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Abstract: During the last years, the application of different wireless technologies has been 

explored in order to enable Internet connectivity from vehicles. In addition, the widespread 

adoption of smartphones by citizens represents a great opportunity to integrate such 

nomadic devices inside vehicles in order to provide new and personalized on trip services 

for passengers. In this paper, a proposal of communication architecture to provide the 

ubiquitous connectivity needed to enhance the smart train concept is presented and 

preliminarily tested. It combines an intra-wagon communication system based on nomadic 

devices connected through a Bluetooth Piconet Network with a highly innovative  

train-to-ground communication system. In order to validate this communication solution, 

several tests and simulations have been performed and their results are described in  

this paper. 
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1. Introduction 

The companies that offer transportation services are increasingly interested in enabling remote 

communications with their fleet by using wireless technologies. These connectivity systems allow 

them to improve their daily work (by means of new services like fleet management, operation 

monitoring, safety related applications, vehicle maintenance or/and diagnostics, and so on) and the 

services provided to the transportation service users. 

On the other hand, the widespread use of wireless and Internet technologies in transport systems 

enables the provision of a large number of new intelligent services. Moreover, the presence of 

ubiquitous connected vehicles (trains, subways, buses or cars), with inter- and intra-vehicular 

communication capabilities, as well as continuous connectivity with their control centers, is a key 

factor to take into account for the new generations of Intelligent Transportations Systems (ITS).  

In the railway industry, the sector where our work is focused on, wired networks (such as Ethernet) 

are commonly used for intra-train communications. These networks are mainly used by the safety and 

control systems hosted inside a train. The innovation of this work is to enhance the concept of 

ubiquitous connected smart train by contributing with advances in train-to-ground wireless 

communication systems [1] and taking advantage of the communication and interaction possibilities of 

smartphones for communications inside the train. The combination of these two challenges, an  

intra-train communication system based on nomadic devices and a highly innovative train-to-ground 

communication system, will be capable of improving user experience of passengers who could enjoy 

more customized information. 

The paper is organized as follows: first, a brief overview of related work is introduced. Second, the 

current network architecture of the train, where our proposed solution is being tested, is described. 

Third, the train-to-ground communications design and tests results are exposed. Fourth, intra-wagon 

communications are proposed, including several simulation results. Finally, the conclusions and future 

work are expounded. 

2. Related Work  

Mobile devices  ́ capabilities are constantly improving, allowing Internet access through different 

technologies (GPRS/UMTS, WiFi, etc.). From a vehicular perspective, the goal is to achieve 

continuous Internet connectivity with their control centers. In [2] it is assumed that in a case study 

where the trains go from a coverage area of one access technology to another, the combination of 

several wireless technologies is necessary to achieve such ubiquity. 

Consequently, during the last years the application of different wireless technologies has been 

explored in order to enable non-interrupted Internet connectivity from the vehicles (GPRS/UMTS, 

WiFi, WiMAX, etc.) [3,4]. Hence, hybrid solutions to maintain the vehicle always connected through 

the best available network link selection have been proposed. Thus, several works related to study the 
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proportion of uninterrupted continuous Internet connectivity on moving vehicles in railway field [5–8] 

can be found. In this sense, it is considered that the radio frequency based communications are a 

promising alternative to fixed wireless local networks, such as WiFi. However, its effectiveness is 

constrained when accessed from moving vehicles. This paper presents a solution that enables and 

integrates ubiquitous train wagon communication and train-to-ground communication. In the following 

subsections we describe related work in these two domains. 

2.1. Train-to-Ground Communications 

Nowadays the use of wireless and Internet technologies is increasing in the railway industry 

enabling bidirectional train-to-ground communications [9]. However, these kinds of communication 

links applied to this environment have to respond to several challenges related to aspects like coverage, 

bandwidth, communication disruptions, multiple network interfaces for communications and different 

priorities in the data transmission, responding at the same time to Quality of Service (QoS) [10] 

demanded by applications. 

There are multiple works regarding communications optimization, including traffic prioritization 

and QoS control. However, these works are usually focused on networks instead of applications or 

services that use these networks [11]. In addition, there are industrial solutions designed to respond to 

these detected communications needs and challenges in transportation systems [1,12]. But neither of 

these projects establishes a communication system that prioritize data transmissions dynamically, 

making at the same time a QoS control based on bandwidth availability. The solution proposed on this 

paper includes a train-to-ground communication system designed to respond to all these challenges.  

With the purpose of achieving QoS requirements demanded by services, several communication 

management and prioritization heuristics [13,14] and mechanism exist [15–17]. Although existing 

solutions are mainly focused on network aspects and not in final applications and services, other 

approaches are focused on optimizing the use of the network technologies according to the type of 

traffic generated by applications (QoS control). Therefore, there is an open research field that can be 

tackled from two complementary points of view: (1) QoS requirements management which involves 

technology concepts related to the information to transmit, and (2) aspects about network conditions 

that make possible the transmission of that information (bandwidth, coverage, latency, etc.).  

In addition, many of these solutions are focused on mobile environments and are able to monitor 

network parameters (like bandwidth). The main idea in these solutions is to prioritize communications 

services allowing or denying communications, or readjusting its data rates, in accordance with QoS 

requirements demanded by the communication requests and the available networks bandwidth 

limitations.  

These mentioned solutions, applied to transportation, would allow prioritizing vehicle-to-ground 

wireless communications taking into account its QoS restrictions. However, they are mostly oriented to 

regulate wireless stations’ communications and not final individual applications communication 

requests. Moreover, they do not monitor previous performance aspects (variable) not allowing to the 

system to dynamically adjust its performance for more efficiency.  

These questions open an interesting line of work to develop adaptive algorithms and interactive 

control methods that perform this adjustment dynamically. The basic idea is to monitor network 
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conditions in real-time, receive feedback measures of the variables of interest, and based on these 

measures and QoS requirements, make a wireless communication prioritization assigning to the 

services the considered bandwidth data rate. 

Regarding industrial solutions and projects, the work presented in this paper has considered 

wireless communications systems which have been widely applied to railway industry in order to 

respond to the communication needs demanded by railway companies. In this sense, the Safe Driver 

Machine Interface (SAFEDMI) [18] is a European project which aims to prove the feasibility of using 

wireless communications links in scenarios related to software update for configuration of train-board 

systems and data downloads for diagnosis operations. 

The railway company EuskoTren (from the Basque Country in the north of Spain) has invested in 

the renovation of its trains and they have also been involved in technological innovation in order to 

incorporate new security and reliability systems. This technological innovation includes the definition 

of a wireless connectivity architecture [19] that enables a train-to-ground communication channel 

between train systems and railway company control center. 

On the other hand, Onboard Wireless Secured Video Surveillance (BOSS) [12] is a European 

project corresponding to the Celtic/Eureka program. The aim of this project was to develop and 

validate a reliable broadband communication system between trains and the companies control center 

with QoS guaranties.  

2.2. Intra-Wagon Communications 

Related to intra-wagon communications, this paper studies the application of Bluetooth piconet 

networks for intra-train communications. Piconet [20] is a general-purpose, low-power ad hoc radio 

network that provides a base level of connectivity to even the simplest of sensing and computing 

objects. It provides a broad range of mobile and embedded computing objects with the ability to 

exploit context aware and connected environment within its close surroundings. 

Sensors can use piconet to relay information about the state of the local environment or of a 

particular device. Personal connectivity is improved because the multitude of mobile and fixed devices 

commonly used by an individual can be connected by piconet; it might be used to personalize things 

nearby or allow two devices near each other to interoperate. Embedded networking is also suitable for 

smart information services: active diaries, alarms, information points, and electronic business cards, 

for example. The inherent close range connectivity that the piconet provides enables these applications 

can be context-aware [21]. 

Applications of Interest 

Within the railway environment, and leveraging the features of wireless communications and 

personal smartphones, many applications of interest to railway users can be developed. Some of them 

concern trip monitoring, others concern location- and located-based services, close communications 

among passengers, notification and alert messages, registration, ticket booking and payment, 

intermodal passenger assistance, personal navigation, distribution and exchange of railway-related 

information, intelligent train control, demand-oriented transportation planning and rescheduling [22], 

and even more. Indoor positioning using Bluetooth networks has been addressed in many  
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works ([23–25]), but it has so far treated briefly in complex environments such as rail and suburban 

transport systems [26].  

One needs to accurately know the performance of the communication channel to be used since these 

determine the feasibility of the services provided on it. In such way, Bluetooth is a suitable technology 

for alarm and event notification, and short messaging. It performs well at small and discrete data 

transfers, where data, which can be read at any time by a client, can be triggered by local events or user 

requests. Typical applications inform the user about the conditions on board (temperature, humidity, 

vehicle speed, vehicle occupancy, etc.), about the travel evolution (geographic location, estimated time 

of arrival at destination, time delay/advance on the scheduled time, etc.) or about entertainment (video 

and audio channels, internet access, etc.). But they also allow messaging communication with other 

travelers, for example to share a taxi on arrival at the destination station, and hiring on board services 

(cafeteria or media) or at the destination station (taxi, metro ticket, etc.). 

3. System Architecture 

Once the different approaches and existing solutions are analyzed and taking an overview of the 

related work in this area, the proposed solution establishes a communication system that enables  

intra-train and train-to-ground connectivity. This work has been deployed in a train manufactured by 

CAF (one of the largest train manufacturers in the world). Concerning integration issues, trains 

connectivity architecture is one of the most important aspects of the work. Specifically, the train used 

to carry out our tests has two networks that connect all devices that are deployed on the train. 

On the one hand, it is the control network known as Train Communication Network (TCN). This 

network was the result of the work of the most important railway manufacturers (mainly Bombardier 

and Siemens) and its architecture is based on IEC 61375 standard [27]. TCN is used to control and 

exchange of information among the most important elements of the train; basically those responsible 

for the movement and braking. 

On the other hand, there is the Added-Value Network (AVN). This network architecture is very 

similar to a local area network. It is usually based on the Ethernet standard. The objective of this 

second network is the connection of the devices that support other essential components of the train, 

such as: people counting systems, air conditioning systems, infotainment systems. Similar 

architectures have already been successfully employed in other scenarios, such as intelligent lighting 

systems and agricultural control [28,29]. 

Taking into account this train network architecture (Figure 1), firstly, the solution presented in this 

paper proposes the creation of a Bluetooth Piconet Network (BPN) [30] inside each passenger wagon. 

These BPN enable to share and distribute information and contents with passengers’ devices, allowing 

the establishment of ad-hoc operation between dynamic users, which can change along a variable  

time-span within the proposed scenario. Individual dongles could also be employed, which in principle 

would not modify the results in radioelectric terms. Secondly, in our approach a reliable  

train-to-ground communication system is developed which integrates the on-board communication 

network, GSM radio links, TETRA network and Internet technologies. It becomes the key element to 

offer ubiquitous remote access to on-board equipment and distribute applications from transportation 

ground systems.  
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Figure 1. Network architecture of the ubiquitous connected train. 
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So, this solution deploys a BPN on each wagon. BPNs are interconnected each other through a train 

Ethernet network (AVN), which enables an information channel along the train. AVN is also 

integrated with the train-to-ground communication system in order to achieve external connectivity. 

This approach will allow the railways companies to exchange information with their trains and 

distribute contents and information to the users. Thus, this kind of communications enables the 

development of new on trip personalized digital services for passengers (e.g., trip information, weather 

forecast or train connections in destination). 

4. Train-to-Ground Communications Middleware 

In order to respond to train-to-ground communications challenges, we propose a communication 

middleware that aims to enable several physical network links between train and ground system (3G, 

WiFi, etc.). It chooses the network link considered as the best at every moment according to the 

bandwidth availability. 

Focusing on an application layer middleware it is a more flexible approach being able to introduce 

new parameters or factors that can be managed to improve communications performance. So, the 

objective is to develop a dynamic and adaptive communications solution based not only on network 

conditions or applications request priorities. This system is based also on system historical 

performance parameters (previous bandwidth values, time in network coverage areas during the 

transportation routes, previous applications communications performance, etc.). 

4.1. Addressed Requirements 

This middleware has been designed to respond to several requirements:  

1. Dynamic and efficient communication request management: this system prioritizes  

train-to-ground communications requests taking into account communication urgency 

criteria, as well as previous performance logs. In addition, the variability of the connectivity 

conditions influences directly in active communications, demanding a dynamic  

vehicle-to-ground communication management. 
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2. The best bandwidth: the system always selects the physical link considered as the best 

taking into account the bandwidth in order to respond to final applications communication 

requirements. Multiple network link availability maximizes continuous communication 

capacity, being network active link changes not perceived by final applications. So, this 

middleware is designed to perform active network link changes avoiding final applications 

communications disruptions. 

3. Quality of Service: this solution aims to make a service quality management too. Therefore 

it is necessary to know the bandwidth availability offered by the network link which is 

active at every moment, as well as the bandwidth offered by the rest of communications 

links (although they are not being used). At this point it is essential to establish a set of 

connection procedures which enable to reserve a certain bandwidth for a particular 

communication. Therefore, the principal QoS parameter managed by this system is the 

bandwidth. In this way, the idea is to make bandwidth allocations for different applications 

communications according to these applications requirements, and allowing them to adjust 

these allocations depending on the measured available network bandwidth. 

4.2. Architecture 

This middleware is composed of two software elements (Figure 2); one in the terrestrial side 

(Ground Communication Manager, GCM), and the other on board the trains (Train Communication 

Manager, TCM). The former manages the terrestrial aspects of the architecture and the latter the  

train-side issues. They interact with each other in order to control and manage train-to-ground 

communications. In addition, this system includes a Bandwidth Measurement Service (BMS) that 

notifies available links bandwidth values to the GCM at every moment.  

Figure 2. Train-to-ground communication middleware architecture. 
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In order to establish train-to-ground communications, TCM and GCM can communicate through 

different communication network physical links. The TCM is who selects the active link considered 

most favourable for communications based on available link bandwidth measurements notified by the 

BMS, and then establishes active link connection with the GCM. Two kinds of flows are involved in 
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these communications: data and control. Thus, GCM and TCM on each train communicate each other 

and exchange commands in order to establish active links and manage the prioritization of train and 

ground final applications requests. These priorities are managed using specific queue scheduling 

techniques. The control protocol is defined using XML messages where information is exchanged via 

TCP/IP sockets. Thus, this middleware is composed of several functional modules: 

 Active Link Selection: BMS is continuously monitoring the status of all enabled network 

links, and TCM switch from one to other in two cases: (1) when active link connectivity is 

lost and (2) when BMS measurements indicate that another link is better than the one 

established as the active one. In these two cases, the active communication link change 

without affecting the final applications that do not detect connection interruptions if these 

link changes occur while they are transmitting. At this point it should be emphasized that the 

system always defines a single vehicle-to-ground network link as active for communications 

(the most favourable). So, all communications will always be generated by the channel set 

as active (WiFi, GSM/GPRS, Tetra, etc.) regardless of the availability of other physical 

channels simultaneously. 

 Request Prioritization: in order to prioritize communications, the system defines several 

parameters (variables and statics) that permit it to determine which communications are 

more critical taking into account connectivity conditions and available bandwidth. Static 

criteria are parameters that not change over time, and are related to QoS needs and other 

requirements determined by the final applications characteristics. On the other hand, the 

prioritization system uses relevant information stored about previous system behaviours. 

Thus, the system takes into account several dynamic factors (variable over time), being able 

to readjust the criteria applied in prioritization mechanism permitting to optimize its 

performance. So, combining these two kinds of criteria, the system calculates a numeric 

value that represents the fitness of serving a request (priority). Once calculated this value, it 

is used to discern which communication request is served. Hence, in order to perform 

requests prioritization, this system develops several queues where requests are sorted by 

vehicle and priority. Therefore, the idea is that the system reconfigures how it prioritizes the 

communication requests depending of its behaviour over time, always seeking the most 

optimal configuration based on system feedback. 

 Vehicle-to-Ground Control Protocol: GCM and TCM on each vehicle communicate with 

each other and exchange commands in order to establish active links and manage the 

prioritization of vehicular and terrestrial final applications communications. The control 

protocol is defined using XML messages where information is exchanged via TCP/IP sockets.  

 Bandwidth Allocation to Final Applications Requests: when an application attempts to start 

a new communication makes a request to the platform, then the system makes a decision 

about which priority requests can be served concurrently taking into account active link 

bandwidth limitations, priority parameters and their QoS requirements. Thus, once the 

system give permission to a communication request, adjust its data transmission rate 

according to its QoS requirements, the active link bandwidth and the other concurrent active 
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requests. In addition, system could assign more bandwidth than minimally required to a 

request depending on bandwidth availability and requirements of the rest of active requests. 

4.3. Validation Tests 

All these abilities have being successfully tested through preconfigured scenarios. The tests 

objective is to evaluate system performance under known conditions which include different kind of 

final applications with different communications and QoS needs, and changes in different network 

links connectivity conditions.    

4.3.1. Scenario 

In a real situation, the vehicle moves from one network coverage area to other, which changes the 

conditions of the available access networks and bandwidth values. So, in order to set up a scenario as 

close as possible to real network conditions and bandwidth values, we measured bandwidth of two 3G 

links of different mobile phone companies along a route.  

Having these values measured, we applied a bandwidth limiter tool (NetLimiter [31]) to simulate 

these values in our testbed. This external tool enables us to limit the bandwidth of different network 

links, being able to schedule bandwidth values over time (per minute). So, having measured real 

values, we estimated bandwidth average (per minute) along the simulated route. Figure 3 shows the 

bandwidth mean values used in the tests during 9 min. 

Figure 3. Estimated bandwidth mean values. 
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On the other hand, based on our previous experience working with transportation systems [19,32,33], 

our communications middleware have been tested by simulating the traffic which is  

usually generated by applications and services deployed in transportation systems that require  

vehicle-to-ground communications. Thus, Table 1 shows the selected applications types to perform the 

tests. This table indicates four kinds of services, their bandwidth requirements (QoS parameters) and 

the priority levels of transmitted information. Therefore, in order to perform the tests, we have 

developed a final applications simulator that simulates the network traffic which is usually generated 

by railway applications. 
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Table 1. Set of test applications. 

Service Required Bandwidth Priority 

Positioning 1 kB/s CRITICAL 

CCTV (Real Time) 150 kB/s HIGH 

CCTV (Deferred) 100 kB/s NORMAL 

Vehicular Applicatioón Log Download  40 kB/s LOW 

Based on these bandwidth values and the set of example applications, we deployed the test scenario. 

It was composed of a laptop for the train system, a PC for the terrestrial system, and a wireless router 

and two WiFi network links connected to the laptop (Figure 4). Thus, the TCM and a final applications 

simulator were setup on the laptop, whereas we installed the GCM and also the final applications 

simulator on the PC. So, the idea is that the vehicle has two different network links to perform 

communications with the terrestrial side. The bandwidths of these two network links are established by 

the NetLimiter tool based on the bandwidth measurements mentioned before (Figure 3). 

Figure 4. Test set-up. 
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4.3.2. Results 

Once the network bandwidth limitations and communication requests of the scheduled applications 

had been configured, we ran tests in order to evaluate system performance. Tests started launching first 

the high priority (CCTV in real time) and normal priority (deferred CCTV) requests. Critical requests 

are related to positioning service. So, this kind of request was created every 10 s, similarly to a real 

situation. In addition, during the tests, in the second minute was scheduled the launch of the low 

priority request (vehicular applications log downloads). 

Figure 5 represents the bandwidth values of the available active link for communications notified 

by TCM to GCM during the tests. Based on this bandwidth values, the middleware manages scheduled 

communication requests, adjusting the assigned bandwidth to each one taking into account their QoS 

requirements. In addition, system prioritizes active requests. Thus, if the bandwidth requested for 

communications is higher than the available bandwidth in the access network selected by the system as 

active, the middleware selects which requests are more critical, and pauses those that it assumes less 

critical until conditions change and they can be attended to. 
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Figure 5. Bandwidth of the active link. 
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On the other hand, this test has been done through two network interfaces, so Figure 5 not only 

represents the active link bandwidth values, it also distinguishes the active link changes produced 

during the tests. Bandwidth values related to link 1 (Orange) are represented with red color, while 

those related with link 2 (Movistar) are represented using blue color. At this point, it is important to 

say that these network link changes do not affect to final applications communications. Therefore, 

when middleware changes the active link, the applications that are transmitting data at this moment do 

not perceive communication disruptions, so it can be said that these active link changes are not 

perceived by final applications. 

This test lasts 9 min. If we look at the Figures 5–8, the horizontal axis indicates the second of the 

test. Figure 5 shows the bandwidth values of all active links notified to GCM during the tests. 

However, Figures 6–8 represent three different and descriptive situations managed by the middleware. 

As can be seen, these graphics do not illustrate critical requests data transmission (positioning service). 

The reason is that the bandwidth requirement of these requests is very low compared with the other 

types of services. Thus, the critical requests are not representative and attending to an easier to 

understand graphic, have not been shown in the results presented here.  

Figure 6. Low priority request launch. 
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Figure 6 shows the moment when the low priority request is launched and admitted to be served by 

the middleware, starting its data transmission. This kind of request require 40 kB/s of minimum 

bandwidth to respond to its QoS requirements, so the middleware adjust all active requests bandwidth 

based on their bandwidth requirements and the active link bandwidth availability. In this case, the 

global requested bandwidth is lower than the available for communications, so the middleware assigns 

more bandwidth than the minimum demanded by each request. In addition, in the previous situation, 

when the low priority request is launched, there were two active transmissions related to high and 

normal requests. The entry of this new request makes the system readjust the bandwidth assigned to 

these two requests based on active link bandwidth availability values. 

The situation presented in Figure 7 is caused when the available bandwidth of the active link 

changes and the bandwidth requested by applications is higher than the available bandwidth for 

communications. Then, the middleware prioritizes the requests and pauses the least priority ones, 

which cannot be served according to their QoS requirements (minimum bandwidth values, in this 

case). Therefore, we can observe that in the second 313 of the test the available bandwidth is reduced, 

so the system stops the low priority request (related to log download service) and readjusts the 

bandwidth assignation to the other active requests that can continue being served.  

Figure 7. Low priority communication pause for bandwidth limitations. 
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Figure 8. High priority request prioritization. 
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Figure 8 shows a representative situation to observe how the middleware always prioritizes the 

most critical communications when bandwidth values change. In the 368th second of the figure the 

bandwidth rounds 250 kB/s, and the middleware has paused the least critical request (low priority 

request). However, a few seconds later the bandwidth availability decreases, and there is no enough to 
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respond to high and normal priority requests’ minimum requirements. Thus, the middleware pauses 

one of them, the normal priority one (deferred CCTV download). However, the bandwidth availability 

responds to the needs of the high and low priority requests simultaneously, so in this test time interval, 

there are bandwidth fluctuations that cause the middleware to prioritize communications dynamically 

adapting their data transfer rate based on available bandwidth, and QoS requirements. 

Therefore, the previous functional tests demonstrate that the system performance is successful 

taking into account its design objectives. The results determine that the middleware improves the 

performance of the most priority communications, and ensures that all data transmissions will perform 

in response to the final application QoS requirements. 

5. Intra-Wagon Communications 

Our approach proposes an intra-wagon communications network establishment based on Bluetooth 

Piconet Networks (BPN), which enable users’ ubiquitous interaction with the train information 

systems. Thus, Bluetooth devices are organized in small networks (piconets) with one device acting as 

the master and up to seven others acting as active slaves, at any given time [30].  

Therefore, the proposed solution applies intra-wagon communications creating a BPN inside each 

passenger train wagon. The tests have been based on three devices, one master unit and two slaves. 

The master unit device is placed just below the ceiling in the central part of the wagon, and the two 

slaves are just above the seats, emulating a real person who is sitting in the wagon sending information 

with a mobile device.  

In addition, simulations have been made using the indoor wagon passenger train as scenario. The 

wagon has been modeled as a metallic cube, with rows of seats with a polycarbonate base. Simulations 

are based on the deterministic method of a 3D beam source, with the aid of an in-house developed ray 

launching code [21,34,35] to analyze the complex scenario of the indoor wagon passenger train. This 

approach is based in Geometrical Optics and Uniform Geometrical Theory of Diffraction. It is 

important to emphasize that the topology and morphology of the indoor section of the vehicle have a 

significant impact in the response of the system. Reflection, refraction and diffraction phenomena have 

been taken into account, as well as all the material parameters (given by dielectric constant values as 

well as conductivity values at the operational frequency of the system). The passenger seats are made 

of polycarbonate, the floors and walls of aluminum and the windows of glass. Simulation parameters 

are shown in Table 2. The cuboids resolution and the number of reflections have been set to 10 cm and 

5 reflections, respectively, to balance accuracy with simulation time.  

Table 2. Parameters in the ray launching simulation. 

Frequency  2.4 GHz 

Vertical plane angle resolution  ∆θ 1º 

Horizontal plane angle 

resolution  
∆φ 1º 

Reflections  5 

Transmitter Power  0 dBm 

Cuboids resolution  10 cm 
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Figure 9 shows the power distribution inside the wagon for a height of 1.5 m. As it can be seen, 

morphology as well as topology of the considered scenario has a noticeable impact on radio wave 

propagation.  

Figure 9. Estimation of received power (dBm) on the indoor passenger wagon train for 

height of 1.5 m obtained by full 3D Ray Launching algorithm. 

 

Figure 10 depicts the radials of power along the wagon train (X-axis) for a fixed value of Y, which 

is Y = 1.25 m, for different heights. It is observed that the distribution of power has a lot of variability 

due mainly to the strong influence of multipath components. 

Figure 10. Estimation of radials of received power (dBm) along the X-axis for Y = 1.25 m 

along the indoor passenger wagon train. 

 

As stated above, in this type of environment, the fundamental radio electric phenomenon is 

described by multipath propagation. To illustrate this fact, the power delay profile for the passenger 

wagon in a central location has been obtained and is shown in Figure 11 for each transmitter of the 

BPN. As it is observed, there are a large number of echoes in the scenario due to this behavior of 

multipath channel.  

The intra-wagon communication system based on nomadic devices has been assessed for Bluetooth 

Low Energy (BLE) and classic Bluetooth. BLE is an emerging wireless technology developed by the 

Bluetooth Special Interest Group (SIG) for short-range communication. In contrast with classic 

Bluetooth, BLE has been designed as a low-power solution for control and monitoring applications. 

BLE is the distinctive feature of the Bluetooth 4.0 specification [30]. Figure 12 shows the radials of 
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received power along the wagon train (X-axis) for a fixed value of Y, which is Y = 1.25 m, for 0.8 m 

height, emulating a sitting person with a Bluetooth device. Figure 12a shows the comparison between 

BLE with the maximum and minimum transmitter power and the higher and lower receiver sensitivity. 

It can be seen that even the minimum transmitter power device of BLE has higher values along all the 

distance of the wagon than the higher receiver sensitivity for this particular complex environment. 

Besides, Figure 12b shows the comparison between Class 1, Class 2 and Class 3 of classic Bluetooth 

and all values of the received power for the spatial line considered have higher values than the receiver 

sensitivity. It must be pointed out that the data of BLE and classic Bluetooth has been obtained from 

the literature [36]. 

Figure 11. Power Delay Profile at a given cuboid, located at the central location in the 

indoor wagon train: (a) Transmitter 1 (master unit), (b) Transmitter 2 (slave 1) and  

(c) Transmitter 3 (slave 2). 

  

(a) (b) 

 

(c) 
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Figure 12. Estimation of radials of received power (dBm) along the X-axis for Y = 1.25 m 

and Z = 0.8 m along the indoor passenger wagon train (a) Comparison between the 

maximum and minimum transmitter power of Bluetooth Low Energy with the higher and 

lower receiver sensitivity (b) Comparison between classic Bluetooth and receiver sensitivity. 

  

(a) (b) 

5.1. Measurement Results 

In order to validate the results previously obtained, measurements in a real wagon train have been 

developed. A transmitter antenna, connected to a signal generator at 2.4 GHz has been located at the 

coordinates (X = 14.8 m, Y = 1.25 m, Z = 1.1 m) which correspond with the final part of the wagon 

train, with a transmission power of −10 dBm. The employed signal generator is a portable Agilent 

N1996A and the spectrum analyzer is an Agilent N9912 Field Fox. The antennas used are  

ECOM5-2400 from RS, both omnidirectional antennas. Figure 13 shows the location for the 

transmitter in the model created for the passenger wagon train and the location of the measurement 

points. In the central line, measurement points have been taken at a height of 1.10 m. For the lateral 

measurement points, the receiver location was just above the seats.  

Figure 13. Measurement points within the passenger wagon train. 
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Figure 14. Comparison simulation versus measurements for 2.4 GHz frequency in the 

indoor passenger wagon train. 

 

Figure 14 shows the comparison between simulation and measurement results for the measurements 

taken along the passenger wagon train. Measurements were performed with 100 MHz bandwidth at  

2.4 GHz frequency. The measurement time at each point was 60 s, and the value of received power 

represented by each point is the higher peak of power shown by the spectrum analyzer for the 

considered bandwidth (MaxHold function in the spectrum analyzer of Agilent). The received power 

values estimated by simulation have been obtained for the same spatial samples as the real 

measurements, considering the corresponding cuboid in the three-dimensional mesh of cuboids in 

which the scenario have been divided. The mean error between simulation and measurements for the 

indoor passenger wagon train is 1.448 dB with a standard deviation of 0.986 dB. It is shown that it 

exhibits good agreement and validates previous results.  

5.2. Rail Service as Proof of Concept 

In order to validate the results described above, we have developed RailService, an app developed 

for Android and IOS mobile devices that allows them to act as a remote control to select the TV 

channels and volume of the screen embedded in the front seat, which also reveals environmental 

vehicle parameters (temperature, humidity, speed), the time remaining to reach the destination and an 

alarm to alert the passenger with a certain advance of the arrival at destination. In order to prevent 

during screen’s degradation due to the continuous, and sometimes inadequate, use of the buttons of the 

screens (or even the touch screens) we allow the use of the passenger’s smartphone as a remote that 

controls the display and forwards the audio signal to the user. Passengers can then listen to the audio 

from their own phone and control their screen from their own smartphone. 

Figure 15 illustrates the graphic user interface of the related application. We deploy a Raspberry Pi 

device in each vehicle in charge of collecting and transmitting (via Bluetooth) the information 

concerning the trip (temperature, location, speed, time to arrival, …) to the RailService App. Similarly, 

the screen embedded in each seat communicates with the smartphone of the passenger. 
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Figure 15. RailService’s screen captures. 

    

Figure 16. RailService’s architecture. 

 

Figure 17. Some communication flows for the remote control of the app. 
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Audio and video contents are supplied by a content provider (or a set of them). We collect the 

multimedia contents in a network-attached storage (NAS) in order to avoid the interruption of the 

information flow when the train traverses areas of low or null coverage that may cause the degradation 

of the user’s perception of the service. The NAS, a Blusens Server Box in our case, makes use of 

DLNA and UPnP to provide via WiFi the multimedia flow to the screens embedded in the back seats. 

Figure 16 depicts the architecture of the App. RailService establishes different communication flows 

(see Figure 17) with both the display hardware and the Raspberry Pi, in charge of collecting and 

serving environmental information and providing internet access to passengers. 

Since Bluetooth was designed to minimize energy consumption, it is not indicated to provide 

multimedia transfer. For this reason, some authors as [26,37] have worked this issue specific 

algorithms that allow to dynamically adapting the network to an optimal value of Tpoll during 

transmission. But in our case, the replacement of Bluetooth by WiFi technology is not pursued. Our 

proof of concept is intended to provide greater functionality to the passengers minimizing the potential 

damage from improper uses of the screens and headphones.  

Figure 17 illustrates the protocol of getting the volume of the audio signal, increasing it by a unit, 

decreasing it by three units, and finally, muting the volume. Furthermore, one can observe the message 

flow for getting the current channel (31 in this case), selecting channel number 11, selecting the 

visualization of a certain multimedia content and the finalization of the reproduction. 

6. Conclusions and Future Work 

Transportation companies have been investing heavily in recent years in technological innovation 

activities in order to improve the quality of services offered to their customers. This is allowing the 

establishment of wireless communications between vehicles and management facilities of these 

companies, enabling the development and deployment of new Intelligent Transportation Systems (ITS). 

This paper has proposed a solution to provide the ubiquitous connectivity needed to enhance the 

smart train concept.  It includes not only train-to-ground communication systems, but also intra-wagon 

connectivity which integrates passengers’ devices in the environment.  

Regarding the last challenge, results of several radioelectric simulations have been presented in 

order to analyze the viability of the applications of Bluetooth Piconet Networks inside train wagons, 

using an indoor wagon passenger train as test scenario. On the other hand, a research work focused  

on the development of a train-to-ground communication middleware designed to respond to 

communication requirements demanded by railway applications was presented. It manages aspects 

related to QoS, uses multiple radio and mobile interfaces (GPRS, UMTS, WLAN, etc.) and adopts an 

“always best connected” approach to enhance communications availability and obtain the best 

bandwidth capabilities, by selecting always the most favorable network link. Finally, future work 

relative to the exploitation of this communication system by the development of on trip customized 

added value services for passengers will be explored. 

The research area where is focused the research work presented in this paper has still a long way 

since the progress in telecommunications and its applications for the development of new services in 

the transportation open a wide range of possibilities (from the point of view of network 

communications, and also from the point of view of information systems that could be developed 
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around it). In regards to the extension of the presented approach to other transportation systems, as for 

example suburban systems, the software communication architecture is fully compliance with other 

systems, but several issues related to physical layer such as bandwidth or channel capacity, should be 

explored and addressed specifically. 
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