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Abstract 

In the last 4 years, experimental evidences about the potential use of optical sensors based on Lossy Mode Resonances (LMR) 
have been presented in the literature. These LMR sensors have some similarities with Surface Plasmon Resonance (SPR) sensors, 
the gold standard in label-free, real-time biomolecular interaction analysis. In these new LMR sensors, if the non-metallic nano-
cladding of an optical waveguide fulfills the conditions explained in this work, coupling of light to the cladding modes happens at 
certain resonance wavelengths, which enables the use of LMR devices as refractometers and opens the door to diverse 
applications such as in biology and proteomics research. These highly sensitive refractometers have already shown sensitivities 
higher than 20,000 nm/RIU or 5x10-7 RIU and, given the youth of this field, it is expected to achieve even better values. 
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1. Introduction: the Lossy Mode Resonances 

Thin films-coated optical waveguides has been a topic of high interest for decades and with the appearance of 
new techniques for fabricating micro and nanostructured films this interest has been renewed. Among the different 
types of these coated waveguides, metal-coated waveguides are having a special relevance due to their utilization as 
Surface Plasmon Resonance (SPR) devices. In fact, in the biomedical sensing field, SPR sensors are the dominant 
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and can be considered the gold standard in real-time biomolecular analysis. The SPR devices are usually classified 
as label-free devices. In other words, these devices do not need additional tags, dyes or reagents for performing the 
optical measurement in opposition to what it happens in fluorometry or colorimetry. Basically, these SPR devices 
work as highly sensitive refractometers. Therefore, these devices measure changes in the refractive index that 
experiences an auxiliary material, previously deposited on the SPR device, which targets the parameter, compound 
or substance to be measured. Typical configurations are intended for the detection of proteins, nucleid acids, viruses 
or cells and these configurations are characterized in terms of their specificity, interactions, kinetics and binding 
strength to a counterpart. The most classical example is the binding reaction between antigen and antibody. For 
instance, a monolayer of an antibody can be attached to the surface of the SPR device. Once the device is subjected 
to the presence of the sample to be measured, the slight changes induced in the refractive index of this surface when 
the antigen binds to the antibody are measured by the SPR device. Due to this, it is easy to understand that the SPR 
devices have been the dominant devices in this field. This SPR phenomenon happens when a metallic thin film, 
typically 50 nm of gold, is sandwiched between two dielectrics, one of them can be an optical waveguide, for 
instance the optical fiber core, and the other dielectric can be the liquid of the sample to be measured. The metallic 
thin film is functionalized with the sensing monolayer that will be in contact with the sample. SPRs are described as 
surface electromagnetic waves that propagate in the direction parallel to the metal/dielectric interface. Since the 
wave is a surface wave, any change on the surface, such as the adsorption of antibodies to the functionalized metal 
surface, is translated to a sharp change in the optical spectrum of the device. This phenomenon can be monitored 
only for TM (transverse magnetic) or p-polarized light and the light which is not p-polarized will not contribute to 
the SPR and will increase the background intensity of the reflected light and will mask the SPR optical signal. In 
other words, the two basic limitations of SPR devices are: first, they utilization of noble metals, second, the need of 
optical polarizers to observe the SPR phenomenon. 

 

 
 

Fig. 1. Schematic of the waveguide coated with a thin film of an optical absorbing material that fulfills the conditions to generate LMRs 
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On the other hand, little attention has been paid in the literature to waveguides coated with thin films of optical 
absorbing materials or lossy materials. Some seminal works proved that the propagation of light in semiconductor 
cladded waveguides experiences some attenuation maxima for specific thickness values of the semiconductor 
cladding and, also, at certain wavelengths of incidence values [1]. This is due to a coupling between waveguide 
modes and a specific lossy mode of the semiconductor thin film [2]. These resonances, depending of the author, can 
be named as guided mode resonances [3] or Lossy Mode Resonances (LMRs) [4-7]. Since the first designation is 
very generic and the second one is more specific and descriptive, LMRs will be used henceforward. This 
phenomenon is not limited to semiconductor claddings but it can be also observed for dielectric claddings [8]. In 
fact, LMRs occur when the real part of the thin-film permittivity is positive and higher in magnitude than both its 
own imaginary part and the real part permittivity of the materials surrounding the thin-film (waveguide and external 
medium as well). This is summarized in Fig. 1 where the conditions to be fulfilled for SPR as well as LMR are 
indicated. 

2. Differences between SPR and LMRs 

Apparently, from Fig. 1, it could be assumed that the differences between LMR and SPR are very subtle. From 
the point of view of fabrication, in order to generate LMRs, instead of using expensive noble metals, such as gold, 
many other materials can be used with the only condition of having moderate optical losses. From the point of view 
of optical performances the differences are more notable: LMRs can be observed for both TM (transverse magnetic) 
or TE (transverse electric) polarizations and, choosing carefully the material, the LMR for the TM mode, 
LMRTM,can fall in the same spectral band than the LMRTE and then, the utilization of an optical polarizer, such as 
the SPR devices need, can be avoided. This simplifies enormously the fabrication of the sensor or even the 
experimental setup of the optical devices as is depicted in Fig. 2 where only an incandescent light source and an 
optical spectrometer are necessary to make the experiments.  

 

 
Fig. 2. Top-left, the simplified experimental set-up to observe LMRs in optical fiber; bottom, the optical fiber sensor based on LMR and top-

right, SEM images of a LMR supporting layer. 
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There are also other remarkable advantages of LMRs. Their spectral position can be fine-tuned just by changing 
the thickness of the lossy coating. Even more, instead of having a unique optical resonance, several resonances can 
appear when the thickness or the lossy coating is increased and all these peaks can be used for sensing or other 
applications, see for instance Fig. 3. Just as an experimental proof of the high sensitivity of these LMR 
refractometers, the characterization of an ITO-coated optical fiber is shown in Fig. 4. 

 
Fig. 3. Optical spectra of a LMR optical fiber device when the thickness of the supporting layer is increased. In this case, the supporting layer 

was a Layer-by-Layer assembled coating of [TiO2/PSS], and the number of bilayers from top to bottom was 10, 30, 50 and 70. Details about the 
fabrication process of these coatings can be found in [9] 

 
Surprisingly, in spite of all the cited advantages, it has been necessary to wait until 2010 to find works that make 

explicit use of LMRs for the fabrication of sensors [10-22]. Since them, refractometers [6, 7, 23], humidity sensors 
[24], pH [25], volatile organic compounds sensors [26, 27], antibody sensors [28] or aptasensors [29, 30] have been 
already presented in the literature and considering that a refractometer is an expandable platform for any other type 
of sensor, especially on biosensing, we can be witnessing the very beginning of a field of great impact in the future. 

3. Conclusions 

A very brief introduction about optical fiber Lossy Mode Resonance sensors has been presented. Although the 
development of these devices is still in its infancy, there are experimental evidences that choosing carefully the 
materials of the LMR supporting layers these refractometric devices achieve sensitivities higher than 20,000 nm/RIU 
or 5x10-7 RIU (refractive index unit) which already makes these devices highly competitive for sensing applications 
even at this stage of development. 
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Fig. 4. (Left) Spectral response of a LMR optical fiber refractometer based on ITO thin film when the external refractive index changes from 

1.395 to 1.423; (Right) Spectral position of the LMR band versus external refractive index. 
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