation. The basic idea underlying the algorithm is to apply

unscented transformations to a set of points (Sigma Points) representing a random variable, to

estimate the probability density function of another random variable: the state in the next step

(time update), or the output of the system (measurement update).

Given a discrete-time nonlinear system, with purely additive process and measurement noise

(w k and v k),

x k = F(x k−1,uk−1) + w k−1 (2.35)

y k = H(x k,uk) + v k (2.36)

6 All presented algorithms were mainly adapted from [3], the notation was however sometimes modified, look-

ing for coherence inside the report and a more straightforward implementation of the algorithms in MATLAB.

10 2. Review of the Literature



the same conditions of uncorrelatedness for the noise that in the linear case will be assumed

(see Eq. (2.3) to (2.7)). The algorithm gets once again split into three parts: Initialization,

Time-update and Measurement-update.

Initialization

Similary to the linear case, the filter must be initialized by setting a value for the mean of the

state and its error covariance:

x̂+
0
= E[x 0] (2.37)

P+
0
= E[(x 0 − x̂+

0
)(x 0 − x̂+

0
)T] (2.38)

Time-update

The first step is the selection of the sigma-points X +
k−1

representing the a posteriori distribution

of the previous state estimate x̂+
k−1

. This can be done in the following way:

X +
k−1
=
�

x̂+
k−1

, X̂+
k−1
+η
q

P+
xk−1

, X̂+
k−1
−η
q

P+
xk−1

�

(2.39)

Where X̂+
k−1

is a square matrix N × N such that

X̂+
k−1
=
�

x̂+
k−1

, . . . , x̂+
k−1

�

, X̂+
k−1
∈ RN×N (2.40)

and the matrix square-root of the covariance of the state

q

P+
xk−1
= cholT
�

P+
xk−1

�

= (S+
xk−1
)T (2.41)

is the lower Cholesky factor of P+
xk−1

. The selection of the sigma-points is based on the Scaled

Unscented Transformation [3] and it consists of the mean of the distribution x̂+
k−1

and a evenly

distributed set surrounding it. The spread of this set depends on the square-root of the covari-

ance matrix and a scaling coefficient

η =
p

N +λ (2.42)

which actually depends on three other parameters: N equals the state dimension and

λ = α2(N + κ)− N . (2.43)

Being α and κ the parameters which can be tuned to determine the spread of the sigma points

(usually 10−4 ≤ α≤ 1, κ= 0 [3]). It is therefore a good practice to keep α small in highly non-

linear systems, avoiding non-local effects. By setting κ≥ 0 the covariance matrix is guaranteed

to be positive semi-definite, its exact value is not critical though.
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Besides, we must compute a set of 2N + 1 scalar weights for the 2N + 1 sigma points. In other

words, a coefficient of the form ωi is assigned to each sigma point Xi which have to satisfy the

condition

2N−1
∑

i=0

ωi = 1 (2.44)

so that the estimated mean and covariance are not scaled by a factor.

An appropriate choice is the following [3]:

for X0→ ω
(m)

0 = λ
N+λ

for Xi → ω
(m)

i
= 1

2(N+λ) i = 1...2N
(2.45)

However, the weighting on the zero-th sigma-point directly affects the magnitude of the errors

in the fourth and higher order terms for symmetric prior distributions [9], so another set of

weights is chosen for the weighting of the covariance matrix

for X0→ ω
(c)

0 =
λ

N+λ + (1−α2 + β)

for Xi → ω
(c)

i
= 1

2(N+λ) with i = 1...2N
(2.46)

where β is a new parameter that allows to minimize higher order errors if there is information

about the distribution. For the Gaussian case the optimal choice is β = 2 [9].

It is now easy to apply the nonlinear transformation F(·) to the selected set, yelding

∗X −
k
= F(X +

k−1
,uk−1) (2.47)

x̂−
k
=

2N−1
∑

i=0

ω
(m)

i
(∗X −

k
)i (2.48)

P−
xk
=

2N−1
∑

i=0

ω
(c)

i

�

(∗X −
k
)i − x̂−

k

� �

(∗X −
k
)i − x̂−

k

�T
+Q (2.49)

being (∗X −
k
)i the ith column of the matrix ∗X −

k
.

Measurement-update

The nonlinear transformation H(·) must be applied to the set of sigma points, which leads to

the estimated output ŷ k. It is however useful to modify this set of sigma points, including the

information about the process noise present in Q (and hence in P−
xk

). This can be achieved

in several ways [3] and in Section 2.3.2 another possible way of selecting the new set will be

discussed. Here, however, the most usual way of extending the set will be presented, the one

which will mainly be used along this report and in the implementations of the algorithms.

X −
k
=
�

x̂−
k

X̂−
k
+η
q

P−
xk

X̂−
k
−η
q

P−
xk

�

(2.50)
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Where X̂−
k

is a square matrix N × N such that

X̂−
k
=
�

x̂−
k
, . . . , x̂−

k

�

, X̂−
k
∈ RN×N (2.51)

and the matrix square-root of the covariance of the state

q

P−
xk
= cholT
�

P−
xk

�

= (S−
xk
)T (2.52)

is the lower Cholesky factor of P−
xk

. The transformation is now conducted for all sigma-points

(2.50), and the mean and covariance of the new distribution are estimated

Yk = H(X −
k

,uk) (2.53)

ŷ k =

2N−1
∑

i=0

ω
(m)

i
(Yk)i (2.54)

Pyk
=

2N−1
∑

i=0

ω
(c)

i

�

(Yk)i − ŷ k

� �

(Yk)i − ŷ k

�T
(2.55)

where (Yk)i represents the ith column of Yk. The cross covariance Pxk yk
can be computed in

the following way:

Pxk yk
=

2N−1
∑

i=0

ω
(c)

i

�

(X −
k
)i − x̂−

k

� �

(Yk)i − ŷ k

�T
(2.56)

Which allows the computation of the Kalman Gain Kk and, subsequently, weighting the differ-

ence between the estimated output and the measured output, the a posteriori estimated state

and covariance:

Kk = Pxk yk
P−1

yk
(2.57)

x̂+
k
= x̂−

k
+Kk(y k − ŷ−

k
) (2.58)

P+
x k
= P−

x k
−KkPyk

KT
k

(2.59)

2.3.2 The Square-Root Unscented Kalman Filter

The Square-Root Unscented Kalman Filter (SR-UKF) is an algorithm developed to improve cer-

tain computational properties of the UKF, by simplifying some of its algebraic operations. Be-

sides it has an improved numerical stability and guarantees positive semi-definiteness for the

covariance matrices [10].

The computationally costliest operation of the UKF is the computation of the matrix square-root

of the covariance for the determination of the sigma points at each time step. This is avoided in

the SR-UKF by directly propagating the Cholesky factor S of the covariance.

In order to better understand the SR-UKF, it is necessary to recall the following linear algebra

operations [3]:
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• Cholesky decomposition: The Cholesky decomposition of a positive definite matrix P,

gives an upper triangular matrix S such that

P= STS. (2.60)

This operation can be understood as the computation of the matrix square-root of P such

that S=chol(P). In this report, however, the matrix square-root has been defined as

the lower Cholesky factor for the straightforward computation of the sigma-points (see

Eq. (2.41)) so,
p

P= ST.

• QR decomposition: This is a more efficient decomposition of a matrix X ∈ RL×N , L ≥ N

in the form

X= QR, (2.61)

where Q ∈ RL×L is orthonormal and R ∈ RL×N is upper triangular. If we compute a matrix

P ∈ RN×N , such that

P= XTX= RTQTQR (2.62)

We get that, due to orthonormality of matrix Q,

QTQ= I (2.63)

And, if we define R̃ ∈ RN×N as the upper triangular part of R, we get that R̃ is the upper

Cholesky factor of

P= RTR= R̃TR̃. (2.64)

The following notation will be employed further on: R̃=qr(X) .

• Cholesky factor update: If S is the upper triangular Cholesky factor of P = STS, i.e.

S=chol(P) and we define a matrix P̃, such that7

P̃= P+ ν · x x T, (2.65)

where x is a column vector and ν is a scalar, the upper triangular Cholesky factor S̃ of

P̃= S̃TS̃ can be computed as follows8

S̃= chol(P̃) = cholupdate(S,
p
ν · x ) (2.66)

7 P̃= P− ν · x x T for the Cholesky downdate
8 S̃= cholupdate(S,

p
ν · x ,′−′) for the Cholesky downdate
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• Efficient least squares: The solution of an overdetermined problem Ax = b, A ∈ RL×N ,

L > N can be approximated by finding an x which minimizes the 2-norm error ||Ax−b||2.

This x is the least squares solution and can be obtained from the equation

(ATA)x = ATb, (2.67)

provided that the pseudo-inverse (ATA)−1 exists. An efficient way of solving the system is

based on employing the triangular QR decomposition with pivoting, implemented in Mat-

lab’s “\” operator. Equivalently in the “/” operator for the right side matrix multiplication

in system XA′ = B, where X is an unknown matrix X ∈ RM×N , A′ ∈ RN×L, B ∈ RM×L, and

L > N (M = 1 for the vectorial case).

The filtering algorithm is once again divided into three parts of Initialization, Time-update and

Measurement-update.

Initialization

The filter gets initialized similarly to the previous ones, but considering the Cholesky factors of

the covariance matrix and the noise matrices:

x̂+
0
= E[x0] (2.68)

S+
0
= chol{E[(x 0 − x̂+

0
)(x 0 − x̂+

0
)T]} (2.69)

SQ =
�p

Q
�T

= chol(Q) (2.70)

SR =
�p

R
�T
= chol(R) (2.71)

Time-update

First, the selection of the sigma points for the a posteriori distribution of the state in the previous

step is conducted:

X +
k−1
=
�

x̂+
k−1

X̂+
k−1
+η(S+

xk−1
)T X̂+

k−1
−η(S+

xk−1
)T
�

(2.72)

This set of sigma-points is passed through the nonlinear transformation F(·), computing the a

priori estimate of the state at time k:

∗X −
k
= F(X +

k−1
,uk−1) (2.73)

x̂−
k
=

2N−1
∑

i=0

ω
(m)

i
(∗X −

k
)i (2.74)
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Where (∗X −
k
)i denotes the ith column of the matrix ∗X −

k
. We can now propagate the Cholesky

factor of the covariance matrix:

S−
xk
= qr

§
h Ç

ω
(c)

1 ·
�

(∗X −
k
)1:2N−1 − X̂−

ksp

�

SQ
T

iT
ª

(2.75)

S−
xk
= cholupdate

§

S−
xk

,

Ç

ω
(c)

0 ·
�

(∗X −
k
)0 − x̂−

k

�

ª

(2.76)

Being here

X̂−
ksp
=
�

x̂−
k
, . . . , x̂−

k

�

, X̂−
ksp
∈ RN×2N . (2.77)

This is done in two steps, in the first one, a QR decomposition is applied to the transpose of a

matrix containing the weighted difference of the 1 to 2N sigma-points with the mean and the

square-root of the process noise covariance matrix. The weighing factor is set to ω(c)1 because

ω
(c)

i
= ω

(c)

1 , i = 1...2N (see Eq. (2.46)). Afterwards, a Cholesky factor update is carried out to

incorporate the effects of the zero-th sigma-point. This is done because ω(c)0 might be negative,

which would lead to an error if we tried to compute the covariance by just employing the

QR decomposition. The obtained matrix is equivalent to the Cholesky factor of the covariance

matrix P−
xk

employed in the UKF.

Proof: Equivalence between SR-UKF and UKF. Time propagation of covariance.

M=

h Ç

ω
(c)

1 ·
�

(∗X −
k
)1:2N−1 − X̂−

ksp’

�

SQ
T

iT

(2.78)

∗P−
xk
=
�

S−
xk

�T

S−
xk
=MTM

=

h Ç

ω
(c)

1 ·
�

(∗X −
k
)1:2N−1 − X̂−

ksp’

�

SQ
T

i





Ç

ω
(c)

1 ·
�

(∗X −
k
)1:2N−1 − X̂−

ksp’

�T

SQ





=ω
(c)

1 ·
�

(∗X −
k
)1:2N−1 − X̂−

ksp’

��

(∗X −
k
)1:2N−1 − X̂−

ksp’

�T

+Q (2.79)

P−
xk
= ∗P−

xk
+ω

(c)

0 ·
�

(∗X −
k
)0 − x̂−

k

� �

(∗X −
k
)0 − x̂−

k

�T

=

2N−1
∑

i=0

ω
(c)

i

�

(∗X −
k
)i − x̂−

k

� �

(∗X −
k
)i − x̂−

k

�T
+Q (2.80)

The here shown reasoning demonstrates that the propagation of the covariance in the square-

root formulation of the algorithms is completely equivalent to that of the original algorithm,

even if the operations are more efficient computationally.

Measurement-update

At this point, the set of sigma-points ∗X −
k

can be extended or modified to another set before

passing them through the function H(·), like in the previous case. However, two different
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ways of proceeding are possible: computing X −
k

, as usual, or extending the existing set to an

augmented set of 4N+1 points, (aug)X −
k

. Both transformations enable to incorporate the process

noise on the observed sigma-points. The second option uses the previous set of points plus 2N

new points, keeping more information about the odd-moments [3], but it also requires a higher

computational effort. Even if this last option can be used for all analyzed SPKF algorithms, it

will only be described here, as most of the implementations employ the first of the options.

• Option 1: Redrawing a complete set of sigma points

X −
k
=
�

x̂−
k

X̂−
k
+η(S−

xk
)T X̂−

k
−η(S−

xk
)T
�

(2.81)

It is now possible to compute the estimate of the output

Yk = H(X −
k

,uk) (2.82)

ŷ k =

2N−1
∑

i=0

ω
(m)

i
(Yk)i, (2.83)

as well as the Cholesky factor of the measurement covariance and the cross-covariance:

Syk
= qr

§
h Ç

ω
(c)

1 ·
�

(Yk)1:2N−1 − Ŷksp

�

SR
T

iT
ª

(2.84)

Syk
= cholupdate

§

Syk
,

Ç

ω
(c)

0 ·
�

(Yk)0 − ŷ k

�

ª

(2.85)

Pxk yk
=

2N−1
∑

i=0

ω
(c)

i

�

(X −
k
)i − x̂−

k

� �

(Y−
k
)i − ŷ k

�T
(2.86)

With

Ŷksp
=
�

ŷ k, . . . , ŷ k

�

, Ŷksp
∈ Rr×2N . (2.87)

• Option 2: Augmenting the set with 2N new points more (4N + 1 points in total)

(aug)X −
k
=
�

∗X −
k

�∗X −
k

�

0
+ηST

Q

�∗X −
k

�

0
−ηST

Q

�

(2.88)

In this case, the weights must also be modified to the new size, by setting N → 2N . The

same equations as before apply now, with slight modifications in the indexation:

(aug)Yk = H((aug)X −
k

,uk) (2.89)

ŷ k =

4N−1
∑

i=0

ω
(m)

i
((aug)Yk)i (2.90)

Syk
= qr

n� Ç

ω
(c)

1 ·
�

((aug)Y−
k
)1:4N − (aug)Ŷk

�

SR
T
�To

(2.91)

Syk
= cholupdate

§

S−
yk

,

Ç

ω
(c)

0 ·
�

(Y−
k
)0 − (aug)Ŷk

�

ª

(2.92)

Pxk yk
=

4N−1
∑

i=0

ω
(c)

i

�

((aug)X −
k
)i − x̂−

k

� �

((aug)Y−
k
)i − ŷ k

�T
(2.93)

Having that

(aug)Ŷk =
�

ŷ k, . . . , ŷ k

�

, Ŷk ∈ Rr×4N . (2.94)
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Eventually, the Kalman Gain is computed, turning it into an efficient least squares problem such

that

Kk = Pxk yk
P−1

yk
= Pxk yk

�

ST
yk

Syk

�−1

= Pxk yk
/Syk

/ST
yk

, (2.95)

which yields the a posteriori state estimate as

x̂+
k
= x̂−

k
+Kk(y k − ŷ−

k
) (2.96)

and finally the Cholesky factor of the covariance of the state as

DC =KkST
yk

(2.97)

S+
xk
= cholupdate
�

S−
x k

,d i,
′−′
�

, i = 0, . . . , r − 1 (2.98)

where d i is the ith column of DC and therefore a sequence of downdates is applied to S−
xk

,

being the columns of DC the vectors for each downdate. This expression can be shown to be

equivalent to that of the non-square-root Kalman filtering algorithms (Eq. (2.22)).

Proof: Equivalence between SR-UKF and UKF. Measurement propagation of covariance.

P+
x k
= P−

x k
−KkPyk

KT
k
= P−

x k
−DCDT

C = P−
x k
−

r−1
∑

i=0

d id
T
i
=
�

S+
x k

�T

S+
x k

(2.99)

Hence, according to Eq. (2.66),

S+
x k
= chol

�

P+
x k

�

= chol

�

P−
x k
−

r−1
∑

i=0

d id
T
i

�

= cholupdate

�

S−
x k

,d i,
′−′
�

, i = 0, . . . , r − 1 (2.100)

It is therefore shown that the square-root version of the algorithm propagates the Cholesky

factor of the covariance in the same way as the original algorithm propagates the covariance.

2.3.3 The Central Difference Kalman Filter

The Central Difference Kalman Filter (CDKF) is another alternative to the EKF for nonlinear

state estimation. In opposition to the UKF, this one is not based on the Unscented Transfor-

mation, but on the Sterling’s polynomial interpolation formula9 which entails only one tuning

parameter h, compared to the three (α,β ,κ) of the previous algorithms [3].

9 Only the 2nd order approximation will be employed.
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Sterling’s interpolation

The basic idea underlying Sterling’s interpolation of nonlinear functions is based on a Taylor

series approximation where the derivatives have been substituted by discrete differences.

The Taylor series expansion around the point x̄ of the scalar function f (x) is defined as follows:

f (x) =

∞
∑

n=0

1

n!

dn f ( x̄)

d xn
(x − x̄)n ≈ f ( x̄) +

d f ( x̄)

d x
(x − x̄) +

1

2!

d2 f ( x̄)

d x2
(x − x̄)2 (2.101)

Where the elements of order higher than 2 have been neglected.

The derivative of a nonlinear function f (x) can be approximated by a central difference discrete

expression, such as

d f ( x̄)

d x
≈ f ( x̄ + h)− f ( x̄ − h)

2h
(2.102)

d2 f ( x̄)

d x2
≈ f ( x̄ + h) + f ( x̄ − h)− 2 f ( x̄)

h2
(2.103)

Where h is the step size, a parameter to be chosen.

This expressions can be extended to vectorial nonlinear functions f (x ) [3], enabling to compute

the distribution of a random variable y such that

y = f (x ) (2.104)

out of the N -dimensional random variable x of known mean x̄ and covariance Px. After opera-

tion, the mean of the new distribution happens to be

ȳ ≈ h2 − N

h2
f (x̄ ) +

1

2h2

N−1
∑

i=1

�

f
�

x̄ + h(ST
x
)i
�

+ f
�

x̄ − h(ST
x
)i
��

. (2.105)

Where (Sx )i is the ith row of the upper Cholesky factor of the covariance of Px, such that

Px = ST
x
Sx . The covariance of the new distribution can be approximated by

Py ≈
1

h4

N−1
∑
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�

f
�

x̄ + h(ST
x
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�

− f
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·
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+
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x̄ − h(ST
x
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·
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(2.106)

and the cross-covariance as follows:

Pxy ≈
1

2h

N−1
∑

i=1

(ST
x
)i
�

f
�

x̄ + h(ST
x
)i
�

− f
�

x̄ − h(ST
x
)i
��T

(2.107)

These expressions of Stirling’s Interpolation are now modified to fit into the Sigma-Point filtering

scheme, giving a recurrent algorithm with the usual three sections of Initialization, Time-update

and Measurement-update.
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Initialization

The filter is initialized by setting a value for the mean and covariance of the states, as in the

previous algorithms:

x̂+
0
= E[x 0] (2.108)

P+
0
= E[(x 0 − x̂+

0
)(x 0 − x̂+

0
)T] (2.109)

Time-update

Afterwards, a set of sigma-points must be selected to represent the given distribution; this time

h is the only parameter setting their spread10

X +
k−1
=
�

x̂+
k−1

X̂+
k−1
+ h
q

P+
xk−1

X̂+
k−1
− h
q

P+
xk−1

�

(2.110)

The set of sigma-points must be now passed through the nonlinear function F(·):

∗X −
k
= F(X +

k−1
,uk−1) (2.111)

The Equations (2.105) and (2.106) are adapted to compute the mean and covariance of the

states’ distribution on the next step:

x̂−
k
=

2N−1
∑

i=0

ω
(m)

i
(∗X −

k
)i (2.112)

P−
x k
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¦
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·
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(∗X −
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)N+i − 2
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0
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·
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(∗X −
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)i + (

∗X −
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)N+i − 2
�∗X −

k

�

0
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©

+Q

(2.113)

Where the weights are also adapted to satisfy the equations11:

ω
(m)

0 =
h2 − N

h2
(2.114)

ω
(m)

i
=

1

2h2
i = 1,...,2N (2.115)

ω
(c1)

i
=

1

4h2
i = 1,...,2N (2.116)

ω
(c2)

i
=

h2 − 1

4h4
i = 1,...,2N (2.117)

10 For Gaussian noise distributions h=
p

3 is the optimal choice [3].
11 Recall that the equations do not require the definition of ω(c1)

0
and ω(c2)

0
because Eq. (2.106) does not present

a summand depending on the mean of the distribution f (x̄ ), the zero-th sigma-point. This avoids the previ-

ously mentioned problems with the negative weighting coefficient of the SR-UKF, which forced the use of the

Cholesky factor update after the QR-decomposition.
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Measurement-update

A new set of sigma points can be computed to represent the distirbution of the a priori state

estimate x̂−
k
, but introducing the effects of the new covariance:

X −
k
=
�

x̂−
k

X̂−
k
+ h
q

P−
xk

X̂−
k
− h
q

P−
xk

�

(2.118)

Once again, the mean and covariance of the output distribution can be estimated:

Yk = H(X −
k

,uk) (2.119)

ŷ k =

2N−1
∑

i=0

ω
(m)

i
(Yk)i (2.120)

P−
yk
=

N−1
∑

i=1

¦

ω
(c1)

i
[(Yk)i − (Yk)N+i] · [(Yk)i − (Yk)N+i]

T

+ω
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(Yk)i + (Yk)N+i − 2 (Yk)0
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·
�

(Yk)i + (Yk)N+i − 2 (Yk)0
�T
©

+R (2.121)

And the Eq. (2.107) can now be adapted for the estimation of the cross-covariance:

Px k yk
=

r

ω
(c1)

1 P−
x k
[Y1:N−1 −YN+1:2N−1]

T (2.122)

The last steps, as usual, are the calculation of the Kalman gain and the corresponding estima-

tions:

Kk = Px k yk
P−1

yk
(2.123)

x̂+
k
= x̂−

k
+Kk(y k − ŷ−

k
) (2.124)

P+
x k
= P−

x k
−KkPyk

KT
k

(2.125)

2.3.4 The Square-Root Central Difference Kalman Filter

As in the case of the UKF, the CDKF can also be modified to make its implementation computa-

tionally more efficient, through the Square-Root Central Difference Kalman Filter (SR-CDKF).

In order to do so, the costliest operation (the computation of the square-root covariance ma-

trix for every sigma-point set) is avoided by making the whole algorithm work directly with

the Cholesky factors of the covariance matrices. Besides, some of the steps are substituted by

equivalent algebraic operations such as the Cholesky factor update, the QR-decomposition and

the efficient least squares (see Section 2.3.2 for a detailed explanation).

Once again, the algorithm will be divided in three parts: Initialization, Time-update and

Measurement-update.

2.3. Sigma-Point Kalman Filters 21



Initialization

The filter gets initialized as the SR-UKF, with the upper Cholesky factor of the covariance matri-

ces

x̂+
0
= E[x 0] (2.126)

S+
x0
= chol{E[(x 0 − x̂+

0
)(x 0 − x̂+

0
)T]} (2.127)

SQ =
�p

Q
�T

= chol(Q) (2.128)

SR =
�p

R
�T
= chol(R). (2.129)

Time-update

There are only slight variations in the first steps with respect to those of the CDKF

X̂+
k−1
=
�

x̂+
k−1

, . . . , x̂+
k−1

�

, X̂+
k−1
∈ RN×N (2.130)
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∗X −
k
= F(X +

k−1
,uk−1) (2.132)

x̂−
k
=

2N−1
∑

i=0

ω
(m)

i
(∗X −

k
)i (2.133)

Where the definition of ω(m), ω(c1) and ω(c2) is the one given in Eq. (2.114) to (2.117). The

computation of the Cholesky factor of the covariance matrix, requires modifying Eq. (2.113) to

put it as a QR-decomposition, in which the upper Cholesky factor S−
xk

is returned

S−
xk
= qr
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(2.134)

This expression requires to concatenate N − 1 times the zero-th column of the sigma-point

matrix.

h
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Measurement-update

Similarly to the CDKF12,

X̂−
k
=
�

x̂−
k
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∈ RN×N (2.136)

X −
k
=
�

x̂−
k

X̂−
k
+ h
�

S−
xk

�T

X̂−
k
− h
�

S−
xk

�T �

(2.137)

Yk = H(X −
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,uk) (2.138)
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With

h
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�
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Px k yk
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T (2.142)
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Px k yk
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x̂+
k
= x̂−

k
+Kk(y k − ŷ−

k
) (2.144)

DC =KkST
yk

(2.145)

S+
xk
= cholupdate
�

S−
x k

,d i,
′−′
�

, i = 0, . . . , r − 1 (2.146)

where d i is the ith column of DC and therefore a sequence of downdates is applied to S−
xk

, being

the columns of DC the vectors for each downdate.

12 Eq. (2.140) corrects what, through logic and experimentation, was considered as a typo in the original bibli-

ography, from which the algorithm was extracted ([3], (3.233))
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3 Implementation Possibilities

Once the problem is clarified and the theoretical tools required for its solution have been con-

sidered, the next step is to analyze the different technical means of practically implementing

those solutions. This chapter will explain the available utilities as well as the reasoning followed

until the final choice.

The two compared options are writing the algorithms in C code or in MATLAB-Code. In any of

the cases the illustrative results are obtained from SIMULINK simulations.

3.1 C code into SIMULINK

The first approach to the problem has been the implementation of the algorithms in C code.

The main benefits of this choice with respect to the implementation in MATLAB-Code are that

• a better control of the process is achieved, enabling a higher efficiency and speed of the

algorithm, making it appropriate for real-time applications

• it makes it easy embedding the code into microcontrollers through slight variations of the

functions.

In other words, the main goal of developing filtering algorithms is their further implementation

in real state estimation problems, which requires having a fast and efficient code running in

real-time on a microcontroller. This is theoretically easier to achieve by means of C code.

However, as before specified, the aim is to test the different algorithms in SIMULINK, not in a real

microcontroller, and we should therefore consider the ways of embedding C code into SIMULINK,

most of the ways imply the use of the so called S-Functions [11].

3.1.1 S-Functions

The S-Functions (System Functions) are a mechanism for extending the capabilities of SIMULINK;

enabling the user to define his own blocks by means of a computer language such as MATLAB,

C, C++ or Fortran [12]. Specifically, the S-Functions written in C (also known as C MEX S-

Functions) are compiled by an external compiler which generates a MEX file (Matlab Executable)

that is called during the simulation.

The code of the S-Function from which the MEX file is obtained does not only have to include

the C-functions, but it must define all the parameters of the SIMULINK block, as well as the way in

which it interacts with the program during the simulation. There are several ways of generating
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this code out of an arbitrary C code written algorithm: the Legacy Code Tool, the S-Function

Builder and the Handwritten S-Functions.

• Legacy Code Tool – The Legacy Code Tool is a set of MATLAB commands, which makes the

process of creating S-Functions from a given C code easier. This tool receives the header

and source files as inputs, as well as some of the SIMULINK block parameters (sample time,

name of the S-Function...) and it generates a C MEX S-Function which can be run inside

a SIMULINK model1.

Even if the Legacy Code Tool constitutes the easiest approach for the creation of C MEX

S-Functions out of existing C code, it is also the one which fewest features supports [12].

• S-Function Builder – The S-Function Builder is another tool which eases the writing of

S-Functions from existing C code. It is a graphical user interface, in which the headers,

code and other required specifications are treated once again as inputs, giving the MEX

file as an output2.

This procedure requires a better knowledge of the working mechanism of S-Functions and

it supports more features than the previous one, it is still limited though. For instance, it

can neither build S-functions that have more than one input or output, nor it can handle

data types other than double [13].

• Handwritten S-Functions – This last option implies writing the S-Function starting from

scratch. There are some templates provided by THE MATHWORKS in which the typical

structure and commands are shown3.

This option is the most flexible one. It enables modifying every single line of the S-

Function code, giving a huge control of the program. However, it is obviously the most

complicated way too, since it requires a good knowledge of the working mechanism of

S-Functions.

In general, it is possible to state that S-Functions are an efficient way of testing an algorithm

which was written in C, within a SIMULINK model. The tool required to embed the code into

SIMULINK depends on the complexity of the task to accomplish and the knowledge of the pro-

grammer.

3.1.2 The CSparse/CXSparse Library

MATLAB is a language specifically designed for easing the programming of high level algorithms

but that is not the case for the C language. Even if it has the benefit of being closer to the

1 For a detailed explanation see http://de.mathworks.com/help/simulink/sfg/integrating-existing-c

-functions-into-simulink-models-with-the-legacy-code-tool.html
2 For a detailed explanation see http://de.mathworks.com/help/simulink/sfg/s-function-builder-

dialog-box.html
3 See, for instance http://de.mathworks.com/help/simulink/sfg/templates-for-c-s-functions.html
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hardware (which enables the desired quickness and efficiency) it is not desirable to program all

the linear algebra routines starting from scratch. Thus, one should employ existing libraries.

Looking at the characteristics of the algorithms presented in chapter 2, it is possible to see that

the most basic operations needed are the manipulation of vectors and matrices (multiplication,

addition...) and some more complex operations such as the Cholesky Factorization for the

Sigma-Point implementation.

Besides, the matrices employed in those algorithms for the analyzed wind turbine system can

be considered sparse; meaning that they have a lot of zero elements.

One library satisfying the requirements is the CSparse library developed by Timothy A. Davis

[14]. For its use with 64-bit MATLAB the super-set library CXSparse is required which can also

operate with complex matrices.

This library which is included in the code by the source file “cs.c” and the header file “cs.h”

defines the sparse matrices as data structures which can be either in compressed-column or in

triplet format. These data structures only store the non-zero elements of the matrix, as well as

a pattern indicating their locations. The formats (compressed-column and triplet) are required

for the different commands defined in the library. Each command must receive the matrices in

a given form.

3.2 MATLAB Code into SIMULINK

The algorithms can also be tested by directly writing them in MATLAB code. The main advantage

of this procedure is the easiness. The MATLAB language is thought for the efficient implementa-

tion of the required functions (Cholesky Factor Update,...) and it is also easier to embed MATLAB

code in SIMULINK than C code.

Moreover, the MATLAB CODER software enables the generation of C code from MATLAB code

under certain restrictions. When they are satisfied, this is a suitable way of implementing the

developed and tested algorithms into a microcontroller for real-life use. Even if the control

achieved by directly writing C code is lost, a lot of easiness and understandability of the code is

gained and the efficient implementation of the algorithms is also guaranteed.

There are several ways of embedding the MATLAB code into SIMULINK. Some of them are the

MATLAB code S-Functions, Interpreted Matlab Functions and the Embedded Matlab Functions.

• MATLAB S-Functions – These functions are equivalent to the C Code S-Functions. They are

written in MATLAB Code though. Their working mechanism is very similar and they allow

for multiple inputs, outputs and various data types. They are also available templates,

where the different required commands are specified and they are suitable for direct code

generation.

• Interpreted MATLAB Functions – This tool enables the easy inclusion of MATLAB code into

a SIMULINK model. There is a wide set of functions accepted by this block, but the block is
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restricted to a single output and a single input of type double which can be either real or

complex. The interpreted functions enable the call to functions on the current directory of

MATLAB. However, the SIMULINK CODER does not support the C code generation from these

functions, which is a considerable disadvantage.

• Embedded MATLAB Functions – These functions (in versions of the software after R2011a

simply known as “MATLAB Function Block” ) have the main benefit of allowing the readable,

efficient and compact C/C++ code generation [12]. They however do not accept all the

MATLAB functions4. Besides, everything must be defined inside the function, as they do

not accept loading data from workspace or using functions defined in the search path of

MATLAB. Nevertheless, persistent variables are an efficient technique to define data at the

initialization and use it while simulating.

3.2.1 The MATLAB EKF/UKF Toolbox

The MATLAB EKF/UKF Toolbox is composed by a set of functions developed by Jouni Hartikainen

et al. for the implementation in MATLAB of Kalman Filtering and Smoothing algorithms such as

the EKF, UKF or CKF, among others.

All the different algorithms of the toolbox are designed with a similar structure and the program

is usually divided in two main functions: predict, equivalent to the Time-update step and update,

equivalent to the Measurement-update. A very detailed description can be found in [8].

4 Just the ones listed in http://de.mathworks.com/help/simulink/ug/functions-supported-for-code-

generation�alphabetical-list.html
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4 Development of the Code

Now that the problem, the theory to solve it and the practical tools available are clear, it is time

to analyze the evolution of the project. This chapter aims to describe the procedure followed

until the complete fulfillment of the purposed task.

4.1 Kalman Filter in C Code

Due to the above exposed reasons, the first approach to the problem consisted on writing the

algorithms in C-Code, using the CSparse (CXSparse) library. The code is brought into SIMULINK

through a handwritten S-Function.

At the beginning, a simple discrete-time SISO model was employed to become familiar with the

library and the working mechanism of S-Functions. This model was afterwards extended to a

two output model, eventually augmenting it to the linearized model of a wind turbine presented

in Appendix A.

The first implemented algorithm is the Linear Kalman Filter (see Section 2.2), giving an accurate

result for the simplified model. The code was therefore extended for every system of N states,

M inputs and r outputs1, as can be seen in its final version in Appendix B, Listing B.1. The

performance of the algorithm with the wind turbine model will be analyzed in Chapter 5. The

following pages will analyze how the code was implemented and the commands employed.

4.1.1 Structure of the Program: S-Function

The code was constructed based on the templates that THE MATHWORKS make available for the

developing of C MEX S-Functions, which are sfuntmpl_basic.c and sfuntmpl_doc.c, being the first

one a basic template and the second one a exhaustive one, with all available routines. The basic

behavior of every S-Function during simulation is depicted in Figure 4.1.

The S-Functions are always initialized with a couple of lines defining the name of the function

and its type (lines 9, 10):

#define S_FUNCTION_NAME turKFsparse

#define S_FUNCTION_LEVEL 2

and they include the simstruc library (line 12)

1 Some slight variations of the code must be done when changing the number of parameters of the model, they

are specified as comments
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Start of simulation

mdlInitializeSizes

mdlInitializeSampleTimes

mdlOutputs

mdlTerminate

End of simulation

Simulation loop

Figure 4.1.: Behavior of basic routines of S-Functions during simulation (adapted from [13]).

#include "simstruc.h"

which has all the routines for the compilation and appropriate usage of the code. They are

structured with the four indispensable commands, that make the skeleton of every C MEX S-

Function:

• mdlInitializeSizes – Specifies sizes of parameters, number and size of input and out-

put ports of the block and some specifications, such as enabling the block to have direct

feedthrough or not. In the here analyzed code, for instance, it is possible to find expres-

sions such as (lines 38 and 39)

ssSetInputPortWidth(S, 0, 4);

ssSetInputPortDirectFeedThrough(S, 0, 1);

Which mean that the input in the port number “0” has a size of 4 elements and it enables

direct feedthrough; in other words, the current output can depend on the current value

of the input.

• mdlInitializeSampleTimes – This routine specifies the sample time of the block, as can

be seen in lines 63 and 64,

ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0.0);

where the sample time is specified as the same of the simulation with no offset.

• mdlOutputs – This function is where the actual algorithm is; the code is repeated each

simulation step (see Figure 4.1) and the outputs are computed every time. The main code

under this function will be analyzed in more detail in Section 4.1.2 as it has more to do

with the algorithm itself, it is however interesting to explain commands such as (line 95)

InputRealPtrsType uk = ssGetInputPortRealSignalPtrs(S,0);

which every sample time stores in the variable uk the new value of the input or (line 119)
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real_T *A = mxGetPr(PARAM_matrixA);

where PARAM_matrixA was defined in the preamble (line 17) as

#define PARAM_matrixA ssGetSFcnParam(S,0)

This code gets run only the first time because the matrices are constant. It enables to

get the matrix as a parameter from the SIMULINK block (and hence from the workspace of

MATLAB).

• mdlTerminate – This routine is run at the end of the simulation. It is mandatory to put

it for the good operation of the block, it is however totally empty in the code, as it is not

required to do anything at the end of the simulation.

Apart from the here depicted general S-Function structure, the Listing B.1 also has a preamble

of “#define”-s and “#include”-s, characteristic of the C coded programs (lines 9 to 23) and

there is a self written function at the end of the code (makesparse).

4.1.2 Implementation of the Algorithm: CXSparse

Once the skeleton of the function and its behavior during simulation is clear, it is time to focus

on the implementation of the equations from Section 2.2.

The CXSparse library is included in line 13 through the header file cs.h which defines all the

functions from the library and must have a source file (cs.c) where the code of those functions

is detailed (see Section 4.1.3 for more information on the topic).

At the beginning of the simulation, all the employed sparse matrices and vectors must be defined

(lines 73-85). The rest of elements can be defined inside the if(key){} environment, defining

them only in the first run step of the code.

After inputting the matrices as parameters, the following operation is conducted for all of them:

F = cs_spalloc(N, N, N*N, 1, 1); //allocating space in memory

makesparse(A,F,N,N); //turning the matrix sparse

F=cs_compress(F); //turning it from triplet to CC

where cs_spalloc and cs_compress are two commands defined on the CXSparse library and

makesparse is a self written command. The overall translation would be the following:

Allocate a sparse N × N matrix F in triplet format, with a maximum amount of N2

non-zero entries, put all the elements of matrix A into the matrix F and turn it into

compressed column format.

This needs to be done because the cs_entry command requires a matrix in triplet format,

whereas the following commands require the matrix in compressed column (CC) format.

Afterwards, the Kalman Filter equations (2.11) to (2.23) are implemented using the commands

available (Table 4.1).
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Table 4.1.: Overview of the employed commands of the CXSparse library (adapted from [14])

Command Description

C=cs_add(A,B,α,β) Adds two sparse CC matrices: C= αA+ βB

C=cs_multiply(A,B) Multiplies two sparse CC matrices: C= A ·B

C=cs_transpose(A,1) Transposes a sparse matrix: C= AT

cs_lusol(0, A, b, 1) Solves Ax=b using LU factorization stores answer in b

cs_gaxpy(A,x ,y) Computes sparse CC matrix times dense column vector: y = Ax + y

cs_spalloc(a,b,c,1,1) Allocates an a×b matrix with a maximum of c nonzero entries in CC form

cs_spfree(A) Frees a sparse matrix

cs_entry(A,i,j,a) Adds entry “a” in position (i,j) to triplet matrix A

cs_compress(A) Converts triplet-form matrix A into CC

In order to compute the Kalman gain from Eq. (2.23), the computation of an inverse matrix is

required. Since this is not one of the functionalities of the package, it is useful to transform the

system into a conventional linear system Ax = b.

Kk = P−
xk

CT(CP−
xk

CT +R)−1 = Pxk yk
P−1

yk
=

h�

P−1
yk

�T

PT
xk yk

iT

=
�

S−1
aux

Baux

�T
(4.1)

Saux = C
�

P−
xk

�T

CT +RT (4.2)

Baux = C(P−
xk
)T (4.3)

It is remarkable though that it is not a vector x what we are looking for, but a matrix KT
k
∈ Rr×N ,

so the solution adopted for solving a system SauxK
T
k
= Baux was to split it into N different

systems, one per each of the N columns of KT
k

(lines 197-214).

Sauxk0 = b0

Sauxk1 = b1

...
...

SauxkN−1 = bN−1

















Kk =
�

k0, k1, . . . , kN−a

�T

(4.4)

Finally, the estimated state is obtained by (lines 234-236):

for (i=0; i<width; i++) {

*xest1++ =x_est->x[i]; //Show the result

}

The elements inside the cs data structures are accessed through the “->” operator. In this extract

of the code, the x vector of the cs data structure x_est is called. The sparse data structures are
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defined by a set of vectors and constants. Vector x contains all the nonzero entries of the matrix

in a single column. The position of these elements in the matrix is defined in other vectors of

the data structure.

Eventually, the code of the self written function makesparse is given, as well as a set of com-

mands required for the appropriate compilation of the code. The makesparse function (lines

250 to 259) has the task of transforming the matrices received from MATLAB into sparse triplet

format matrices. It is defined as a separate routine because it is repeatedly called throughout

the code.

static void makesparse (double *value_array, cs *sparsematrix , int rows, int →

←columns ){

int j,k,p=0;

for (k=0; k<columns; ++k){

for (j=0; j<rows; ++j) {

cs_entry(sparsematrix , j, k, value_array[p+j]);

}

p=p+j;

}

p=0;

}

4.1.3 Introducing the Code into SIMULINK

The first step for creating a C MEX S-Function from the handwritten C code is to compile the

file. Thus, a C compiler must be installed in MATLAB
2, by

mex -setup

command.

Furthermore, the required library must be created from the source file cs.c, which specifies all

employed functions.

When the compiler is run it creates object files (.obj) from the source files (.c). This is way

the source file of the library can be compiled into an object file and create a static library

(.lib) afterwards. After creation of the object files and libraries, the linker searches on the

specified libraries for the definition of all the employed functions. Thereby, the code where all

the functions of CXSparse are defined is compiled only once, creating a library. This library is

used every time that the code of the S-Function is compiled.

The static library is created by putting all the functions together into the cs.c source file and

running the following commands in that directory from the Microsoft Windows 7 x64 Debug

Build Environment:
2 From the ones listed in http://de.mathworks.com/support/sysreq/files/SystemRequirements

-Release2013b_SupportedCompilers.pdf?sec=win64, e.g. the Microsoft Windows SDK 7.1
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cl -c cs.c

LIB cs.obj

Afterwards, once the compiler is set up correctly in MATLAB, the MEX file is created by executing

the following command in the MATLAB command window:

mex -DNCOMPLEX turKFsparse.c cs.lib ;

turKFsparse.c is the name of the source file of the S-Function and -DNCOMPLEX is a flag of the

CXSparse library. It is set for the compilation to avoid compatibility problems with the compiler

and MATLAB.

4.1.4 Overview of the Implementation

Once the development process of the C MEX S-Function Linear Kalman Filter is finished, its

estimation of the state is satisfactory and comparable to that of the other algorithms (as will be

analyzed in Chapter 5). However the following drawbacks are observed:

• The memory efficiency objective of using a sparse matrices library is not fulfilled: As the

matrices are input from MATLAB, even the smallest elements of the matrices are stored,

instead of leaving free space in the zero elements. Moreover, it has not been possible

to guarantee a maximum amount of nonzero elements for varying matrices such as the

covariances of the state or the Kalman Gain.

• The quickness objective of using C code is not fulfilled. The lack of efficient algorithms for

the computation of inverse matrices implies having to find the Kalman Gain as described

in Eq. (4.4); solving N linear systems within a for loop, which can lead to increased com-

putation times for high order systems.

• The complexity of the programming is high: Dealing with a hardware-close language

like C and with a library like CXSparse for the implementation of complex algorithms is

more complicated than with higher level languages as MATLAB. The developing of the

Linear Kalman Filter was not straightforward and it did not require routines such as the

Cholesky Factor Update or the QR-Decomposition.

Therefore, the implementation of more complex nonlinear algorithms with MATLAB interpreted

functions and MATLAB embedded functions is investigated in the following.
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4.2 Sigma-Point Kalman Filters as Interpreted MATLAB Functions

Interpreted MATLAB functions define SIMULINK blocks with just one input and one output where

plenty of the MATLAB commands can be used. This tool is employed to test the already existing

algorithms of the EKF/UKF toolbox and to develop own efficient algorithms.

The basic structure employed by all the sigma-point filters is depicted in Figure 4.2. The in-

terpreted MATLAB function is the one composed by the Initialize routine, where all the initial

parameters are given and the input vector is divided into uk and y k. It calls cyclically the pre-

dict and update functions, each one receiving the required parameters. These functions also

call the corresponding transform function, where the actual transformation is done, by calling

functions Weights and Sigmas for the computations of Sigma-points and weighing factors.

The values of x̂+
k−1

and P+
k−1

are stored between calls to the function by declaring these variables

as persistent.

Inputs:
Interpreted

MATLAB function

x̂+
0

,P+
0

,

F(·),H(·),
Q,R,param

Initialize

uk−1 Predict

Weights

Transform

Sigmas

uk,y k Update

Output: x̂+
k

x̂+
0

,P+
0

x̂−
k
,P−

k

x̂+
k−1

,P+
k−1

k← k+ 1

x̂+
k−1

,P+
k−1

x̂−
k
,P−

k

x̂+
k−1

,P+
k−1

x̂−
k
,P−

k

N

ω(m),ω(c1),ω(c2)

x̂+
k−1

,P+
k−1

,x̂−
k
,P−

k

X +
k−1

,X −
k

Figure 4.2.: Scheme of the common structure of the filtering algorithms implemented as in-

terpreted MATLAB functions. Dark blue color indicates that paths and variables are employed

during the update-step. “param” represents the parameters defining the spread of the sigma-

points: α,β ,κ for the UKF/SR-UKF and h for the CDKF/SR-CDKF.

The implementation in MATLAB of the already existing routines of the library EKF/UKF required

understanding how the functions work. The following filters of the EKF/UKF were implemented

successfully:
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• Linear Kalman Filter (KF)

• Extended Kalman Filter (EKF)

• Unscented Kalman Filter (UKF)3

• Cubature Kalman Filter (CKF)

• Gauss-Hermite Kalman Filter (GHKF)4

The understanding achieved was useful to develop own algorithms (SR-UKF, CDKF and SR-

CDKF). The next pages analyze the self-developed algorithms, implemented as interpreted

MATLAB functions and adopting the nomenclature and structure of the EKF/UKF toolbox al-

gorithms.

Initialize

This is the function that the interpreted MATLAB function block has assigned. The initialization

step is done and the further functions (Predict and update) are called cyclically. The Initialize

file of the CDKF is shown in Listing 4.1 as an example. When the initialization step is called,

the input vector is separated into the uk and the y k vectors and, at the first time step of the

simulation, all the required data is load from a .mat file. These matrices, vectors and scalars

are declared as persistent variables being available during the whole simulation. They are listed

below:

• x̂+
0
→ Initial estimate of the state

• P+
0
→ Initial estimate of the covariance of the state

• Q→ Covariance matrix of the process noise

• R→ Covariance matrix of the measurement noise

• param → Set of parameters adjusting the spread of the sigma-points: α, β , κ for the

UKF/SR-UKF and h for the CDKF/SR-CDKF.

Afterwards, the predict and update functions are called cyclically, referencing by means of func-

tion handles the dynamics defined in the search path or current directory of MATLAB:

• F(·)→ State dynamics function in the form of function handle (@mysystem)

• H(·)→ Measurement dynamics function in the form of function handle (@measurement)

3 In the additive noise version (ukf_predict1 and ukf_update1).
4 This algorithm is in general not supposed to work for N ≥ 4 [1]. However, when setting the degree of

approximation to p = 1 some accurate estimations could be achieved.
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Listing 4.1: CDKF Interpreted Matlab Function

1 function [ x ] = CDKFmatlabIn( in )

% Interpreted Matlab function for implementation of

% Central Difference Kalman Filter

persistent Q R x_est p_est h

u=in(1:4);

6 y=in(5:8);

if isempty(Q)

load(’Data.mat’);

Q=Data.Q;

R=Data.R;

11 x_est = Data.X0;

p_est=Data.Pini;

h=sqrt(3);

end

[x_prd,p_prd] = cdkf_predict(x_est,p_est,@mysystem ,Q,u,h);

16 [x_est,p_est] = cdkf_update(x_prd,p_prd,y,@measurement ,R,u,h);

x=x_est;

end

Prediction of Mean and Covariance

When the predict function is called, MATLAB searches in the directory or in the path to find

the file containing such function. Its main objective is to check that all the variables were

initialize correctly and default values are put if necessary. Afterwards, the proper transformation

is conducted, by calling the corresponding function and finally the process noise covariance Q

is added in the not Square Root cases. An example of this function can be seen in Listing 4.2.

Listing 4.2: CDKF Predict

1 function [M,P] = cdkf_predict(M,P,f,Q,f_param,h)

% Check which arguments there are and apply defaults

if nargin < 2

error(’Too few arguments’);

end

6 if nargin < 3

f = [];

end

if nargin < 4

Q = [];

11 end

if nargin < 5

f_param = [];

end

if nargin < 6
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16 h = [];

end

if isempty(f)

f = eye(size(M,1));

end

21 if isempty(Q)

Q = zeros(size(M,1));

end

% Do transform and add process noise

[M,P] = cendif_transform(M,P,f,f_param,h);

26 P = P + Q;

Central-Difference Transformation and Unscented Transformation

The transform function is where the main part of the algorithm happens, it is called both in the

time-update and in the measurement-update5. This can be done because of the symmetry that

both steps have for the different sigma-point algorithms (see Table 4.2).

The algorithms avoid for loops, in order to make them computationally more efficient. The

notation of the EKF/UKF toolbox has been adopted for the new implemented algorithms for the

sake of consistency.

Table 4.2.: Equivalence of the steps done in the transformation. The square-root versions of the

algorithms compute the Cholesky factor of the covariance S instead the covariance P (step 5.).

The computation of the cross covariance is sometimes done in the update function, outside

the transform one.

Step Time-update Measurement-update

1. Generate a new set of sigma points X +
k−1

X −
k

2. Generate a set of weights ω(m), ω(ci) ω(m), ω(ci)

3. Pass the sigma-points through the function ∗X −
k
= F(X +

k−1
,uk−1) Yk = H(X −

k
,uk)

4. Compute mean of distribution x̂−
k
=

2N
∑

i=0

ω
(m)

i
(∗X −

k
)i ŷ k =

2N
∑

i=0

ω
(m)

i
(Yk)i

5. Compute covariance and cross

covariance of distribution
P−

xk
Pyk

, Pxk yk

5 An exception is one of the implementations of the SR-UKF where different sets of sigma points are used for

the measurement-update (see Section 2.3.2), requiring a different transform function.
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Listing 4.3: CDKF transform

function [mu,S,X,Y,w] = cendif_transform(M,P,g,g_param,h)

2 N=size(M,1);

if nargin < 4

g_param = [];

end

% Apply defaults

7 if nargin < 5

h = [];

end

% Calculate sigma points

% Bachelor Thesis Eq.: (2.110) and (2.118)

12 [WM,WC1,WC2] = cendif_weights(size(M,1),h);

X = cendif_sigmas(M,P,h);

w = {WM,WC1,WC2};

% Propagate through the function

% Bachelor Thesis Eq.: (2.111) and (2.119)

17 if isnumeric(g)

Y = g*X;

elseif ischar(g) | strcmp(class(g),’function_handle’)

U=repmat(g_param ,1,size(X,2));

Y = feval(g,X,U);

22 else

U=repmat(g_param ,1,size(X,2));

Y = g(X,U);

end

% Bachelor Thesis: Eq. (2.112) and (2.120)

27 mu = Y * WM;

% Bachelor Thesis: Eq. (2.113) and (2.121)

A= Y(:,2:N+1) - Y(:,N+2:2*N+1);

B= Y(:,2:N+1) + Y(:,N+2:2*N+1)-repmat(2*Y(:,1),1,N);

S= WC1(1) * A * A’ + WC2(1) * B * B’;

32 end

Computation of sigma-points and their weights

The function cendif_sigmas computes the sigma-points of a distribution defined by its mean,

its covariance and a parameter h setting the spread of the points. The square-root versions of the

algorithms directly receive the Cholesky factor of the covariance and the algorithms based on

the unscented transformation (UKF and SR-UKF) get the parameter η instead of h. Listing 4.4

shows the code for the CDKF as an example.
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Listing 4.4: CDKF sigmas

function X = cendif_sigmas(M,P,h);

% Bachelor Thesis Eq.: (2.110) and (2.118)

A=chol(P)’;

X = [zeros(size(M)) A -A];

5 X = h*X + repmat(M,1,size(X,2));

The function cendif_weights generates the set of weights to compute the mean and the co-

variance from the transformed sigma-points. The weights depend on the type of filter:

• UKF/SR-UKF – Require ω(m)
i

and ω(c)
i

, i = 0, . . . , 2N .

• CDKF/SR-CDKF – Require ω(m)
i

, ω(c1)

j
and ω(c2)

j
, i = 0, . . . , 2N , j = 1, . . . , 2N .

The computation of the CDKF-weights is shown in Listing 4.5 as an example .

Listing 4.5: CDKF weights

function [WM,WC1,WC2] = cendif_weights(n,h)

2 % Check which arguments are there

if nargin < 1

error(’At least dimensionality n required.’);

end

if nargin < 2

7 h = [];

end

% Apply default values

if isempty(h)

h = sqrt(3);

12 end

% Compute the normal weights

WM = zeros(2*n+1,1);

WC1 = zeros(2*n+1,1);

WC2 = zeros(2*n+1,1);

17 % Bachelor Thesis Eq.: (2.114) -(2.117)

for j=1:2*n+1

if j==1

WM(j) = (h^2-n) / h^2;

else

22 WM(j) = 1 / (2 * h^2);

end

WC1(j) = 1 / (4 * h^2);

WC2(j) = ((h^2)-1)/(4*h^4);

end
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Update of Mean and Covariance

Eventually the Update function is called, which presents a lot of similarities with the Predict

function; they both check the input parameters and call the transform function. The main

difference is that, at the end of the execution, the last steps of the algorithm are conducted: the

cross covariance is computed (when it is not computed in the Transform step), the Kalman Gain

is computed and a posterior estimation of the state and its covariance is done. Listing 4.6 shows

the function for the CDKF.

Listing 4.6: CDKF Update

1 function [M,P,K,MU,S] = cdkf_update(M,P,y,H,R,H_param,h)

% Check that all arguments are there

if nargin < 5

error(’Too few arguments’);

end

6 if nargin < 6

H_param = [];

end

if nargin < 7

h = [];

11 end

% Do transform and make the update

[MU,S,~,Y,w] = cendif_transform(M,P,H,H_param,h);

S=S+R; %Add measurement noise covariance

WC1=w{2};

16 % Bachelor Thesis Eq.: (2.122)

C=sqrt(WC1(2))*chol(P)’*(Y(:,2:size(M,1)+1)-Y(:,size(M,1)+2:end))’;

% Bachelor Thesis Eq.: (2.123)

K = C / S;

% Bachelor Thesis Eq.: (2.124)

21 M = M + K * (y - MU);

% Bachelor Thesis Eq.: (2.125)

P = P - K * S * K’;

It is however interesting to analyze the way in which these last steps of the algorithms are done

for the square-root versions of the algorithms, as they rely on functions such as the Cholesky

Factor Downdate for the propagation of the error covariance in the measurement update (see

Section 2.3.2 for a detailed explanation).

Down = C/S_y;

2 K = Down/S_y’;

M = M + K*(y-MU);

for i=1:size(Down,2)

S_x=cholupdate(S_x,Down(:,i),’-’);

end
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The shown extract of the SR-CDKF6 computes Equations (2.143) to (2.146) (or, equivalently,

Equations (2.95) to (2.98) for the SR-UKF). First, the downdate matrix DC is computed which

is employed to compute the Kalman Gain. Afterwards, the mean is updated with the measure-

ment, and the error covariance is obtained by r consequent Cholesky Factor downdates, using

the r columns of DC the vectors for each downdate.

4.3 Sigma-Point Kalman Filters as Embedded MATLAB Functions

The embedded functions have the main benefit of eased C code generation directly from

SIMULINK. However, a couple of limitations apply (see Section 3.2):

• Model and filter parameters must be defined inside the function.

• Not all the MATLAB commands are supported.

These limitations have two consequences:

• The nonlinear model and the required filter parameters have to be provided within the

embedded function.

• Commands such as feval and cholupdate must be redefined.

Thus, the developed and tested interpreted MATLAB functions have to be modified in order

to reach embedded MATLAB functions. Listing 4.7 shows the code of the embedded function

CDKF implementation. Both model and filter parameters must be defined inside the function.

In this example, the model is a linear system defined by the matrices A,B,C and D (lines 5-

9). Therefore, the model evaluation (lines 38-41 and 57-59) is that of a linear system. This

implementation can easily be modified to define a nonlinear system.

Listing 4.7: Embedded CDKF

function [x,yh] = embCDKF(u,y)

persistent A B C D Q R Px_est x_est u_prev h WM WC1 WC2 N

3 %% STEP 0 INITIALIZATION

if isempty(A)

%%0A DEFINITION OF THE REQUIRED MATRICES FOR THE MODEL

A = [...];

B = [...];

8 C = [...];

D = [...];

%%0B DEFINITION OF THE REQUIRED PARAMETERS FOR THE FILTER

N=size(A,2);

Q=diag([1e-3 1e-3 1e-6 1e-6 1e-3 1e-3 1e-2 1e-6 1e-1]);

13 R=diag([1e-1 1e-2 5e2 5e2]);

Px_est=diag([1e-2 1e-3 1e1 1e-3 1e-2 1e-2 1e1 1e-3 1e1]);

x_est=zeros(9,1);

h=sqrt(3);

6 It is the same code as the one employed in the SR-UKF
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% Bachelor Thesis Eq.: (2.114) -(2.117)

18 WM = zeros(2*N+1,1);

WC1 = zeros(2*N+1,1);

WC2 = zeros(2*N+1,1);

for j=1:2*N+1

if j==1

23 WM(j) = (h^2-N) / h^2;

else

WM(j) = 1 / (2 * h^2);

end

WC1(j) = 1 / (4 * h^2);

28 WC2(j) = ((h^2)-1)/(4*h^4);

end

u_prev = u;

end

%% STEP 1 TIME UPDATE

33 %%1A SIGMA-POINTS

% Bachelor Thesis Eq.: (2.110)

S=chol(Px_est)’;

X = [zeros(size(x_est)) S -S];

X = h*X + repmat(x_est,1,size(X,2));

38 %%1B EVALUATION OF STATE EQUATION

U_PREV=repmat(u_prev,1,size(X,2));

% Bachelor Thesis Eq.: (2.111)

Y=A*X+B*U_PREV;

%%1C EVALUATION OF PREDICTED MEAN AND COVARIANCE

43 % Bachelor Thesis Eq.: (2.112)

x_prd = Y * WM;

% Bachelor Thesis Eq.: (2.113)

aux1= Y(:,2:N+1) - Y(:,N+2:2*N+1);

aux2= Y(:,2:N+1) + Y(:,N+2:2*N+1)-repmat(2*Y(:,1),1,N);

48 Px_prd= WC1(1) * (aux1 * aux1’) + WC2(1) * (aux2 * aux2’);

Px_prd = Px_prd + Q;

%% STEP2 MEASUREMENT UPDATE

%%2A SIGMA-POINTS

% Bachelor Thesis Eq.: (2.118)

53 S=chol(Px_prd)’;

X = [zeros(size(x_prd)) S -S];

X = h*X + repmat(x_prd,1,size(X,2));

%%2B EVALUATION OF MEASUREMENT EQUATION

U=repmat(u,1,size(X,2));

58 % Bachelor Thesis Eq.: (2.119)

Y=C*X+D*U;

%%2C EVALUATION OF PREDICTED MEAN AND COVARIANCE

% Bachelor Thesis Eq.: (2.120)

y_est = Y * WM;

63 % Bachelor Thesis Eq.: (2.121)

aux1 = Y(:,2:N+1) - Y(:,N+2:2*N+1);
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aux2 = Y(:,2:N+1) + Y(:,N+2:2*N+1)-repmat(2*Y(:,1),1,N);

Py = WC1(1) * (aux1 * aux1’) + WC2(1) * (aux2 * aux2’);

Py= Py + R;

68 % Bachelor Thesis Eq.: (2.122)

Pxy=sqrt(WC1(2))*S*(Y(:,2:N+1)-Y(:,N+2:end))’;

%%2D KALMAN GAIN

% Bachelor Thesis Eq.: (2.123)

K = Pxy / Py;

73 % Bachelor Thesis Eq.: (2.124)

x_est = x_prd + K * (y - y_est);

% Bachelor Thesis Eq.: (2.125)

Px_est = Px_prd - K * Py * K’;

%%2E OUTPUT

78 u_prev = u;

yh=y_est;

x=x_est;

end

Moreover, in the Square Root versions of the algorithms (see Listing B.2 and Listing B.3), the

Cholesky Factor Update function must be implemented. Therefore, according to the theory

explained in Section 2.3.2, we get that

S̃= chol(P̃) = cholupdate(S,
p
ν · x ) = chol(STS+ ν · x x T), (4.5)

which in MATLAB code turns

Sx_prd=cholupdate(Sx_prd, sqrt(WC(1))*(Y(:,1)-x_prd));

into

Sx_prd=chol(Sx_prd ’*Sx_prd+WC(1)*(Y(:,1)-x_prd)*(Y(:,1)-x_prd)’);

Equivalently, the propagation of the Cholesky factor of the covariance in the measurement up-

date requires r consequitive Cholesky downdates. This is adapted in an efficient way for C code

generation.

% Cholesky Downdate for generation of C code

% Bachelor Thesis Eq.: (2.146)

Sx_est=chol(Sx_prd ’*Sx_prd - Down*Down’);
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5 Results and Discussion

In this chapter the developed algorithms are tested under different conditions in SIMULINK. First,

the developed interpreted MATLAB functions will be tested with the linearized model of a wind

turbine. The performance of the filters is compared to that of the filters of the EKF/UKF toolbox,

and the performance of the C code Linear Kalman Filter is verified too. Secondly, the developed

embedded MATLAB functions are tested with the nonlinear model of a wind turbine, and their

performance will be compared to that of the CKF of the EKF/UKF toolbox.

5.1 Optimal Choice of the Filter Parameters

In this section a brief insight in the choice of the filter parameters is given. The selection of the

parameters defining the spread of the sigma-points1 has already been discussed in Section 2.3.

It is however interesting to think about the choice of the initial conditions x̂+
0

and P+
x0

and the

noise covariance matrices Q and R.

In the general case, there is always some uncertainty in the choice of the initial conditions

of the filters. Using an observer usually implies that the states can not directly be measured.

Therefore, x̂+
0

must be chosen trying to estimate the value of x 0 by means of a prior knowledge

of the system (for instance, by means of simulations). The error covariance matrix Pxk
is a

measure of how far the estimated state and the real state are. Hence, the initial covariance P+
x0

is a measure of the confidence on the initial conditions given to the filters

P+
x0
= E[(x 0 − x̂+

0
)(x 0 − x̂+

0
)T]. (5.1)

When the difference between the initial conditions of the plant and the filter is high, the initial

covariance should also be high, so that the filter trusts more the new measurement than the

initial state estimate. However, a compromise is observed: when the covariance is too high, the

filters trusts the output too much and a lot of noise gets into the estimated signal.

Kk = P−
x k

CTP−1
yk
= P−

x k
CT
�

CP−
x k

CT +R
�−1

= C−1 + P−
xk

CTR−1

= C−1 +
�

AP+
x k−1

AT +Q
�

CTR−1 (5.2)

Eq. (5.2) shows that the Kalman gain is proportional to the state error covariance, which con-

firms that high error covariances lead to a higher confidence in the output than in the previous

state estimate and vice versa.

x̂+
k
= x̂−

k
+Kk(y k − ŷ k) (5.3)

1 α, β and κ for the UKF and SR-UKF and h for the CDKF and SR-CDKF.
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An appropriate setting of the initial covariance leads to better initial dynamics of the filters and

a faster reduction of the initial estimation error.

A similar reasoning applies to the choice of the noise matrices Q and R. Q is a measure of the

spread of the process noise

Q= E[w kw T
k
] (5.4)

and the state error covariance is proportional to it

P−
x k
= AP+

x k−1
AT +Q (5.5)

Therefore, high process noises lead to high Kalman Gains (see Eq. (5.2)) and lower confidence

in the previous estimates than in the measurements. On the contrary, R is a measure of the

spread of the measurement noise

R= E[v kv
T
k
]. (5.6)

Thus, the measurement error covariance is proportional to it

Pyk
= CP−

x k
CT +R (5.7)

this leads to an inverse proportional relationship with the Kalman Gain (see Eq. (5.2)). Hence,

high measurement noises (high values of R) will lead to low Kalman Gains and a higher trust

on the model and the previous estimate than on the output, filtering the noise.

In a real implementation, the values of these matrices should correspond with the noise hap-

pening in the system. This can be done by modeling these noisy processes or by optimizing the

parameters of the matrices through tests.

5.2 Comparison of the Filters with a Linearized Model

In order to test the performance of the implemented filters, the states of the wind turbine and

their estimation will be plotted and the Root Mean Square Error (RMSE) of the filter will be

computed for each state, as a measure of its estimating accuracy.

RMSEi =

√

√

√

√

√

T
∑

k=1

�

x̂ki
− xki

�2

T
i = 1, . . . , N (5.8)

where T represents the total number of steps k in the simulation.
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This measure of the error is given in the same unit as the original magnitude. In order to better

appreciate the performance of the filters, the Relative RMSE was defined having as a reference

the MATLAB based Kalman Filter2.

Relative RMSEi =
RMSEGiv enF il ter

i

RMSEMatlabKF
i

i = 1, . . . , N (5.9)

The model employed for these simulations is the one described in Appendix A. The filters use

the actual model, estimating the wind speed as a state. However, the simulation is done with

the modified model, where the wind speed is controlled as an input. This enables to test the

reaction of the filters to different wind speed fields.

All the tests are done under some basic conditions of

• Wrong initial conditions – The initial conditions of the plant are set to the operating

point, whereas the initial conditions of the filter are set to zero for all the states

x 0 = x̄ OP (5.10)

x̂+
0
= 0. (5.11)

For the reasons exposed in the previous section, the initial covariance in the following

simulations has been tuned to

P+
0
= diag([1e-2 1e-3 1e1 1e-3 1e-2 1e-2 1e1 1e-3 1e1]). (5.12)

minimizing the initial estimation error without damaging the dynamics.

• Constant input vector u– The system is simulated in open loop, being the inputs set

to their values in the operating point. However, different wind fields are applied to the

system by means of the modified input vector ũ, where the wind speed can be controlled

(see Appendix A for more details).

Some different scenarios will be considered in the simulation by increasing the noise, intro-

ducing modeling errors and introducing turbulent wind fields; testing the robustness of the

algorithms.

5.2.1 First scenario: Step Wind-Field

The first studied scenario consists on introducing some steps on the wind velocity and analyzing

how the filters track the system. As already mentioned, the filters had no knowledge of the

initial value of the states. Moreover, some process and measurement noise was introduced to

the system with the following covariance matrices:

Q= diag([1e-3 1e-3 1e-6 1e-6 1e-3 1e-3 1e-2 1e-6 1e-1]) (5.13)

R= diag([1e-1 1e-2 5e2 5e2]) (5.14)

2 For the nonlinear case, the CDKF is used as a reference.
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Figure 5.2 shows the outputs of the system (vector y k) generated with such a setup and the

predicted output ŷ k. The tracking of the filters is shown in Figure 5.3; just some of the filters

were plotted because they where representative of the behavior of all of them, as can be inferred

from Figure 5.1. This Figure shows how the C code Kalman Filter has the same behavior as

the MATLAB code Kalman filter, confirming its correct implementation. Besides, the UKF and

the CDKF have the same performance as their square-root counterparts. Both perform quite

similarly to the CKF. The EKF shows higher variations compared to the other ones.Table 5.1

presents the RMSE for all the states and all the analyzed filters.

As can be seen, the algorithms react satisfactorily, reducing the estimation error due to the

unknown initial conditions, reacting to the variations of wind during simulation and filtering

the noise of the output of the system.

Table 5.1.: RMSE of the estimation of the states by each filter. Scenario: Wind Step field

KF Matlab C-Code KF EKF CKF UKF SR-UKF CDKF SR-CDKF

ẋT (m/s) 0.19273 0.19273 0.19417 0.19330 0.19330 0.19330 0.19330 0.19330

ẏT (m/s) 0.16903 0.16903 0.17047 0.16906 0.16906 0.16906 0.16906 0.16906

ϕ̇g (rad/s) 0.01363 0.01363 0.01778 0.01359 0.01359 0.01359 0.01359 0.01359

∆ϕ̇ (rad/s) 0.02135 0.02135 0.02211 0.02135 0.02135 0.02135 0.02135 0.02135

xT (m) 0.09710 0.09710 0.10070 0.09458 0.09458 0.09458 0.09458 0.09458

yT (m) 0.02048 0.02048 0.03638 0.02047 0.02047 0.02047 0.02047 0.02047

ϕg (rad) 0.19434 0.19434 0.21996 0.19319 0.19319 0.19319 0.19319 0.19319

∆ϕ (rad) 0.00189 0.00189 0.00207 0.00188 0.00188 0.00188 0.00188 0.00188

vw (m/s) 2.29748 2.29748 2.24681 2.21142 2.21142 2.21142 2.21142 2.21142

ẋT ẏT ϕ̇g ∆ϕ̇ xT yT ϕg ∆ϕ vw
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Figure 5.1.: Representation of the RMSE of the estimated states with respect to the RMSE of

the MATLAB Kalman Filter. Simulated scenario: Step Wind-Field.
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Figure 5.2.: Outputs of the plant, their noisy measure input to the filters and the estimation

done by the SR-CDKF. Scenario: Step Wind-Field

5.2. Comparison of the Filters with a Linearized Model 49



−1

0

1

x
T

(m
)

−2

0

2

ẋ
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Figure 5.3.: States of the model and their estimation. Scenario: Step Wind-Field.
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5.2.2 Second scenario: Modeling Errors

The next simulated scenario attempted to make the filters work under more realistic conditions.

Even if the uncertainty about the initial value is maintained, modeling errors were introduced

by changing some parameters of the A matrix of the filters e.g., the damping factor of the nacelle

was set to zero in both the x and y axis. This is done in the continuous case by

Ac(1,1) = 0 Ac(2,2) = 0. (5.15)

And, due to the following relationship for a sampled system [15],

A= eAc T ≈ I+Ac T (5.16)

the required changes in the discrete case are

Ac(1,1) = 1 Ac(2,2) = 1. (5.17)

The modeling errors change the eigenvalues of the model filter compared to those of the plant;

it is therefore a task of the Kalman Filter to adapt the eigenvalues of the error dynamics, to

fit those of the plant. This can be done, because the error dynamics depend on the Kalman

Gain [16] and it adapts to the plant by means of the received measurements. The eigenvalues

of A −KkC rule the error dynamics. These are dependent on Kk, which varies every step,

following a criterion of minimization of the error (as explained on Section 2.2). Thus, these

dynamics get recursively adapted to the ones of the plant and the filters learn on each step

about the real system, trying to make a better estimation.

Moreover, both the process and measurement noise were increased by employing the following

covariance matrices:

Q= diag([1e-2 1e-2 1e-6 1e-5 1e-2 1e-2 1e-1 1e-5 1e0]) (5.18)

R= diag([1e2 1e2 1e4 1e4]) (5.19)

This makes the algorithms work with more uncertainty, which enables to test their robust-

ness. The outputs of the plant introduced to the filters can be seen in Figure 5.5 and the

achieved tracking of the states in Figure 5.6. The RMSE of the different algorithms are shown

in Table 5.2, which is graphically represented in Figure 5.4, by means of the relative RMSE.

The wind field employed for the testing was no longer a step wind-field, but a turbulent wind

field. This kind of field was simulated by introducing a noisy signal of mean v̄w = 16m/s. It is

not Gaussian noise, as the usually employed noises; the wind speed is correlated. The measured

variance of the signal is q
vw
= 3.16m2/s2.
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This simulation shows the high performance of the algorithms filtering the noise of the esti-

mated output. Moreover, the filters are shown to be robust to model uncertainties, adapting the

damping of the predicted states to that of the system. The variations of the EKF with respect

to the other algorithms gets reduced, but the SPKF algorithms show more difficulties than the

linear Kalman Filters for the tracking of xT and ẋT under these conditions.

The filters make an accurate estimation of the turbulent wind. The wind speed shows very

clearly the effect of wrong initial conditions, since the filter requires approximately 2 seconds

until the estimated state reaches the surroundings of the real state.

Table 5.2.: RMSE of the estimation of the states by each filter. Scenario: Modeling Errors.

KF Matlab C-Code KF EKF CKF UKF SR-UKF CDKF SR-CDKF

ẋT (m/s) 0.89179 0.89179 0.98011 0.98142 0.98142 0.98142 0.98142 0.98142

ẏT (m/s) 1.09546 1.09546 1.11861 1.11780 1.11780 1.11780 1.11780 1.11780

ϕ̇g (rad/s) 0.05340 0.05340 0.06474 0.05327 0.05327 0.05327 0.05327 0.05327

∆ϕ̇ (rad/s) 0.06281 0.06281 0.06909 0.06314 0.06314 0.06314 0.06314 0.06314

xT (m) 0.49898 0.49898 0.52949 0.51826 0.51826 0.51826 0.51826 0.51826

yT (m) 0.49760 0.49760 0.51086 0.50353 0.50353 0.50353 0.50353 0.50353

ϕg (rad) 0.74734 0.74734 0.81327 0.74321 0.74321 0.74321 0.74321 0.74321

∆ϕ (rad) 0.00623 0.00623 0.00655 0.00621 0.00621 0.00621 0.00621 0.00621

vw (m/s) 3.61515 3.61515 3.60554 3.55792 3.55792 3.55792 3.55792 3.55792
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Figure 5.4.: Representation of the RMSE of the estimated states with respect to the RMSE of

the MATLAB Kalman Filter. Scenario: Modeling Errors.
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5.3 Nonlinear State Estimation

Finally, the sigma-point filtering algorithms are applied to the nonlinear model of a wind tur-

bine3 using the embedded MATLAB functions. A simulation is presented where the implemented

SR-UKF, CDKF and SR-CDKF are compared to the CKF of the EKF/UKF toolbox. The model em-

ployed for the simulation has 4 inputs, 7 outputs and 16 states but here only the ones analyzed

for the linear case are compared, for symmetry reasons.

In order to get the presented result, the filter matrices Q and R are tuned to

Q= diag([1e-2, 1e-2, 1e-2, 1e-6, 20, 20, 20, 1e-2,... (5.20)

1e-1, 1e-1, 1e-6, 1, 1, 1, 1e-4, 10]) (5.21)

R= diag([1e-2, 3e-3, 1e-4, 1e-5, 1e4, 1e4, 1e4]) (5.22)

Besides, some measurement noise is generated with the R matrix. The input to the system is a

turbulent wind field.

The simulation shows a high accuracy filtering the noise of the estimated output and tracking

the states. Even if the model is nonlinear, the RMSE of the different algorithms (shown in

Table 5.3) can be compared to that of the linear model. The algorithms are tested as MATLAB

embedded functions, it is therefore verified that the modifications done to the code enabling

the direct C code generation do not have a negative inpact in the performance of the filters.

Indeed, the SR-CDKF shows the same performance as the CDKF (see Figure 5.7), and a very

similar performance to the SR-UKF. The CKF however presents a higher variation.

Table 5.3.: RMSE of the estimation of the states by each filter. Scenario: Nonlinear Estimation.

CKF SR-UKF CDKF SR-CDKF

ẋT (m/s) 0.03103 0.03378 0.03407 0.03407

ẏT (m/s) 0.00451 0.00474 0.00470 0.00470

ϕ̇g (rad/s) 0.08035 0.07038 0.07037 0.07037

∆ϕ̇ (rad/s) 0.00585 0.00629 0.00627 0.00627

xT (m) 0.02610 0.02554 0.02533 0.02533

yT (m) 0.00367 0.00459 0.00430 0.00430

ϕg (rad) 0.04366 0.04366 0.04366 0.04366

∆ϕ (rad) 0.00042 0.00045 0.00045 0.00045

vw (m/s) 1.29774 1.27736 1.27460 1.27460

3 The model is an extension of the one described in [1].
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Figure 5.7.: Representation of the RMSE of the estimated states with respect to the RMSE of

the CDKF. Scenario: Nonlinear Estimation.
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6 Conclusion

This chapter summarizes what has been done and what can be done from now on.

6.1 Summary

This thesis constitutes an approach to the topic of nonlinear state estimation. After getting

familiar with some basic concepts of stochastic observers and Kalman filtering, the work focuses

on Sigma-Point Kalman Filters, analyzing in detail the Unscented Kalman Filter, the Central

Difference Kalman Filter and the square-root versions of both algorithms. Once the existing

theory is explained, the different ways of implementing the algorithms are discussed. These

ways involve the simulation in SIMULINK of the algorithms, either as C code or as MATLAB code.

Afterwards, the process of development of the code is explained, giving an detailed analysis of

the different implementations.

Eventually, those implementations are tested within SIMULINK. First, all the algorithms imple-

mented as interpreted MATLAB functions are simulated with the linearized model of a wind

turbine. This allows comparing the performance and robustness of the different algorithms by

varying the noise conditions and introducing model errors. Secondly, the developed nonlinear

algorithms are tested as embedded MATLAB functions with the nonlinear model of a wind tur-

bine. These simulations confirm that the square-root version of the algorithms are equivalent to

the original algorithms but with better computational properties. Moreover, they show that the

algorithms can be adapted for its use as MATLAB embedded functions, which enables the direct

efficient C code generation.

6.2 Accomplished Goals

The main objective of this thesis has been the generation and validation of Sigma-Point Kalman

Filters for nonlinear state estimation and this objective has been met. The achievements of

this thesis are several implementations of the UKF, CDKF and their square-root versions (see

Table 6.1), tested in SIMULINK with a complex nonlinear wind turbine model. The nonlinear

algorithms are written in MATLAB code and they have successfully been tested as interpreted

and embedded MATLAB functions. This eases the task of hardware-implementing the algorithms

for their use in real nonlinear state estimation problems.

Furthermore, a fully operative linear Kalman Filter has been written in C code, for its use in

linear state estimation problems or for the further development of nonlinear C code algorithms.
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Table 6.1.: Summary of the implemented algorithms. “✓” means that the algorithm has been

fully implemented, “✗” that an existing implementation (from the EKF/UKF toolbox) has been

tested and “-” means that no implementation has been made.

C-Code

S-Function

Interpreted

Matlab

Function

Embedded

Matlab

Function

KF ✓ ✗ -

EKF - ✗ -

UKF - ✗ -

SR-UKF - ✓ ✓
CDKF - ✓ ✓
SR-CDKF - ✓ ✓
CKF - ✗ ✗
SR-CKF - - -

GHKF - ✗ -

A comparison with some existing filtering algorithms has also been done, as can be seen in

Table 6.1.

6.3 Outlook to Further Research

The presented work opens new paths to further research, such as

• Generating C code with MATLAB CODER, introducing it into microcontrollers and testing it

with a real system.

• Generalizing the algorithms for the non additive noise case.

• Developing other nonlinear filtering algorithms.

• Continuing with the direct efficient C code implementation of the algorithms (for instance,

trying other libraries).

• Modeling the process and measurement noise of a real wind turbine and better tuning the

matrices Q and R.

• Optimizing the selection of the x̂+
0

and the P+
0

for a given system.

• Modifying the algorithms for parameter or dual estimation.
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A Wind Turbine Model with Nine States

The model employed for the testing of the filters is a linearized version of the model presented

in [1]. The dimensions of the model are the following:

• Number of states, N = 9

• Number of inputs, M = 4

• Number of outputs, r = 4

It is a linear time invariant discrete model in the form

x k = Ax k−1 + Buk−1 (A.1)

y k = Cx k +Duk (A.2)

The nomenclature of the different variables employed in the model can be seen in Table A.1.

Table A.1.: Nomenclature of inputs, outputs and states of the wind turbine model

u Unit Inputs x Unit States

Mg (Nm) generator torque ẋT (m/s) nacelle fore-aft velocity

β1 (rad) blade 1 pitch angle ẏT (m/s) nacelle side-side velocity

β2 (rad) blade 2 pitch angle ϕ̇g (rad/s) generator angular speed

β3 (rad) blade 3 pitch angle ∆ϕ̇ (rad/s) drive-train angular speed

y Unit Outputs xT (m) nacelle fore-aft position

ẍT (m/s2) nacelle fore-aft acceleration yT (m) nacelle side-side position

ÿT (m/s2) nacelle side-side acceleration ϕg (rad) generator azimuth angle

ng (rpm) measured generator speed ∆ϕ (rad) drive-train torsion

ϕ (◦) azimuth angle vw (rad/s) hub-height wind speed

The rank of the observability matrix of the system is 9, which proves that the model is fully

observable. It is therefore suitable for the testing of Kalman Filtering algorithms which indeed

are stochastic observers.

This is the model employed by the filtering algorithms and the wind speed vw is considered as

a state of the system to be estimated. This is the general case, as the wind is an input to the

system which can not be controlled. However, it is useful for simulation purposes to modify the

model in order to observe the reaction of the plant and the filters to a given wind field.
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The model is the partitioned as follows:

�

x̃

vw

�

k

=

�

Ã a
vw

0 1

��

x̃

vw

�

k−1

+

�

B̃′

0

�

uk−1 (A.3)

y k =
�

C̃ c
vw

�

x k +Duk (A.4)

Which implies the following relationship

vwk
= vwk−1

(A.5)

The wind disturbance is modeled by a constant to be estimated. The system can therefore be

transformed to the following equivalent system, where the wind speed is an input to the system:

x̃ k = Ãx̃ k−1 + B̃ũk−1 (A.6)

y k = C̃x̃ k + D̃ũk (A.7)

Where

Ã= A(1 : 8,1 : 8) B̃=
�

B̃′ a
vw

�

C̃= C(: ,1 : 8) D̃=
�

D c
vw

�

a
vw
= A(1 : 8,9) c

vw
= C(: ,9)

x̃ = x (1 : 8) ũ =

�

u

vw

�

(A.8)

The model was linearized with respect to an operating point x OP, such that

x OP = [0.000, 0.000, 1.260, 0.000, 0.203,−0.050, 0.025, 0.005, 16.000]T (A.9)
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B Source Code

Listing B.1: C-Code Kalman Filter

/*

2 * File : turKFsparse.c

* Abstract:

* A Linear Kalman Filter implemented in C, for its use as a

* S-function in Simulink

*

7 */

#define S_FUNCTION_NAME turKFsparse

#define S_FUNCTION_LEVEL 2

12 #include "simstruc.h"

# include "cs.h"

static void makesparse (real_T *value_array, cs *sparsematrix , int rows, int →

←columns );

17 #define PARAM_matrixA ssGetSFcnParam(S,0)

#define PARAM_matrixB ssGetSFcnParam(S,1) //in order to input matrices as →

←parameters

#define PARAM_matrixC ssGetSFcnParam(S,2)

#define PARAM_matrixQ ssGetSFcnParam(S,3)

#define PARAM_matrixR ssGetSFcnParam(S,4)

22 #define PARAM_vectorXini ssGetSFcnParam(S,5)

#define PARAM_matrixPini ssGetSFcnParam(S,6)

/* Function: mdlInitializeSizes ===============================================

* Abstract:

27 * Setup sizes of the various vectors.

*/

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, 7);

32 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

return; /* Parameter mismatch will be reported by Simulink */

}

// Setting the widths of the input ports

37 if (!ssSetNumInputPorts(S, 2)) return;

ssSetInputPortWidth(S, 0, 4);
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ssSetInputPortDirectFeedThrough(S, 0, 1);

ssSetInputPortWidth(S, 1, 4);

ssSetInputPortDirectFeedThrough(S, 1, 1);

42

if (!ssSetNumOutputPorts(S,1)) return;

ssSetOutputPortWidth(S, 0, 9);

ssSetNumSampleTimes(S, 1);

47

/* specify the sim state compliance to be same as a built-in block */

ssSetSimStateCompliance(S, USE_DEFAULT_SIM_STATE);

ssSetOptions(S,

52 SS_OPTION_WORKS_WITH_CODE_REUSE |

SS_OPTION_EXCEPTION_FREE_CODE |

SS_OPTION_USE_TLC_WITH_ACCELERATOR);

}

57 /* Function: mdlInitializeSampleTimes =========================================

* Abstract:

* Specifiy that we inherit our sample time from the driving block.

*/

static void mdlInitializeSampleTimes(SimStruct *S)

62 {

ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0.0);

ssSetModelReferenceSampleTimeDefaultInheritance(S);

}

67

//Definition of elements required in the function

int key=1;

72 //Definition of sparse elements

cs *F;

cs *G;

cs *H;

cs *P_prd;

77 cs *P_est;

cs *x_prd;

cs *x_est;

cs *Q;

cs *R;

82 cs *Saux;

cs *Baux;

cs *klm_gain;

cs *auxvecsparse;
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87 /* Function: mdlOutputs =======================================================

* Abstract:

* The outputs of the function are computed here

*/

static void mdlOutputs(SimStruct *S, int_T tid)

92 {

//input the variables that change every sample time

int_T i;

InputRealPtrsType uk = ssGetInputPortRealSignalPtrs(S,0);

InputRealPtrsType yk = ssGetInputPortRealSignalPtrs(S,1);

97 real_T *xest1 = ssGetOutputPortRealSignal(S,0);

int_T width = ssGetOutputPortWidth(S,0);

// Initaialize the filter

//-----------------------------------------------------------------------

102 //Puting the inputs of the block in form of vectors for easier computations

// This should be modified for diferent numbers of inputs/outputs/states

double y_vec[4]={*yk[0],*yk[1],*yk[2],*yk[3]};

double u_vec[4]={*uk[0],*uk[1],*uk[2],*uk[3]};

double b[9];

107 double auxvec[9];

int j,l;

int p=0,k=0,lim=0;

// To make the algorithm more general, it automatically detects the number →

←of inputs/outputs/states (but they can also be defined directly)

112 int N = (int)mxGetNumberOfElements(PARAM_vectorXini);//9; //Number of states

int M = ssGetInputPortWidth(S,0);//4; //Number of inputs

int r = ssGetInputPortWidth(S,1);//4; //Number of outputs

if (key){

117

//Input matrices as parameters

real_T *A = mxGetPr(PARAM_matrixA);

real_T *B = mxGetPr(PARAM_matrixB);

real_T *C = mxGetPr(PARAM_matrixC);

122 real_T *Qin = mxGetPr(PARAM_matrixQ);

real_T *Rin = mxGetPr(PARAM_matrixR);

real_T *P_ini = mxGetPr(PARAM_matrixPini);

real_T *x_ini = mxGetPr(PARAM_vectorXini);

127 F = cs_spalloc(N, N, N*N, 1, 1); //allocating space in memory

makesparse(A,F,N,N); //turning the matrix sparse

F=cs_compress(F); //turning it from triplet to CC

G = cs_spalloc(N, M, N*N, 1, 1);

132 makesparse(B,G,N,M);

G=cs_compress(G);
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H = cs_spalloc(r, N, r*N, 1, 1);

makesparse(C,H,r,N);

137 H=cs_compress(H);

Q = cs_spalloc(N, N, N*N, 1, 1);

makesparse(Qin,Q,N,N);

Q=cs_compress(Q);

142

R = cs_spalloc(r, r, r*r, 1, 1);

makesparse(Rin,R,r,r);

R=cs_compress(R);

147 x_est = cs_spalloc(N, 1, N, 1, 1);

makesparse(x_ini,x_est,N,1);

x_est=cs_compress(x_est);

P_est = cs_spalloc(N, N, N*N, 1, 1);

152 makesparse(P_ini,P_est,N,N);

P_est=cs_compress(P_est);

x_prd = cs_spalloc(N, 1, N, 1, 1);

P_prd = cs_spalloc(N, N, N*N, 1, 1);

157

Saux = cs_spalloc(r, r, r*r, 1, 1);

Baux = cs_spalloc(r, N, r*r, 1, 1);

klm_gain = cs_spalloc(N, r, N*r, 1, 1);

162

key=0; //so that it only gets →

←initialized at the beginning

}

//Time-update

167 //-----------------------------------------------------------------------

// Predicted state and covariance

for(j=0; j<(sizeof(auxvec)/sizeof(auxvec[0]));++j){

172 auxvec[j]=0 ; //Reset auxiliary vector

}

cs_gaxpy(G, u_vec, auxvec); //auxvec=G*u_vec+auxvec

cs_spfree(auxvecsparse); //reset sparse auxiliary →

←vector

177 auxvecsparse = cs_spalloc(N, 1, N, 1, 1); //allocate sparse auxiliary →

←vector

66 B. Source Code



makesparse(auxvec,auxvecsparse ,N,1); //turn auxiliary vector into→

← sparse

auxvecsparse=cs_compress(auxvecsparse); //turn form triplet into →

←compressed column, to operate

//x_prd = F * x_est+ G * u;

182 x_prd=cs_add(cs_multiply(F,x_est),auxvecsparse ,1,1);

//p_prd = F * p_est * F’ + Q;

P_prd=cs_add(cs_multiply(cs_multiply(F,P_est),cs_transpose(F,1)),Q,1,1);

187 //Measurement-update

//-----------------------------------------------------------------------

// Saux = H * p_prd’ * H’ + R;

Saux=cs_add(cs_multiply(H,cs_multiply(cs_transpose(P_prd ,1),cs_transpose(H,1)→

←)),cs_transpose(R,1),1,1);

192 // Baux = H * p_prd’;

Baux=cs_multiply(H,cs_transpose(P_prd ,1));

//code for computing Kalman Gain: Kg=Saux\Baux

197 cs_spfree(klm_gain); //reset Kalman Gain

klm_gain = cs_spalloc(r, N, N*r, 1, 1); //Allocate Kalman Gain

for (p=0; p<N; ++p){

for(j=0; j<r; ++j){

202 b[j]=Baux->x[j+k]; //Make column vectors from →

←Baux

}

cs_lusol (0, Saux, b, 1); //solve Saux*x=b; answer in →

←b

207 for(j=0; j<r; ++j){

cs_entry(klm_gain, j, p, b[j]); //Store answer in the →

←corresponding column of klm_gain

}

k=k+r;

}

212 k=0;

klm_gain=cs_compress(klm_gain); //to compressed column →

←format, to operate

klm_gain=cs_transpose(klm_gain ,1); //Transpose klm_gain

217 //code for computing auxvecsparse= Klm_gain*y
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for(j=0; j<(sizeof(auxvec)/sizeof(auxvec[0]));++j){

auxvec[j]=0 ; //reset auxvec

}

222 cs_gaxpy(klm_gain, y_vec, auxvec);

cs_spfree(auxvecsparse);

auxvecsparse = cs_spalloc(N, 1, N, 1, 1);

makesparse(auxvec,auxvecsparse ,N,1);

auxvecsparse=cs_compress(auxvecsparse);

227

//x_est = x_prd + klm_gain * (y - H * x_prd) = x_prd + Klm_gain*y - klm_gain→

←*H*x_prd;

x_est=cs_add(x_prd,cs_add(auxvecsparse ,cs_multiply(klm_gain,cs_multiply(H,→

←x_prd)),1,-1),1,1);

//p_est = p_prd - klm_gain * H * p_prd;

232 P_est=cs_add(P_prd,cs_multiply(klm_gain,cs_multiply(H,P_prd)),1,-1);

for (i=0; i<width; i++) {

*xest1++ =x_est->x[i]; //Show the result

}

237 }

/* Function: mdlTerminate =====================================================

* Abstract:

* No termination needed, but we are required to have this routine.

242 */

static void mdlTerminate(SimStruct *S){}

/* Function: makesparse =====================================================

* Abstract:

247 * This function stores the values of the matrix introduced as a parameter to→

← the

* Sfunction into a triplet like sparse matrix

*/

static void makesparse (double *value_array, cs *sparsematrix , int rows, int →

←columns ){

int j,k,p=0;

252 for (k=0; k<columns; ++k){

for (j=0; j<rows; ++j) {

cs_entry(sparsematrix , j, k, value_array[p+j]);

}

p=p+j;

257 }

p=0;

}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

262 #include "simulink.c" /* MEX-file interface mechanism */
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#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

Listing B.2: Embedded SRCDKF

function [x,yh] = embSRCDKF(u,y)

persistent A B C D srQ srR Sx_est x_est u_prev h WM WC1 WC2 N

%% Initialization

if isempty(A)

5 %%0A DEFINITION OF THE REQUIRED MATRICES FOR THE MODEL

A = [...];

B = [...];

C = [...];

D = [...];

10 %%0B DEFINITION OF THE REQUIRED PARAMETERS FOR THE FILTER

N=size(A,2);

Q=diag([1e-3 1e-3 1e-6 1e-6 1e-3 1e-3 1e-2 1e-6 1e-1]);

srQ=chol(Q);

R=diag([1e-1 1e-2 5e2 5e2]);

15 srR=chol(R);

Px_est=diag([1e-2 1e-3 1e1 1e-3 1e-2 1e-2 1e1 1e-3 1e1]);

Sx_est=chol(Px_est);

x_est=zeros(16,1);

h=sqrt(3);

20 % Bachelor Thesis Eq.: (2.114) -(2.117)

WM = zeros(2*N+1,1);

WC1 = zeros(2*N+1,1);

WC2 = zeros(2*N+1,1);

for j=1:2*N+1

25 if j==1

WM(j) = (h^2-N) / h^2;

else

WM(j) = 1 / (2 * h^2);

end

30 WC1(j) = 1 / (4 * h^2);

WC2(j) = ((h^2)-1)/(4*h^4);

end

u_prev = u;

end

35 %% STEP 1 TIME UPDATE

%%1A SIGMA-POINTS

% Bachelor Thesis Eq.: (2.131)

X = [zeros(size(x_est)) Sx_est’ -Sx_est ’];

X = h*X + repmat(x_est,1,size(X,2));

40 %%1B EVALUATION OF STATE EQUATION

U_PREV=repmat(u_prev,1,size(X,2));

% Bachelor Thesis Eq.: (2.132)
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Y=A*X+B*U_PREV;

%%1C EVALUATION OF PREDICTED MEAN AND COVARIANCE

45 % Bachelor Thesis Eq.: (2.133)

x_prd = Y * WM;

% Bachelor Thesis Eq.: (2.134)

aux1= Y(:,2:N+1) - Y(:,N+2:2*N+1);

aux2= Y(:,2:N+1) + Y(:,N+2:2*N+1)-repmat(2*Y(:,1),1,N);

50 [~,Sx_prd]=qr([sqrt(WC1(2))* aux1 ,sqrt(WC2(2))*aux2,srQ’]’,0);

%% STEP2 MEASUREMENT UPDATE

%%2A SIGMA-POINTS

% Bachelor Thesis Eq.: (2.137)

X = [zeros(size(x_prd)) Sx_prd’ -Sx_prd ’];

55 X = h*X + repmat(x_prd,1,size(X,2));

%%2B EVALUATION OF MEASUREMENT EQUATION

U=repmat(u,1,size(X,2));

% Bachelor Thesis Eq.: (2.138)

Y=C*X+D*U;

60 %%2C EVALUATION OF PREDICTED MEAN AND COVARIANCE

% Bachelor Thesis Eq.: (2.139)

y_est = Y * WM;

aux1 = Y(:,2:N+1) - Y(:,N+2:2*N+1);

aux2 = Y(:,2:N+1) + Y(:,N+2:2*N+1)-repmat(2*Y(:,1),1,N);

65 % Bachelor Thesis Eq.: (2.140)

[~,Sy]=qr([sqrt(WC1(2))* aux1 ,sqrt(WC2(2))*aux2,srR’]’,0);

% Bachelor Thesis Eq.: (2.142)

Pxy=sqrt(WC1(2))*Sx_prd ’*(Y(:,2:N+1)-Y(:,N+2:end))’;

%%2D KALMAN GAIN

70 % Bachelor Thesis Eq.: (2.145)

Down = Pxy/Sy;

% Bachelor Thesis Eq.: (2.143)

K = Down/Sy’;

% Bachelor Thesis Eq.: (2.144)

75 x_est = x_prd + K * (y - y_est);

% Cholesky Downdate for generation of C code

% Bachelor Thesis Eq.: (2.146)

Sx_est=chol(Sx_prd ’*Sx_prd - Down*Down’);

%%2E OUTPUT

80 u_prev = u;

yh=y_est;

x=x_est;

end
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Listing B.3: Embedded SRUKF

function [x,yh] = embSRUKF(u,y)

2 persistent A B C D srQ srR Sx_est x_est u_prev alpha beta kappa eta WM WC N

%% Initialization

if isempty(A)

%%0A DEFINITION OF THE REQUIRED MATRICES FOR THE MODEL

A = [...];

7 B = [...];

C = [...];

D = [...];

%%0B DEFINITION OF THE REQUIRED PARAMETERS FOR THE FILTER

N=size(A,2);

12 Q=diag([1e-3 1e-3 1e-6 1e-6 1e-3 1e-3 1e-2 1e-6 1e-1]);

srQ=chol(Q);

R=diag([1e-1 1e-2 5e2 5e2]);

srR=chol(R);

Px_est=diag([1e-2 1e-3 1e1 1e-3 1e-2 1e-2 1e1 1e-3 1e1]);

17 Sx_est=chol(Px_est);

x_est=zeros(16,1);

alpha=0.1;

beta=2;

kappa=0;

22 lambda = alpha^2 * (N + kappa) - N;

% Bachelor Thesis Eq.: (2.45) -(2.46)

WM = zeros(2*N+1,1);

WC = zeros(2*N+1,1);

for j=1:2*N+1

27 if j==1

WM(j) = lambda / (N + lambda);

WC(j) = lambda / (N + lambda) + (1 - alpha^2 + beta);

else

WM(j) = 1 / (2 * (N + lambda));

32 WC(j) = WM(j);

end

end

% Bachelor Thesis Eq.: (2.42)

eta = sqrt(N + lambda);

37 u_prev = u;

end

%% STEP 1 TIME UPDATE

%%1A SIGMA-POINTS

% Bachelor Thesis Eq.: (2.72)

42 X = [zeros(size(x_est)) Sx_est’ -Sx_est ’];

X = eta*X + repmat(x_est,1,size(X,2));

%%1B EVALUATION OF STATE EQUATION

U_PREV=repmat(u_prev,1,size(X,2));

% Bachelor Thesis Eq.: (2.73)
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47 Y=A*X+B*U_PREV;

%%1C EVALUATION OF PREDICTED MEAN AND COVARIANCE

% Bachelor Thesis Eq.: (2.74)

x_prd = Y * WM;

% Bachelor Thesis Eq.: (2.75)

52 [~,Sx_prd]=qr([sqrt(WC(2))*(Y(:,2:end)-repmat(x_prd,[1,size(Y(:,2:end),2)])),srQ→

←’]’,0);

% Bachelor Thesis Eq.: (2.76)

Sx_prd=chol(Sx_prd ’*Sx_prd+WC(1)*(Y(:,1)-x_prd)*(Y(:,1)-x_prd)’);

%% STEP2 MEASUREMENT UPDATE

%%2A SIGMA-POINTS

57 % Bachelor Thesis Eq.: (2.81)

X = [zeros(size(x_prd)) Sx_prd’ -Sx_prd ’];

X = eta*X + repmat(x_prd,1,size(X,2));

%%2B EVALUATION OF MEASUREMENT EQUATION

U=repmat(u,1,size(X,2));

62 % Bachelor Thesis Eq.: (2.82)

Y=C*X+D*U;

%%2C EVALUATION OF PREDICTED MEAN AND COVARIANCE

% Bachelor Thesis Eq.: (2.83)

y_est = Y * WM;

67 % Bachelor Thesis Eq.: (2.84)

[~,Sy]=qr([sqrt(WC(2))*(Y(:,2:end)-repmat(y_est,[1,size(Y(:,2:end),2)])),srR→

←’]’,0);

% Bachelor Thesis Eq.: (2.85)

Sy=chol(Sy’*Sy+WC(1)*(Y(:,1)-y_est)*(Y(:,1)-y_est)’);

% Bachelor Thesis Eq.: (2.86)

72 Pxy = WC(1) * (X(:,1)-x_prd) * (Y(:,1) - y_est)’ + WC(2) * (X(:,2:end)-repmat(→

←x_prd,1,size(X,2)-1)) * (Y(:,2:end) - repmat(y_est,1,size(X,2)-1))’;

%%2D KALMAN GAIN

% Bachelor Thesis Eq.: (2.97)

Down = Pxy/Sy;

% Bachelor Thesis Eq.: (2.95)

77 K = Down/Sy’;

% Bachelor Thesis Eq.: (2.96)

x_est = x_prd + K * (y - y_est);

% Cholesky Downdate for C code generation

% Bachelor Thesis Eq.: (2.98)

82 Sx_est=chol(Sx_prd ’*Sx_prd - Down*Down’);

%%2E OUTPUT

u_prev = u;

yh=y_est;

x=x_est;

87 end
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