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Abstract—Two phenomena for enhancing the sensitivity of long-5
period fiber gratings are combined toward an increase of the sensi-6
tivity to strain of this type of devices: the dispersion turning point7
(DTP) and the cladding diameter reduction by an etching process.8
The results prove that sensitivities up to 20 pm/με can be attained,9
which is a ten-fold improvement compared to the previous works.10
The sensitivity in the grating region, which is subjected to etching,11
does not depend on the order of the cladding mode responsible for12
the attenuation bands generated in the transmission spectrum, but13
on the proximity to the DTP for each mode order. On the other14
hand, the sensitivity to strain of the global structure, including the15
region without etching, can be increased for lower order modes16
in a perceptible way if the length of the etched region is smaller17
compared to the fiber region under stress. The experimental results18
are supported with simulations based on coupled-mode theory and19
on FIMMWAVE, which allows understanding the phenomena in-20
volved during the sensing process.21

Index Terms—Dispersion turning point, etching, long period22
fiber grating, strain sensor.23

I. INTRODUCTION24

LONG period fiber gratings (LPFGs) consist typically of a25

periodic perturbation in the core of a single mode optical26

fiber, which allows a co-propagating coupling of light from the27

guided mode in the fiber core to several modes guided in the28

cladding [1]–[3]. This provides LPFGs with sensitivity to strain,29

temperature, bending and refractive index of the surrounding30

medium [3]. In order to guarantee that a co-propagating coupling31

to the cladding modes occurs, the period must be typically higher32

than 100 μm (FBGs are generated with shorter periods and,33

hence, a counter-propagating coupling is generated).34

During the last two decades, three main ways of enhancing the35

sensitivity of LPFGs to the surrounding refractive index (SRI)36
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have been explored: the selection of an adequate period that 37

allows the LPFG to operate at the dispersion turning point (DTP) 38

[4], the deposition of a thin-film that allows the device operating 39

in mode transition [5], [6] and the reduction of the cladding 40

diameter [7], [8]. The combination of these three effects allows 41

attaining sensitivities comparable or even higher than surface 42

plasmon resonance sensors (SPRs) [9], [10], which positions 43

LPFGs as one of the most promising platforms in the field of 44

optical sensors. 45

A high sensitivity to SRI is a good indicator for the ability 46

of the sensor to be used as a chemical or a biological sensor, 47

because the parameter to detect (e.g., an antigen, antibody, or 48

any chemical species) is deposited on the surface of the sensor 49

and, consequently, affects the medium surrounding the optical 50

fiber [11]. However, few research has been devoted to the opti- 51

mization of the strain sensitivity, which not necessarily follows 52

the same rules as the SRI sensitivity. 53

In this work, focus is centered on the combination of two phe- 54

nomena: the DTP and the cladding etching. By combining both 55

effects, it will be demonstrated that, contrary to what happens 56

with the sensitivity to SRI [8], coupling to lower order cladding 57

modes does not allow attaining a better sensitivity. However, for 58

each cladding mode, the sensitivity is improved when the DTP 59

is approaching. 60

In addition, another way of improving the sensitivity is apply- 61

ing stress in a longer region than the one that has been etched. 62

The sensitivity to strain is increased for lower order modes (i.e., 63

shorter diameter) compared to higher order modes, and this im- 64

provement is better if the length of region under stress is much 65

longer than the region that has been etched. 66

In Section II the experimental setup and the methods used 67

for fabricating and simulating the LPFGs are described. In 68

Section III the experimental results are detailed. Finally, some 69

conclusions are presented in Section IV. 70

II. EXPERIMENTAL SECTION 71

LPFGs with a grating period of 191 μm and a length of 72

19 mm were written in a photosensitive boron-germanium co- 73

doped optical fiber (Fibercore PS1250/1500) having mode field 74

diameter of 9.6 μm, numerical aperture of 0.13 and cladding 75

diameter of 125 μm. 76

The LPFGs were fabricated with the point-by-point inscrip- 77

tion technique by using an excimer KrF laser source (LAMBDA 78

Physik COMPex 110, Coherent Inc.) operating at a wavelength 79

of 248 nm, and working at constant pulse energy. The other 80
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Fig. 1. Experimental setup used to etch the optical fiber containing an LPFG.

manufacturing parameters are as follows: energy of 140 mJ,81

fluence of 200–300 mJ/cm−2 , and a repetition rate of 50 Hz.82

The laser beam was focused by using a cylindrical lens before83

being passed through a micrometric slit placed in front of the84

optical fiber, which determined the grating period. The fiber was85

kept straight during both the fabrication and the characterization86

processes to avoid any bending artifact.87

The LPFGs were subjected to an etching process depicted in88

Fig. 1. The process was monitored with a transmission config-89

uration setup. Light from an Agilent 83437A broadband source90

was launched into the LPFG during the etching process and the91

output light was monitored in an Agilent 86140B optical spec-92

trum analyzer, which allowed observing the evolution of the93

attenuation bands and hence stopping at the adequate position.94

Regarding the etching process, the fiber was introduced in a95

plastic cuvette filled with 40% hydrofluoric acid. The cuvette96

contains two 0.9-mm-wide grooves where the fiber segment to97

etch can be placed without affecting the rest of the fiber and98

without releasing acid out of the cuvette. The length of the fiber99

attacked by the acid was 30 mm, enough to include the 19 mm100

long grating portion. In order to guarantee an adequate etching,101

the fiber was also fixed to an outer plastic holder and to a mobile102

point in a micropositioner, which ensured that the fiber was kept103

straight, avoiding bend-induced distortion of the transmission104

spectrum. The region not immersed in the cuvette was 197 mm105

long, for a global length of the fiber under stress of 227 mm.106

When the attenuation bands were positioned at a specific107

wavelength, the fiber was extracted from the cuvette and washed108

using water immediately after to eliminate the effects of acid.109

The process can be repeated as many times as necessary in110

order to further reduce the cladding diameter, which allows111

obtaining attenuation bands corresponding with other cladding112

modes [8]. Moreover, if it is necessary to control the position of113

the attenuation bands with more accuracy, the LPFG can also114

be immersed in a more diluted HF solution.115

After the etching process, it was essential to wait at least one116

hour to ensure that the LPFG was completely dry. Once dried,117

the LPFG was ready for performing strain measurements. To this118

purpose, as indicated in Fig. 1, the LPFG was manually stretched119

in steps of 0.1 mm (the transmission spectrum of the sensor was 120

continuously monitored during the stretching process). 121

It is important to highlight that the diameter of the fiber was 122

just reduced in the region of the LPFG immersed in the cuvette. 123

Consequently, the strain in the grating can be obtained according 124

to this expression: 125

ε1 =
ΔL
A 1(

L1
A 1

+ L2
A 2

) (1)

where ΔL is the overall length increase of the LPFG region 126

under stress, L1 and L2 are the lengths of the etched and non- 127

etched fiber portions respectively, A1 is the cross section of the 128

etched fiber portion and A2 is the cross section of the non-etched 129

fiber portion. 130

III. THEORY 131

The structures studied in this work were analyzed with two 132

software tools: FIMMWAVE and a method based on coupled- 133

mode theory [13]. FIMMWAVE, which is a fast and efficient 134

software for analyzing optical waveguides, was used for gener- 135

ating the transmission spectra, whereas the coupled-mode the- 136

ory was used for obtaining the resonance wavelengths that meet 137

the phase-matching condition (this last operation is less com- 138

putationally demanding and cannot be directly obtained with 139

FIMMWAVE). 140

Regarding FIMMWAVE, the propagation was calculated with 141

FIMMPROP, a module integrated with FIMMWAVE. For LPFG 142

sections, the finite difference method (FDM) was used, be- 143

cause it is the most accurate method available for a cylindrical 144

waveguide. 145

The grating used in the simulations consisted of a square 146

wave that emulates the point-by-point technique used during the 147

inscription of the grating. The peak-to-peak modulation was 8 × 148

10−4 . Modes LP0,1 up to LP0,12 were analyzed for the period 149

of the LPFGs used experimentally. LP0,11 was the higher-order 150

cladding mode to which the core mode is coupled when the 151

cladding diameter is 125 μm, i.e., before the fiber was etched. 152

By fitting the experimental results presented in Section IV 153

with the theoretical ones, a core diameter of 6.9 μm and a 154

numerical aperture of 0.1313 at wavelength of 1300 nm was 155

calculated, very close to 0.13 numerical aperture given by the 156

manufacturer. For a better accuracy, a negative dispersion of 157

1.1 × 10−7 (λ − 1300)2 was added, where λ is the operating 158

wavelength. 159

It is well known that the resonance wavelength of an LPFG 160

is determined by the phase-matching condition [1]–[4]: 161

λ =
[
ncore (λ) − ni

clad (λ)
]
Λ (2)

where ncore(λ) is the effective refractive index of the prop- 162

agating core mode at wavelength λ, ni
clad(λ) is effective the 163

refractive index of the ith cladding mode and Λ is the period of 164

the grating. 165

However, the modified phase-matching condition is [12]: 166

λ =
[
ncore (λ) +

s0

k0
ςcore −

(
ni

clad (λ) +
s0

k0
ςi
clad

)]
Λ (3)
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where the additional variables s0 , k0 , ζcore and ζi
clad are the167

first Fourier component of the grating profile, the free space168

wavenumber, the self-coupling coefficient of the core mode and169

the self-coupling coefficient of the cladding mode, respectively,170

allows improving the accuracy of the equation towards a predic-171

tion of the position of the attenuation bands in the transmission172

spectrum [12]. Consequently, (3) will be used for the analy-173

sis performed in this section according to coupled-mode theory174

[13].175

Using the chain rule of derivatives, the sensitivity to axial176

strain ε can obtained from (3) as follows:177

dλ

dε
=

dλ

dmat

dmat

dε
+ Λ

dλ

dΛ
(4)

where the first element on the right side of the equation is related178

to the material contribution extracted from expression (3):179

mat =
[
ncore (λ) +

s0

k0
ζcore −

(
ni

clad (λ) +
s0

k0
ςi
clad

)]
(5)

This contribution results from the elasto-optic effect (i.e., the180

change in refractive index in both the fiber core and the cladding181

due to strain) and the Poisson’s effect (i.e., the change in the182

transverse dimensions). The second element in expression (4) is183

the waveguide contribution, which depends on the slope dλ/dΛ184

of the characteristic curve of the resonance band [3], [14].185

The elasto-optic coefficient of silica is a well know parameter,186

−0.22 [4], [15], whereas the elasto-optic coefficient of the fiber187

core is not given in the literature because it depends on the188

doping level of the materials used by the manufacturer. The189

value that best fitted the experimental results in Section IV was190

−0.222, which is in the range of the values explored in [4].191

In order to analyze the effect of both the material and wave-192

guide contributions in the optical fiber used in this work, two193

situations were taken into account: an LPFG without etching194

and an etched LPFG.195

Fig. 2(a) shows the dependence of the coupling wavelength196

for cladding modes LP0,2−LP0,12 upon the period of the LPFGs197

used. For LP0,11 the DTP was observable [4]. This phenomenon198

is related to a high sensitivity. Consequently, the best option was199

to choose a period of 191 μm, which cuts the curve of LP0,11200

cladding mode at two points very close to the DTP, where the201

sensitivity is very high.202

It was also proved experimentally that, by reducing the203

cladding diameter of the optical fiber, coupling to lower or-204

der cladding modes in the DTP was possible [8]. This idea is205

confirmed in Fig. 2(b), where for an LPFG of cladding diam-206

eter 65.45 μm a coupling to LP0,6 cladding mode at DTP is207

obtained.208

In Fig. 3 the waveguide and the material contribution were209

analyzed with a focus on grating periods close to 191 μm, the210

period selected for the LPFGs analyzed in Section IV. To this211

purpose, the coupling wavelength for cladding mode LP0,11212

was calculated in two conditions: one where the refractive index213

of both the fiber core and cladding was that corresponding to214

no strain applied to the LPFG, and another where the refractive215

index of both the fiber core and cladding was that corresponding216

to 3000 με applied to the LPFG. The effect is more evident217

near the DTP. However, it is very small if compared with the218

Fig. 2. Calculated variation of resonance wavelength with grating period:
(a) For a cladding diameter of 125 μm (for a period of 191 μm, the LP0 ,11 phase
matching curve is intersected at two wavelengths very close to the dispersion
turning point); (b) For a cladding diameter of 65.45 μm (for a period of 191 μm,
the LP0 ,6 phase matching curve is intersected at two wavelengths very close to
the dispersion turning point).

effect of increasing the grating period by 0.3%, equivalent to 219

3000 με in the LPFG (see the vertical lines of 191 μm, 0 με, 220

and 191.576 μm, 3000 με). In Fig. 3(a), for an LPFG with 221

cladding diameter 125 μm, a wavelength shift of approximately 222

10 nm was observed (waveguide contribution) compared to less 223

than 1 nm induced by the material contribution. In other words, 224

the effect of the waveguide is predominant over the effect of 225

the material. The same effect was observed for an LPFG with 226

diameter 65.45 μm in Fig. 3(b). 227

Another interesting conclusion that was extracted from the 228

results obtained with two different diameters and shown in Fig. 3 229

was that the shape of the phase matching curve did not change. 230

This indicates that the optimized sensitivity to strain is achieved 231

for any mode as long as it operates at or close to the DTP point. 232

Consequently, the basic rule for optimizing the sensitivity to 233

strain should be to approach the DTP point. In addition to this, 234

it is easy to observe in Fig. 3 the non-linear wavelength shift of 235

the coupling wavelength as a function of the grating period in 236

the proximities of the DTP. 237

IV. EXPERIMENTAL RESULTS 238

According to Sections II and III, different cladding diameters 239

were explored (see Table I). The diameter was estimated by 240
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Fig. 3. Effect of the material in the variation of resonance wavelength with
grating period (0 and 3000 με are compared), and effect of the waveguide (a
period of 191 μm is compared with 191.576 μm, which is a 0.3% more to
represent the effect of 3000 με): (a) For a cladding diameter of 125 μm. (b) For
a cladding diameter of 65.45 μm.

TABLE I
LIST OF LPFG SENSORS OF PERIOD 191 μM

relating the position of the attenuation bands, after each etch-241

ing process, with the same position obtained in the theoretical242

transmission spectra. It is important to note that a good cor-243

respondence between the estimation of the diameter and the244

experimental value of the diameter measured in a microscope245

was demonstrated in [16].246

S0 was an LPFG without etching (diameter 125 μm). The247

device was subjected to stress according to the method ex-248

plained in Section II. In Fig. 4(a), the separation between the two249

Fig. 4. Transmission spectra (experimental results) for: (a) S0; (b) S1; (c) S2.

attenuation bands observed in the optical spectrum is reduced 250

as a function of strain. This agrees with Fig. 3(a), where an 251

increase in the grating period leads to an approach to the DTP. 252

By performing a soft etching, we fabricated S1 with an esti- 253

mated diameter of 124.68 μm, according to the numerical results 254

presented in Fig. 5. Following the analysis in [8], [9], the sep- 255

aration of the attenuation bands decreases if the diameter of 256

an LPFG is reduced. This is what was observed in Fig. 4(b) if 257
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Fig. 5. Transmission spectra (theoretical results) for: (a) S0; (b) S1; (c) S2.

compared with Fig. 4(a). The same occurred for sensor S2 in258

Fig. 4(c), with an estimated diameter of 124.56 μm. The the-259

oretical results in Fig. 5 confirmed the experimental results of260

Fig. 4.261

In addition, the central wavelength of the left band is plot-262

ted in Fig. 6 as a function of strain for all sensors analyzed263

in Figs. 4 and 5. The theoretical and experimental results al-264

lowed obtaining several conclusions. The sensitivity increases265

Fig. 6. Wavelength shift of LP0 ,11 left band as a function of strain for sensors
S0, S1 and S2: (a) theoretical results; (b) experimental results.

if the diameter is reduced (the sensitivity of S0, S1 and S2 is 266

6.5 pm/με, 10.3 pm/με and 20 pm/με, respectively, in the range 267

0–3100 με). For the sake of comparison, the sensitivity in op- 268

timized LPFGs ranged from 0.5 to 2 pm/με in [17], whereas 269

in [18] the maximum sensitivity was 2 pm/με. This indicates 270

that our best sensor improved the highest sensitivity attained in 271

these works by one order of magnitude. 272

A second conclusion is that if the separation between the 273

attenuation bands is low, as S2 in Fig. 5, the relation between 274

wavelength and strain is non-linear, whereas this relation is 275

linear for sensor S0. Sensor S1 is in the middle between both 276

situations. This agrees with what was observed in Fig. 3, where 277

the phase matching curve is non-linear in the proximities of the 278

DTP. 279

A harder etching was performed up to a diameter that al- 280

lowed monitoring attenuation bands that were due to coupling 281

to LP0,10 cladding mode. Three different diameters were ana- 282

lyzed: 115.82, 113.98 and 113.10 μm (sensors S3, S4 and S5). 283

Theoretical and experimental data are presented in Fig. 7 for 284

the central wavelength of the left band versus different values 285

of strain. In all cases, the relation between strain and wave- 286

length was linear. This can be explained because this time fo- 287

cused was centered on sensors working far from DTP: sensor 288

S5 was working at the same wavelength as S0 in Fig. 6, where a 289
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Fig. 7. Wavelength shift of LP0 ,10 left band as a function of strain for sensors
S3, S4 and S5: (a) theoretical results; (b) experimental results.

linear performance was observed, and S3 and S4 were working290

at shorter wavelengths. In view of the linear shape of the plots,291

a Matlab linear regression model has been created (solid lines292

in Fig. 7) that fits with the experimental points. This model also293

allows obtaining the root-mean-square deviation along with the294

sensitivities for S3, S4 and S5. The sensitivities are 2.5 pm/με,295

4.4 pm/με and 9.3 pm/με, respectively, in the range 0–3500 με,296

whereas the root-mean-square deviations (RMSD) are respec-297

tively 0.348 nm, 0.432 nm and 1.05 nm. The highest RMSD298

is obtained for S5, the sensor with the highest sensitivity and299

the sensor closer to DTP, where a non-linear dependence with300

strain is observed. In addition, as shown in Fig. 6, the sensitivity301

increases as the diameter is reduced.302

In order to obtain more information on the influence of the303

mode order, other sensors with different diameters (S6, S7, S8304

and S9) were analyzed. In Fig. 8, the performance of all sensors305

was compared. We divided them into two groups. Fig. 8(a)306

details the sensors working at a wavelength close to DTP. It307

seems that the sensitivity is similar. However, it is difficult to308

extract a general rule because the high sensitivity at this point309

is responsible for variations in the sensitivity of each sensor310

depending on small changes in the wavelength where it operates.311

On the other hand, Fig. 8(b) accounts for sensors operating312

far from the DTP, where the devices are not so sensitive to313

Fig. 8. Performance of LPFG sensors with different diameter: (a) S0, S5,
S7 and S9 are close to DTP and the attenuation band is due to coupling to
LP0 ,11 , LP0 ,10 , LP0 ,9 and LP0 ,6 respectively; (b) S4, S6 and S8 are far from
DTP and the attenuation band is due to coupling to LP0 ,10 , LP0 ,9 and LP0 ,8
respectively.

small variations in the operating wavelength and it is easier to 314

conclude that their sensitivity is quite similar. This indicates that 315

the mode order played no role on the sensitivity to strain of the 316

device. In other words, for each specific mode, the proximity to 317

the DTP determines the sensitivity of the device, whereas the 318

mode order has no influence on that. In this way, sensors can 319

be classified into two groups: operating at and far from DTP 320

point. Consequently, a soft etching to position the attenuation 321

bands in the optical spectrum is the best way for controlling the 322

sensitivity of the LPFG-based strain sensor. 323

It must be pointed out that the results presented in Figs. 4–8 324

represent the strain in the grating region of the LPFG. How- 325

ever, if the deformation in all the fiber structure is analyzed (see 326

Fig. 1), the sensitivity of the device is better for lower order 327

modes (i.e., lower diameter). Moreover, depending on the ra- 328

tio between the grating length and the complete LPFG region 329

length under stress, the sensitivity can be further improved. In 330

this sense, this ratio should be as low as possible. In the cases 331

analyzed in this work, if the strain on the global structure is con- 332

sidered, each 0.1 mm deformation in a structure of 227 mm is 333

0.44 με. Consequently, the 4 pm/με sensitivity of S4, S6 and S8 334

in Fig. 8(b) becomes 5.19 pm/με, 6.17 pm/με and 6.82 pm/με, 335
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respectively, for the same sensors. These values are calculated336

by dividing the wavelength shift by 0.44 με multiplied by the337

seven 0.1 mm deformation steps analyzed in Fig. 8(b).338

The RMSD of S4, S6 and S8 was also calculated: 0.432, 0.506339

and 0.642 nm respectively. These values indicate no significant340

changes because the three sensors are positioned at a similar341

distance of the DTP. In addition, error bars representing the342

standard deviation in each point have been added for S4, S6 and343

S8 (the average standard deviation of the points in S4, S6 and344

S8 was 0.351, 0.347 and 0.332 nm respectively).345

V. CONCLUSION346

The sensitivity to strain of long period fiber gratings (LPFGs)347

operating close to the dispersion turning point (DTP) has been348

analyzed as a function of the cladding diameter.349

The results obtained indicate that by accurately approaching350

the DTP it is possible to increase the sensitivity to strain of the351

device. Therefore, the sensitivity of previous works has been352

improved by a factor of 10, attaining a sensitivity of 20 pm/με353

in the best case.354

On the other hand, unlike for LPFG-based refractometers,355

reducing the fiber diameter towards coupling to lower order356

cladding mode does not allow increasing the sensitivity of the357

etched region of the fiber. This indicates that a soft etching of358

the initial structure without etching towards a highest sensitivity359

is the best way of improving the performance of the device.360

However, if the etched region is small compared to the global361

region under stress, it is possible to improve the sensitivity of the362

global structure for lower order cladding modes, which opens363

the path towards the design of different combinations of length364

for both the etched and the non-etched regions. In this sense, the365

fabrication of short gratings is crucial towards the possibility to366

develop different designs.367

The other well-known phenomenon that could be combined368

with the dispersion turning point and the cladding diameter369

reduction is the mode transition, which according to [9], [10]370

allows increasing the sensitivity to the surrounding refractive371

index changes of LPFGs exponentially. However, this requires372

the nanodeposition of a thin-film and, consequently, the number373

of variables to take into account increases in a great manner,374

which is beyond the scope of this work.375
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3

4

Abstract—Two phenomena for enhancing the sensitivity of long-5
period fiber gratings are combined toward an increase of the sensi-6
tivity to strain of this type of devices: the dispersion turning point7
(DTP) and the cladding diameter reduction by an etching process.8
The results prove that sensitivities up to 20 pm/με can be attained,9
which is a ten-fold improvement compared to the previous works.10
The sensitivity in the grating region, which is subjected to etching,11
does not depend on the order of the cladding mode responsible for12
the attenuation bands generated in the transmission spectrum, but13
on the proximity to the DTP for each mode order. On the other14
hand, the sensitivity to strain of the global structure, including the15
region without etching, can be increased for lower order modes16
in a perceptible way if the length of the etched region is smaller17
compared to the fiber region under stress. The experimental results18
are supported with simulations based on coupled-mode theory and19
on FIMMWAVE, which allows understanding the phenomena in-20
volved during the sensing process.21

Index Terms—Dispersion turning point, etching, long period22
fiber grating, strain sensor.23

I. INTRODUCTION24

LONG period fiber gratings (LPFGs) consist typically of a25

periodic perturbation in the core of a single mode optical26

fiber, which allows a co-propagating coupling of light from the27

guided mode in the fiber core to several modes guided in the28

cladding [1]–[3]. This provides LPFGs with sensitivity to strain,29

temperature, bending and refractive index of the surrounding30

medium [3]. In order to guarantee that a co-propagating coupling31

to the cladding modes occurs, the period must be typically higher32

than 100 μm (FBGs are generated with shorter periods and,33

hence, a counter-propagating coupling is generated).34

During the last two decades, three main ways of enhancing the35

sensitivity of LPFGs to the surrounding refractive index (SRI)36
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have been explored: the selection of an adequate period that 37

allows the LPFG to operate at the dispersion turning point (DTP) 38

[4], the deposition of a thin-film that allows the device operating 39

in mode transition [5], [6] and the reduction of the cladding 40

diameter [7], [8]. The combination of these three effects allows 41

attaining sensitivities comparable or even higher than surface 42

plasmon resonance sensors (SPRs) [9], [10], which positions 43

LPFGs as one of the most promising platforms in the field of 44

optical sensors. 45

A high sensitivity to SRI is a good indicator for the ability 46

of the sensor to be used as a chemical or a biological sensor, 47

because the parameter to detect (e.g., an antigen, antibody, or 48

any chemical species) is deposited on the surface of the sensor 49

and, consequently, affects the medium surrounding the optical 50

fiber [11]. However, few research has been devoted to the opti- 51

mization of the strain sensitivity, which not necessarily follows 52

the same rules as the SRI sensitivity. 53

In this work, focus is centered on the combination of two phe- 54

nomena: the DTP and the cladding etching. By combining both 55

effects, it will be demonstrated that, contrary to what happens 56

with the sensitivity to SRI [8], coupling to lower order cladding 57

modes does not allow attaining a better sensitivity. However, for 58

each cladding mode, the sensitivity is improved when the DTP 59

is approaching. 60

In addition, another way of improving the sensitivity is apply- 61

ing stress in a longer region than the one that has been etched. 62

The sensitivity to strain is increased for lower order modes (i.e., 63

shorter diameter) compared to higher order modes, and this im- 64

provement is better if the length of region under stress is much 65

longer than the region that has been etched. 66

In Section II the experimental setup and the methods used 67

for fabricating and simulating the LPFGs are described. In 68

Section III the experimental results are detailed. Finally, some 69

conclusions are presented in Section IV. 70

II. EXPERIMENTAL SECTION 71

LPFGs with a grating period of 191 μm and a length of 72

19 mm were written in a photosensitive boron-germanium co- 73

doped optical fiber (Fibercore PS1250/1500) having mode field 74

diameter of 9.6 μm, numerical aperture of 0.13 and cladding 75

diameter of 125 μm. 76

The LPFGs were fabricated with the point-by-point inscrip- 77

tion technique by using an excimer KrF laser source (LAMBDA 78

Physik COMPex 110, Coherent Inc.) operating at a wavelength 79

of 248 nm, and working at constant pulse energy. The other 80

0733-8724 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Fig. 1. Experimental setup used to etch the optical fiber containing an LPFG.

manufacturing parameters are as follows: energy of 140 mJ,81

fluence of 200–300 mJ/cm−2 , and a repetition rate of 50 Hz.82

The laser beam was focused by using a cylindrical lens before83

being passed through a micrometric slit placed in front of the84

optical fiber, which determined the grating period. The fiber was85

kept straight during both the fabrication and the characterization86

processes to avoid any bending artifact.87

The LPFGs were subjected to an etching process depicted in88

Fig. 1. The process was monitored with a transmission config-89

uration setup. Light from an Agilent 83437A broadband source90

was launched into the LPFG during the etching process and the91

output light was monitored in an Agilent 86140B optical spec-92

trum analyzer, which allowed observing the evolution of the93

attenuation bands and hence stopping at the adequate position.94

Regarding the etching process, the fiber was introduced in a95

plastic cuvette filled with 40% hydrofluoric acid. The cuvette96

contains two 0.9-mm-wide grooves where the fiber segment to97

etch can be placed without affecting the rest of the fiber and98

without releasing acid out of the cuvette. The length of the fiber99

attacked by the acid was 30 mm, enough to include the 19 mm100

long grating portion. In order to guarantee an adequate etching,101

the fiber was also fixed to an outer plastic holder and to a mobile102

point in a micropositioner, which ensured that the fiber was kept103

straight, avoiding bend-induced distortion of the transmission104

spectrum. The region not immersed in the cuvette was 197 mm105

long, for a global length of the fiber under stress of 227 mm.106

When the attenuation bands were positioned at a specific107

wavelength, the fiber was extracted from the cuvette and washed108

using water immediately after to eliminate the effects of acid.109

The process can be repeated as many times as necessary in110

order to further reduce the cladding diameter, which allows111

obtaining attenuation bands corresponding with other cladding112

modes [8]. Moreover, if it is necessary to control the position of113

the attenuation bands with more accuracy, the LPFG can also114

be immersed in a more diluted HF solution.115

After the etching process, it was essential to wait at least one116

hour to ensure that the LPFG was completely dry. Once dried,117

the LPFG was ready for performing strain measurements. To this118

purpose, as indicated in Fig. 1, the LPFG was manually stretched119

in steps of 0.1 mm (the transmission spectrum of the sensor was 120

continuously monitored during the stretching process). 121

It is important to highlight that the diameter of the fiber was 122

just reduced in the region of the LPFG immersed in the cuvette. 123

Consequently, the strain in the grating can be obtained according 124

to this expression: 125

ε1 =
ΔL
A 1(

L1
A 1

+ L2
A 2

) (1)

where ΔL is the overall length increase of the LPFG region 126

under stress, L1 and L2 are the lengths of the etched and non- 127

etched fiber portions respectively, A1 is the cross section of the 128

etched fiber portion and A2 is the cross section of the non-etched 129

fiber portion. 130

III. THEORY 131

The structures studied in this work were analyzed with two 132

software tools: FIMMWAVE and a method based on coupled- 133

mode theory [13]. FIMMWAVE, which is a fast and efficient 134

software for analyzing optical waveguides, was used for gener- 135

ating the transmission spectra, whereas the coupled-mode the- 136

ory was used for obtaining the resonance wavelengths that meet 137

the phase-matching condition (this last operation is less com- 138

putationally demanding and cannot be directly obtained with 139

FIMMWAVE). 140

Regarding FIMMWAVE, the propagation was calculated with 141

FIMMPROP, a module integrated with FIMMWAVE. For LPFG 142

sections, the finite difference method (FDM) was used, be- 143

cause it is the most accurate method available for a cylindrical 144

waveguide. 145

The grating used in the simulations consisted of a square 146

wave that emulates the point-by-point technique used during the 147

inscription of the grating. The peak-to-peak modulation was 8 × 148

10−4 . Modes LP0,1 up to LP0,12 were analyzed for the period 149

of the LPFGs used experimentally. LP0,11 was the higher-order 150

cladding mode to which the core mode is coupled when the 151

cladding diameter is 125 μm, i.e., before the fiber was etched. 152

By fitting the experimental results presented in Section IV 153

with the theoretical ones, a core diameter of 6.9 μm and a 154

numerical aperture of 0.1313 at wavelength of 1300 nm was 155

calculated, very close to 0.13 numerical aperture given by the 156

manufacturer. For a better accuracy, a negative dispersion of 157

1.1 × 10−7 (λ − 1300)2 was added, where λ is the operating 158

wavelength. 159

It is well known that the resonance wavelength of an LPFG 160

is determined by the phase-matching condition [1]–[4]: 161

λ =
[
ncore (λ) − ni

clad (λ)
]
Λ (2)

where ncore(λ) is the effective refractive index of the prop- 162

agating core mode at wavelength λ, ni
clad(λ) is effective the 163

refractive index of the ith cladding mode and Λ is the period of 164

the grating. 165

However, the modified phase-matching condition is [12]: 166

λ =
[
ncore (λ) +

s0

k0
ςcore −

(
ni

clad (λ) +
s0

k0
ςi
clad

)]
Λ (3)
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where the additional variables s0 , k0 , ζcore and ζi
clad are the167

first Fourier component of the grating profile, the free space168

wavenumber, the self-coupling coefficient of the core mode and169

the self-coupling coefficient of the cladding mode, respectively,170

allows improving the accuracy of the equation towards a predic-171

tion of the position of the attenuation bands in the transmission172

spectrum [12]. Consequently, (3) will be used for the analy-173

sis performed in this section according to coupled-mode theory174

[13].175

Using the chain rule of derivatives, the sensitivity to axial176

strain ε can obtained from (3) as follows:177

dλ

dε
=

dλ

dmat

dmat

dε
+ Λ

dλ

dΛ
(4)

where the first element on the right side of the equation is related178

to the material contribution extracted from expression (3):179

mat =
[
ncore (λ) +

s0

k0
ζcore −

(
ni

clad (λ) +
s0

k0
ςi
clad

)]
(5)

This contribution results from the elasto-optic effect (i.e., the180

change in refractive index in both the fiber core and the cladding181

due to strain) and the Poisson’s effect (i.e., the change in the182

transverse dimensions). The second element in expression (4) is183

the waveguide contribution, which depends on the slope dλ/dΛ184

of the characteristic curve of the resonance band [3], [14].185

The elasto-optic coefficient of silica is a well know parameter,186

−0.22 [4], [15], whereas the elasto-optic coefficient of the fiber187

core is not given in the literature because it depends on the188

doping level of the materials used by the manufacturer. The189

value that best fitted the experimental results in Section IV was190

−0.222, which is in the range of the values explored in [4].191

In order to analyze the effect of both the material and wave-192

guide contributions in the optical fiber used in this work, two193

situations were taken into account: an LPFG without etching194

and an etched LPFG.195

Fig. 2(a) shows the dependence of the coupling wavelength196

for cladding modes LP0,2−LP0,12 upon the period of the LPFGs197

used. For LP0,11 the DTP was observable [4]. This phenomenon198

is related to a high sensitivity. Consequently, the best option was199

to choose a period of 191 μm, which cuts the curve of LP0,11200

cladding mode at two points very close to the DTP, where the201

sensitivity is very high.202

It was also proved experimentally that, by reducing the203

cladding diameter of the optical fiber, coupling to lower or-204

der cladding modes in the DTP was possible [8]. This idea is205

confirmed in Fig. 2(b), where for an LPFG of cladding diam-206

eter 65.45 μm a coupling to LP0,6 cladding mode at DTP is207

obtained.208

In Fig. 3 the waveguide and the material contribution were209

analyzed with a focus on grating periods close to 191 μm, the210

period selected for the LPFGs analyzed in Section IV. To this211

purpose, the coupling wavelength for cladding mode LP0,11212

was calculated in two conditions: one where the refractive index213

of both the fiber core and cladding was that corresponding to214

no strain applied to the LPFG, and another where the refractive215

index of both the fiber core and cladding was that corresponding216

to 3000 με applied to the LPFG. The effect is more evident217

near the DTP. However, it is very small if compared with the218

Fig. 2. Calculated variation of resonance wavelength with grating period:
(a) For a cladding diameter of 125 μm (for a period of 191 μm, the LP0 ,11 phase
matching curve is intersected at two wavelengths very close to the dispersion
turning point); (b) For a cladding diameter of 65.45 μm (for a period of 191 μm,
the LP0 ,6 phase matching curve is intersected at two wavelengths very close to
the dispersion turning point).

effect of increasing the grating period by 0.3%, equivalent to 219

3000 με in the LPFG (see the vertical lines of 191 μm, 0 με, 220

and 191.576 μm, 3000 με). In Fig. 3(a), for an LPFG with 221

cladding diameter 125 μm, a wavelength shift of approximately 222

10 nm was observed (waveguide contribution) compared to less 223

than 1 nm induced by the material contribution. In other words, 224

the effect of the waveguide is predominant over the effect of 225

the material. The same effect was observed for an LPFG with 226

diameter 65.45 μm in Fig. 3(b). 227

Another interesting conclusion that was extracted from the 228

results obtained with two different diameters and shown in Fig. 3 229

was that the shape of the phase matching curve did not change. 230

This indicates that the optimized sensitivity to strain is achieved 231

for any mode as long as it operates at or close to the DTP point. 232

Consequently, the basic rule for optimizing the sensitivity to 233

strain should be to approach the DTP point. In addition to this, 234

it is easy to observe in Fig. 3 the non-linear wavelength shift of 235

the coupling wavelength as a function of the grating period in 236

the proximities of the DTP. 237

IV. EXPERIMENTAL RESULTS 238

According to Sections II and III, different cladding diameters 239

were explored (see Table I). The diameter was estimated by 240
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Fig. 3. Effect of the material in the variation of resonance wavelength with
grating period (0 and 3000 με are compared), and effect of the waveguide (a
period of 191 μm is compared with 191.576 μm, which is a 0.3% more to
represent the effect of 3000 με): (a) For a cladding diameter of 125 μm. (b) For
a cladding diameter of 65.45 μm.

TABLE I
LIST OF LPFG SENSORS OF PERIOD 191 μM

relating the position of the attenuation bands, after each etch-241

ing process, with the same position obtained in the theoretical242

transmission spectra. It is important to note that a good cor-243

respondence between the estimation of the diameter and the244

experimental value of the diameter measured in a microscope245

was demonstrated in [16].246

S0 was an LPFG without etching (diameter 125 μm). The247

device was subjected to stress according to the method ex-248

plained in Section II. In Fig. 4(a), the separation between the two249

Fig. 4. Transmission spectra (experimental results) for: (a) S0; (b) S1; (c) S2.

attenuation bands observed in the optical spectrum is reduced 250

as a function of strain. This agrees with Fig. 3(a), where an 251

increase in the grating period leads to an approach to the DTP. 252

By performing a soft etching, we fabricated S1 with an esti- 253

mated diameter of 124.68 μm, according to the numerical results 254

presented in Fig. 5. Following the analysis in [8], [9], the sep- 255

aration of the attenuation bands decreases if the diameter of 256

an LPFG is reduced. This is what was observed in Fig. 4(b) if 257
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Fig. 5. Transmission spectra (theoretical results) for: (a) S0; (b) S1; (c) S2.

compared with Fig. 4(a). The same occurred for sensor S2 in258

Fig. 4(c), with an estimated diameter of 124.56 μm. The the-259

oretical results in Fig. 5 confirmed the experimental results of260

Fig. 4.261

In addition, the central wavelength of the left band is plot-262

ted in Fig. 6 as a function of strain for all sensors analyzed263

in Figs. 4 and 5. The theoretical and experimental results al-264

lowed obtaining several conclusions. The sensitivity increases265

Fig. 6. Wavelength shift of LP0 ,11 left band as a function of strain for sensors
S0, S1 and S2: (a) theoretical results; (b) experimental results.

if the diameter is reduced (the sensitivity of S0, S1 and S2 is 266

6.5 pm/με, 10.3 pm/με and 20 pm/με, respectively, in the range 267

0–3100 με). For the sake of comparison, the sensitivity in op- 268

timized LPFGs ranged from 0.5 to 2 pm/με in [17], whereas 269

in [18] the maximum sensitivity was 2 pm/με. This indicates 270

that our best sensor improved the highest sensitivity attained in 271

these works by one order of magnitude. 272

A second conclusion is that if the separation between the 273

attenuation bands is low, as S2 in Fig. 5, the relation between 274

wavelength and strain is non-linear, whereas this relation is 275

linear for sensor S0. Sensor S1 is in the middle between both 276

situations. This agrees with what was observed in Fig. 3, where 277

the phase matching curve is non-linear in the proximities of the 278

DTP. 279

A harder etching was performed up to a diameter that al- 280

lowed monitoring attenuation bands that were due to coupling 281

to LP0,10 cladding mode. Three different diameters were ana- 282

lyzed: 115.82, 113.98 and 113.10 μm (sensors S3, S4 and S5). 283

Theoretical and experimental data are presented in Fig. 7 for 284

the central wavelength of the left band versus different values 285

of strain. In all cases, the relation between strain and wave- 286

length was linear. This can be explained because this time fo- 287

cused was centered on sensors working far from DTP: sensor 288

S5 was working at the same wavelength as S0 in Fig. 6, where a 289
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Fig. 7. Wavelength shift of LP0 ,10 left band as a function of strain for sensors
S3, S4 and S5: (a) theoretical results; (b) experimental results.

linear performance was observed, and S3 and S4 were working290

at shorter wavelengths. In view of the linear shape of the plots,291

a Matlab linear regression model has been created (solid lines292

in Fig. 7) that fits with the experimental points. This model also293

allows obtaining the root-mean-square deviation along with the294

sensitivities for S3, S4 and S5. The sensitivities are 2.5 pm/με,295

4.4 pm/με and 9.3 pm/με, respectively, in the range 0–3500 με,296

whereas the root-mean-square deviations (RMSD) are respec-297

tively 0.348 nm, 0.432 nm and 1.05 nm. The highest RMSD298

is obtained for S5, the sensor with the highest sensitivity and299

the sensor closer to DTP, where a non-linear dependence with300

strain is observed. In addition, as shown in Fig. 6, the sensitivity301

increases as the diameter is reduced.302

In order to obtain more information on the influence of the303

mode order, other sensors with different diameters (S6, S7, S8304

and S9) were analyzed. In Fig. 8, the performance of all sensors305

was compared. We divided them into two groups. Fig. 8(a)306

details the sensors working at a wavelength close to DTP. It307

seems that the sensitivity is similar. However, it is difficult to308

extract a general rule because the high sensitivity at this point309

is responsible for variations in the sensitivity of each sensor310

depending on small changes in the wavelength where it operates.311

On the other hand, Fig. 8(b) accounts for sensors operating312

far from the DTP, where the devices are not so sensitive to313

Fig. 8. Performance of LPFG sensors with different diameter: (a) S0, S5,
S7 and S9 are close to DTP and the attenuation band is due to coupling to
LP0 ,11 , LP0 ,10 , LP0 ,9 and LP0 ,6 respectively; (b) S4, S6 and S8 are far from
DTP and the attenuation band is due to coupling to LP0 ,10 , LP0 ,9 and LP0 ,8
respectively.

small variations in the operating wavelength and it is easier to 314

conclude that their sensitivity is quite similar. This indicates that 315

the mode order played no role on the sensitivity to strain of the 316

device. In other words, for each specific mode, the proximity to 317

the DTP determines the sensitivity of the device, whereas the 318

mode order has no influence on that. In this way, sensors can 319

be classified into two groups: operating at and far from DTP 320

point. Consequently, a soft etching to position the attenuation 321

bands in the optical spectrum is the best way for controlling the 322

sensitivity of the LPFG-based strain sensor. 323

It must be pointed out that the results presented in Figs. 4–8 324

represent the strain in the grating region of the LPFG. How- 325

ever, if the deformation in all the fiber structure is analyzed (see 326

Fig. 1), the sensitivity of the device is better for lower order 327

modes (i.e., lower diameter). Moreover, depending on the ra- 328

tio between the grating length and the complete LPFG region 329

length under stress, the sensitivity can be further improved. In 330

this sense, this ratio should be as low as possible. In the cases 331

analyzed in this work, if the strain on the global structure is con- 332

sidered, each 0.1 mm deformation in a structure of 227 mm is 333

0.44 με. Consequently, the 4 pm/με sensitivity of S4, S6 and S8 334

in Fig. 8(b) becomes 5.19 pm/με, 6.17 pm/με and 6.82 pm/με, 335
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respectively, for the same sensors. These values are calculated336

by dividing the wavelength shift by 0.44 με multiplied by the337

seven 0.1 mm deformation steps analyzed in Fig. 8(b).338

The RMSD of S4, S6 and S8 was also calculated: 0.432, 0.506339

and 0.642 nm respectively. These values indicate no significant340

changes because the three sensors are positioned at a similar341

distance of the DTP. In addition, error bars representing the342

standard deviation in each point have been added for S4, S6 and343

S8 (the average standard deviation of the points in S4, S6 and344

S8 was 0.351, 0.347 and 0.332 nm respectively).345

V. CONCLUSION346

The sensitivity to strain of long period fiber gratings (LPFGs)347

operating close to the dispersion turning point (DTP) has been348

analyzed as a function of the cladding diameter.349

The results obtained indicate that by accurately approaching350

the DTP it is possible to increase the sensitivity to strain of the351

device. Therefore, the sensitivity of previous works has been352

improved by a factor of 10, attaining a sensitivity of 20 pm/με353

in the best case.354

On the other hand, unlike for LPFG-based refractometers,355

reducing the fiber diameter towards coupling to lower order356

cladding mode does not allow increasing the sensitivity of the357

etched region of the fiber. This indicates that a soft etching of358

the initial structure without etching towards a highest sensitivity359

is the best way of improving the performance of the device.360

However, if the etched region is small compared to the global361

region under stress, it is possible to improve the sensitivity of the362

global structure for lower order cladding modes, which opens363

the path towards the design of different combinations of length364

for both the etched and the non-etched regions. In this sense, the365

fabrication of short gratings is crucial towards the possibility to366

develop different designs.367

The other well-known phenomenon that could be combined368

with the dispersion turning point and the cladding diameter369

reduction is the mode transition, which according to [9], [10]370

allows increasing the sensitivity to the surrounding refractive371

index changes of LPFGs exponentially. However, this requires372

the nanodeposition of a thin-film and, consequently, the number373

of variables to take into account increases in a great manner,374

which is beyond the scope of this work.375
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