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Abstract. We consider the planar restricted N -body problem
where the N − 1 primaries are assumed to be in a central config-
uration whereas the infinitesimal particle escapes to infinity in a
parabolic orbit. We prove the existence of transversal intersections
between the stable and unstable manifolds of the parabolic orbits
at infinity which guarantee the existence of a Smale’s horseshoe.
This implies the occurrence of chaotic motions but also of oscilla-
tory motions, that is, orbits for which the massless particle leaves
every bounded region but it returns infinitely often to some fixed
bounded region. Our achievement is based in an adequate scaling
of the variables which allows us to write the Hamiltonian func-
tion as the Hamiltonian of the Kepler problem plus higher-order
terms that depend on the chosen configuration. We compute the
Melnikov function related to the first non-null perturbative term
and characterize the cases where it has simple zeroes. Concretely,
for some combinations of the configuration parameters, i.e. mass
values and positions of the primaries, and for a specific value of
a parameter related to the angular momentum vector, the Mel-
nikov function vanishes, otherwise it has simple zeroes and the
transversality condition is satisfied. When the Melnikov function
corresponding to the principal part of the perturbation is zero we
compute the next non-zero Melnikov function proving that it has
simple zeroes. The theory is illustrated for various cases of re-
stricted N -body problems, including the circular restricted three-
body problem. No restrictions on the mass parameters are as-
sumed.
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cometary case; symplectic scaling; invariant manifolds at infinity; McGehee’s coor-
dinates; Melnikov function; transversality of manifolds; Smale’s horseshoe; oscilla-
tory motions.
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1. Introduction

In restricted N -body problems there exists a class of unbounded
orbits called oscillatory, where the motion of the N − 1 primaries re-
main bounded while the motion of the infinitesimal mass is unbounded,
but nevertheless it leads back near the primaries an infinite number of
times. This type of motion was hypothesized by Chazy [4] for the 3-
body problem, Sitnikov [21] was the first to construct an oscillatory
motion in a restricted 3-body problem, he also described an initial con-
dition set for such solutions. Later on, using the theory of quasi-random
dynamical systems, Alekseev [1] studied the Sitnikov problem showing
the existence of oscillatory motion for small but positive infinitesimal
mass. By the same time Melnikov [15] and Arnold [3] developed a
method to study the formation of transversal intersections of stable
and unstable manifolds. This technique, now known as the Melnikov
method, replaces variational equations by the computation of certain
integrals.

An orbit of an infinitesimal particle in a restricted N -body problem
is parabolic if the infinitesimal particle escapes to infinity with zero
limit radial velocity. In [12] McGehee introduced a suitable set of coor-
dinates that brings the infinity into the origin. He also proved that the
set of parabolic orbits is formed by two real analytic manifolds, that
can be regarded as the stable and unstable manifolds of an unstable
periodic orbit, or a hyperbolic fixed point in a suitable Poincaré map
at infinity. This result was used by Moser [19] to clarify the proof of
the existence of oscillatory motion in the Sitnikov problem. The key
mechanism is to show the existence of transversal homoclinic intersec-
tions of the parabolic manifolds, which leads to a Smale’s horseshoe
map that guarantees the existence of symbolic dynamics, giving rise to
the existence of oscillatory orbits as a consequence.

Llibre and Simó [11] followed Moser’s approach to prove the ex-
istence of oscillatory solutions in the planar circular restricted 3-body
problem (RPC3BP). They achieved it by demonstrating the transversal
intersection of the stable and unstable parabolic manifolds for a large
Jacobi constant C and a sufficiently small mass ratio µ between the pri-
mary bodies. Xia [22] treated the RPC3BP by the Melnikov method,
where µ is used again as a perturbation parameter. He proved the
transversality of the homoclinic manifolds for sufficiently small µ, and
C close to ±

√
2. After that, he used analytic continuation to extend

the transversality to almost any value of µ with C large enough.
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Guardia et al. [7] demonstrated that oscillatory motions do occur
in the RPC3BP for any µ ∈ (0, 1/2] and a sufficiently large Jacobi
constant. Their result was achieved through an asymptotic formula
of the distance between the stable and unstable manifolds of infinity
in a level set of the Jacobi constant, and making C sufficiently large,
they proved that these manifolds intersect transversally. More recently,
Guardia et al. [5] followed the above method to prove the existence
of oscillatory solutions in the planar elliptic restricted 3-body problem,
for any mass ratio µ ∈ (0, 1/2] and small eccentricities of the Keplerian
ellipses (the primaries perform nearly circular orbits). This is done by
constructing an infinite transition chain of fixed points of the Poincaré
map and then providing a lambda lemma which gives the existence of
an orbit which shadows the chain.

As far as the authors are aware, there are few studies in the literature
related with oscillatory motions in restricted N -body problems for N
greater than or equal to four, see for instance [6].

Our goal is to analyze the planar restricted N -body problem where
the N − 1 primaries form a given central configuration and the infini-
tesimal particle goes to infinity in a parabolic orbit. More specifically,
we show the existence of the stable and unstable manifolds of the par-
abolic orbits at infinity by means of a Poincaré map and establish the
transversal intersections between them. This is done by the applica-
tion of McGehee’s Theorem for the existence of manifolds associated to
degenerate fixed points [12]. The transversal intersections allow us to
prove the existence of a Smale’s horseshoe [8, 20] and the subsequent
occurrence of chaotic motions. Besides the appearance of oscillatory
motions is ensured. These motions correspond to orbits such that the
infinitesimal particle leaves every bounded region but it returns infin-
itely often to some fixed bounded region [19].

The approach carried out here does not require any restriction in the
mass parameters of the primaries. Instead of using a small parameter
related to the masses we make a symplectic scaling of the variables
so that the infinitesimal particle is placed far away from the center of
mass of the primaries. This is the so called cometary problem [16, 17].
The scaling is performed through the introduction of a small parameter
that measures the distance from the infinitesimal particle to the origin.
Thence, after expanding the Hamiltonian function in terms of it, the
resulting system is given by the Kepler Hamiltonian plus higher-order
terms that are easily obtained through Legendre polynomials. The
perturbation depends on the specific configuration of the primaries.
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The transversal intersection between the manifolds is proved by ap-
plying the Melnikov’s method [9, 10, 8, 20] related to the first non-null
perturbative term. Indeed we compute a general Melnikov function
that works for all the configurations, determining when it has simple
zeroes. There are some cases where the calculation of higher-order
terms of the Melnikov’s function are required. This concerns a certain
value of the parameter related to the angular momentum, or two pa-
rameters which are given in terms of the masses and positions of the
primaries.

In the context of oscillatory motions we generalize the analysis per-
formed for the RPC3BP by considering any central configuration of
the N − 1 primaries. A key point in our analysis is that, instead of
using a small parameter related to the masses we apply a symplectic
scaling. This allows us to treat all the problems together so that we
can check whether the Melnikov function for a specific configuration
has simple zeros after replacing the coefficients of the configuration. In
this manner we have been able to deal with a large variety of restricted
problems in a systematic and straightforward way.

This paper has been structured as follows. In Section 2 we formulate
the Hamiltonian of the restricted N -body problem where the primaries
are in central configuration in a rotating and an inertial frame. We also
define the cometary case, introducing an appropriate small parameter
so that the problem is expressed as a 2-body Kepler Hamiltonian plus
a small perturbation. In Section 3, we introduce McGehee coordi-
nates to study the behavior of the system in a vicinity of infinity as
a Poincaré map near a homoclinic orbit of a degenerate periodic orbit
with analytic stable and unstable manifolds. Section 4 is devoted to
the unperturbed problem that can be expressed as a Duffing oscillator.
The main results will be given in Section 5, where we establish the
existence of transversal homoclinic intersections of stable and unsta-
ble manifolds for the perturbed Hamiltonian system. We analyze the
Melnikov function up to perturbation orders 4 and 6, depending on
the non vanishing order of the Melnikov function. This is the funda-
mental part in our study, since it gives a systematic way of concluding
the transversality between the corresponding invariant manifolds which
only depends on the mass parameters and the configuration of the pri-
maries. Then, we use that the Melnikov function has simple zeroes to
show the transverse homoclinic intersections in the perturbed problem.
In general, this integral is hard to calculate, however, we manage to
overcome this technical challenge. In Section 6 we illustrate the theory
developed in the previous sections in some restricted N -body problems.
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In the RPC3BP, we show that in general it is enough to calculate the
terms of order 4 in ε, although sometimes higher orders of the Mel-
nikov function are required. In addition to the above, other examples
are considered, such as the restricted 4-body problem with primaries
in equilateral (Lagrange) configuration, the 5-body problem with pri-
maries in rhomboidal configuration, the collinear restricted N -body
problem and some polygonal restricted N -body problems. Finally, the
study of the Melnikov functions is addressed in the Appendix.

All the numeric and symbolic calculations have been performed with
Mathematica. We have made the computations within 50 significant
digits although we only show the first eight.

2. Problem statement

The planar restricted N -body problem is the study of the motion of
an infinitesimal mass particle subject to the Newtonian gravitational
attraction of N − 1 bodies called the primaries. It is assumed that
the masses of the primaries are so big in relation to the mass of the
infinitesimal particle that the latter does not exert any significant in-
fluence in the primaries, hence the motion of the primaries becomes an
(N − 1)-body problem. Along this paper the primaries move in a cen-
tral configuration rotating around their center of mass with a constant
angular velocity. Without loss of generality we also set the total mass
of the primaries to one and their angular velocity ω = 1.

The Hamiltonian that governs the motion of the infinitesimal particle
in a rotating frame is

H(Q,P ) =
1

2
|P |2 −QTJP − U(Q), (1)

where Q,P ∈ R2 are the position and momentum, J = ( 0 −1
1 0 ) and the

potential is given by

U(Q) =
N−1∑
k=1

mk

|Q− ak|
. (2)

The terms ak = ak1 +ak2 i and mk correspond to the position and mass
respectively, of the k-th primary, k = 1, . . . , N − 1. Since they are in
central configuration the following equations are satisfied:

ak = −
N−1∑
j=1

j 6=k

mj(aj − ak)
|aj − ak|3

, k = 1, . . . , N − 1 and
N−1∑
k=1

mkak = 0, (3)
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with m1 + · · ·+mN−1 = 1. We observe that the Hamiltonian H repre-
sents an autonomous system with two degrees of freedom. This quan-
tity is preserved through the changes of coordinates in spite of the fact
that some characteristics, like the time independence of the flow or the
Hamiltonian structure, are lost. More details related to the restricted
N -body problem can be seen in [16, 17].

In order to work in an inertial frame we define the change of coordi-
nates (Q,P ) = e−it(q, p). The Hamiltonian accounting for the motion
of the infinitesimal particle in inertial coordinates yields

H(q, p, t) =
1

2
|p|2 − U(q, t), (4)

where the potential is given by

U(q, t) =
N−1∑
k=1

mk

|e−itq − ak|
. (5)

Now the Hamiltonian is time dependent.

We are interested in the study of the motion of the infinitesimal par-
ticle near parabolic orbits, that is when the particle escapes to infinity
with zero limit velocity. Thus, it is convenient to scale the Hamilton-
ian by introducing a small positive parameter ε through the change
q → ε−2q, p → εp and t → ε3t. This is a symplectic transformation
with multiplier ε. Hence H → εH. This problem now is the cometary
regime of the restricted N -body problem, see [16, 17, 18].

Thus, Hamiltonian (4) becomes

Hε(q, p, t) =
1

2
|p|2 −

N−1∑
k=1

mk

|ε−2e−itq − ak|
. (6)

Its expansion in powers of ε yields

Hε(q, p, t) =
1

2
|p|2 − 1

|q|
−
∞∑
j=2

ε2j

|q|j+1

N−1∑
k=1

mk|ak|jPj(cos γk), (7)

where Pj is the j-th term of the Legendre polynomial, and γk is the
angle between the k-th primary’s position and e−itq. Let us note that
the zero term of the sum is −1/|q| and the next term is zero because
we have placed the center of mass at the origin. Hence the problem is
a Kepler problem plus a perturbation term of order ε4. The series is
convergent in the region of the configuration space where ε2|ak| < |q|.
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Now we make the symplectic polar change of variables

q = reiθ, p = Reiθ +
Θ

r
ieiθ,

where r is the distance of the infinitesimal particle to the origin, θ is
the argument of latitude, R stands for the radial velocity and Θ for the
angular momentum. For our analysis we restrict to Θ to be non-zero
and bounded, which is equivalent to consider the angular momentum
before the scaling being a big quantity as long as ε is small.

Let αk be the angle between the position of k-th primary and the
horizontal axis of the inertial frame, thus γk = αk − (θ − t). Then,
Hamiltonian (7) can be written as

Hε(r, θ, R,Θ, t) =
1

2

(
R2 +

Θ2

r2

)
− 1

r

−
∞∑
j=2

ε2j

rj+1

N−1∑
k=1

mk|ak|jPj (cos (αk − (θ − t))) .
(8)

We observe that the argument of the Legendre polynomial Pj depends
on ak through the relations cos(αk) = ak1/|ak| and sin(αk) = ak2/|ak|.

The associated Hamiltonian system is given by

ṙ = R,

Ṙ = − 1

r2
+

Θ2

r3
−
∞∑
j=2

(j + 1)ε2j

rj+2

N−1∑
k=1

mk |ak|j Pj (cos (αk − (θ − t))) ,

θ̇ =
Θ

r2
,

Θ̇ =
∞∑
j=2

ε2j

rj+1

N−1∑
k=1

mk|ak|jQj (cos (αk − (θ − t))) sin (αk − (θ − t)) ,

(9)
where Qj(w) = dPj(w)/dw.

3. Application of McGehee’s Theorem

In order to study the motion of the infinitesimal mass near infinity,
we make the change of coordinates introduced by McGehee [12]:

r = x−2, R = −
√

2y, s = t− θ,
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where s ∈ S1. In these new coordinates the equations (9) become

ẋ = 1√
2
x3y,

ẏ = 1√
2
x4 − 1√

2
Θ2 x6

− 1√
2

∞∑
j=2

(j + 1)ε2jx2j+4

N−1∑
k=1

mk |ak|j Pj (cos (αk + s)) ,

ṡ = 1− x4 Θ,

Θ̇ =
∞∑
j=2

ε2jx2j+2

N−1∑
k=1

mk |ak|j sin(αk + s)Qj (cos (αk + s)) .

(10)

Similarly to the circular restricted 3-body problem, the above system
can be smoothly extended to x = 0; in addition, it has a Jacobi-like
first integral given by the equation (1). Let C be an arbitrary value of
it. Thus

C = Hε(x, y, θ,Θ, t)−Θ, (11)

where Hε(x, y, θ,Θ, t) is given in (8) after replacing r and R for their
values in terms of x and y. In order to verify the hypotheses of McGe-
hee’s Theorem [12], we observe that Θ can be written in terms of x, y,
s and the value of the Jacobi-like integral C as follows:

Θ =
1±

√
1 + 2x4(C + x2 − y2)

x4
+O(ε4). (12)

We take the negative sign in (12) because we are interested in small
values of x. Therefore, the variable Θ depends smoothly on x ≥ 0,
y ∈ R, s ∈ S1. In fact Θ = −C when x = y = 0, hence the equation
referring to Θ̇ can be dropped in system (10). Expanding (12) in power
series around x = 0, replacing its value in (10), the resulting system
becomes:

ẋ = 1
2
x3y,

ẏ = 1
2
x4 + x6f(x, y, ε4, s, C),

ṡ = 1 + Cx4 − x6 + x4y2 + ε4x8g(x, y, ε4, s, C).

(13)

Observe that the functions f(x, y, ε4, s, C) and g(x, y, ε4, s, C) are
real analytic.

Now, we are going to exploit the fact that the solution γ(t) of system
(13) with x = 0 and y = 0 is given by

x(t) = 0, y(t) = 0, s(t) = s0 + t mod 2π. (14)

This solution does not depend on the Jacobi-like first integral C and is
a 2π-periodic solution in t. Let Σ = {(x, y, s) : s = s0} be a transversal
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section to this periodic orbit. This set is parametrized by the coor-
dinates x and y. For the point κ0 = (0, 0, s0) ∈ γ ∩ Σ, the Implicit
Function Theorem shows that there exist an open set V ⊂ Σ contain-
ing κ0 and a smooth function σ : V → R, the return time, such that
the trajectories starting in V come back to Σ in a time σ close to 2π.

Let ϕt (x0, y0) = (x (t, x0, y0) , y (t, x0, y0) , s (t, x0, y0)) be the flow
solution of (13) with initial condition (x(0), y(0), s(0)) = (x0, y0, s0

mod 2π). This solution depends on ε, but it is usually omitted.

The Poincaré map P : V ⊂ Σ→ Σ of the periodic orbit γ (or of the
fixed point (0, 0, s0)) is given by P(x, y) = ϕσ(x,y)(x, y) where

P :

{
x→ x+

√
2 πx3 (y + ε4r1(x, y, ε))

y → y +
√

2 πx3 (x− C2x3 + ε4r2(x, y, ε))
(15)

and r1 and r2 are real analytic functions of fourth order in x, y and
second order in ε.

A straightforward computation shows that if we make the transfor-
mation x = u+ v, y = v − u, the map P takes the form

P̃(u, v) = (u+ p1(u, v, ε) + · · · , v + p2(u, v, ε) + · · · ),

where p1 and p2 are homogeneous polynomials of fourth degree in u and
v and of order six in ε. For u > 0 we have p1(u, 0, ε) = −

√
2πu4 < 0,

p2(u, 0, ε) = 0 and ∂p2
∂v

(u, 0, ε) =
√

2πu3 > 0. These are the hypotheses
of McGehee’s Theorem [12], which we proceed to state in our context
now.

For δ > 0 and β > 0, the sector centred on the line y = −x is
defined by B1(δ, β) = {(x, y) : 0 ≤ x ≤ δ, (−1−β)x ≤ y ≤ (−1 +β)x}.
Similarly, the sector centred on the line y = x is B2(δ, β) = {(x, y) :
0 ≤ x ≤ δ, (1− β)x ≤ y ≤ (1 + β)x}. The sets

W s
ε (0, 0) =

{
(x, y) ∈ B1(δ, β) : ∀n ≥ 0, Pn(x, y) ∈ B1(δ, β),

lim
n→∞

Pn(x, y) = (0, 0)
}
,

W u
ε (0, 0) =

{
(x, y) ∈ B2(δ, β) : ∀n ≤ 0, Pn(x, y) ∈ B2(δ, β),

lim
n→−∞

Pn(x, y) = (0, 0)
}
,

are called the stable and unstable manifolds of the fixed point (0, 0).

Theorem 3.1 (McGehee, [12]). For the map P : V ⊂ Σ→ Σ given by
(15), there is a δ > 0 and a β > 0 such that the manifolds W s

ε (0, 0) ⊂
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B1(δ, β) and W u
ε (0, 0) ⊂ B2(δ, β) correspond to the graphs of two func-

tions ψs, ψu : [0, δ] → R that are smooth, real analytic in (0, δ], and
ψs(0) = ψu(0) = 0, ψ′s(0) = −1, ψ′u(0) = 1. In addition to that, they
vary smoothly with ε.

The sets W s
ε (0, 0) and W u

ε (0, 0) are curves, that is, one-dimensional
manifolds. From here it follows that

W s
ε (γ) =

{
ϕt (xε, yε) : t ≥ 0, (xε, yε) ∈ W s

ε (0, 0)
}
,

W u
ε (γ) =

{
ϕt (xε, yε) : t ≤ 0, (xε, yε) ∈ W u

ε (0, 0)
}

are smooth manifolds of dimension two. They are formed by the orbits
that escape to infinity (x = 0) with zero velocity (y = 0). These are
called the parabolic manifolds.

4. The unperturbed problem

For ε = 0 Hamiltonian (8) corresponds to the Kepler problem, and
the related equations (10) take the form

ẋ = 1√
2
x3y, ẏ = 1√

2
x4 − 1√

2
Θ2x6,

ṡ = 1− x4Θ, Θ̇ = 0.

(16)

At this point it is convenient to introduce a new time through dτ/dt =
x3/
√

2. Fixing Θ = Θ0, the equations for x and y become

d x

d τ
= x′ = y,

d y

d τ
= y′ = x−Θ2

0x
3. (17)

Thus (17) is a Θ0-parametrized Duffing equation. The origin (0, 0) is
a hyperbolic saddle point and its stable and unstable manifolds form a
homoclinic orbit ξ(τ) given by

x(τ) =

√
2

|Θ0|
sech τ, y(τ) = −

√
2

|Θ0|
tanh τ sech τ, (18)

connecting the fixed point with itself as shown in Figure 1.

For ε = 0, the Hamiltonian associated to (17) is written as

H0 = 1
2
y2 − 1

2
x2 + 1

4
x4Θ2

0. (19)
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x

y

x

y

Figure 1. From left to right, we show the flow of the
unperturbed problem and the homoclinic loop for differ-
ent values of Θ0.

5. Perturbed problem

For ε = 0 the manifolds W s
0 (0, 0) = W u

0 (0, 0) are parametrized by the
homoclinic orbit ξ. The smooth dependence on ε implies that W s

ε (γ)
and W u

ε (γ) are parametrized by orbits of the form

ϕs (τ, xsε, y
s
ε) = γ(τ + τ0) + ε

∂ϕs
∂ε

∣∣∣∣
ε=0

+ · · · for τ ≥ 0,

ϕu (τ, xuε , y
u
ε ) = γ(τ + τ0) + ε

∂ϕu
∂ε

∣∣∣∣
ε=0

+ · · · for τ ≤ 0,

where τ0 = τ(s0). Our purpose now is to determine the speed of break-
ing up of W s

ε (0, 0) and W u
ε (0, 0) at ε = 0 under the perturbation. We

point out that the normal direction to the level sets of H0 is the only
one to take care.

To measure the rate of separation between W s
ε (γ(τ)) and W u

ε (γ(τ))
with respect to ε, we take

H0(ϕs (τ0, x
s
ε, y

s
ε))−H0(ϕu (τ0, x

u
ε , y

u
ε )) = ενMν(τ0) + · · · ,

where

Mν(τ0) =

∫ ∞
−∞

DHν(ξ(τ + τ0), τ) ξ(τ + τ0) dτ

is the Melnikov function and Hν is the first perturbation term of Hamil-
tonian (8) of order ν in ε whose function Mν is not identically zero.
In fact, if Mν(τ0) = 0 and M′

ν(τ0) 6= 0, then the stable and unstable
manifolds intersect transversally for a small ε > 0 at a point close to
ξ(τ0), see [20] and references therein.
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The consequence of the existence of transversal homoclinic manifolds
is the appearance of a Smale’s horseshoe, and thence the occurrence of
chaotic motion of the infinitesimal particle. This includes the existence
of oscillatory motion, see [19, 8].

In order to apply the results in the previous paragraphs we need to
make some arrangements to Hamiltonian (8). Up to terms of order ε4,
it reads as

Hε(r, θ, R,Θ, t) = H0 + ε4H4 +O(ε6)

=
1

2

(
R2 +

Θ2

r2

)
− 1

r
(20)

− ε4

4r3
(c1 + c2 cos 2(t− θ) + c3 sin 2(t− θ)) +O(ε6),

where c1, c2 and c3 are the following constant terms, that depend only
on ak and mk:

c1 =
N−1∑
k=1

mk(a
2
k1 + a2

k2), c2 = 3
N−1∑
k=1

mk(a
2
k1 − a2

k2),

c3 = −6
N−1∑
k=1

mkak1ak2.

(21)

The next step consists in applying McGehee’s transformation to the
equations of motion associated to (20). After replacing t− θ by s, one
gets

ẋ = 1√
2
x3y,

ẏ = 1√
2
(1−Θ2x2)x4 + 3

4
√

2
ε4 (c1 + c2 cos 2s+ c3 sin 2s)x8

+O(ε6),

ṡ = 1−Θx4,

Θ̇ = −1
2
ε4 (c3 cos 2s− c2 sin 2s)x6 +O(ε6),

(22)

which corresponds to Hamiltonian equations (10).

With respect to the new time τ , Eq. (22) gets transformed into

x′ = y,

y′ = (1−Θ2x2)x+ 3
4
ε4 (c1 + c2 cos 2s+ c3 sin 2s)x5 +O(ε6),

s′ =
√

2(1−Θx4)x−3,

Θ′ = − 1√
2
ε4 (c3 cos 2s− c2 sin 2s)x3 +O(ε6).

(23)
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To obtain the Melnikov function we use the corresponding integral of
the zero order given by H0 in (19), and compute the total derivative

dH0

dτ
=
∂H0

∂x
x′ +

∂H0

∂y
y′,

where x′, y′ are given in (23). In this expression x and y are replaced
by their explicit values obtained for the unperturbed problem and that
were given in (18).

The next step consists in solving the differential equation for s′ in
(23) using the fact that Θ is assumed to be constant, i.e. Θ = Θ0,
and x(τ) is taken from the solution (18). The corresponding equation
becomes

s′(τ) = ±1

2
Θ3

0 cosh3 τ ∓ 2 sech τ.

We set s(τ0) = s0 and for convenience we choose τ0 = 0. The solution
yields

s(τ) = s0 ∓ 4 arctan(tanh(τ/2))± 1

24
Θ3

0 (9 sinh τ + sinh 3τ) . (24)

The upper signs in s′ and s are used when Θ0 > 0 and the lower ones
when Θ0 < 0.

The resulting expression of the total derivative of H0 with respect to
τ becomes

ε4M4 = ∓3ε4 sech 10τ tanh τ

4Θ6
0

(
8c1 cosh4 τ + A cos 2s0 +B sin 2s0

)
,

where
A = (c2cΘ + c3sΘ)(35− 28 cosh 2τ + cosh 4τ)

−8(c3cΘ − c2sΘ)(7 sinh τ − sinh 3τ),

B = (c3cΘ − c2sΘ)(35− 28 cosh 2τ + cosh 4τ)

+8(c2cΘ + c3sΘ)(7 sinh τ − sinh 3τ),

and

cΘ = cos
(

Θ3
0

12
(9 sinh τ + sinh 3τ)

)
, sΘ = sin

(
Θ3

0

12
(9 sinh τ + sinh 3τ)

)
.

The upper sign in M4 is used when Θ0 > 0 and the lower one when
Θ0 < 0.

Now we need to compute the integral of M4 for τ between −∞ and
∞. After performing the change of variable z = sinh τ (note that
z′ = cosh τ > 0, hence the change is well-defined), simplifying the
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resulting expressions and dropping the odd terms with respect to z
their integrals are zero, we arrive at

M4(s0; Θ0) =

∫ ∞
−∞

M4 dz = ± 6

Θ6
0

F4(Θ0)(c2 sin 2s0 − c3 cos 2s0), (25)

where

F4(Θ0) =

∫ ∞
−∞

z

(z2 + 1)6

(
4z(z2 − 1) cos(

Θ3
0

3
z(z2 + 3))

+(z4 − 6z2 + 1) sin(
Θ3

0

3
z(z2 + 3))

)
dz.

(26)

The upper sign applies for positive Θ0 while the lower one for negative
Θ0.

The function M4 represents the fourth-order approximation in ε of
the Melnikov function of the restricted N -body problem (6) related to
parabolic motions of the infinitesimal particle near infinity. We state
the following result.

Theorem 5.1. When Θ0 6= Θ∗0 = 1.44952926... and either c2 or c3

do not vanish, then for ε > 0 small enough the stable and unstable
manifolds of the periodic orbit γ related to Hamiltonian (6) intersect
transversally.

Proof. On the one hand, in the Appendix we prove that the function
F4 vanishes only at Θ∗0. In this case (25) is zero and one has to study
higher-order terms. On the other hand, when Θ0 6= Θ∗0, we focus on
the factor f(s0) = c2 sin 2s0 − c3 cos 2s0 analyzing its possible zeros.
Multiple roots of f(s0) = 0 occur only when c2 = c3 = 0. Finally if the
hypotheses of the Theorem hold, the equationM4 = 0 has only simple
zeroes and Melnikov Theorem [8, 20] applies getting the transversality
of the manifolds. �

When Θ0 = Θ∗0 or c2 = c3 = 0 one has to resort to the next terms in
the Legendre expansions of the Hamilton function (6). Concretely, the
terms of order six in ε are given by

ε6H6 = − ε6

8r4
(d1 cos(t− θ) + d2 sin(t− θ) + d3 cos 3(t− θ)
+d4 sin 3(t− θ)) ,
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where the dj are constant terms depending on ak and mk given by

d1 = 3
N−1∑
k=1

mkak1(a2
k1 + a2

k2), d2 = −3
N−1∑
k=1

mkak2(a2
k1 + a2

k2),

d3 = 5
N−1∑
k=1

mkak1(a2
k1 − 3a2

k2), d4 = −5
N−1∑
k=1

mkak2(3a2
k1 − a2

k2).

(27)

The terms of order ε6 that have to be added are those corresponding
to ẏ and Θ̇ in Eq. (22). They are, respectively,

ε6

2
√

2
(d1 cos s+ d2 sin s+ d3 cos 3s+ d4 sin 3s)x10 +O(ε8),

ε6

8
(d1 sin s− d2 cos s+ 3d3 sin 3s− 3d4 cos 3s)x8 +O(ε8).

When transforming to the time τ these terms correspond to y′ and Θ′.
They are specified by

ε6

2
(d1 cos s+ d2 sin s+ d3 cos 3s+ d4 sin 3s)x7 +O(ε8),

ε6

4
√

2
(d1 sin s− d2 cos s+ 3d3 sin 3s− 3d4 cos 3s)x5 +O(ε8).

Proceeding as in the previous paragraphs, the total derivative of H0

with respect to τ corresponding to the terms of order six in ε is

ε6M6 = ∓ε
6 sech 14τ tanh τ

4Θ8
0

(C sin s0 +D cos s0 + E sin 3s0

+F cos 3s0) ,

where

C = 16
(
(d4cΘ + d3sΘ)(3− cosh 2τ)− 4(d3cΘ − d4sΘ) sinh τ

)
cosh4 τ,

D = 16
(
(d3cΘ − d4sΘ)(3− cosh 2τ) + 4(d4cΘ + d3sΘ) sinh τ

)
cosh4 τ,

E = (d2c̃Θ + d1s̃Θ)(462− 495 cosh 2τ + 66 cosh 4τ − cosh 6τ)

−4(d1c̃Θ − d2s̃Θ)(198 sinh τ − 55 sinh 3τ + 3 sinh 5τ),

F = (d1c̃Θ − d2s̃Θ)(462− 495 cosh 2τ + 66 cosh 4τ − cosh 6τ)

+4(d2c̃Θ + d1s̃Θ)(198 sinh τ − 55 sinh 3τ + 3 sinh 5τ),

and

c̃Θ = cos
(

Θ3
0

4
(9 sinh τ + sinh 3τ)

)
, s̃Θ = sin

(
Θ3

0

4
(9 sinh τ + sinh 3τ)

)
.

The upper sign in M6 applies for Θ0 > 0 while the lower sign is used
for Θ0 < 0. Notice that c̃Θ = cΘ(4c2

Θ − 3) and s̃Θ = sΘ(4c2
Θ − 1).
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In order to obtain the integral of M6 with respect to τ we apply as
before the change z = sinh τ , discard those terms with zero integral
and simplify, ending up with

M6(s0; Θ0) =

∫ ∞
−∞

M6 dz

= ± 8

Θ8
0

(
F6,1(Θ0)(d4 cos s0 − d3 sin s0)

+F6,2(Θ0)(d2 cos 3s0 − d1 sin 3s0)
)
,

(28)

with

F6,1(Θ0) =

∫ ∞
−∞

z

(z2 + 1)6

(
2z cos(

Θ3
0

6
z(z2 + 3))

+(z2 − 1) sin(
Θ3

0

6
z(z2 + 3))

)
dz,

F6,2(Θ0) =

∫ ∞
−∞

z

(z2 + 1)8

(
2z(3z4 − 10z2 + 3) cos(

Θ3
0

2
z(z2 + 3))

+(z6 − 15z4 + 15z2 − 1) sin(
Θ3

0

2
z(z2 + 3))

)
dz.

(29)

The upper sign applies for positive Θ0 while the lower one for negative
Θ0.

The functionM6 stands for the sixth-order approximation in ε of the
Melnikov function related to the restricted N -body problem (6). This is
the Melnikov function related to parabolic motions of the infinitesimal
particle when it is near infinity. We are ready to state our second
theorem.

Theorem 5.2. When Θ0 = Θ∗0 or c2 = c3 = 0, then for ε > 0 small
enough the stable and unstable manifolds of the periodic orbit γ related
to Hamiltonian (6) intersect transversally provided the expression

(d2
3 + d2

4)2F4
6,1(Θ0)

+8(d1d
3
3 + 3d2d

2
3d4 − 3d1d3d

2
4 − d2d

3
4)F3

6,1(Θ0)F6,2(Θ0)

+18(d2
1 + d2

2)(d2
3 + d2

4)F2
6,1(Θ0)F2

6,2(Θ0)− 27(d2
1 + d2

2)2F4
6,2(Θ0)

(30)

does not vanish.

Proof. Evaluating F6,1 and F6,2 at Θ∗0 we get F6,1(Θ∗0) = 0.00144184...
and F6,2(Θ∗0) = 0.03009745..., so M6 is not identically zero at Θ∗0. In
the Appendix it is proved that F6,1 vanishes only at Θ0 = 1.45326624...
whereas F6,2 does it at Θ0 = 1.48295711..., both being simple roots of
the corresponding equations. Focusing on possible multiple zeroes of
M6 = 0 with respect to s0, this can occur only when there is a common
root of M6 = 0 and M′

6 = 0. Hence, we eliminate s0 from the system
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M6 =M′
6 = 0, arriving at Formula (30). When the parameters di and

Θ0 make that the combination (30) becomes zero, one should calculate
higher orders of the Melnikov function. However, when (30) does not
vanish, M6 = 0 has only simple zeroes, Melnikov Theorem [8, 20]
applies and one concludes the transversality of the manifolds. �

In Section 6, more specifically when we will deal with the circular
restricted 3-body problem and with the polygonal restricted N -body
problem, we shall see how higher-order terms of the Melnikov function
are needed to establish the transversality of the stable and unstable
manifolds of the parabolic periodic orbits.

6. Applications

6.1. Restricted circular 3-body problem. We study the planar
circular restricted 3-body problem. In this example the position and
mass parameters can be chosen as:

a11 = 1−µ, a12 = 0, a21 = −µ, a22 = 0, m1 = µ, m2 = 1−µ,
where 0 < µ ≤ 1

2
.

With these values, the perturbation parameters appearing in (21)
read as:

c1 = (1− µ)µ, c2 = 3(1− µ)µ, c3 = 0.

Then, according to Theorem 5.1, and taking into account that c2 6= 0,
when Θ0 6= Θ∗0 for ε > 0 small enough the stable and unstable manifolds
of the periodic orbit γ related to Hamiltonian (6) intersect transversally.

For Θ0 = Θ∗0 we have to consider the terms of order six in ε. In this
case the parameters di in (27) are given by

d1 = 3(1− µ)µ(1− 2µ), d2 = 0, d3 = 5(1− µ)µ(1− 2µ), d4 = 0.

In order to apply Theorem 5.2 we compute the expression (30), leading
to

(5F6,1(Θ∗0)− 3F6,2(Θ∗0))(5F6,1(Θ∗0) + 9F6,2(Θ∗0))3(1− 2µ)4(1− µ)4µ4

= −0.00178670...(1− 2µ)4(1− µ)4µ4.

Thus, Theorem 5.2 applies provided µ 6= 1/2 and the stable and un-
stable manifolds of the periodic orbit γ intersect transversally.

The remaining case is Θ0 = Θ∗0, µ = 1/2. Then we have to go to
order eight in ε. The relevant part of Hamiltonian (8) is

− 1

1024r5
ε8
(
9 + 20 cos (2(t− θ)) + 35 cos (4(t− θ))

)
.
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Applying the same steps as in Section 5 we end up with

ε8M∗
8 = 5ε8 sech 10τ tanh τ

32(Θ∗0)10
(−9 +R1 cos 2s0 +R2 sin 2s0

+R3 cos 4s0 +R4 sin 4s0) ,

with

R1 = −20cΘ + 40 sech 3τ
(
4cΘ sinh τ + sΘ(cosh 2τ − 3)

)
tanh τ,

R2 = 20sΘ + 40 sech 3τ
(
cΘ(cosh 2τ − 3)− 4sΘ sinh τ

)
tanh τ,

R3 = −35c̄Θ

(
1− 2 sech 8τ(sinh 3τ − 7 sinh τ)2

)
+35

8
s̄Θ sech 8τ(sinh 7τ − 35 sinh 5τ + 273 sinh 3τ − 715 sinh τ),

R4 = 35
8
c̄Θ sech 8τ(sinh 7τ − 35 sinh 5τ + 273 sinh 3τ − 715 sinh τ)

+35s̄Θ

(
1− 2 sech 8τ(sinh 3τ − 7 sinh τ)2

)
,

and

c̄Θ = cos
(

Θ3
0

6
(9 sinh τ + sinh 3τ)

)
, s̄Θ = sin

(
Θ3

0

6
(9 sinh τ + sinh 3τ)

)
.

Notice that c̄Θ = 2c2
Θ − 1, s̄Θ = 2cΘsΘ. In the formulae given the Ri it

is assumed that cΘ, sΘ, c̄Θ and s̄Θ are evaluated at Θ∗0.

After performing the change z = sinh τ and simplifying the interme-
diate formulae we get

M8(s0; Θ∗0) =

∫ ∞
−∞

M∗
8dz

=
25

4096(Θ∗0)10

(
64F∗8,1(Θ∗0) sin 2s0 + 7F∗8,2(Θ∗0) sin 4s0

)
.

(31)

The expressions F∗8,1 and F∗8,2 stand for the numerical integrals

F∗8,1(Θ∗0) =

∫ ∞
−∞

8z

(z2 + 1)8

(
4z(z2 − 1) cos(

(Θ∗
0)3

3
z(z2 + 3))

+(z4 − 6z2 + 1) sin(
(Θ∗

0)3

3
z(z2 + 3))

)
dz,

F∗8,2(Θ∗0) =

∫ ∞
−∞

128z

(z2 + 1)10
×

×
(

8z(z6 − 7z4 + 7z2 − 1) cos(
2(Θ∗

0)3

3
z(z2 + 3))

+(z8 − 28z6 + 70z4 − 28z2 + 1) sin(
2(Θ∗

0)3

3
z(z2 + 3))

)
dz

(32)
We have evaluated F∗8,1 and F∗8,2 up to fifty significant digits, obtaining

F∗8,1(Θ∗0) = −0.15786278..., F∗8,2(Θ∗0) = −6.06283763....
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Thus we obtain

M8(s0; Θ∗0) = −0.00150580... sin 2s0 − 0.00632534... sin 4s0,

and the equation M8 = 0 has eight single roots in S1 but no multiple
roots. (Indeed, the equation f(s0) = A sin 2s0 + B sin 4s0 = 0 has
multiple roots if and only if A = ±2B, but in our case A − 2B =
0.01114487..., A + 2B = −0.01415649....) Hence, applying Melnikov
Theorem as in Theorems 5.1, 5.2, the stable and unstable manifolds of
γ have transversal intersections.

With the approach described above we have completed the analysis
of the parabolic orbits for the circular restricted 3-body problem for
any µ ∈ (0, 1/2]. This problem is also treated in [7].

6.2. Equilateral restricted 4-body problem. In this example the
three massive particles form an equilateral triangle, therefore a central
configuration, thus (3) is satisfied. The parameter values are:

a11 = 1
2
(1−m1 − 2m2), a12 =

√
3

2
(1−m1),

a21 = 1
2
(2−m1 − 2m2), a22 = −

√
3

2
m1,

a31 = −1
2
(m1 + 2m2), a32 = −

√
3

2
m1,

m3 = 1−m1 −m2,

where m1,m2 > 0 and m1 +m2 < 1.

Then, the coefficients ci of (21) take the following values:

c1 = (m1 +m2)(1−m1)−m2
2,

c2 = −3
2

((m1 − 2m2)(1−m1) + 2m2
2) ,

c3 = −3
√

3
2
m1(1−m1 − 2m2).

Therefore the transversal intersection of the manifolds is established
as Theorem 5.1 applies, except for the case m1 = m2 = 1/3 where
c2 = c3 = 0, and the case Θ0 = Θ∗0.

When conditions of Theorem 5.1 are not fulfilled, Theorem 5.2 can
be applied for some specific combinations of the parameters. On the
one hand, when m1 = m2 = 1/3 we calculate the coefficients di getting
d1 = d3 = d4 = 0, d2 = 5/33/2 and the expression (30) results in
−625F4

6,2(Θ0)/27 which is non-zero excepting at Θ0 = 1.48295711....
On the other hand, for Θ0 = Θ∗0, we also compute the coefficients di
and condition (30) yields a polynomial in m1, m2 of total degree 12
with numerical coefficients, that we call g(m1,m2).
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Thence when Θ0 6= 1.48295711... and m1 = m2 = 1/3 or when
Θ0 = Θ∗0 and g(m1,m2) 6= 0, Theorem 5.2 is applied, accomplishing
the intersection of the manifolds of the parabolic orbits. The remaining
cases should be analyzed after taking into account terms of at least
order eight in ε.

The case m1 = m2 = 1/3 is included as a particular situation of
the polygonal restricted N -body problem that will be addressed in
Subsection 6.5.

6.3. Restricted rhomboidal 5-body problem. We consider the
case where masses m1 to m4 are equal by pairs and form a convex
polygon, a rhombus, see [2] and references therein. The parameters
that define the problem are as follows:

a11 = −x, a12 = 0, a21 = 0, a22 = y,

a31 = x, a32 = 0, a41 = 0, a42 = −y,
m1 = m3 = µ, m2 = m4 = 1

2
− µ,

where 0 < µ < 1/2 and x, y > 0. To get a central configuration the
parameters µ, x, y must be related. For this purpose we impose that
Eqs. (3) are satisfied. It is convenient to introduce two parameters
a, b > 0 such that

x =
a

2
√
a2 + b2

(
64a3b3 − (a2 + b2)3

16a3b3 − (a3 + b3)(a2 + b2)3/2

)1/3

,

y =
b

2
√
a2 + b2

(
64a3b3 − (a2 + b2)3

16a3b3 − (a3 + b3)(a2 + b2)3/2

)1/3

,

then a central configuration occurs provided µ is taken as

µ =
a3
(
8b3 − (a2 + b2)3/2

)
2 (16a3b3 − (a3 + b3)(a2 + b2)3/2)

.

To ensure that µ ∈ (0, 1/2) we must restrict a, b so that 0 < b <
√

3a <
3b.

In terms of x, y, the perturbation parameters in (21) are expressed
by:

c1 = y2 + 2µ(x2 − y2),

c2 = −3y2 + 6µ(x2 + y2),

c3 = 0.

When c2 is non-zero and Θ0 6= Θ∗0 Theorem 5.1 applies. For Θ0 = Θ∗0 or
c2 = 0 we should go to higher orders in ε. The coefficient c2 vanishes in
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three cases: (i) If a = b, then µ = 1/4, which corresponds to the square
configuration, i.e. the polygonal restricted 4-body problem, that will
be treated in the next subsection; (ii) when a = 1.32018439...b; and
(iii) the reverse case to (ii), i.e. a = 0.75746994...b. These values come
as the only (three) real roots of the 14-degree homogeneous polynomial
equation given by

a14 + 2a13b+ 6a12b2 + 10a11b3 + 17a10b4 + 22a9b5 − 36a8b6 − 100a7b7

−36a6b8 + 22a5b9 + 17a4b10 + 10a3b11 + 6a2b12 + 2ab13 + b14 = 0.

We have checked that the parameters di in (27) are identically zero
for all possible choices of a, b. Therefore, when Θ0 = Θ∗0 or when
a = b, a = 1.32018439...b or a = 0.75746994...b, higher orders should be
analyzed, at least, those of order eight in ε. The case a = b corresponds
to a particular situation of the polygonal restricted N -body problem
dealt with in Subsection 6.5.

6.4. Collinear restricted N-body problem. In the following we
present two examples where the N − 1 massive particles are collinear
in a planar central configuration.

Note that in all collinear problems ak2 = 0 for k = 1, . . . , N − 1.
Then, the parameter c3 of (21) always vanishes.

6.4.1. Collinear restricted 8-body problem. Let us consider a collinear
configuration of seven bodies with equal masses that are placed in a
symmetric configuration with respect to the origin on the horizontal
axis. In order to calculate the positions we impose that the conditions
(3) are satisfied and so, the seven bodies form a central configuration.
Then, by means of the determination of the resultant of two polynomi-
als we find that a collinear configuration occurs if the parameters are
chosen as follows:

a11 = −1.17858061..., a21 = −0.73861375...,

a31 = −0.35910513..., a41 = 0,

a51 = −a31, a61 = −a21, a71 = −a11,

ak2 = 0, mk = 1
7
, for k = 1, . . . , 7.

Then, the perturbation parameters appearing in (21) are:

c1 = 0.58958829..., c2 = 1.76876487..., c3 = 0.

Thus, c2 6= 0 and the conditions of Theorem 5.1 are satisfied except
for the value Θ0 = Θ∗0. Thence, for ε > 0 small enough and Θ0 6= Θ∗0,
the stable and unstable manifolds of the periodic orbit γ related to
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Hamiltonian (6) intersect transversally. When Θ0 = Θ∗0 we consider
the Melnikov function M6 but then di = 0 and higher-order terms
should be computed to decide on the transversality of the manifolds.

6.4.2. Collinear restricted 11-body problem. Here we consider ten parti-
cles in collinear configuration placed at equidistant positions. Then, we
calculate the masses so as to obtain a central configuration. For that,
we impose that Eqs. (3) are satisfied and solve the resulting system of
linear equations to get

a11 = −1.44194062..., a21 = −1.12150937...,

a31 = −0.80107812..., a41 = −0.48064687...,

a51 = −0.16021562...,

a61 = −a51, a71 = −a41, a81 = −a31, a91 = −a21, a101 = −a11,

ak2 = 0 for k = 1, . . . , 10,

m1 = m10 = 0.05585772..., m2 = m9 = 0.08684056...,

m3 = m8 = 0.10794726..., m4 = m7 = 0.121390422...,

m5 = m6 = 0.12796403....

Note that, although here we put an approximation of the values
correct to eight decimal digits, we have obtained them using integer
arithmetic.

We calculate the coefficients (21) and get their values also exactly,
an approximation of them accurate up to eight decimal places being:

c1 = 0.65193332..., c2 = 1.95579995..., c3 = 0.

Then, as c2 6= 0, Theorem 5.1 is satisfied except for the value Θ0 = Θ∗0.
Regarding the terms of order six in ε, using (27) we have obtained
di = 0, thus Theorem 5.2 cannot be applied and we should compute
higher orders to conclude the transversality condition of the manifolds
of γ.

6.5. Polygonal restricted N-body problem. In this case particles
1 to N − 1 form a regular (N − 1)-gon determined by the following
constants:

ak1 = Re(e2πi k−1
N−1 ), ak2 = Im(e2πi k−1

N−1 ), mk =
1

N − 1
,

for k = 1 to N − 1 where N ≥ 4.



RESTRICTED N -BODY PROBLEMS 23

We want to write down Hamiltonian (8) for the specific cases of the
polygonal restricted problem. After some manipulations and simplifi-
cations that include an induction over the integer N , we notice that
the Hamiltonian function can be written in terms of symplectic polar
coordinates in a rather compact way by

Hε(r, θ, R,Θ, t) =
1

2

(
R2 +

Θ2

r2

)
− 1

r
−

2N−3∑
j=1

εj

rj/2+1
Uj

−ε
2N−2

rN

(
VN−1 +WN−1 cos((N − 1)(t− θ))

)
+O(ε2N−1),

(33)
where

Uj =
(1 + (−1)j + 2 cos(jπ/2)) (Γ(j/4 + 1/2))2

4π(Γ(j/4 + 1))2
,

VN−1 =
(1 + (−1)N−1)(Γ(N/2))2

2π(Γ(N/2 + 1/2))2
,

WN−1 =
2Γ(N − 1/2)√

πΓ(N)
,

and Γ stands for the gamma function.

To obtain the Melnikov function we emphasize the convenience of
developing Hε to order 2N −2 because the first appearance of θ occurs
at this order and the previous orders would yield zero.

At this point we apply the same steps as in the previous sections,
arriving at the total derivative

dH0

dτ
= −1

4
Θ2

0 sinh 2τ
2N−3∑
j=1

εjUj
2j/2+1(j + 2)

(|Θ0| cosh τ)j+4

−ε2N−2 (VN−1 +WN−1 cos q(s0, τ))
2NN sinh τ

Θ2N
0 cosh2N+1 τ

,

where

q(s0, τ) = (N − 1)
(
s0 ∓ 4 arctan(tanh(τ/2))± Θ3

0

24
(9 sinh τ + sinh 3τ)

)
,

where the upper signs apply when Θ0 > 0 and the lower ones when
Θ0 < 0.

Now, we observe that by the parity of the derivative with respect to
τ , the only term with no zero integral in the derivative is that factorized
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by WN−1, thus we introduce

ε2N−2M2N−2 = −ε2N−2 2NNWN−1

Θ2N
0

sinh τ cos q(s0, τ)

cosh2N+1 τ
.

We introduce the change z = sinh τ and define the Melnikov function
as

M2N−2(s0,Θ0) = −2NNWN−1

Θ2N
0

∫ ∞
−∞

z

(z2 + 1)N+1
cos q̃(s0, z) dz, (34)

with

q̃(s0, z) = (N − 1)
(
s0 ± Θ3

0

6
z(z2 + 3)∓ 4 arctan(tanh(1

2
arcsinhz))

)
.

In order to illustrate how the theory of this paper applies, we par-
ticularize the calculations for two specific cases, namely N = 7, 8.

When N = 7 we get

M12(s0,Θ0) = ±1617

4Θ14
0

F12(Θ0) sin 6s0

where

F12(Θ0) =

∫ ∞
−∞

z

(z2 + 1)14

(
p1(z) cos(Θ3

0z(z2 + 3))

+p2(z) sin(Θ3
0z(z2 + 3))

)
dz,

with

p1(z) = 4z(3z10 − 55z8 + 198z6 − 198z4 + 55z2 − 3),

p2(z) = z12 − 66z10 + 495z8 − 924z6 + 495z4 − 66z2 + 1.

For N = 8 the corresponding Melnikov function reads as

M14(s0,Θ0) = ±858

Θ16
0

F14(Θ0) sin 7s0

where

F14(Θ0) =

∫ ∞
−∞

−z
(z2 + 1)16

(
p3(z) cos(

7Θ3
0

6
z(z2 + 3))

+p4(z) sin(
7Θ3

0

6
z(z2 + 3))

)
dz,

with

p3(z) = 2z(z6 − 21z4 + 35z2 − 7)(7z6 − 35z4 + 21z2 − 1),

p4(z) = z14 − 91z12 + 1001z10 − 3003z8 + 3003z6 − 1001z4

+91z2 − 1.

From the expressions of both Melnikov functions it is clearly deduced
that the equations M12 = 0 and M14 = 0 have simple roots provided,
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Figure 2. On the left: graph of F12; on the right, graph
of F14.

respectively, F12 and F14 do not vanish. However F12, F14 are of the
same type as the functions F4, F6,1, F6,2 of Section 5 analyzed in the
Appendix. Then they have a global maximum and a global minimum,
their graphs cut the horizontal axis at a unique point and tend asymp-
totically to zero as long as Θ0 tends to ±∞, see also Figure 2.

More specifically, F12 becomes zero for Θ0 = 1.52516447... while
F14 vanishes at Θ0 = 1.53230637.... Thus, for the polygonal restricted
7-body problem, the stable and unstable manifolds of the parabolic
orbits γ intersect transversally excepting at Θ0 = 1.52516447... while
for the polygonal restricted 8-body problem the corresponding stable
and unstable manifolds of γ intersect transversally, if we ignore the
case Θ0 = 1.53230637....

Regarding the case N = 4, corresponding to the equilateral restricted
4-body problem of Subsection 6.2 when m1 = m2 = m3 = 1/3, the
Melnikov function obtained from (34) is a particular case of the function
M6 in (28), thus the degeneracy achieved in Subsection 6.2 for Θ0 =
1.48295711..., persists. When N = 5, the square configuration studied
in Subsection 6.3 is analyzed using the Melnikov function (34) which
is of order eight in ε. Proceeding similarly to what we did for N = 7, 8
we conclude that M8 has simple roots provided Θ0 6= 1.50262022...,
thus extending the analysis performed in Subsection 6.3 when a = b.

7. Appendix: Qualitative study of functions F4(Θ0),
F6,1(Θ0) and F6,2(Θ0)

The function F4 has been defined in (26) and its graph is given
in Figure 3. Considered as a function in z, the integrand is smooth
in R and bounded by above in the intervals in (−∞,−1] ∪ [1,∞) by
the improperly integrable function 16/|z|7. Now the comparison test
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Figure 3. The graph of the function F4(Θ0).

for improper integrals implies that F4(Θ0) is a well defined smooth
function for all Θ0 ∈ R. In addition it has only one zero, namely
Θ∗0 = 1.44952926..., and F4(Θ0) < 0 for Θ0 < Θ∗0, while F4(Θ0) > 0 for
Θ0 > Θ∗0. The function F4 takes only one maximum and one minimum
values. Furthermore

lim
Θ0→±∞

F4(Θ0) = 0.

The functions F6,1, F6,2 were introduced in (29) and present an anal-
ogous behavior to the function F4, as it can be seen in Figure 4. The
corresponding improper integrals are absolutely convergent. Specifi-
cally, F6,1 = 0 has its unique root at Θ0 = 1.45326624... whereas the
root of F6,2 = 0 occurs at Θ0 = 1.48295711.... Besides, F6,1 > 0 when
Θ0 < 1.45326624..., F6,1 < 0 when Θ0 > 1.45326624... and F6,2 > 0
when Θ0 < 1.48295711..., F6,2 < 0 when Θ0 > 1.48295711.... As F4,
the functions F6,1, F6,2 take a global maximum as well as a global
minimum. Finally,

lim
Θ0→±∞

F6,1(Θ0) = lim
Θ0→±∞

F6,2(Θ0) = 0.

Finally we remark that similar integrals have been analyzed and can
be found in [13, 14].
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Figure 4. The graphs of the functions F6,1(Θ0) and F6,2(Θ0).
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