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A thin overlay of higher refractive index than the cladding of a long-period fiber grating 

(LPFG) induces in cladding modes strong variations in effective index, mode profile, 

cross-coupling coefficient with the core mode, and self-coupling coefficient. Some 

conditions must be met in order to obtain the highest induction. The key parameters are the 

thickness and the refractive index of the overlay, and the ambient refractive index. Under 

optimum conditions, the sensitivity of the device to variations in any of the critical 

parameters is improved in a great manner. The result is large shifts of the attenuation bands 

in the transmission spectrum. If the refractive index of the overlay is complex there is an 

additional phenomenon of vanishing of the attenuation bands in the transmission spectrum. 

This occurs for specific thickness values of the overlay. The problem is solved in two 

steps: a vectorial analysis of the modes and the application of coupled mode theory.  

OCIS codes: 050.2770, 060.2430, 310.1860. 

1. INTRODUCTION 
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Long Period Fiber Gratings (LPFGs) consist of index modulation of the refractive index of the 

core of a single mode fiber (SMF), with a much longer period than Fiber Bragg Gratings (FBGs). 

They play an important role mainly in two fields. Firstly, in optical communication, many 

devices have been developed, such as gain equalizers,1 band rejection filters,2 tunable filters3 and 

optical switches.4,5 Sensors are the second field.6-8 If compared with FBGs, modes couple in a 

different way, which improves the characteristics of sensors in a great manner. There is a 

coupling between the core and the copropagating cladding modes, which makes the device 

sensitive to the surrounding media. This also includes the drawback of a dependence on 

temperature, but there exist techniques for avoiding this problem,7 which permits multi-

parameter sensing.8  

The fabrication of LPFGs can be obtained with several techniques, being ultraviolet (UV) 

irradiation the most extended one. Others are ion implantation, irradiation by femtosecond pulses 

in the infrared, irradiation by CO2 lasers, diffusion of dopants into the core, relaxation of 

mechanical stress, and electrical discharges. A good review on these techniques can be found in 

Ref. 9.  

Regarding numerical methods for analysis of LPFGs, two different cases have been studied so 

far. The first case includes LPFGs surrounded by an infinite medium refractive index lower than 

the cladding. In Ref. 10 there is a study with hybrid modes and a uniform azimutal perturbation, 

whereas in Ref. 11 the LP mode approximation is used for arbitrary azimutal perturbation. As the 

ambient refractive index approaches that of the cladding, the sensitivity of the resonance 

wavelength to variations of the ambient refractive index is higher. Then, the second case starts 

when the ambient refractive index exceeds that of the cladding. The core mode couples with 

radiation modes,12-14 and the dependence of the resonance wavelength on the ambient refractive 
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index is not so straightforward. However, the resonance depth is more dependent on this 

parameter for values close to the refractive index of the cladding.6 In both cases, the region of 

highest sensitivity is located around the refractive index of the cladding. 

Recently, a third case has been analysed both theoretically and experimentally.15-17 In the 

previous two cases, the cladding was surrounded by a medium of infinite thickness. Now a thin 

overlay of higher refractive index than the cladding is deposited between the cladding and the 

surrounding media. One of the cladding modes will be guided by the overlay if this is thick 

enough.16 This causes a reorganization of the effective indices of the modes of the cladding. As a 

result, there are important variations of the Bragg condition, which leads to wide shifts of the 

resonance wavelengths if we work around the thickness value where there is a transition to 

guidance of a cladding mode in the overlay. The aim is to select, for a specific ambient refractive 

index, an adequate refractive index and thickness of the overlay. In this way, it is increased the 

sensitivity of the effective index of the cladding modes for a specific application. Once an 

optimum design has been obtained, the variation of either the refractive index of the overlay or 

the ambient, or the thickness of the overlay, leads to much higher resonance wavelength shifts 

than in traditional LPFGs without the presence of an overlay on the cladding. The applications of 

this include higher sensitive LPFG devices, optical filters and optical switches. 

In addition to this, there is a second issue to keep in mind. So far, only Electrostatic Self-

Assembly (ESA)17 and Langmuir Blodgett15 techniques have been applied for the deposition of 

uniform coatings with thicknesses of tens of nanometers around the cylindrical shaped substrate. 

In both cases the attenuation bands vanish for a range of thickness values and reappear as the 

thickness of the overlay increases. It was proved in Ref. 18 that some ESA materials can present 

a high imaginary part due to scattering and material losses. If the imaginary part of the material 
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of the overlay is considered, theoretical and experimental results agree. Anyway other factors 

may contribute to the phenomenon, such as insertion losses in the transition of fiber with overlay 

and fiber without overlay, radiation, and the variation of the cross-coupling coefficient. This last 

factor has no influence with the LP mode approximation,16 whereas it plays an important role 

with the hybrid mode analysis presented in this work. The vanishing of the attenuation bands 

coincides with the guidance of one of the cladding modes in the overlay as it will be explained in 

section 3. The consequence of this vanishing of modes is negative in terms of wavelength shift 

detection, because it limits the overall shift of the attenuation bands. This can be avoided by 

paying attention to other hybrid modes whose attenuation bands appear when the rest of 

attenuation bands vanish. On the other hand, high variations in amplitude can be exploited in the 

same manner as wavelength shift in sensors applications. Furthermore, the theory presented can 

be applied to other structures with nanodeposition on a substrate.19 

In Refs.16 and 17 a numerical method was used for determining the wavelength that satisfies the 

Bragg condition between the core mode and each cladding mode, and the transmittance of the 

LPFG is based on that described in Ref. 11. Coupled mode theory was the basis for the 

calculation of LP modes in a cylindrical multilayer waveguide. In this work, the more exact 

formulation for hybrid modes used for the three layer model10 is applied for the four layer model 

presented in section 2. The LPFG is analyzed in two steps. First, in section 2 there is a study of 

all parameters involved in the transversal section of the LPFG. The distribution of modes as a 

function of the overlay is analyzed in depth. Second, in section 3 the longitudinal problem is 

solved with the coupled mode theory, which is applied for the calculation of the transmission 

spectra in LPFGs. Finally, some conclusions are given in section 4. 

2. MODE ANALYSIS IN A FOUR-LAYER CYLINDRICAL WAVEGUIDE 
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In Fig. 1 an LPFG structure is represented with an overlay deposited on the cladding. Its 

transversal section is a four-layer cylindrical structure: core, cladding, overlay and ambient. 

Coupled mode theory has been applied for the simulation of LPFG structures without an overlay. 

In Ref. 11 a three-layer model based on the LP mode approximation is presented, whereas in 

Ref. 10 the more exact hybrid modes are calculated. In the last case it was considered for the 

sake of simplicity that there was no azimutal variation of the perturbed index profile after 

exposure to UV radiation. In this way, there are only interactions between the core mode HE1,1, 

and HE1,j and EH1,j modes of the cladding. Both methods led to similar results because LP0,j 

modes were very similar to HE1,j modes, and because EH1,j modes that were not considered in the 

LP mode approximation had negligible cross-coupling coefficients with the core mode (HE1,1) to 

play a role in the transmission spectrum.  

It has been recently proved with the LP mode approximation that cladding modes in an LPFG 

can be perturbed with the presence of an overlay of higher refractive index than the cladding.16 

The theory used to analyze the four-layer problem was the same as that of the three-layer 

problem. Now we prove that the LP mode approximation is not always valid for calculating HE1,j 

modes.  If the hybrid modes are calculated for the four-layer model some differences can be 

extracted.  

To analyze this fact, the same optical fiber of Ref. 10 and 11 is selected. The core diameter is 5 

µm, the cladding diameter 125 µm, core refractive index 1.4573, cladding refractive index 1.45, 

The parameters of the long-period gratings are: period and amplitude of the sinusoidal 

modulation of the core refractive index: 276 µm and 2.7×10-4 respectively, length of the grating 

25 mm, and the modulation is considered sinusoidal, consequently σ(z) = s0 = s1 = 1. The 

material for the overlay is [PDDA+/PolyR-478-] with an approximate refractive index of 1.62.17 
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This value was considered constant in the wavelength range selected. The notation used for the 

modes is: HE1,1 for the core mode; HE1,2 for the first HE1,j cladding mode, HE1,4 for the second 

HE1,j cladding mode, and so on; EH1,3 for the first EH1,j cladding mode, EH1,5 for the second 

EH1,j cladding mode, and so on. 

If an overlay of higher refractive index than the cladding is deposited on an LPFG, as the 

thickness of the overlay increases, there is a moment when the overlay starts guiding a mode. It 

is exactly the cladding mode with highest effective index that jumps to the overlay. If the 

thickness continues to be increased, more modes are guided in the overlay. The mode that jumps 

to the overlay is always the highest effective index mode of the group of cladding modes that are 

not guided in the overlay.16 In the transition to guidance of each of these modes, a fast change in 

the effective index of each cladding mode occurs. After this transition takes place, the effective 

index of each cladding mode is that of the corresponding lower one before the transition.  

In Fig. 2 the effective index of the core mode and the first fifteen cladding modes are represented 

as a function of the overlay thickness for a fixed wavelength of 1200 nm. The HE1,2, HE1,4, 

HE1,6, modes become guided in the overlay at about 260, 1090 and 1920 nm (see Fig. 2b), which 

coincides with LP0,2, LP0,3, LP0,4 modes. The guidance in the overlay is manifested by the sudden 

effective index change at these overlay thickness values. As the overlay thickness increases, the 

effective index of each of these modes trends to the overlay refractive index, which indicates that 

the modes are more confined in the overlay region. Around the transition to guidance of each of 

the modes in the overlay, the higher cladding modes cover the energy state left by their 

predecessors. For instance, at 260 nm the effective index of the EH1,3 mode will be now that of 

the HE1,2 mode, the effective index of the HE1,4 mode will be that of the EH1,3, the effective index 

of the EH1,5 mode will be that of the HE1,4, and so forth. The main difference in comparison with 
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LP mode approximation is the presence of EH1,j modes. Instead of the unique guidance of an LP 

mode, now there is a guidance of a pair of modes: one HE and one EH mode. Since they are 

guided in a short thickness interval, it seems that the higher order HE modes jump to their 

preceding HE mode, and that the same is true for EH modes. Truly there is a two step transition. 

This fact is more easily appreciated for low-order cladding modes (see HE1,8 cladding mode in 

Fig. 2a), because transitions take place in a shorter thickness interval. For higher order modes it 

seems that there is a one step transition, as it is the case in Fig. 2a for the HE1,16 cladding mode. 

Moreover, it can be concluded that LP0,j cladding modes match HE1,j cladding modes no matter 

the thickness of the overlay when its effective index is sufficiently different to that of the core 

mode. This is confirmed in section 3 by analyzing the resonance wavelengths in the transmission 

spectrum of the LPFG as a function of the overlay thickness. On the other hand, as the refractive 

index contrast between the cladding and the overlay decreases, the weak guidance condition is 

met. Consequently, both LP and hybrid mode formulations coincide in all cases. 

The phenomenon of Fig. 2a can be understood in terms of reorganization of modes. There exist 

allowed states for the effective indices of the modes when there is not a thin overlay around the 

LPFG. When the structure is perturbed by the deposition of a thin overlay compared to the 

thickness of the structure, there are not-allowed states that coincide with the transition to 

guidance of one cladding mode (the mode of highest energy) in the overlay. This occurs when a 

specific thickness value of the thin overlay is reached. As the thickness increases, the effective 

index distribution of the modes recovers its original aspect. The phenomenon repeats more times 

for periodically spaced thickness values of the overlay.   

The phenomenon is also confirmed by analyzing the fields of cladding modes in Fig. 3. The 

HE1,4 cladding mode has been selected. It presents a two step transition at about 300 nm (see Fig. 



 8

2a). In this way, the field profile of the mode must transit firstly to the EH1,3 cladding mode, and 

secondly to the HE1,2 mode. For the sake of comparison, the radial electric field of HE1,4, EH1,3 

and HE1,2 modes has been also represented in Fig. 3 for the LPFG structure without deposition.  

For an overlay of 100 nm the mode distribution is still stable, consequently HE1,4 mode profile 

resembles that of the structure without deposition. For 255 nm, the HE1,4 mode is mutating to the 

profile of the EH1,3 mode without deposition. Note that at 300 nm HE1,4 mode is similar to EH1,3 

mode without overlay; the transition to an EH mode is completed. At 345 nm the HE1,4 mode is 

following the second transition to the HE1,2 mode of the structure without deposition. Finally at 

500 nm it can be asserted that the mode profile HE1,4 is the same as that of the HE1,2 mode of the 

structure without overlay. 

Finally, an additional contribution to the confirmation of the mutation of modes is the analysis of 

the self-coupling coefficients. If we represent in Fig. 4 the self-coupling coefficient of the HE1,6 

mode as a function of the overlay thickness we can see that when it mutates to the EH1,5 mode of 

the structure without overlay, its coupling coefficient trends to the original coupling coefficient 

of the EH1,5 mode at about 250 nm. Later on it trends to the original HE1,4 coupling coefficient at 

about 350 nm. The same occurs at 1100 -1200 nm. Its coupling coefficient becomes that of EH1,3 

mode in a first step at about 1100 nm and that of HE1,2 in a second step at 1200 nm. The 

explanation is also valid for the evolution of EH1,7 mode. The same phenomenon occurs with the 

cross-coupling coefficients, as it will be proved later. 

To finish this section, the possibility that the overlay presents losses is considered. This problem 

is introduced by analyzing the effect in the effective index of cladding modes, which helps to 

understand some of the spectra obtained in section 3. It has been proved with ESA method that 

the nanodeposition of a thin film at the end of a multimode fiber causes important losses.18 The 
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causes are the inherent losses of the material and scattering losses due to roughness. Considering 

these factors as an imaginary part of the refractive index of the material deposited, permits that 

results agree with theory. For the example presented here it will be assumed that the material has 

a refractive index of 1.62+0.0025i. In this case, the pair of cladding modes that are guided at the 

first two-step transition are HE1,2 and EH1,3, which are the highest states of energy. However, this 

is not always the case, and this rule may be broken if the imaginary part of the refractive index is 

high enough. In some case it is not the highest state of energy that is guided in the overlay. The 

interpretation of this phenomenon is beyond the scope of this work, but if the imaginary part of 

the effective index of cladding modes is represented as a function of the overlay thickness (see 

Fig. 5) this offers a good reference for the transmission spectra of LPFGs with lossy overlays. 

The first eight HE1,j modes have been plotted. At the transition to guidance in the overlay of the 

HE1,2 and EH1,3 cladding modes (260 and 350 nm) the imaginary part in all modes reaches a 

maximum. But the maxima are different depending on the mode order. For higher order modes, 

the second maximum is very low compared to the first one, whereas for lower order modes the 

second maximum is comparable or even higher than the first one. It was proved in Fig. 2 that for 

higher order modes there is a one step transition. As a result, it can be concluded that the 

influence of one of the two guided modes in the overlay has a negligible effect in the effective 

index evolution of the cladding modes. In this way, it can be understood why the second 

maximum for higher order modes is so low. Similarly, for higher EH modes the first maximum is 

very low if compared with the second one. 

3. TRANSMISSION SPECTRUM ANALYSIS IN LPFG STRUCTURES 

WITH AN OVERLAY ON THE CLADDING 
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After obtaining the modes in the four-layer cylindrical waveguide, and obtaining the self- and 

cross-coupling coefficients in the transversal section, the coupled-mode differential equations are 

applied for solving the longitudinal problem.10,11,16 This permits to obtain the transmission 

spectrum where clear attenuation bands are appreciated. They are produced by coupling between 

the core mode and the copropagating cladding modes. 

When the goal is to see the displacement of the resonance wavelengths, alternative solutions to 

the application of the differential equations can be used. 

The first one is the calculation of the resonance wavelength with the Bragg condition: 

 
Λ

=− πλβλβ 2
)()( 111 j

 (1) 

where β11 and β1j are the propagation constants of the core and the j cladding modes respectively, 

and Λ is the period of the grating. Results obtained present appreciable variations related to those 

values calculated with coupled-mode differential equations. However, if the modified first-order 

Bragg condition is applied, errors are lower than 0.1 %11: 

 ( )
Λ

=+−+ πλζλβλζλβ 2
)()()()( 1,10011,11011 jjj ss  (2) 

where ς01,01 and ς0j,0j are the self-coupling coefficients of the core and the j cladding modes,  and 

s0 is the coefficient of the first Fourier component of the grating function S(z). If this error is 

compared with fabrication tolerances, it can be concluded that this approximation offers great 

advantages in terms of computational effort. Henceforward it will be used in some cases in next 

section. 

The reorganization of the effective indices of the modes of the cladding observed in section 2 has 

important consequences in the resonance wavelengths of the transmission spectra of LPFGs. 

There are important variations of the Bragg condition, which leads to dramatic shifts of the 
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resonance wavelengths if it is being worked around the thickness value where the cladding mode 

starts being guided in the overlay. The LP mode approximation, though not exact, permitted to 

understand the phenomenon and results did not differ greatly from those obtained with a method 

that considers both HE and EH modes. LP mode approximation is the basis for understanding the 

differences due to the utilization of a more exact method. The main novelty is that for each LP 

cladding mode, one HE and one EH cladding modes are guided in the overlay. Since the EH 

modes were not considered in the LP mode approximation its influence in the transmission 

spectrum must be considered. In addition to this, if the overlay presents important losses the 

guided mode is not always the one that presents a higher effective index (highest energy state) 

and there is an additional phenomenon of vanishing of the resonance. For the sake of simplicity, 

this section is divided into two different parts: deposition of overlays without losses and 

deposition of overlays with losses. 

A. Deposition of overlays without losses 

The immediate consequence of the shift in effective index is that it leads to a displacement in all 

the attenuation bands. With the LP mode approximation the conclusion is that there is an optimal 

deposition thickness where the central wavelength shift as a function of the ambient refractive 

index is highest.16 This is the optimum overlay thickness (OOT). This value depends mainly on 

three variables: the refractive index of the overlay and the ambient refractive index, and the 

overlay thickness. However, because of the two step transition there are now two OOTs. To 

calculate the OOTs, either the modified Bragg condition or the couple mode equations explained 

in section 2 will be used. The derivative of the wavelength with respect to the overlay thickness 

will define the optima. 
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The modified Bragg condition is more effective in terms of computation than the coupled mode 

equations. So, it is used for calculating the resonance wavelength shifts as a function of the 

overlay thickness. In Fig. 6 it is shown the evolution of the resonance wavelength caused by 

coupling between the first fifteen cladding modes and the core mode. In comparison with LP 

mode approximation, there is a contribution of EH1,j modes. Like in Fig. 2a, there is a two step 

transition at about 300 nm of higher order resonances to lower order ones. Firstly the HE1,2 mode 

is guided in the overlay. The consequence is that the EH1,3 mode resonance wavelength shifts to 

that of the HE1,2 mode when no overlay is present. The same is true for the HE1,4 mode, which 

shifts its resonance wavelength to that of the EH1,3. The same occurs for the rest of higher 

effective index mode resonances.  

Secondly, EH1,3 mode is guided in the overlay. The HE1,4 mode resonance wavelength shifts to 

that of the EH1,3 mode before deposition started. The same is true for the EH1,5 mode, which 

shifts its resonance wavelength to that of the HE1,4. The same occurs for the rest of higher 

effective index mode resonances.  

For low-order cladding mode resonances, the two step transition of HE1,j modes resonances to 

their immediate lower order HE1,j modes resonances can be clearly appreciated. The same is true 

for EH1,j mode resonances. For higher order modes it seems that there is a one step transition. 

This could be expected by taking a look at Fig. 2a, where the two step transition is clear for low-

order cladding modes (i.e. the HE1,8 mode), and not for higher order cladding modes (i.e. the 

HE1,16 mode). Consequently, the LP mode approximation remains correct for higher order HE1,j 

mode resonances. This is corroborated by comparing in Fig. 7 the derivative of the resonance 

wavelength with respect to the overlay thickness for both LP and hybrid mode approximations. 

However, it is important to note that even though it seems that there is a one step transition for 
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higher order mode resonances, the second OOT still remains visible (see HE1,16 mode in Fig. 7). 

As explained in section 2, the agreement between both formulations will be reached for all 

modes at the weak guidance condition (low refractive index contrast between the cladding and 

the overlay). As an example, in Fig. 8 it is compared the HE1,16 mode resonance wavelength shift 

as a function of the overlay thickness for two different overlay refractive indices. It is clear that 

the weak guidance condition is met for a refractive index 1.55 (low contrast with the cladding), 

whereas for 1.8 (high contrast with the cladding) the two transitions are very clear. Another 

important point is that the OOT varies as a function of the overlay refractive index. This 

indicates that the same evolution of the resonance wavelengths is produced if the overlay 

thickness and ambient refractive index are fixed, and the overlay refractive index varies. The 

same effect is expected with the ambient refractive index, which is the third key parameter for 

the definition of the OOTs. 

If it is desired to analyze the depth of the attenuation bands in the transmission spectrum, the 

coupled mode equations must be used. With the LP mode approximation it was checked that no 

vanishing of the attenuation bands was appreciated when the refractive index of the overlay is 

purely real.16 However with the formulation of this chapter it is checked that the presence of 

EH1,j modes plays an important role. After the highest cladding mode is guided by the overlay 

and before the second cladding mode is guided, the EH1,j mode resonances are appreciable in the 

transmission spectrum, and HE1,j mode resonances diminish because its field profile resembles to 

that of a EH1,j mode. In Fig. 9 it is shown the spectrum of the HE1,16 and HE1,14 mode resonances 

for five different overlay thickness values: 0, 255, 289 and 335 nm. Note that at 750 nm the 

transmission spectrum has recovered its original aspect before deposition and superposes the 

spectrum obtained for without overlay. For this reason we have not included it in Fig. 9. EH1,15 
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mode resonance is clearly appreciated at 289 and 335 nm, which coincides with the second step 

of the transition of modes. This is caused by the increase in the cross-coupling coefficient in this 

thickness interval, in analogy to the analysis of the self-coupling coefficients in Fig. 4. 

B. Deposition of overlays with complex refractive index 

In this subsection an analysis is performed of the transmission spectra obtained when the 

refractive index of the overlay is complex. It is assumed like at the end of section 2 that the 

overlay has a 1.62+0.0025i refractive index.  

In Fig. 10, the resonance wavelength shift for the HE1,16 mode is contrasted with the results 

obtained with the modified Bragg condition for an overlay without losses. It is important to note 

the similarity in the results, which permits to conclude that losses in the overlay do not affect the 

wavelength shift of the attenuation bands. Nonetheless, the depth of the attenuation is a factor 

affected in a great manner, oppositely to the case of an overlay with a purely real refractive 

index. The depth of the attenuation band as a function of the overlay thickness is also represented 

for the same mode. The contribution to the vanishing of the resonance at about 300 is mainly due 

to two factors: the imaginary part of the overlay refractive index and the intermediate transition 

of the HE mode to a EH mode profile, which causes a reduction in the cross-coupling coefficient. 

Note that the discontinuities in the results are caused by the 0.2 nm resolution used in this case. 

To visualize the shape of the spectrum, the same four overlay thickness values of Fig. 9 are 

analyzed in Fig. 11: 0, 255, 289 and 335 nm. Note that the attenuation bands are not as clear as in 

the case without losses. Due to the imaginary part of cladding modes there is a vanishing in the 

attenuation bands. The explanation can be found in the coupled mode equations,11 where the 

imaginary part of the cladding modes introduces an attenuation factor in all cross-coupling 

coefficients and in the self-coupling coefficients of cladding modes.  
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4. CONCLUSIONS 

Calculation of the hybrid modes in a multilayer waveguide and coupled mode equations permits 

to obtain the transmission in an LPFG with an overlay. This theory complements the simpler LP 

approximation16. 

It has been reaffirmed that if the overlay presents a higher refractive index than the core, it starts 

guiding the cladding modes with the highest effective index as well as its thickness is increased. 

In the transition of each of these modes to guidance in the overlay there is a modal redistribution. 

This has been proved in terms of effective index, field representation, and coupling coefficient 

analysis of the modes. The consequence is a fast shift of the attenuation bands obtained in the 

transmission curve. However, LP mode theory is modified because of the presence of EH modes. 

Instead of an LP mode transition there is one HE and one EH mode transition in a short thickness 

interval. This causes a two step transition. This transition is not clear for high-order cladding 

modes, and consequently LP mode approximation remains correct. However, for low-order 

cladding modes, the transition is much clearer and both theories differ in a great manner if the 

weak guidance condition is not met. 

It is known that nanodeposition techniques such as Electrostactic Self-Assembly (ESA) method 

present complex refractive indices. In this case there is an additional phenomenon of vanishing 

of attenuation bands in the transmission spectrum.  

The conclusion is that an overlay of higher refractive index than the cladding acts like an 

external electric field perturbing the mode distribution in the LPFG. It was concluded with the 

LP mode approximation that after selecting an overlay with an adequate refractive index, there is 

an optimum overlay thickness for each combination of ambient and overlay refractive indices. 

With the theory of this chapter it is proved that there are two clear OOTs for low-order cladding 



 16

mode resonances when the weak guidance condition is not met, and only one clear for high-order 

cladding mode resonances. For the OOT, the sensitivity of the device to variations in the ambient 

refractive index, the overlay refractive index, or the overlay thickness is increased in a great 

manner. This could be exploited for sensor purposes or even other fields in optical 

communications, such as optical filters or optical switches. 
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Figure captions 

Fig. 1: LPFG structure with deposition of an overlay on the cladding. 

Fig. 2: Effective index as a function of the overlay thickness of a) first fifteen cladding modes and b) core 

mode and first six cladding modes. 

Fig. 3:   n2(r) times the radial electric field of the HE1,4, EH1,3 and HE1,2 modes for a structure without 

overlay, and  HE1,4 mode for five overlay thickness values: 100, 255, 300, 345 and 500 nm. 

Fig. 4: Self-coupling coefficient for HE1,6 and EH1,7 modes as a function of the overlay thickness. 

Fig. 5: Imaginary effective index as a function of the overlay thickness for HE1,4, HE1,6, HE1,8, HE1,10, 

HE1,12, HE1,14, HE1,16 and HE1,18 modes 

Fig. 6: Resonance wavelength shift originated by coupling between core mode and first fifteen cladding 

modes, as a function of the thickness of the overlay. Overlay refractive index: 1.62. Ambient index 1. 

Fig. 7: Derivative of the resonance wavelength (λ) as a function of the overlay thickness (t). Comparison 

of a) HE1,16 and LP0,9 modes b) HE1,10 and LP0,6 modes 

Fig. 8: HE1,16 resonance wavelength as a function of the overlay thickness. Overlay refractive indices: 

1.55 and 1.8. Ambient index 1.  

Fig. 9: Transmission spectrum showing the EH1,17, HE1,16, EH1,15 and HE1,14 mode resonances for four 

overlay thickness values: 0, 255, 289 and 335 nm. Overlay refractive index: 1.62. Ambient index 1.  

Fig. 10: a) HE1,16 resonance wavelength as a function of the overlay thickness with the Modified Bragg 

condition and Coupled-mode differential equations. b) Coupled-mode differential equations for the 

maximum attenuation of HE1,16 resonance. Overlay refractive indices analyzed: 1.62 and 1.62+0.0025i. 

Ambient index 1. 

Fig. 11: Transmission spectrum showing the EH1,17, HE1,16, EH1,15 and HE1,14 mode resonances 

for four overlay thickness values: 0, 255, 289 and 335 nm. Overlay refractive index: 

1.62+0.0025i. Ambient index 1.  
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Fig. 2 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 

1150 1200 1250 1300 1350 1400 1450 1500

Wavelength (nm)

-30

-25

-20

-15

-10

-5

0

T
ra

n
s
m

is
s
io

n
 (

d
B

)

without overlay

overlay of 255 nm

overlay of 289 nm

overlay of 335 nm

HE
1,16

HE
1,14

EH
1,17EH

1,15

 



 29

Fig. 10 
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Fig. 11 

 


