“Prevención primaria de la Enfermedad de Lyme: Técnicas de extracción de una garrapata”

Trabajo Fin de Grado

Autor: Íñigo Hidalgo Rípodas
Directora: Esther Vicente Cemborain
RESUMEN

Introducción. La poco conocida Enfermedad de Lyme es una enfermedad transmitida por las garrapatas del género *Ixodes* que puede tener afectación cardíaca, neurológica y reumatoide.

Método. Mediante una revisión bibliográfica sistemática en las principales bases de datos y páginas web especializadas, se buscó si había evidencia de la relación entre el método de extracción del parásito y el riesgo de infección por *Borrelia burgdorferi*, bacteria causante de la Enfermedad de Lyme.

Resultados. La evidencia muestra cómo los métodos de extracción basados en quemar o ahogar el parásito suponen un riesgo alto de infección. Existen métodos avalados por la evidencia actual tales como la tracción de la garrapata, ya sea con pinzas, sedal de pesca o bisturí; o una cirugía menor que extraiga el parásito sin manipularlo. En base a esto, se propone la inclusión de un protocolo que guíe a enfermería de Atención Primaria en la elección de la técnica idónea para extraer las garrapatas según sus características.

PALABRAS CLAVE
Lyme, Garrapata, Extracción, Prevención, *Borrelia burgdorferi*, Atención Primaria

ABSTRACT

Introduction. The Little known Lyme disease is an infectious disease transmitted by *Ixodes* ticks that may have cardiac, neurological or rheumatic affection. Method. Through a systematic bibliographical revision of the principal Science Databases and specialized web pages, it was searched if there was a relation between the way of removing ticks and the spread of *Borrelia burgdorferi*, the bacteria that causes Lyme disease. Results. The evidence shows that the removing methods based on burning or drowning ticks involve a high risk of infection. There are some evidence-endorsed methods like pulling the tick with tweezers, fishing knot or scalpel, or a minor surgery that removes the parasite without manipulating it. Based on it, the inclusion of a protocol is proposed to guide Primary Care nurses to choose the correct way of removing ticks according to its characteristics.

KEYWORDS
Lyme, Tick, Remove, Prevention, *Borrelia burgdorferi*, Primary Care

NÚMERO DE PALABRAS
El número total de palabras en el documento (sin incluir, índices, tablas, figuras, anexos y bibliografía) es de 10.600.
ÍNDICE

1. INTRODUCCIÓN .. 1
 1.1. Incidencia de la Enfermedad de Lyme: enfermedad rara ... 1
 1.2. Garrapata Ixodes, vector de la infección ... 1
 1.3. Enfermedad de Lyme .. 5
 1.4. Atención Primaria .. 7
 1.5. Justificación .. 8

2. OBJETIVOS .. 9
 2.1. Hipótesis ... 9
 2.2. Objetivo principal .. 9
 2.3. Objetivos secundarios .. 9

3. MATERIAL Y MÉTODOS .. 10
 3.1. Determinación del objeto a estudio .. 10
 3.2. Búsqueda en bases de datos ... 10
 3.3. Búsqueda de otros recursos ... 11
 3.4. Criterios de inclusión y exclusión .. 12
 3.5. Limitaciones ... 12
 3.6. Anotaciones a la metodología ... 12

4. RESULTADOS .. 13
 4.1. Estudios hallados ... 13
 4.2. Métodos de extracción descritos .. 24

5. DISCUSIÓN .. 31

6. CONCLUSIONES .. 36

7. PROPUESTA TEÓRICA DEL TRABAJO .. 38
 7.1. Introducción .. 38
 7.2. Objetivos .. 39
 7.3. Metodología .. 39

8. AGRADECIMIENTOS ... 41

9. BIBLIOGRAFÍA ... 42

10. ANEXOS .. 46
 Anexo 1. Diagrama de búsqueda en las bases de datos ... 46
 Anexo 2. Diagrama de flujo de la procedencia de cada documento utilizado 47
 Anexo 3. Protocolo ante la picadura de una garrapata ... 48
 Anexo 4. Cuestionario para los profesionales I .. 49
 Anexo 5. Parte a rellenar tras cada actuación .. 50
 Anexo 6. Cuestionario para los profesionales II (al año de la primera sesión) 51
 Anexo 7. Cuestionario de satisfacción (al año de la primera sesión) 52
ÍNDICE DE TABLAS

Tabla 1. Fases de la EL ..5
Tabla 2. Clínica neurológica, cardíaca y reumatológica en estadios II y III de EL ..6
Tabla 3. Evaluación de la evidencia disponible ..20
Tabla 4. Documentos que apoyan o no apoyan cada método ..29
Tabla 5. Contraposición de argumentos de las diferentes técnicas de extracción35

ÍNDICE DE ILUSTRACIONES

Ilustración 1: Ciclo vital de la garrapata ixodes, causante de la EL ...2
Ilustración 2. Ciclo de infección de la B. Burgdorferi ...5
Ilustración 3. Fórceps sin puntas, curvos y de tamaño medio ..15
Ilustración 4. Extracción con pinzas de punta fina y tracción suave ...27
Ilustración 5. Extracción con bisturí como palanca ...27
Ilustración 6. Extracción con un sedal ...28
Ilustración 7. Extracción quirúrgica de la garrapata ..28
Ilustración 8. Diagrama de búsqueda en las bases de datos ..46
Ilustración 9. Diagrama de procedencia de cada documento referenciado ...47
Ilustración 10. Diagrama protocolo de extracción de garrapatas en atención primaria48
Ilustración 11. Cuestionario para enfermería ...49
Ilustración 12. Parte tras cada actuación ..50
Ilustración 13. Extracciones realizadas durante el último año ..51
Ilustración 14. Cuestionario de satisfacción ..52
<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALDF</td>
<td>Fundación Americana de la Enfermedad de Lyme</td>
</tr>
<tr>
<td>A.P.</td>
<td>Atención Primaria</td>
</tr>
<tr>
<td>B. burgdorferi</td>
<td>Borrelia burgdorferi</td>
</tr>
<tr>
<td>CDC</td>
<td>Centro de Control de Enfermedades (Estados Unidos)</td>
</tr>
<tr>
<td>C.S.</td>
<td>Centro de Salud</td>
</tr>
<tr>
<td>EL</td>
<td>Enfermedad de Lyme</td>
</tr>
<tr>
<td>NIAID</td>
<td>Instituto Nacional de Alergias y Enfermedades Infecciosas</td>
</tr>
<tr>
<td>OIERP</td>
<td>Organización Internacional Ensayos en Reumatología Pediátrica</td>
</tr>
<tr>
<td>SERP</td>
<td>Sociedad Europea de Reumatología Pediátrica</td>
</tr>
</tbody>
</table>
1. INTRODUCCIÓN

1.1. Incidencia de la Enfermedad de Lyme: enfermedad rara

De acuerdo con un estudio publicado el año 2010 (Oteiza-Olaso, Tiberio-López, Martínez de Artola, & Belzunegui-Otano, 2011) y realizado en Navarra, la prevalencia en sangre de la infección por Borrelia burgdorferi (B. burgdorferi), agente causal de la Enfermedad de Lyme (EL), se situaba en el 4,4% de la población foral, siendo el principal factor de riesgo la ocupación de ganadero. Además, de acuerdo a un estudio del año 2011, la incidencia de casos diagnosticados como EL en España se estima en 0,25 casos/100.000 habitantes/año (Alonso Fernández, 2012), según otro estudio más reciente, año 2016, en Navarra esta incidencia se sitúa en 0,71 casos/100.000 habitantes/año, 2,84 veces por encima de la media española (Bonet Alavés, Guerrero Espejo, Cuenca Torres, & Gimeno Vilarrasa, 2016).

Debido a la baja prevalencia de la infección y la casi inexistente incidencia de desarrollo en enfermedad, se clasifica a la EL dentro del grupo de las enfermedades raras.

Estos datos constatan dos realidades posibles: la primera, el posible infradiagnóstico de la enfermedad y, la segunda, el mayor riesgo de la población navarro a estar infectado y padecer EL.

1.2. Garrapata Ixodes, vector de la infección

Este posible infradiagnóstico, tal y como se explica en “A tiny tick can cause a big health problem” (John, Raman, & Ryan, 2017), puede basarse en que la picadura por el vector de la enfermedad, las garrapatas del género Ixodes, suele pasar inadvertida.

Para un estudio realizado en España en el año 2005 (Merino et al., 2005), fueron identificadas entre el año 1997 y 2000 187 garrapatas en 179 sujetos (todos aquellos que acudieron a los centros de salud de Soria portando una garrapata). De entre ellas, el 12,4% eran del género Ixodes (portador principal de la B. burgdorferi), estando ninguna colonizada por B. burgdorferi. Esto confirma que, si bien el vector principal son las garrapatas del género Ixodes, es poco habitual que sean portadoras de la bacteria B. burgdorferi, por lo que el riesgo de contraerla, aun siendo picado por una garrapata de este género, es baja.

Estas garrapatas (Rogers, 1998) pertenecen a la clase Arachnida, al igual que las arañas, los ácaros y los escorpiones. Son vulgarmente conocidas como “garrapatas duras” debido
a la solidez del caparazón que las recubre. En España se han localizado principalmente en las comunidades autónomas de Galicia, Asturias, Cantabria, País Vasco, Castilla y León, Cataluña, Madrid y Andalucía (Guerrero, 2001).

Para poder entender el proceso de infección por *B. burgdorferi* y su relación con las garrapatas es necesario entender primero el ciclo vital de estas, así como el método de adherencia al huésped.

Las garrapatas son animales parásitos, es decir, se alimentan de las sustancias producidas por otros seres vivos, concretamente de su sangre. Para ello, se alojan en la piel del huésped; la forma de hacerlo es: desgarrar la piel de este, introducir un hipóstomo con los laterales dentados que favorecen el enganche y, por último, secretar una sustancia cementante que fija el hipóstomo a la piel (Soria Gili & Ribera Pibernat, 2005). De esta forma, aun quedando la mayor parte de la garrapata por fuera de la piel del huésped, no se despega de este gracias a esa doble ayuda mecánica (el hipóstomo) y química (la sustancia cementosa) (Cassidy et al., 2018).

1.2.1. Ciclo vital de las garrapatas *Ixodes*

Dependiendo de en cuál de sus cuatro estadios vitales (huevo, larva, ninfa y adulto) se encuentren, las garrapatas poseen unas características y necesidades diferentes. Dicho ciclo vital completo tiene una duración de dos años, tres como máximo, y es determinado por la temperatura (CDC, 2015). Todo el proceso se puede observar en la *Ilustración 1: Ciclo vital de la garrapata*.

En la etapa de huevo, generalmente depositados en la primavera, estos permanecen sin eclosionar hasta que las condiciones del ambiente son adecuadas, generalmente a principios del verano. Pueden permanecer en esta etapa entre 3 y 36 semanas. Una vez eclosionan, lo hacen como larvas (Rogers, 1998).

Ilustración 1: Ciclo vital de la garrapata Ixodes, causante de la EL.

En la etapa de larva el parásito debe encontrar un huésped del que alimentarse, pudiendo llegar a estar 30 semanas sin recibir sangre. Una vez encuentra el huésped, le pica tal y como se ha explicado antes, nutriéndose de su sangre. Si esta estuviera infectada por *B. burgdorferi*, la garrapata se infectaría también; comenzando así su etapa como vector de la infección (Cassidy et al., 2018). Tras alimentarse durante unos días, se desprenden del huésped, cayendo al suelo y mudando ahí de cuerpo. Es esta la etapa en la que mayor número de los parásitos mueren, principalmente por no encontrar huésped del que alimentarse (generalmente pequeños mamíferos y pájaros) (Rogers, 1998; «Ticks», 2008).

En la etapa de ninfa, aquella en la que la capacidad de la garrapata de transmitir la *B. burgdorferi*, en caso de portar la bacteria, encuentra su apogeo (Kahl et al., 1998), la garrapata necesita de 5 a 7 semanas para alimentarse lo suficiente como para desprenderse y mudar de nuevo. Al final de la etapa se vuelve sexualmente madura, proceso que dura entre 2 y 8 meses («Ixodes Species», 2008).

En la etapa de adulta, la garrapata hembra busca mamíferos de mediano-gran tamaño para alimentarse durante 5-14 días y poder así producir y depositar los huevos inmaduros en el suelo (Rogers, 1998). En el caso de que la garrapata fuese portadora de *B. burgdorferi*, el huésped podría recibir la infección durante la parasitación de esta.

1.2.2. Parasitismo y transmisión de enfermedades

Tal y como se ha afirmado previamente, las garrapatas se alimentan de la sangre de cada uno de los tres huéspedes que eligen a lo largo de su ciclo vital, la elección de estos se produce por una o más de las siguientes vías (CDC, 2015):

- Detectando el aliento del huésped.
- Detectando el calor corporal, su humedad o su olor.
- Detectando las vibraciones producidas por el movimiento de los animales.

Para ello, adoptan una *posición de caza*, esta se basa en utilizar las patas traseras para aferrarse a la vegetación, y las delanteras emplearlas en agarrarse al futuro huésped. No pueden saltar ni volar. Únicamente cuando entran en contacto con el huésped tras detectarlo buscan una zona donde parasitar; a veces tardan segundos, otras veces emplean minutos en buscar zonas más húmedas o donde la piel sea de menor grosor (Cassidy et al., 2018; CDC, 2015).
Una vez que se ha unido al huésped, existen varias formas en las que la garrapata puede transmitirle la *B. burgdorferi* (NIAID, 2016). La bacteria coloniza las glándulas salivares (Brouqui et al., 2004) y, en mayor medida, los intestinos del arácnido, por lo que cualquier contacto del huésped con la saliva o el contenido intestinal supone un riesgo de infección (Cook, 2014). Las circunstancias descritas donde se da el mayor riesgo de infección son:

- Al alojarse en el huésped, la garrapata secreta la sustancia cementante a través de sus glándulas salivares (Cassidy et al., 2018; Soria Gili & Ribera Pibernat, 2005).
- Al alojarse en el huésped, la garrapata secreta una sustancia anestésica a través de sus glándulas salivares que evitan que el huésped note el parasitismo (John et al., 2017).
- Durante la extracción de sangre, parte de la saliva de la garrapata entra en contacto con la sangre del huésped (CDC, 2015).
- Tras el ciclo de alimentación, la garrapata secreta unas sustancias que disuelven la sustancia cementante y así pueden separarse de la piel del huésped (CDC, 2015; Cook, 2014).
- Si la garrapata se ve sometida a estrés, puede regurgitar contenido intestinal en el interior del huésped (CDC, 2015, 2018).

Uno de los pocos factores relacionados con el proceso donde existe consenso en la comunidad científica es el tiempo de parasitación, pudiendo llegar a ser este determinante. Así, según afirman varios estudios, el riesgo de ser infectado por *B. burgdorferi* aumenta proporcionalmente al tiempo que permanece la garrapata *Ixodes* alimentándose de la sangre del huésped (Cook, 2014; John et al., 2017), llegando a ser casi improbable la no infección pasadas 47 horas o más (Kahl et al., 1998).
1.3. Enfermedad de Lyme

En resumen, el proceso de infección por la garrapata es: una garrapata en etapa larva parasita un mamífero de pequeño tamaño infectado por *B. burgdorferi*, la bacteria coloniza la boca y estómago de la garrapata; posteriormente, en etapa de larva o adulto parasita a un humano, a quien, si se dan las circunstancias necesarias (tiempo de parasitación más alguna de las 5 posibilidades anteriormente descritas), transmite la infección. Proceso esquematizado en la Ilustración 2: Ciclo de infección de la *B. burgdorferi*. Posteriormente, el humano infectado puede terminar desarrollando EL (OIERP & SERP, 2016), las diferentes fases del proceso se pueden apreciar en la Tabla 1. Fases de la EL.

<table>
<thead>
<tr>
<th>Tabla 1. Fases de la EL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infección temprana localizada (días-mes tras picadura)</td>
</tr>
<tr>
<td>Eritema migratorio</td>
</tr>
<tr>
<td>Síntomas asociados: astenia, malestar, letargia, cefalea, rigidez de nuca, mialgias, artralgias, linfadenopatía regional</td>
</tr>
<tr>
<td>Infección temprana disseminada (semanas-meses tras picadura)</td>
</tr>
<tr>
<td>Carditis (bloqueo AV, cardiomiositis, miopericarditis)</td>
</tr>
<tr>
<td>Afección neurológica (meningitis linfocitaria, neuropatía cranial con afectación frecuente de nervio facial uní o bilateral, neuropatía periférica)</td>
</tr>
<tr>
<td>Enfermedad hepática (disfunción hepática, hepatitis)</td>
</tr>
<tr>
<td>Afección musculosquelética (artralgias migratorias)</td>
</tr>
<tr>
<td>Afección cutánea (eritema migratorio múltiple)</td>
</tr>
<tr>
<td>Linfadenopatías</td>
</tr>
<tr>
<td>Afección ocular (conjuntivitis, iritis, coroiditis, vitritis, retinitis)</td>
</tr>
<tr>
<td>Enfermedad hepática (disfunción hepática, hepatitis)</td>
</tr>
<tr>
<td>Enfermedad renal (microhematuria, proteinuria)</td>
</tr>
<tr>
<td>Infección tardía o crónica (meses-años tras picadura)</td>
</tr>
<tr>
<td>Síntomas musculosqueléticos (artritis oligo o monoarticular con afectación frecuente de rodilla)</td>
</tr>
<tr>
<td>Enfermedad neurológica (neuropatía periférica, encefalomielitis)</td>
</tr>
<tr>
<td>Afección cutánea (acrodematitis crónica atrófica, lesiones similares a esclerodermia)</td>
</tr>
</tbody>
</table>

1.3.1. Estadio I: Fase localizada precoz

Tal y como se describe en “Enfermedad de Lyme: a propósito de dos casos” (Pérez Guirado, Fernández Fernández, Arbesu Fernández, & Santos Rodríguez, 2013), la primera manifestación de la enfermedad suele ser el Eritema Migrans, una mácula (que también puede ser pápula en algunos casos) enrojecida que crece y acaba adquiriendo la forma de círculo rojo alrededor de la zona donde parasitó la garrapata. También puede presentarse en otras zonas de la piel donde no se haya dado una picadura (A.D.A.M., 2018).
También suelen aparecer síntomas difusos asociados, muchos de ellos atribuibles a un proceso gripal: malestar, letargia, cefalea, mialgias, artralgias, astenia, rigidez de nuca (Olmo Montes, Sojo Dorado, Peñas Espinar, & Muniáin Ezcurra, 2014).

1.3.2. **Estadio II: Fase diseminada precoz**

Tras la primera fase aparecen dos clases de síntomas más propios, clínica cardiaca y neurológica, acompañada de más síntomas difusos, tales como la fiebre, escalofríos, dolor difuso, (García Meléndez, Skinner Taylor, Salas Alanis, & Ocampo Candiani, 2014) cefalea de gran intensidad, astenia y malestar general. Esta clínica puede presentarse de forma radicalmente distinta según la localización del infectado, debido a la variedad de *Borrelia* causantes de la enfermedad (Olmo Montes et al., 2014; Pickering, Baker, Long, & McMillan, 2005). Se puede apreciar la variedad de síntomas más habituales según localización en la **Tabla 2. Clínica neurológica, cardiaca y reumatológica en estadios II y III de EL**.

<table>
<thead>
<tr>
<th>Órgano afectado</th>
<th>Manifestaciones en común</th>
<th>Norteamérica (B. burgdorferi)</th>
<th>Europa (B. afzelii y B. garinii)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nervoso</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estadio II</td>
<td>Involucro de pares craneales; parálisis facial (10% bilateral); Meningitis aséptica (10%)</td>
<td>Meningitis, cefalea intensa, rigidez de cuello y radiculoneuritis leve</td>
<td>Sindrome de Banwarth (triada: meningitis infectica, paralelismo y radiculoneuritis)(^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Menor gravedad de cefalea y rigidez de cuello (causada por B. garinii)</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estadio II</td>
<td>Paúlceaciones, taquicardia, bradicardia, anormalidades de la conducción (bloqueo AV), miocarditis y falla del ventrículo izquierdo</td>
<td>Carditis (4-10%)(^2)</td>
<td>Carditis (0.3-4.0%)</td>
</tr>
<tr>
<td>Estadio III</td>
<td>No se han reportado</td>
<td></td>
<td>Cardiomiopatía dilatada</td>
</tr>
<tr>
<td>Reumatológico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estadio II</td>
<td>Artralgias migratorias, monartritis de rodillas</td>
<td>Más frecuente, oligoartritis; inflamación articular más marcada</td>
<td>Menos frecuente, oligoartritis; inflamación articular menos intensa</td>
</tr>
<tr>
<td>Estadio III</td>
<td>Son las más frecuentes, afectan el 80% de los pacientes no tratados</td>
<td>Artritis reactiva o bacteriana en un pequeño porcentaje de pacientes (probable mecanismo de origen autoinmune)</td>
<td>Artritis persistente raramente (probablemente de origen no autoinmune)</td>
</tr>
</tbody>
</table>

Tabla 2. Clínica neurológica, cardiaca y reumatológica en estadios II y III de EL

1.3.3. Estadio III: Fase diseminada tardía

Por último, a los meses o años, la enfermedad se manifiesta principalmente en las articulaciones, debutando como oligoartritis, acompañadas de clínica neurológica (sueño no efectivo, fallos de memoria y estado del ánimo fluctuante) y clínica cutánea, en forma de erupción volcánica en la zona distal de las extremidades (Olmo Montes et al., 2014; Pérez Guirado et al., 2013; Vázquez-López et al., 2018).

1.3.4. Cronicidad

Posteriormente, si la infección no se trata con antibióticos, esta permanece en el huésped de por vida. No hay estudios que demuestren que el uso tardío de antibioterapia, así como dosis sucesivas de esta, sean efectivas. Tal y como concluyen Johnston y Conly, “No hay duda de que quedan cuestiones por determinar, incluida la mejor forma de tratar paciente con síntomas persistentes” (Johnston & Conly, 2005).

Como se puede observar, la Enfermedad de Lyme puede llegar a ser limitante para las actividades de la vida diaria, de forma que las personas que la padecen pueden llegar a ser completamente dependientes debido a las manifestaciones cardiológicas y neurológicas, las oligoartritis y el dolor sin localizar, acompañado de malestar general (Pickering et al., 2005).

1.4. Atención Primaria

Para evitar el desarrollo de la enfermedad, se ha demostrado como prevención secundaria de mayor efectividad el tratamiento en fase temprana de la misma con antibióticos como muy eficaz (Alonso Fernández, 2012; Cameron, Johnson, & Maloney, 2014; Gómez-Cadiñanos R, Ramírez L, Ibarra V, & Oteo JA., 1997; Panciewicz et al., 2015).

Tal como se afirma en Utilidad de los estudios serológicos en los centros de Atención Primaria para el diagnóstico de la enfermedad de Lyme (Vázquez-López et al., 2018), “...Atención Primaria es primordial en el diagnóstico precoz de EL...”.

Es por ello que esta revisión bibliográfica va a tratar de buscar, no ya una prevención secundaria frente a la EL, sino una prevención primaria de la enfermedad llevada a cabo desde los centros de Atención Primaria, basada en el método de extracción del vector tras la picadura.
1.5. Justificación

En resumen, en comparación con otras comunidades autónomas, la incidencia de la EL en Navarra destaca por llegar a triplicar la incidencia en otras comunidades (Bonet Alavés et al., 2016). Además, los vectores de la enfermedad, las garrapatas del género *Ixodes*, habitan en los montes navarros, lugar de recreo habitual de sus habitantes. También, no solo es que la EL puede llegar a ser muy limitante, sino que puede hacer que el que la padece pueda quedar postrado en cama (CDC, 2018). Por último, la prevención y detección temprana de la enfermedad desde Atención Primaria se ha evidenciado como muy eficaz (Alonso Fernández, 2012).

Por todo lo anteriormente descrito, se considera necesario el desarrollo de una búsqueda bibliográfica que apoye el desarrollo de unas prácticas clínicas basadas en la evidencia para una correcta y segura extracción de las garrapatas.
2. OBJETIVOS

2.1. Hipótesis

En el caso de una picadura de garrapata portadora de *B. burgdorferi*, la infección y posterior desarrollo de la enfermedad de Lyme puede ser prevenida con una retirada temprana y poco agresiva del vector.

2.2. Objetivo principal

Realizar una revisión bibliográfica sobre la Enfermedad de Lyme, analizando la evidencia científica respecto a su relación con los métodos de extracción de las garrapatas.

2.3. Objetivos secundarios

1. Estudiar la técnica de extracción de una garrapata que represente el menor riesgo de infección por *B. burgdorferi*.

2. Diseñar un protocolo, apoyado en la evidencia científica y dirigido a los profesionales de enfermería, para una correcta extracción de garrapatas y el seguimiento posterior, con el fin de prevenir y detectar tempranamente una infección por *B. burgdorferi*.
3. MATERIAL Y MÉTODOS

3.1. Determinación del objeto a estudio

Antes de comenzar, se describió el objeto a estudio haciendo uso de la metodología PICO descrita en el Manual Metodológico para la Elaboración de Guías de Práctica Clínica en el Sistema Nacional de Salud (Gracia, Martín, & Trujillo, 2016). Los diferentes componentes de dicha metodología quedaron representados de la siguiente forma:

- **P (Problema/Paciente):** Pacientes que hayan sido picado por una garrapata.
- **I (Intervención):** Extracción de la garrapata por tracción simple con pinzas.
- **C (Comparación):** Extracción de la garrapata con otros métodos: quemándola, retorciéndola, ahogándola, traccionando con los dedos.
- **O (Outcomes=Resultados):** ¿Disminuye el riesgo de infección por *B. burgdorferi* y, por lo tanto, de desarrollar la Enfermedad de Lyme?

Así, se definió el objeto de estudio como “En pacientes que hayan sido picados por garrapatas, ¿una extracción de esta por tracción simple de unas pinzas disminuye el riesgo de infección por *B. burgdorferi* y el consiguiente desarrollo de la Enfermedad de Lyme en mayor medida que los otros métodos de extracción?”.

3.2. Búsqueda en bases de datos

De estas fuentes se obtuvieron un total de 1.455 documentos potenciales, tras una lectura de título y resumen de todos los artículos encontrados, eliminar duplicados y descartar los que no fuesen accesibles vía online o desde la biblioteca, se seleccionaron veintiún documentos de interés. Posteriormente, se realizó una lectura exhaustiva de los artículos, encontrado en la bibliografía de estos veintisiete documentos más de interés para el trabajo que se realiza (se puede ver todo el proceso desarrollado en el Anexo 1).

Así, en total, se obtuvieron 48 documentos de las bases de datos.
3.3. **Búsqueda de otros recursos**

Posteriormente, se amplió la búsqueda de información en varios recursos de diferente índole.

3.3.1. **Enciclopedias**

En primer lugar, se realizó una búsqueda en dos enciclopedias, una para el público general (*Encyclopedia Británica*) y otra para el público especializado (*Encyclopedia of Parasitology*), con los términos “garrapata” y “Lyme”. Obteniéndose una serie de recursos útiles para el presente trabajo.

3.3.2. **Páginas web especializadas**

En segundo lugar, se realizó una búsqueda en la principal página web de enfermedades raras OrphaNet, propiedad del *Institut national de la santé et de la recherche médicale*. En este portal web hay una página dedicada a la Enfermedad de Lyme con multitud de enlaces de interés indexados (*Orpha.net*). Una vez revisados todos los enlaces que aparecen en dicha página, se seleccionaron los de mayor interés: una guía para la práctica clínica (que ya se había hallado en la búsqueda en bases de datos), un artículo para el público no especializado y un directorio de laboratorios especializados y asociaciones de pacientes.

3.3.3. **Centros especializados**

Además de los centros especializados redirigidos desde OrphaNet, se revisó la información referente a la Enfermedad de Lyme que aparecía en el centro estadounidense especializado en enfermedades infecciosa, el CDC (*Centers for Disease Control and Prevention*).

Esta página redirigía al portal web de la Fundación Americana de la Enfermedad de Lyme, que posee un rico depósito de información actualizada sobre garrapatas y la Enfermedad de Lyme. En esta página hay una referencia a un vídeo-documental con imágenes reales de 4 minutos sobre cómo pican las garrapatas que ha servido para entender parte del proceso de infección.

Se revisó también la información sobre la EL en el portal web del Instituto Nacional (estadounidense) para las Alergias y las Enfermedades Infecciosas, hallando 1 documento de interés.

Además, se buscó información en el portal web de recursos clínicos basados en la evidencia *UpToDate*, hallando en este un documento de interés de enero de este año.
3.3.4. Asociaciones de pacientes

A continuación, se buscaron portales web de las asociaciones de pacientes angloparlantes o hispanoparlantes afectados por Lyme, sin hallar resultado.

3.3.5. Organismos gubernamentales

Por último, se realizó una búsqueda con los términos “garrapata” y “lyme” en la página web del Ministerio de Sanidad, Servicios Sociales e Igualdad, hallando una guía de actuación ante picadura de garrapata, fechada en octubre de 2016.

A su vez, se repitió la búsqueda en la página web de la Organización Mundial de la Salud, de donde se obtuvo el documento de la última Asamblea Mundial de la Salud “Respuesta mundial para el control de vectores 2017-2030”.

3.4. Criterios de inclusión y exclusión

El criterio de inclusión básico para la búsqueda bibliográfica era que los documentos debían estar relacionados con la enfermedad de Lyme, más específicamente se seleccionaron aquellos que fuesen revisiones sistemáticas sobre la enfermedad, que escribieran sobre el método de extracción o la prevención frente a la enfermedad y aquellos que mostrasen la visión del paciente (de ahí que se buscaran asociaciones de pacientes o se seleccionasen análisis de casos clínicos).

Los criterios de exclusión fueron: no cumplir los criterios de inclusión, analizar la prevención secundaria (basada en antibioterapia) y no aportar información referenciada.

3.5. Limitaciones

La limitación principal del proceso de búsqueda fue no poder acceder a ciertos documentos citados de forma periódica en los artículos más importantes, por ser de acceso restringido por pago o no hallarse en el repositorio de la biblioteca.

De ellos, se vio la necesidad de obtener uno de los que más veces aparecía citados (J. A. Oteo et al., 1996), por lo que se solicitó, con resultado satisfactorio, mediante préstamo interbibliotecario. Se puede ver todo el proceso de búsqueda detalladamente en el Anexo 2.

3.6. Anotaciones a la metodología

Para la gestión de la bibliografía se ha hecho uso de la herramienta “Mendeley”, la cual ha servido para facilitar el orden y posterior análisis de los documentos recabados, así como para citar dichos documentos en este trabajo.
4. RESULTADOS

4.1. Estudios hallados

De acuerdo a la revisión bibliográfica realizada, se han seleccionado un total de 34 documentos que hacen alusión a un método (o más) para extraer garrapatas, ofreciendo argumentos para hacerlo de una u otra forma. Así, se expone abajo cronológicamente qué afirma cada artículo, puede verse esquematizado en la Tabla 3. Evaluación de la evidencia disponible.

En 1985, un estudio (Needham, 1985) analizó cinco métodos habituales de extracción y si alguno producía la rotura del parásito durante su extracción. Las conclusiones a las que llegó el estudio tras analizar la desparasitación de más de 50 humanos y animales domésticos fueron que los métodos pasivos (ahogarla con vaselina, esmalte de uñas, alcohol isopropílico al 70% o calor) no eran efectivos, dado que no producían la liberación del huésped; además, demostraron que la tracción suave con pinzas curvas o, en caso de no disponer de ellas, con rotación suave del parásito con pinzas o los dedos, este se separaba solo del huésped.

En 1990 se realizó una serología en serie a 689 trabajadores de ciudades estadounidenses endémicas de garrapatas infectadas por B. burgdorferi. Publicados los resultados donde 39 trabajadores dieron positivo en infección por B. burgdorferi, aunque no hubiesen desarrollad EL (Schwartz & Goldstein, 1990), los trabajadores concluyeron que la exposición a garrapatas en áreas endémicas resulta ser un factor de riesgo de contraer B. burgdorferi.

Posteriormente, en 1993 otro estudio experimental en cerdos y ovejas (De Boer & Van Den Bogaard, 1993) comparó cinco métodos de extracción (cuatro de ellos comunes al estudio anterior): ahogarlas pasivamente con gasolina, esmalte de uñas o alcohol metilado o extraerlas activamente por tracción suave con pinzas o por rotación con pinzas. Las conclusiones fueron similares al estudio anterior, los métodos pasivos no son eficaces para extraer garrapatas y añadieron que, de los métodos activos de extracción, la tracción suave con pinzas conllevaba porcentualmente un menor número de partes de animales incrustadas en la piel del huésped tras la extracción.

Ya en 1996, un equipo de investigadores españoles dirigido por el internista J.A. Oteo publica una investigación (J. A. Oteo et al., 1996) realizada sobre 52 individuos que había sufrido picaduras de garrapatas entre 1991 y 1992. Las conclusiones a las que llegaron
tras contrastar los diferentes métodos de extracción y las complicaciones posteriores fueron que la extracción con pinzas evita el desarrollo de complicaciones en casi el 100% de los casos y que la profilaxis antibiótica está indicada únicamente en el caso de utilizar otra técnica de extracción.

Más tarde, en 1997, (Sood et al., 1997) se realizó un estudio prospectivo con 312 neoyorkinos que habían sufrido la picadura de la garrapata en el área endémica de Nueva York entre 1996 y 1997. Analizando la incidencia de infección por *B. burgdorferi* y el tiempo de parasitismo, concluyeron que el tiempo de parasitismo era determinante un factor muy importante a tener en cuenta, no así el método de extraer el parásito.

En 1998 se publica un estudio (Kahl et al., 1998) determinante en el que, después de analizar picaduras de garrapatas en ratones, se conoció que no habían evidenciado ninguna relación entre el método de extracción del parásito y la transmisión de *B. burgdorferi*, pero que sí que habían conseguido demostrar que el tiempo de parasitación era un factor determinante de infección si este era igual o superior a las 47 horas.

En el año 2000, el CDC apoyado por el ALDF publica un folleto divulgativo con información sobre los géneros de garrapatas más habituales de Estados Unidos y las enfermedades principales que transmiten. Además, daban unas pautas de cómo extraerlas en caso de picadura, recomendando la tracción suave y evitando aplastarla o girarla (American Lyme Disease Foundation Inc., 2018; Peters & CDC, 2000).

En 2001, Oteo, autor principal de *Evaluación de los métodos de retirada de garrapatas en la ixodidiasis humana* (J. A. Oteo et al., 1996) publica una revisión bibliográfica sobre la prevención de las enfermedades transmitidas por garrapatas (José A. Oteo, Blanco, & Ibarra, 2001), en ella concluye que los métodos pasivos de extracción y la extracción manual conllevan un riesgo más alto de complicaciones y en contra, citando a su investigación de 1996, afirma que la extracción con pinzas protege significativamente de desarrollar complicaciones (entre ellas la EL).

Al año siguiente, el investigador clínico S. Teece realiza una revisión bibliográfica de la evidencia disponible en Medline con respecto a si hay un método para extraer la garrapata mejor que otro (Teece & Crawford, 2002). De cuarenta artículos selecciona dos ya citados en esta revisión (De Boer & Van Den Bogaard, 1993; Needham, 1985), tras su análisis, concluye que los métodos de extracción por ahogamiento no son eficaces
debido a la baja frecuencia respiratoria de las garrapatas, aunque menciona el resultado de un estudio (que no identifica) donde afirma que la lidocaína en gel puede ser de ayuda.

Es mismo año, el dermatólogo M. Moelher y su compañero G. Rassner publican un artículo en el que, tras revisar la evidencia disponible (sin especificar la metodología), afirma que el uso de gasolina para ahogar el parásito conlleva un mayor riesgo de seropositividad de *B. burgdorferi*, que los métodos pasivos de ahogamiento y fuego pueden estresar el parásito causando la regurgitación de la materia intestinal en el huésped (aumentando el riesgo de infección) y que el método más seguro y eficaz es con un fórceps (sin dar más detalles).

Ese mismo año en Michigan se publica otro artículo similar (Gammons & Salam, 2002) que llega a unas conclusiones bastante parecidas, aunque excluye el uso de anestésico (lidocaína gel) y da más detalles de cómo deben ser los fórceps: sin dientes y “*blunt, médium-tipped, angled forceps...*” (fórceps sin punta, tamaño medio y angulados). Añade que la forma idónea de hacerlo es con una tracción suave y continua. Puede apreciarse la forma y el método de extracción recomendado en el artículo en la *Ilustración 3. Fórceps sin puntas, curvos y de tamaño medio*.

Ya en 2005, los dermatólogos Soria y Pibernat publican un documento (Soria Gili & Ribera Pibernat, 2005) en el que describen el procedimiento recomendado. Así, afirman que la forma de hacerlo es con unas pinzas Adson dentadas, y, tras agarrar el parásito por la zona más proximal a la piel, traccionar progresivamente hasta que se suelte. Añade que, si quedasen restos de parásito incrustados, habría que retirarlos con una aguja estéril y, posteriormente, desinfectar la zona.

En 2008, los especialistas en Medicina de Familia Benavides, Carod y Cha*B. burgdorferi* escriben un artículo (Benavides Moraz, Carod Benedico, & Chabbar Boudet, 2008) en el que afirman que, basado en la evidencia disponible hasta ese momento, la extracción del parásito debe realizarse con pinzas y mojándolo con alcohol.
En el 2009 se publica una guía de pediatría en la que en el capítulo de mordeduras y picaduras se especifica que la mejor forma de extraer una garrapata es con pinzas finas y curvas y tracción suave, constante y firme (Huerta & Saavedra, 2009).

En 2010 la Asociación Española de Pediatría publica un manual de protocolos donde, en capítulo 20 afirma que la forma de extraer garrapatas es “matándola previamente con éter, laca de uñas, gasolina, o realizando una tracción y elevación de 45º con unas pinzas” (Barcones Minguela, 2010, p. 179)

Ese mismo año, los hermanos Ghirga publican una investigación (Ghirga & Ghirga, 2010) en la que analizan otra técnica de extracción que utiliza, en vez de pinzas, un sedal de pesca. Los resultados fueron que, en tres intentos o menos, el total de las garrapatas en etapa de ninfa pudieron extraerse mediante esta técnica sin resultar dañadas ni estresadas. Concluyeron así que está técnica estaba especialmente indicada en el caso de garrapatas de pequeño tamaño donde las pinzas pueden ser peligrosas.

También en 2010, se publica otra investigación (Rodríguez, Rodríguez, & Cruz, 2010) que analiza la capacidad ixoicida de los extractos de algunas plantas. Tras analizar cinco especies diferentes, concluyeron que el extracTo de *Nicotiana tabacum* era eficaz matando garrapatas del género *Ixodes*. Aun así, el estudio solo lo demostró en especímenes que no estuviesen parasitando, por lo que no faltaría analizar su efectividad como ixoicida durante la parasitación.

Ya en 2012, en Vietnam, se analiza el método de extracción activo (con cinco instrumentos diferentes) menos peligros en 596 garrapatas (Duscher, Peschke, & Tichy, 2012). Tras la comparativa, concluyen que el instrumento con forma de V permite extraer las garrapatas de la forma más eficaz y con menor riesgo de romper el parásito. Este instrumento se vende bajo la marca comercial TickPic®.

También en 2012 se publica otra investigación llevada a cabo durante cinco años donde se analiza la extracción de garrapatas mediante la técnica *Murtagh* (Roupaskias, Mitsakou, & Al Nimer, 2012). Esta consiste en anestesiar la zona de parasitación, realizar una disección de la zona con bisturí y, posteriormente, aproximar los bordes mediante sutura. El estudio afirma que este método asegura que, si el parásito lleva menos de 24 horas alimentándose, el riesgo de infección sea nulo por la no manipulación de la garrapata. Además, afirma que este debería ser el método de elección en caso de extraer el parásito en un centro médico, dado que lo considera indoloro, seguro y rápido.
En 2013 se publica en la revista *American Family Physician* (Juckett, 2013) un resumen de las actuaciones a seguir para la parasitación o picadura de diferentes artrópodos, entre ellos las garrapatas. Describe, basado en la evidencia, tres posibles métodos. El primero, la tracción suave con pinzas, que considera el mejor. El segundo, el uso de anestésicos (lidocaína al 2%), aunque lo considera demasiado lento. Por último, afirma que los métodos de ahogamiento y abrasión deben descartarse por producir regurgitación de bacterias en el huésped.

También en el 2013, se publica en el *British Medical Journal* una revisión clínica (Due, Fox, Medlock, Pietzsch, & Logan, 2013) sobre la prevención de picaduras y el método de extracción. Este documento afirma que hay que descartar el ahogamiento y abrasión del parásito, así como de la extracción girándolo o aplastándolo por considerarlos factor de riesgo de la transmisión de *B. burgdorferi*. Así, afirma que el método más aceptado y evidenciado es la tracción suave con pinzas en dirección perpendicular, si fuese posible, con unas pinzas especialmente comercializadas para ello.

Ese mismo año, se realizó una investigación (Pulido & Cruz, 2013) con extractos de dos plantas, comprobando su efecto ixoicida. En este estudio, similar al del año 2010 (Rodríguez et al., 2010) se concluyó que el extracto con mayor capacidad ixoicida era el de *Verbena Officinalis*. De la misma forma que el estudio de 2010, la investigación se realizó sobre garrapatas sin parasitar, por lo que no se sabe si los resultados son extrapolables a garrapatas parasitando.

En el 2014 se publica una revisión (Cook, 2014) llevada a cabo sobre el tiempo de parasitación y su relación con infecciones. Así, el autor concluye que la evidencia demuestra que a mayor tiempo de parasitación mayor riesgo por *B. burgdorferi*. Además, afirma que la infección por *B. burgdorferi* no se puede descartar independientemente del tiempo de fijación del parásito sobre el huésped.

Un equipo de atención primaria realizó un estudio en Andalucía ese año en el que demostró que la mayor parte de los profesionales de los centros de salud realizaban la extracción de estos parásitos ahogándolos previamente en alguna sustancia (Buller Viqueira, Cabello Pulido, & Ibáñez Bulpe, 2014).

También ese año se publica un estudio (Sheele et al., 2014) realizado con 48 garrapatas y un antiparásito oral, el Ivermectin. Tras los resultados, el estudio afirma que, debido a la alta mortalidad de parásitos tanto usando Ivermectin como placebo, no se puede
concluir que Ivermectin sea efectivo, aunque tampoco lo contrario, por posibles errores en la metodología.

Fechado en el 2015, el Centro para Control y Prevención de Enfermedades de Estados Unidos, afirma que el más seguro y eficaz es el método de tracción sin retorcer o romper la garrapata (CDC, 2015).

En el 2015 se publica una revisión clínica en la Revista de Pediatría de Atención Primaria (Piñeiro Pérez & Carabaño Aguado, 2015). En ella se determina la “tracción continua mediante pinzas estériles de punta fina y curva, con una intensidad constante, hasta que la garrapata se suelte sola” (Piñeiro Pérez & Carabaño Aguado, 2015, p. 164) como el método más eficaz.

Ese mismo año se publica otra revisión clínica en Medicina General y Familia (Fernández-Lerones, de la Fuente-Rodríguez, Mora-Sáez, & Landaluce-Fuentes, 2016) en la que se afirma que, basándose en la evidencia disponible, los métodos de ahogamiento y de calor deben ser descartados y el método de elección debe ser la tracción suave con pinzas sin dientes. Además, añade que, en caso de que no sea suficiente, se debe realizar una doble sección en la piel del huésped a los lados de la garrapata, lo que hace que esta se libere.

En el 2016, basándose en la investigación de 1996 (J. A. Oteo et al., 1996), el Ministerio de Sanidad Servicios Sociales e Igualdad edita una guía de actuación ante picaduras que indica la extracción con pinzas de borde romo como la elección más segura.

Ese mismo año, el alemán N. Treiber publica un artículo (Treiber, Crisan, Gülke, & Schneider, 2016) en el que afirma que lleva años extrayendo las garrapatas con un bisturí que hace las veces de palanca. Afirma que el método es útil, rápido y seguro, tanto para sacar el parásito entero como para evitar la transmisión de enfermedades.

En el 2017 se defiende un trabajo de fin de grado en la Universidad de Valladolid (Colomer Martínez, 2017) en el que se analiza la evidencia disponible con respecto a los diferentes métodos de extracción. Así, tras la revisión, la autora concluye que los métodos pasivos son poco eficaces y los activos son todos igual de eficaces (tracción con pinzas, pinzas comerciales, seda de pescar y cirugía). Añade después que el uso de Ivermectin, radiofrecuencia y extractos de Verbena Officinalis y Nicotiana tabacum también pueden ser útiles.
Ese mismo año se publica un artículo en *Medicina de Familia Andalucía* (Jiménez MªV, La Cruz Villamayor, & Bravo, 2017) en el que afirma que los métodos que incluyan el bloqueo de la respiración del parásito deben ser evitados por riesgo de infección, así como los quirúrgicos por ser cruentos. Así, describe la tracción suave con pinzas finas de borde liso como el método de elección, realizando una biopsia posterior en caso de dejar algún resto de parásito en el huésped por poder causar una parálisis neurotóxica.

Ese año se publica también otro artículo (John et al., 2017) basado en el reporte de dos casos de picadura de garrapata. En ambos procedimientos utilizaron la tracción suave con pinzas, aunque se plantearon otro. Afirman que una inyección de lidocaína y epinefrina bajo la picadura puede ser eficaz, aunque afirman que no hay ningún ensayo clínico que lo apoye.

En la página web *UpToDate* (Hu, 2018) cuyo fin es informar al paciente basándose en la evidencia, afirman que el método de extracción debería ser por tracción con pinzas, sin aplastar ni girar el parásito. Añaden que, en caso de quedar restos de parásito, deben dejarse ahí y que el cuerpo los expulse solos.
<table>
<thead>
<tr>
<th>nº</th>
<th>año</th>
<th>artículo</th>
<th>método</th>
<th>conclusiones</th>
<th>estudio</th>
<th>debilidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1985</td>
<td>(Needham, 1985)</td>
<td>Extracción de garrapatas parasítas de humanos o animales domésticos mediante cinco métodos distintos: vaselina, esmalte de uñas, alcohol isopropílico al 70%, calor y pinzas por tracción suave.</td>
<td>Los cuatro primeros métodos no extraían la garrapata por sí mismos, únicamente la tracción suave resultó eficaz en casi la totalidad de los casos, extrayendo la totalidad del parásito.</td>
<td>experimental: estudio de serie de casos</td>
<td>la significación estadística no ha sido evaluada.</td>
</tr>
<tr>
<td>2</td>
<td>1990</td>
<td>(Schwartz & Goldstein, 1990)</td>
<td>Se extrajo sangre a 689 trabajadores de riesgo, de los cuales, 39 dieron positivo en anticuerpos frente a B. burgdorferi.</td>
<td>La exposición a garrapatas en áreas endémicas resulta ser un factor de riesgo de contraer B. burgdorferi.</td>
<td>experimental</td>
<td>no analiza el método de extracción.</td>
</tr>
<tr>
<td>3</td>
<td>1993</td>
<td>(De Boer & Van Den Bogaard, 1993)</td>
<td>Extracción de garrapatas del género Ixodes de cerdos y ovejas con cinco métodos distintos: gasolina, esmalte de uñas, alcohol metilado, tracción suave con pinzas, rotación con pinzas.</td>
<td>Los tres primeros métodos no resultaron eficaces para extraer la garrapata completamente; de los dos últimos, la tracción suave supone una menor probabilidad de dejar partes del animal incrustadas en el huésped.</td>
<td>experimental: estudio de serie de casos</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1996</td>
<td>(J. A. Oteo et al., 1996)</td>
<td>Estudio con 52 individuos que había sufrido picaduras de garrapatas entre 1991 y 1992.</td>
<td>Tras contrastar los diferentes métodos de extracción y las complicaciones posteriores fueron que la extracción con pinzas evita el desarrollo de complicaciones en casi el 100% de los casos y que la profilaxis antibiótica está indicada únicamente en el caso de utilizar otra técnica de extracción</td>
<td>experimental: estudio de serie de casos</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1997</td>
<td>(Sood et al., 1997)</td>
<td>Se realizó un estudio prospectivo analizando a personas que habían sufrido picaduras de garrapatas infectadas, analizando el tiempo de parasitación y la transmisión de la infección.</td>
<td>Aquellos que habían permanecido más de 72 horas con el parásito presentaron en un 20% de los casos la infección, frente al 1,1% que la desarrollaron de los que estuvieron menos de 72 horas con este alimentándose de su sangre.</td>
<td>experimental: estudio de serie de casos</td>
<td>no toma en cuenta el método de extracción.</td>
</tr>
<tr>
<td>6</td>
<td>1998</td>
<td>(Kahl et al., 1998)</td>
<td>Investigación en la que se analizan picaduras de garrapatas en ratones y la reción entre el tiempo de picadura y la transmisión de la enfermedad.</td>
<td>Se concluyó que no había evidenciado ninguna relación entre el método de extracción del parásito y la transmisión de B. burgdorferi, pero que sí que habían conseguido demostrar que el tiempo de parasitación era un factor determinante de infección si este era igual o superior a las 47 horas.</td>
<td>experimental: estudio de serie de casos</td>
<td>no toma en cuenta el método de extracción.</td>
</tr>
<tr>
<td>7</td>
<td>2000</td>
<td>(Peters & CDC, 2000)</td>
<td>Publicación divulgativa con información relativa a las garrapatas.</td>
<td>Afirmaba que hay que exterrarlas con pinzas, sin torcer o aplastar el parásito.</td>
<td>-</td>
<td>no indica las fuentes.</td>
</tr>
<tr>
<td>8</td>
<td>2001</td>
<td>(José A. Oteo et al., 2001)</td>
<td>Revisión de la bibliografía disponible hasta ese año.</td>
<td>Distingue entre dos aspectos, la facilidad de extracción y la extracción con menor riesgo de infección. Afioma que “la extracción con pinzas protege (...) significativamente del desarrollo de complicaciones”.</td>
<td>revisión sistemática</td>
<td>no contrapone evidencia, únicamente muestra argumentos en favor de su estudio.</td>
</tr>
<tr>
<td>Núm.</td>
<td>Año</td>
<td>Autor</td>
<td>Revisión/Bibliografía</td>
<td>Informe</td>
<td>MÉTODO</td>
<td>Estudio/Información Adicional</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>---</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>9</td>
<td>2002</td>
<td>(Teece & Crawford, 2002)</td>
<td>Revisión de la bibliografía, selección de los 2 (de 40) documentos con mejor evidencia.</td>
<td>Afirma que la evidencia apoya la tracción suave como el método más eficaz para prevenir infecciones. Aporta el argumento de que los métodos de ahogamiento no son útiles por la baja frecuencia de respiración de las garrapatas.</td>
<td>Revisión sistemática</td>
<td>La revisión es de únicamente 40 documentos, habiendo referenciado únicamente 2.</td>
</tr>
<tr>
<td>10</td>
<td>2002</td>
<td>(Moehrle & Rassner, 2002)</td>
<td>Revisión bibliográfica.</td>
<td>Afirma que el método de extracción no influye en el proceso de infección, sino únicamente el tiempo de parasitismo.</td>
<td>Revisión sistemática</td>
<td>Los resultados obtenidos en el estudio no coinciden con las conclusiones. No describe el método de búsqueda de la evidencia.</td>
</tr>
<tr>
<td>11</td>
<td>2002</td>
<td>(Gammons & Salam, 2002)</td>
<td>Revisión bibliográfica.</td>
<td>Apoyándose en (J. A. Oteo et al., 1996) afirma que el método más eficaz es con un fórceps angulado y mosqueado, con una tracción perpendicular a la piel.</td>
<td>Revisión sistemática</td>
<td>No describe el método de búsqueda de la evidencia.</td>
</tr>
<tr>
<td>12</td>
<td>2005</td>
<td>(Soria Gili & Ribera Pibernat, 2005)</td>
<td>Revisión bibliográfica.</td>
<td>Afirma que el método más eficaz es la tracción suave. Aporta la indicación de hacer uso de una aguja estéril para retirar los fragmentos del parásito que puedan haberse quedado adheridos a la piel en caso de haberlo partido.</td>
<td>Revisión sistemática</td>
<td>No describe el método de búsqueda de la evidencia.</td>
</tr>
<tr>
<td>13</td>
<td>2008</td>
<td>(Benavides Moraz et al., 2008)</td>
<td>-</td>
<td>Entre otras cuestiones, afirma que hay que eliminar la garrapata traccionando con pinzas y con alcohol simultáneamente.</td>
<td>-</td>
<td>Aunque lo parezca, no es un estudio: no apoya sus afirmaciones en la evidencia.</td>
</tr>
<tr>
<td>14</td>
<td>2009</td>
<td>(Huerta & Saavedra, 2009)</td>
<td>Revisión bibliográfica.</td>
<td>Recomienda revisar el la piel y el cuero cabelludo tras haber estado en el campo y, en caso de haber garrapatas, extraerlas con pinzas finas y curva y una tracción suave y constante.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>2010</td>
<td>(Rodriguez et al., 2010)</td>
<td>Se valoro la efectividad de los extractos de cinco plantas para matar a las garrapatas del género Ixodes.</td>
<td>El uso de extractos de Nicotiana tabacum puede resultar eficaz para matar garrapatas del género Ixodes.</td>
<td>Estudio clínico aleatorizado</td>
<td>No es útil para determinar la efectividad como ixodizante en garrapatas adheridas al huésped, únicamente en garrapatas que no estén parasitando en el momento de usar las sustancias.</td>
</tr>
<tr>
<td>16</td>
<td>2010</td>
<td>(Barcones Minguela, 2010)</td>
<td>-</td>
<td>Afirma que la forma de extraer la garrapata es ahogándola previamente o traccionando con pinzas con una elevación de 45º.</td>
<td>-</td>
<td>No aporta referencias para sus afirmaciones.</td>
</tr>
<tr>
<td>17</td>
<td>2010</td>
<td>(Ghirga & Ghirga, 2010)</td>
<td>Se evaluó la retirada de garrapatas con sedal de pesca en 17 ocasiones, valorando a la semana 1, 2 y 4 los síntomas de posibles complicaciones.</td>
<td>Afirma que el método de extracción mediante sedal de pesca puede llegar a ser útil en garrapatas de pequeño tamaño, constatando que el 71% de las garrapatas fueron extraídas completamente.</td>
<td>Experimental: Estudio de serie de casos</td>
<td>No contrasta con otros métodos. Únicamente estudia la efectividad extrayendo los parásitos enteros, sin tomar en cuenta</td>
</tr>
<tr>
<td>Ano</td>
<td>Autor</td>
<td>Resumen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 2012 | Duscher et al., 2012 | Se evaluaron cinco pinzas comerciales diferentes indicadas para extraer garrapatas en un total de 596 garrapatas de animales. Después, se rellenaba un cuestionario. Las pinzas que extraen el parásito retorciendo frente a las que lo extraen por tracción supusieron un mayor número de hipóstomos parcialmente o totalmente rotos y, además, un menor número de mandíbulas intactas o rotas. En conclusión, se determinaron las pinzas de tracción como las menos agresivas y más efe
<p>| 2012 | Roupaskias et al., 2012 | Durante cinco años se extrajeron todas las garrapatas de un servicio de urgencias de Grecia mediante el método Murtagh, esto es, anestesiando la zona de extracción, realizando una doble incisión, retirando el parásito y la carne sin manipular al primero y suturado después. Afirma que ninguno de sus pacientes desarrollaron síntomas locales o sistémicos tras la retirada del artrópodo. Además, aconseja que en los servicios sanitarios donde las enfermedades infecciosas de las garrapatas sean endémicas se retiren mediante este método por cualquier profesional de la salud. |
| 2013 | Juckett, 2013 | Compara el nivel de evidencia de tres artículos diferentes y sus resultados. Concluye que la tracción suave resulta la más evidenciada como protectora frente a infecciones, la anestesia del parásito con lidocaín al 2% la declara demasiado lenta y el ahogamiento lo describe como propiciator de infecciones y, por lo tanto, no recomendable. |
| 2013 | Pulido & Cruz, 2013 | Se sumergieron garrapatas adultas en los extractos de dos plantas diferentes para evidenciar la eficacia matándolas. Se evidenció el extracto de Verbena Officinalis como la dilución más eficaz para exterminar garrapatas de mediano y gran tamaño. |
| 2013 | Due et al., 2013 | Se realizó una revisión bibliográfica de los principales métodos de extracción de garrapatas. Se concluye que la evidencia de ese momento afirmaba que los métodos pasivos no eran útiles, que el ahogamiento por gasolina aumentaba el riesgo de infección por B. burgdorferi y que la forma más eficaz y segura de extracción era mediante tracción suave con pinzas o utilizando pinzas comerciales diseñadas para extraer garrapatas. |
| 2014 | Cook, 2014 | Revisión sobre el tiempo de parasitación y su relación con infecciones. El autor concluye que la evidencia demuestra que a mayor tiempo de parasitación mayor riesgo por B. burgdorferi. Además, afirma que la infección por B. burgdorferi no se puede descartar independientemente del tiempo de fijación del parásito sobre el huésped. |</p>
<table>
<thead>
<tr>
<th>Número</th>
<th>Año</th>
<th>Autor(es)</th>
<th>Descripción</th>
<th>Metodología</th>
<th>Procedimiento</th>
<th>Fuente de datos</th>
<th>Resultados/Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>2014</td>
<td>Buller Viqueira et al., 2014</td>
<td>Estudio observacional, rellenando un autocuestionario anónimo de 10 preguntas.</td>
<td>-</td>
<td>El 90% de los enfermeros encuestados aplican alguna susancia que ahogue el parásito. El 81% realiza después la tracción suave con pinzas.</td>
<td>Encuesta</td>
<td>La masa de encuestados es demasiado baja como para ser científicamente relevante el estudio.</td>
</tr>
<tr>
<td>25</td>
<td>2014</td>
<td>Sheele et al., 2014</td>
<td>Se colocaron 48 garrapatas en diez sjetos distintos. Posteriormente se les inyectó a los huéspedes Invermectin o un placebo.</td>
<td>-</td>
<td>No hay diferencia estadística significativa en la mortalidad de las garrapatas entre usar Invermectin o un placebo.</td>
<td>Estudio clínico aleatorizado</td>
<td>Hay una mortalidad demasiado alta en ambos casos como para tomar en cuenta el estudio.</td>
</tr>
<tr>
<td>26</td>
<td>2015</td>
<td>(CDC, 2018)</td>
<td>-</td>
<td>-</td>
<td>Propone el método de tracción sin retorcer o romper la garrapata como el más seguro y eficaz.</td>
<td>Encuesta</td>
<td>No aporta la bibliografía en la que basa sus afirmaciones.</td>
</tr>
<tr>
<td>27</td>
<td>2015</td>
<td>(Piñeiro Pérez & Carabaño Aguado, 2015)</td>
<td>Revisión sistemática de la bibliografía.</td>
<td>-</td>
<td>Recomienda extraerlas con pinzas curvas y una tracción continua, hasta que sea el parásito el que se libere.</td>
<td>Revisión bibliográfica</td>
<td>No aporta información sobre cómo y donde ha buscado la información.</td>
</tr>
<tr>
<td>28</td>
<td>2015</td>
<td>(Fernández-Lerones et al., 2016)</td>
<td>Descripción de dos casos clínicos y forma de actuar.</td>
<td>-</td>
<td>Recomienda la tracción suave y perpendicular a la piel.</td>
<td>Reporte de casos</td>
<td>Únicamente apoya su afirmación en un artículo.</td>
</tr>
<tr>
<td>29</td>
<td>2016</td>
<td>(Treiber et al., 2016)</td>
<td>Expone un caso como ejemplo de la técnica desarrollada por su equipo.</td>
<td>-</td>
<td>Recomienda utilizar para las ninfas un bisturi para hacer palanca y soltar el parásito.</td>
<td>Reporte de casos</td>
<td>Apoya su artículo en la evidencia de solo un artículo, escrito por él mismo.</td>
</tr>
<tr>
<td>30</td>
<td>2016</td>
<td>(Rodríguez Alarcón, 2016)</td>
<td>Revisión bibliográfica de todas las enfermedades relacionadas con las garrapatas.</td>
<td>-</td>
<td>Extracción por tracción mediante pinzas de borde romo.</td>
<td>Revisión bibliográfica</td>
<td>No detalla la metodología de búsqueda.</td>
</tr>
<tr>
<td>31</td>
<td>2017</td>
<td>(Colomer Martinez, 2017)</td>
<td>Revisión bibliográfica de los métodos de extracción de garrapatas y pruebas de laboratorio que determinen infecciones por estos parásitos.</td>
<td>-</td>
<td>Apoya el uso de las pinzas, hilo de pescar, bisturí como palanca y la cirugía menor; también el uso de sustancias ixoicidas.</td>
<td>Revisión bibliográfica</td>
<td>Algunas conclusiones no son coherentes con los estudios citados para hacer rías afirmaciones.</td>
</tr>
<tr>
<td>32</td>
<td>2017</td>
<td>(Jiménez MV et al., 2017)</td>
<td>Revisión bibliográfica de los métodos principales de extracción y el riesgo de infección.</td>
<td>-</td>
<td>Desaconseja ahogar el parásito por el riesgo de infección, así como la cirugía menor por ser demasiado cruenta. Apoya la racción suave con pinzas.</td>
<td>Revisión bibliográfica</td>
<td>No muestra la metodología de la revisión.</td>
</tr>
<tr>
<td>33</td>
<td>2017</td>
<td>(John et al., 2017)</td>
<td>Reporte de dos casos de picadura de garrapata. En ambos procedimientos utilizaron la tracción suave con pinzas, aunque se plantearon otro.</td>
<td>-</td>
<td>Afirmar que una inyección de lidocaína y epinefrina bajo la picadura puede ser eficaz, aunque afirman que no hay ningún ensayo clínico que lo apoye.</td>
<td>Reporte de casos</td>
<td>No analiza el método propuesto, únicamente lo propone.</td>
</tr>
<tr>
<td>34</td>
<td>2018</td>
<td>(Hu, 2018)</td>
<td>-</td>
<td>-</td>
<td>Web UpToDate (cuyo fin es informar al paciente basándose en la evidencia) afirman que el método de extracción debería ser por tracción con pinzas, sin aplastar ni girar el parásito. Añaden que, en caso de quedar restos de parásito, deben dejarse ahí y que el cuerpo los expulse solos.</td>
<td>-</td>
<td>No muestra la metodología de la revisión.</td>
</tr>
</tbody>
</table>
4.2. Métodos de extracción descritos

Tras un análisis detallado de cada uno de los treinta artículos arriba expuestos, se han extraído un total de 31 métodos o técnicas diferentes para extraer garrapatas.

El total de técnicas, ordenadas por cronología según los estudios en los que aparecen, así como referenciando todos los estudios en los que se califican de forma positiva o negativa puede verse de forma esquemática en la Tabla 4. Documentos que apoyan o no apoyan cada método. Ordenadas alfabéticamente, los métodos nombrados son:

1. Extracción con bisturí por palanca
2. Extracción con pinza y bisturí por disección
3. Extracción con pinzas
4. Extracción con pinzas Adson dentadas y tracción suave
5. Extracción con pinzas comerciales
6. Extracción con pinzas de borde romo y tracción suave
7. Extracción con pinzas de punta fina por tracción suave
8. Extracción con pinzas de punta fina y sin dientes por tracción suave
9. Extracción con pinzas dentadas
10. Extracción con pinzas previo ahogamiento con alcohol
11. Extracción con pinzas sin punta y curvas por tracción suave
12. Extracción con pinzas y por rotación
13. Extracción con pinzas y por tracción suave
14. Extracción con sedal de pesca rodeando el parásito y tracción suave
15. Extracción con tijeras mediante bisección del parásito
16. Extracción manual (con los dedos)
17. Extracción mediante ingestión del antiparásito oral Ivermectin
18. Extracción por abrasión con cerillas
19. Extracción por abrasión con cigarrillos
20. Extracción por abrasión con mechero
21. Extracción por ahogamiento
22. Extracción por ahogamiento con aceite
23. Extracción por ahogamiento con alcohol
24. Extracción por ahogamiento con esmalte de uñas
25. Extracción por ahogamiento con gasolina
26. Extracción por ahogamiento con vaselina
27. Extracción por anestesia con lidocaína
28. Extracción por aplastamiento del parásito
29. Extracción por biopsia punch del parásito
30. Extracción por inyección intradérmica de anestesia (lidocaína) y epinefrina (disminuyendo el riego sanguíneo de la zona)
31. Extracción quirúrgica por doble incisión y posterior sutura sin tocar el parásito.
Se han clasificado de esta forma los métodos según sean pasivos (se realizan acciones que no incluyen coger el parásito y traccionar de él), activos (se tracciona del parásito) o quirúrgicos (se realiza una cirugía menor periparasitaria). Posteriormente, se han distribuido los métodos en grupos según las analogías de los procesos de extracción.

1. Métodos pasivos
 a. Por ahogamiento
 i. Ahogamiento sensu lato
 ii. Con aceite
 iii. Con alcohol
 iv. Con esmalte de uñas
 v. Con gasolina
 vi. Con vaselina
 b. Por abrasión
 i. Con cerillas
 ii. Con cigarrillos
 iii. Con mechero
 c. Otros
 i. Ingestión del antiparásito oral Ivermectin
 ii. Anestesia con lidocaína
 iii. Tijeras mediante bisección del parásito

2. Métodos activos
 a. Pinzas
 i. Pinzas sensu lato
 ii. Adson dentadas y tracción suave
 iii. Dentadas
 iv. Comerciales
 v. Y tracción suave
 vi. Y rotación
 vii. Borde romo y tracción suave
 viii. Punta fina por tracción suave
 ix. Punta fina y sin dientes por tracción suave
 x. Y previo ahogamiento con alcohol
 xi. Sin punta y curvas por tracción suave
 b. Otros
 i. Extracción manual (con los dedos)
 ii. Aplastamiento del parásito
 iii. Bisturí por palanca
 iv. Sedal de pesca rodeando el parásito y tracción suave

3. Métodos quirúrgicos
 i. Pinza y bisturí por disección
 ii. Biopsia punch del parásito
 iii. Inyección intradérmica de lidocaína y epinefrina
 iv. Doble incisión y posterior sutura sin tocar el parásito.
4.2.1. Métodos pasivos por ahogamiento

Se describen un total de cinco técnicas distintas (seis si se tiene en cuenta el ahogamiento en general). La técnica, a grandes rasgos, es similar en todos ellos. Consiste en obstruir las vías respiratorias del artrópodo impregnándolo en una sustancia (gasolina, vaselina, alcohol, esmalte de uñas y aceite. Teóricamente, si el parásito no puede respirar, soltaría al huésped para poder hacerlo. Por otro lado, otras teorías señalan que, al no poder respirar, regurgitarían la materia intestinal sobre el huésped y seguido se soltarían. Hay evidencia que influye en esta técnica, primero, la baja frecuencia respiratoria del parásito, de unas 15 respiraciones por hora (Teece & Crawford, 2002) y, segundo, la conclusión de una investigación que constata como el ahogamiento por gasolina es un factor de riesgo para el desarrollo de la EL tras la picadura (Needham, 1985).

4.2.2. Métodos pasivos por abrasión

Los tres métodos siguen el mismo proceso: producir una fuente de calor y acercarla al parásito; quién, al verse amenazado, se liberaría y huiría. Estas fuentes de calor descritas son la llama de un mechero, un cigarrillo y una cerilla. Similar a el ahogamiento, hay estudios que afirman que son peligrosos para el huésped por la regurgitación del parásito (J. A. Oteo et al., 1996) y hay quién añade que puede ser peligroso para el huésped por poder quemarse (Due et al., 2013).

4.2.3. Otros métodos pasivos

Se han descrito otros tres métodos pasivos que no incluyen fuente de calor ni ahogamiento del parásito. La ingestión del antiparásito oral Ivermectin se propuso como alternativa (dado que actualmente se utiliza en animales domésticos). Tras el estudio de 2014, no se pudo concluir que fuese efectivo, aunque el autor afirma que pudo haber fallos metodológicos, por lo que tampoco se puede concluir lo contrario (Sheele et al., 2014). La anestesia del parásito con lidocaína se propuso como otra forma de hacer que el parásito se liberara solo; algunos estudios respaldan la idea (Teece & Crawford, 2002) (Juckett, 2013), otros no (Gammons & Salam, 2002) (Rodríguez Alarcón, 2016) por considerarla lenta. Se describe un último método que se ha introducido en esta categoría, la bisección con pinzas. Hay quien afirma que el parásito se liberaría tras seccionarlo, pero que, siendo la cabeza de este neurotóxica, el método es arriesgado (Rodríguez Alarcón, 2016).
4.2.4. **Métodos activos con pinzas**

Se han encontrado once formas diferentes de extraer garrapatas con pintas, aunque la técnica base es la misma (enganchar la garrapata y tirar de ella), lo que varía en cada una es la forma de las pinzas.

Así, hay quien afirma que lo ideal es que tengan dientes en la punta (Soria Gili & Ribera Pibernat, 2005), o quien afirma que si son curvas son más eficaces (Gammons & Salam, 2002; Piñeiro Pérez & Carabaño Aguado, 2015; Roupaskias et al., 2012). Otros inciden en que la punta debe ser estrecha (CDC, 2018; Colomer Martínez, 2017; Roupaskias et al., 2012).

La que aparece más nombrada como la idónea es extraer los parásitos con unas pinzas por una tracción suave (Barcones Minguela, 2010; CDC, 2018; Colomer Martínez, 2017; De Boer & Van Den Bogaard, 1993; Due et al., 2013; Gammons & Salam, 2002; Needham, 1985; J. A. Oteo et al., 1996; José A. Oteo et al., 2001; Piñeiro Pérez & Carabaño Aguado, 2015; Roupaskias et al., 2012), a lo que añaden que sin dientes y con punta fina. Puede verse en la Ilustración 4.

Ilustración 4. Extracción con pinzas de punta fina y tracción suave

4.2.5. **Otros métodos activos**

Se han descrito cuatro métodos más de extraer garrapatas activamente. La extracción manual (con los dedos) y la extracción por aplastamiento aparecen descritas en los artículos como podo útiles y peligrosas (Gammons & Salam, 2002; J. A. Oteo et al., 1996; José A. Oteo et al., 2001; Rodríguez Alarcón, 2016).

Un médico alemán describe una técnica en la que, en vez de pinzas, utiliza la punta de un bisturí como palanca (Treiber et al., 2016), véase la Ilustración 5.

Ilustración 5. Extracción con bisturí como palanca

Dos médicos italianos describen una técnica donde rodean al parásito con un sedal de pesca y tiran suavemente de él hasta que se libera, describiéndolo como muy útil en caso de no poder coger la garrapata con pinzas (Ghirga & Ghirga, 2010), el método puede apreciarse en la Ilustración 6.

4.2.6. Extracción mediante procedimiento quirúrgico
Se han descrito cuatro, uno teórico que no se ha probado todavía (inyectar intradérmicamente al huésped lidocaína y epinefrina que anestesie al parásito y disminuya el riesgo sanguíneo en la zona, lo que provocaría la liberación de este) y tres más que ya se han probado (John et al., 2017).

Son tres formas diferentes de realizar una o más incisiones en el huésped, retirando la porción de epitelio donde está el parásito, junto con este, de forma que no se manipula la garrapata y se evita que libere contenido intestinal o salival en el huésped. Los métodos descritos son, usar pinzas y bisturí (J. A. Oteo et al., 1996), realizar una biopsia punch (Moehrle & Rassner, 2002) o realizar una doble incisión en v, retirando parásito y epitelio, y posteriormente suturar (Roupaskias et al., 2012).
<table>
<thead>
<tr>
<th>Orden</th>
<th>Método de retirada</th>
<th>Estudios que lo recomiendan</th>
<th>Nº de críticas positivas</th>
<th>Nº de críticas negativas</th>
<th>Estudios que no lo recomiendan</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Extracción por ahogamiento con esmalte de uñas</td>
<td>(Barcones Minguela, 2010)</td>
<td>1</td>
<td>4</td>
<td>(Needham, 1985) (De Boer & Van Den Bogaard, 1993) (Juckett, 2013) (Due et al., 2013)</td>
</tr>
<tr>
<td>3</td>
<td>Extracción por ahogamiento con alcohol</td>
<td></td>
<td>0</td>
<td>7</td>
<td>(Needham, 1985) (De Boer & Van Den Bogaard, 1993) (José A. Oteo et al., 2001) (Juckett, 2013) (Due et al., 2013) (Rodríguez Alarcón, 2016) (Jiménez MªV et al., 2017)</td>
</tr>
<tr>
<td>4</td>
<td>Extracción por abrasamiento con cerillas</td>
<td></td>
<td>0</td>
<td>1</td>
<td>(Needham, 1985)</td>
</tr>
<tr>
<td>7</td>
<td>Extracción con pinzas y por rotación</td>
<td></td>
<td>0</td>
<td>5</td>
<td>(De Boer & Van Den Bogaard, 1993) (Gammons & Salam, 2002) (Due et al., 2013) (CDC, 2018) (Hu, 2018)</td>
</tr>
<tr>
<td>8</td>
<td>Extracción manual (con los dedos)</td>
<td></td>
<td>0</td>
<td>4</td>
<td>(J. A. Oteo et al., 1996) (José A. Oteo et al., 2001) (Gammons & Salam, 2002) (Rodríguez Alarcón, 2016)</td>
</tr>
<tr>
<td>9</td>
<td>Extracción por ahogamiento con aceite</td>
<td></td>
<td>0</td>
<td>4</td>
<td>(J. A. Oteo et al., 1996) (José A. Oteo et al., 2001) (Fernández-Lerones et al., 2016) (Colomer Martínez, 2017)</td>
</tr>
<tr>
<td>10</td>
<td>Extracción con pinza y bisturí por disección</td>
<td>(J. A. Oteo et al., 1996)</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Extracción por abrasamiento con cigarrillos</td>
<td></td>
<td>0</td>
<td>2</td>
<td>(José A. Oteo et al., 2001) (Jiménez MªV et al., 2017)</td>
</tr>
<tr>
<td>12</td>
<td>Extracción por ahogamiento</td>
<td></td>
<td>0</td>
<td>1</td>
<td>(Teece & Crawford, 2002)</td>
</tr>
<tr>
<td>13</td>
<td>Extracción por anestesia con lidocaína</td>
<td>(Teece & Crawford, 2002) (Juckett, 2013)</td>
<td>2</td>
<td>2</td>
<td>(Gammons & Salam, 2002) (Rodríguez Alarcón, 2016)</td>
</tr>
<tr>
<td>14</td>
<td>Extracción con pinzas</td>
<td>(Moehrle & Rassner, 2002) (Juckett, 2013) (John et al., 2017) (Hu, 2018)</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nivel</td>
<td>Procedimiento</td>
<td>Referencia</td>
<td>Ocasiones</td>
<td>1er Autor</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Extracción por biopsia punch del parásito</td>
<td>(Moehrle & Rassner, 2002)</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Extracción con pinzas dentadas</td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Extracción por aplastamiento del parásito</td>
<td>(Gammons & Salam, 2002)</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Extracción por abrasión con mechero</td>
<td>(Gammons & Salam, 2002) (Soria Gili & Ribera Pibernat, 2005) (Hu, 2018)</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Extracción con pinzas sin punta y curvas por tracción suave</td>
<td>(Gammons & Salam, 2002) (Roupaskias et al., 2012) (Piñeiro Pérez & Carabaño Aguado, 2015)</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Extracción con pinzas Adson dentadas y tracción suave</td>
<td>(Soria Gili & Ribera Pibernat, 2005)</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Extracción con pinzas previo ahogamiento con alcohol</td>
<td>(Benavides Moraz et al., 2008)</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Extracción con sedal de pesca rodeando el parásito y tracción suave</td>
<td>(Jaime, Betancourt E., & Giraldo R., 2015) (Colomer Martínez, 2017)</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Extracción con pinzas comerciales</td>
<td>(Duscher et al., 2012) (Juckett, 2013) (Due et al., 2013) (Jiménez MªV et al., 2017)</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Extracción quirúrgica por doble incisión y posterior sutura sin tocar el parásito.</td>
<td>(Roupaskias et al., 2012) (Colomer Martínez, 2017)</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Extracción con pinzas de punta fina por tracción suave</td>
<td>(Roupaskias et al., 2012) (CDC, 2018) (Colomer Martínez, 2017) (Huerta & Saavedra, 2009)</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Extracción mediante ingestión del antiparásito oral ivermectin</td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Extracción con pinzas de punta fina y sin dientes por tracción suave</td>
<td>(Fernández-Lerones et al., 2016) (Jiménez MªV et al., 2017)</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Extracción con bisturí por palanca</td>
<td>(Treiber et al., 2016) (Colomer Martínez, 2017)</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Extracción con tijeras mediante bisección del parásito</td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Extracción con pinzas de borde romo y tracción suave</td>
<td>(Rodríguez Alarcón, 2016)</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Extracción por inyección intradérmica de anestesia (lidocaína) y epinefrina (disminuyendo el riego sanguíneo de la zona)</td>
<td>(John et al., 2017)</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
5. DISCUSIÓN

Tal y como se expone anteriormente se han descrito 31 métodos diferentes en los 34 artículos analizados. Sumando las técnicas nombradas por recomendación o por no recomendación, se han hallado 95 menciones en total.

Organizando y agrupando las diferentes técnicas según criterios comunes de recomendación (y de no recomendación), así como contraponiendo argumentos, se demuestra lo que sigue.

Siguiendo el orden explicado, en el apartado Métodos de extracción, se exponen a continuación las diferentes técnicas descritas, organizadas y agrupadas por criterios comunes de recomendación y no recomendación, señalando los argumentos que aporta la literatura actual.

En primer lugar, la mayor parte de las veces en que se han citado los métodos pasivos de extracción por ahogamiento ha sido como ejemplo de lo que no hay que hacer. Así, la extracción por ahogamiento sensu lato del parásito no sería eficaz debido a la baja frecuencia respiratoria de este (Teece & Crawford, 2002). El ahogamiento por aceite no está recomendado por inefectividad (Colomer Martínez, 2017) o por el riesgo de desarrollar complicaciones (Fernández-Lerones et al., 2016; J. A. Oteo et al., 1996; José A. Oteo et al., 2001). El ahogamiento por alcohol y vaselina tampoco está apoyado por ningún estudio, y no están recomendados por posibilitar el desarrollo de complicaciones (Colomer Martínez, 2017; De Boer & Van Den Bogaard, 1993; Due et al., 2013; Jiménez MAV et al., 2017; Juckett, 2013; Needham, 1985; José A. Oteo et al., 2001; Rodríguez Alarcón, 2016). La extracción por ahogamiento con esmalte de uñas o gasolina se encuentran apoyadas por el mismo estudio (Barcones Minguela, 2010), aunque varios no recomiendan el ahogamiento con esmalte por el desarrollo de complicaciones (De Boer & Van Den Bogaard, 1993; Due et al., 2013; Juckett, 2013; Needham, 1985) ni la gasolina por haber constatado que supone un factor de riesgo para la infección por B. burgdorferi (Gammons & Salam, 2002; Moehrle & Rassner, 2002).

En segundo lugar, los métodos de extracción por abrasión tampoco están apoyados por ningún estudio por favorecer la rotura del parásito o por el riesgo de quemar la piel; así, ni las cerillas (Needham, 1985), ni los cigarrillos (Jiménez MAV et al., 2017; José A. Oteo...
et al., 2001), ni la llama del mechero (Due et al., 2013; Fernández-Lerones et al., 2016; Gammons & Salam, 2002; Juckett, 2013) están indicadas para extraer garrapatas.

En tercer lugar, el resto de métodos pasivos de extracción tampoco están indicados. La ingestión de Ivermectin no ha aportado evidencias de efectividad (Sheele et al., 2014), la bisección del parásito con tijeras se constata como peligrosa por dejar gran parte de este dentro del huésped (Rodríguez Alarcón, 2016) y en la impregnación de lidocaína no se encuentra consenso, unos la encuentran útil (Juckett, 2013; Teece & Crawford, 2002) y otros estudios afirman que es peligrosa (Rodríguez Alarcón, 2016) o demasiado lenta para ser efectiva (Gammons & Salam, 2002).

En cuarto lugar, de las once técnicas descritas relacionadas con el uso de pinzas, la evidencia descarta cuatro de ellas. Las pinzas dentadas (con tracción suave o sin ella) se descartan por poder producir daños en el parásito, pudiendo dejar partes de él incrustadas en el huésped (Gammons & Salam, 2002), aunque algunos la recomienden (Hu, 2018; John et al., 2017; Juckett, 2013; Moehrle & Rassner, 2002). La previa impregnación en alcohol también está descartada por ser factor de riesgo de infección (Colomer Martínez, 2017; De Boer & Van Den Bogaard, 1993; Due et al., 2013; Jiménez MaV et al., 2017; Juckett, 2013; Needham, 1985; José A. Oteo et al., 2001; Rodríguez Alarcón, 2016), aun cuando una revisión bibliográfica (que no explica la metodología seguida) lo recomienda (Benavides Moraz et al., 2008). La extracción con pinzas por rotación está evidenciada como poco eficaz y peligrosa por el gran índice de cabezas del parásito incrustadas que supone (CDC, 2018; De Boer & Van Den Bogaard, 1993; Due et al., 2013; Gammons & Salam, 2002; Hu, 2018), sin que encuentre apoyos por parte de ningún estudio.

De las otras siete técnicas (pinzas en general, comerciales, tracción suave con pinzas, pinzas borde romo, pinzas punta fina, punta fina y sin dientes y, punta fina, curva y sin dientes), las características que encuentran mayor evidencia son que las pinzas sean sin dentar para no desgarrar el parásito (Fernández-Lerones et al., 2016; Jiménez MaV et al., 2017), de punta fina que facilite el agarre (CDC, 2018; Colomer Martínez, 2017; Fernández-Lerones et al., 2016; Jiménez MaV et al., 2017; Roupaskias et al., 2012), por tracción suave (Barcones Minguela, 2010; CDC, 2018; Colomer Martínez, 2017; De Boer & Van Den Bogaard, 1993; Due et al., 2013; Fernández-Lerones et al., 2016; Gómez-Cadiñanos R et al., 1997; Jiménez MaV et al., 2017; Needham, 1985; José A. Oteo et al.,
2001; Roupaskias et al., 2012) y las pinzas comerciales (Due et al., 2013; Duscher et al., 2012; Jiménez MaV et al., 2017; Juckett, 2013).

En quinto lugar, la extracción manual y la extracción por aplastamiento la evidencia las descarta por el riesgo de dejar partes del artrópodo incrustadas (Fernández-Lerones et al., 2016; Gammons & Salam, 2002; Soria Gili & Ribera Pibernat, 2005) o por el riesgo de infección (Hu, 2018; J. A. Oteo et al., 1996; José A. Oteo et al., 2001).

En sexto lugar, los dos métodos activos, además del uso de pinzas, que se recomiendan son la extracción usando un bisturí de palanca (Treiber et al., 2016) y el uso del sedal de pesca para las garrapatas en etapa de ninfa (Ghirga & Ghirga, 2010); sin encontrar evidencia en contra, aunque se ve recomendable realizar algún estudio que apoye estas técnicas.

En último lugar, se han descrito técnicas quirúrgicas y una paraquirúrgica que pueden ser útiles. La extracción con pinza y bisturí está recomendada cuando la pinza falle (J. A. Oteo et al., 1996), la extracción por biopsia punch está recomendada aun habiendo extraído ya el parásito como medida cautelar frente a la neurotoxicidad de la cabeza de este (Moehrle & Rassner, 2002), la doble incisión con sutura posterior es la que más apoyos recibe, recomendándola realizar en todos los casos en los que la extracción se lleve a cabo en un centro sanitario por un profesional (Colomer Martínez, 2017; Roupaskias et al., 2012), aunque otros autores la califican como “demasiado cruenta” e “innecesaria” (J. A. Oteo et al., 1996). La paraquirúrgica consiste en una inyección subcutánea de lidocaína y epinefrina que anestesien la zona y disminuyan el riego sanguíneo, de forma que el parásito se libere solo (John et al., 2017); esta técnica es únicamente una teoría, que no se ha contrastado con ningún estudio.

En uno de los estudios (Colomer Martínez, 2017) se afirma que la extracción quirúrgica puede ser el método de elección cuando la extracción se lleve a cabo en un centro sanitario por parte de un profesional. Debido al bajo riesgo de regurgitación de materia intestinal por la baja manipulación del parásito, así como a la nula incidencia de cabezas incrustadas tras el proceso, este método puede ser muy útil e, incluso, el de rutina en un centro sanitario.

En uno de los estudios (Colomer Martínez, 2017) se afirma que, citando dos investigaciones (Pulido & Cruz, 2013; Rodríguez et al., 2010), los extractos de algunas plantas pueden ser útiles para la extracción de las garrapatas gracias a su efecto ixicida.
(es decir, que mata las garrapatas del género *Ixodes*). Sin embargo, tras la revisión de dichas investigaciones no se puede dar por verdadera la afirmación anterior. Ambos estudios concluyen que, de las plantas estudiadas, solo dos pueden tener efecto ixocida (*Nicotiana tabacum* y *Verbena Officinalis*). No por ello se puede concluir que sirvan para extraer garrapatas, dado que los experimentos se llevaron a cabo en garrapatas sin parasitar y llevó casi 24 horas que murieran.

Un resumen de la discusión puede verse en la página siguiente, en la *Tabla 5. Contraposición de argumentos de las diferentes técnicas de extracción.*
<table>
<thead>
<tr>
<th>Clase</th>
<th>Subclase</th>
<th>Método de retiro</th>
<th>Argumentos a favor</th>
<th>Argumentos en contra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahogamiento</td>
<td>Ahogamiento sensu lato</td>
<td>Con ahogamiento</td>
<td>-</td>
<td>• Frecuencia respiratoria de las garrapatas demasiado baja como para ahogarlas (15 respiraciones por hora).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Con aceite</td>
<td>-</td>
<td>• Riesgo de regurgitar material intestinal en el huésped, riesgo alto de infección.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Con alcohol</td>
<td>-</td>
<td>• Gasolina: factor de riesgo de infección por B. burgdorferi y desarrollar así EL.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Con esmalte de uñas</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Con gasolina</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Con vaselina</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abrasión</td>
<td>Con cerillas</td>
<td>-</td>
<td>• Riesgo de quemar al huésped.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Con cigarrillos</td>
<td>-</td>
<td>• Riesgo de regurgitar material intestinal en el huésped, riesgo alto de infección.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Con llama de mechero</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ingestión oral antiparásitos</td>
<td>Ivermectin</td>
<td>-</td>
<td>• No demostrada su eficacia.</td>
</tr>
<tr>
<td>Otros</td>
<td>Anestesia del parásito (lidocaína)</td>
<td>• El parásito se libera pasados unos minutos.</td>
<td>• Demasiado lento.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bisección con tijeras del parásito</td>
<td>• El parásito puede acabar sacado solo la cabeza.</td>
<td>• La cabeza puede quedarse incrustada, riesgo de desarrollo de complicaciones por ser neurotóxica</td>
<td></td>
</tr>
<tr>
<td>Uso de pinzas</td>
<td>Previo ahogamiento en alcohol</td>
<td>-</td>
<td>• Ver métodos pasivos, ahogamiento con alcohol.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adson dentadas y tracción suave</td>
<td>-</td>
<td>• Riesgo de rotura del parásito con los dientes de la pinza.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dentadas</td>
<td>-</td>
<td>• Todas han resultado útiles, con bajo riesgo de infección y complicaciones.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y rotación</td>
<td>• Libera el parásito de forma efectiva.</td>
<td>• Riesgo alto de dejar la cabeza de este incrustada.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinzas sensu lato</td>
<td>• Todas han resultado útiles, con bajo riesgo de infección y complicaciones.</td>
<td>• Las garrapatas de pequeño tamaño son difíciles de agarrar con pinzas.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y tracción suave</td>
<td>• Todas han resultado útiles, con bajo riesgo de infección y complicaciones.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Borde romo y tracción suave</td>
<td>• Todas han resultado útiles, con bajo riesgo de infección y complicaciones.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Punta fina por tracción suave</td>
<td>• Todas han resultado útiles, con bajo riesgo de infección y complicaciones.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Punta fina y sin dientes por tracción suave</td>
<td>• Todas han resultado útiles, con bajo riesgo de infección y complicaciones.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sin punta, curvas, tracción suave</td>
<td>• Todas han resultado útiles, con bajo riesgo de infección y complicaciones.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comerciales</td>
<td>• Gran efectividad</td>
<td>• Riesgo de infección y desarrollo de complicaciones, la cabeza del parásito se queda incrustada.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extracción manual</td>
<td>-</td>
<td>• No hay más que un estudio que lo respalde.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aplastamiento del parásito</td>
<td>• Gran efectividad.</td>
<td>• No hay más que un estudio que lo respalde.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bisturi por palanca</td>
<td>-</td>
<td>• No hay más que un estudio que lo respalde.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sedal de pesca rodeando el parásito y tracción suave</td>
<td>• Gran efectividad para los especímenes en etapa de ninfa.</td>
<td>• No hay más que un estudio que lo respalde.</td>
<td></td>
</tr>
<tr>
<td>Otros</td>
<td>Pinza y bisturi por disección</td>
<td>• Efectivo.</td>
<td>• Demasiado cruento.</td>
<td></td>
</tr>
<tr>
<td>Quirúrgico</td>
<td>Biopsia punch del parásito</td>
<td>• Efectivo.</td>
<td>• Demasiado cruento.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inyección intradérmica de lidocaína y epinefrina</td>
<td>• Efectividad teórica.</td>
<td>• Implica el uso de medicación.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Doble incisión y posterior sutura sin tocar el parásito.</td>
<td>• Totalmente efectivo.</td>
<td>• Demasiado cruento como para hacerlo de rutina.</td>
<td></td>
</tr>
</tbody>
</table>
6. CONCLUSIONES

De acuerdo a la evidencia actual y tras lo analizado anteriormente, se pueden formular las siguientes afirmaciones con respecto a los métodos de extracción de garrapatas y su relación con la infección por *B. burgdorferi*.

1. Los métodos basados en ahogar (con gasolina, aceite, esmalte de uñas, alcohol o vaselina) o quemar (con cerillas, un cigarrillo encendido o la llama de un mechero) al parásito deben descartarse por el riesgo de que regurgiten material intestinal colonizado por *B. burgdorferi* sobre el huésped, además, los métodos de ahogamiento no son eficaces por la baja frecuencia respiratoria de las garrapatas.

2. La transmisión de *B. burgdorferi* se ha relacionado más estrechamente con el ahogamiento con gasolina que con cualquier otro método de ahogamiento.

3. No hay evidencia que apoye el uso de Ivermectin como antiparásito oral.

4. La anestesia del parásito con lidocaína gel, aun siendo un método eficaz para extraerlo íntegramente, puede resultar peligroso por una posible regurgitación de este sobre el huésped, además de ser un método demasiado lento.

5. La bisección del parásito con tijeras, la extracción manual o el aplastamiento de este debe evitarse por el riesgo de que la cabeza del artrópodo, que es neurotóxica, se quede incrustada en el huésped.

6. La extracción del parásito con pinzas sin dentar y de punta fina se ha descrito como una técnica útil y segura. Sobre la curvatura o no de las pinzas no existe evidencia suficiente que determine cuál es más segura. Las pinzas comerciales también pueden ser una opción segura.

7. Las ninfas (etapa vital de las garrapatas con mayor capacidad de transmitir la *B. burgdorferi*) se extraerán de forma más segura mediante tracción con seda de pesca o el uso de un bisturí como palanca; debido a que, por su tamaño, resulta complicado agarrarlas con pinzas.

8. La intervención quirúrgica puede tomarse como el método rutinario de elección en los centros sanitarios cuando la garrapata sea de pequeño tamaño, debido al bajo riesgo de regurgitación de materia intestinal por la baja manipulación del parásito.
Además, tras este proceso, el número de cabezas de garrapata incrustadas en la piel del huésped es nulo.

9. Se ve procedente estudiar el método de inyección subcutánea de epinefrina y lidocaína para la extracción de garrapatas, aunque pueda resultar poco práctico por la necesidad de usar medicación y la, teóricamente, lentitud de desprendimiento del parásito.
7. PROPUESTA TEÓRICA DEL TRABAJO

7.1. Introducción

7.1.1. Identificación del problema

Tal y como se ha demostrado en esta revisión bibliográfica, el método por el que se extraen las garrapatas puede ser un factor protector o un factor de riesgo frente a la transmisión de la EL.

Se deben desechar los métodos tradicionales de la práctica diaria que incluyan el ahogamiento, combustión o rotura del parásito (Kahl et al., 1998). En su lugar, se debe hacer uso de métodos que avala la evidencia, tales como la tracción suave con unas pinzas de punta fina sin dientes (J. A. Oteo et al., 1996), la tracción con sedal de pesca (Ghirga & Ghirga, 2010), la palanca con bisturí (Treiber et al., 2016) o la cirugía menor (Roupaskias et al., 2012).

7.1.2. Identificación de los factores de riesgo

Tal y como se concluye en un estudio del año 2016 (Bonet Alavés et al., 2016), en Navarra la incidencia de la EL se sitúa en 0,71 casos/100.000 habitantes/año, 2,84 veces por encima de la media española. Por otro lado, en Seroprevalencia de la enfermedad de Lyme en Navarra (Oteiza-Olaso et al., 2011), se describe que en la población foral, la profesión de ganadero es un factor de riesgo, así como vivir en el área de Tafalla.

7.1.3. Vulnerabilidad del problema

Incluir un protocolo de práctica clínica que guíe a los profesionales que extraigan garrapatas en los centros de salud puede ser una medida eficaz, fácil y barata para prevenir la infección por B. burgdorferi y el consiguiente desarrollo de EL. Este hecho queda justificado, principalmente, por:

- La evidencia de que se realizan prácticas desaconsejadas diariamente (Buller Viqueira et al., 2014)
- El alto índice de infectados por B. burgdorferi (Oteiza-Olaso et al., 2011)
- La idoneidad de los servicios de atención primaria para estas técnicas (Vázquez-López et al., 2018).
7.2. **Objetivos**

7.2.1. **Objetivo principal**
- Disminuir el número de garrapatas que se extraen en los Centros de Salud de Navarra mediante una técnica no avalada por la evidencia.

7.2.2. **Objetivos secundarios**
- Instruir en el uso de otras técnicas en aquellos centros de salud donde la incidencia de extracciones de garrapatas sea mayor.
- Aportar una herramienta de toma de decisiones (protocolo) ante la picadura de garrapatas.

7.3. **Metodología**

7.3.1. **Identificación del grupo diana**
Antes de implantar la herramienta de toma de decisiones, se ve necesario la introducción de un pilotaje en algunos centros de salud (C.S.) de Navarra. Para la elección de estos centros se tomarían en cuenta varios factores:

- La elección de C.S. de las tres áreas sanitarias de Navarra (Norte, Tudela y Estella)
- La elección de C.S. rurales y urbanos.
- Una incidencia de extracciones por año de garrapatas similar en los C.S.

Así, se elegirían un total de seis C.S., dos por cada área y, de ellos, uno urbano y otro rural. Teniendo en cuenta que el número de extracciones será mayor en los C.S. rurales, el criterio de incidencia de extracciones se tendrá en cuenta solo por grupos, es decir, que sea similar, por un lado, entre los rurales y, por otro lado, entre los urbanos. De cada centro, se seleccionaría al personal de enfermería que voluntariamente quisiera participar.

7.3.2. **Desarrollo de la propuesta**

7.3.2.1. **Introducción del protocolo en Atenea**
Antes de comenzar, se incluiría un nuevo protocolo en el programa informático de Atención Primaria *Atenea*. Este protocolo incluye un diagrama de flujo (Anexo 3) para la toma de decisiones que ayude a elegir el método de extracción del parásito en caso de que acuda algún paciente a consulta presentando esta necesidad.
Además, incluye una serie de anotaciones ante cada bifurcación/decisión que ayuda a elegir el camino más adecuado hasta llegar al método más adecuado posible.

7.3.2.2. Plan de intervención

Al inicio del pilotaje se realizaría la primera intervención en cada C.S. En una sesión de docencia, se tratarían temas relativos al protocolo y su aplicación: una breve introducción a la Enfermedad de Lyme, a las garrapatas *Ixodes* y su ciclo de vida, al modo de parasitismo y transmisión de la enfermedad, una descripción de cada método de extracción y cuándo usar o no usar cada uno. Antes de describir los métodos, se realizará un breve cuestionario (Anexo 4) con preguntas relacionadas con la práctica diaria de extracción de garrapatas. Esta encuesta es la misma que la doctora Buller realizó para su investigación en Andalucía en el 2014 (Buller Viqueira et al., 2014) y que ha cedido para su uso teórico en esta intervención. En esta sesión se explicaría también que se ha introducido un nuevo protocolo en *Atenea*, que es voluntario, pero ayudaría a la seguridad del paciente, y se darían pautas para poder seguirlo de forma fácil y eficaz. A su vez, se indicaría la posibilidad de rellenar un parte tras cada extracción (ver Anexo 5), lo que aportaría datos objetivos sobre la idoneidad o no de expandir el protocolo a toda Navarra tras el pilotaje.

Se daría un plazo de un año para que siguiesen el protocolo cada vez que se necesitara y, al año, se realizaría una segunda (y última) sesión con los profesionales que hubieran colaborado voluntariamente en el proyecto. En esta sesión, se recogerían experiencias con el protocolo que puedan ayudar a los demás, así como puntos fuertes y propuestas de mejora. Por último, se pasaría un último cuestionario para que rellenasen con datos de las extracciones realizadas durante el último año (ver Anexo 6).

7.3.3. Evaluación

Para evaluar la intervención se realizaría un doble análisis. En primer lugar, la parte objetiva, viendo si el cuestionario de cómo se han extraído las garrapatas el último año tras la primera intervención aporta datos de si ha habido cambios o no (ver Anexo 6). En segundo lugar, la parte subjetiva, con una encuesta de satisfacción dirigida a los profesionales que hayan participado en el proyecto (ver Anexo 7).
8. AGRADECIMIENTOS

En primer lugar, agradecer a mi directora, Esther Vicente Cemborain por su inestimable guía y apoyo, especialmente en los momentos de no saber por dónde continuar.

En segundo lugar, a la Dra. Eva Buller Viqueira por cederme la encuesta realizada en su estudio para poder aplicarla en mi propuesta teórica de intervención.

En tercer lugar, a Itziar Mikeleiz, bibliotecaria de la Facultad de Ciencias de la Salud, por ayudarme a encontrar el artículo más importante de esta revisión bibliográfica a través del préstamo interbibliotecario.

En cuarto lugar, a Jaione Aramburu, enfermera del Centro de Salud de Huarte, por transmitirme el gran valor y la pasión por la enfermería de Atención Primaria.

Por último, a mi familia, por ayudarme a seguir adelante, paso a paso; y a mis amigas, por enseñarme a disfrutar de la universidad y de la enfermería.
9. BIBLIOGRAFÍA

Tick species and tick-borne infections identified in population from a rural area of Spain. *Epidemiology and Infection*, 133(5), 943. https://doi.org/10.1017/S0950268880004061

10. ANEXOS

Anexo 1. Diagrama de búsqueda en las bases de datos

Ilustración 8. Diagrama de búsqueda en las bases de datos. (Elaboración propia)
Anexo 2. Diagrama de flujo de la procedencia de cada documento utilizado

Ilustración 9. Diagrama de procedencia de cada documento referenciado (elaboración propia)
Anexo 3. Protocolo ante la picadura de una garrapata

CÓMO EXTRAER UNA GARRAPATA

Si

¿Lleva más de 36 horas con el parásito?

No

¿El parásito es mayor de 0,5mm?

Si

¿He extraído antes garrapatas haciendo palanca con el bisturí?

No

¿He extraído antes garrapatas con un sedal de pesca?

No

Acude un paciente portando una garrapata ¿sabe cuántas horas lleva ahí?

¡RECUERDE!

Los métodos basados en ahogar la garrapata (con alcohol, vaselina, aceite, etc) o quemarla (con cerillas, cigarrillos o mechero) no están apoyados en la evidencia y son factores de riesgo para la transmisión de la enfermedad de Lyme en caso de ser portadora la garrapata de Borrelia Burgdorferi

Imágenes:

- Imagen 1. Extracción con pinzas de punta fina y tracción suave
 Método recomendado para especímenes de tamaño medio o grande.
 Utilice unas pinzas de punta fina sin dientes. Realice el agarre lo más cercano a la piel del paciente posible. Realice una tracción suave, constante y perpendicular a la piel hasta que la garrapata se suelte sola.
 Desinfecte después con betadine o clorohezidina acuosa al 2%.

- Imagen 2. Extracción con bisturí haciendo palanca
 Método recomendado para especímenes de tamaño pequeño. Realicelo únicamente si ya lo ha hecho antes.
 Apoye la punta del bisturí justo bajo la cabeza del parásito, realice una fuerza perpendicular a la piel, utilizando el bisturí como palanca hasta que el parásito se libere por sí mismo.
 Desinfecte después con betadine o clorohezidina acuosa al 2%.

- Imagen 3. Extracción con sedal de pesca
 Método recomendado para especímenes de tamaño pequeño. Realicelo únicamente si ya lo ha hecho antes.
 Rodee la cabeza del parásito (en lo más próximo a la piel del paciente que le sea posible) con el sedal. Posteriormente, tire de ambos cabos hacia arriba de forma suave y constante hasta que el parásito se libere.
 Desinfecte después con betadine o clorohezidina acuosa al 2%.

- Imagen 4. Extracción quirúrgica
 Método recomendado cuando el tiempo de parasitación ha sido peligrosamente largo y el riesgo de infección es alto. Si no tiene experiencia en cirugía menor, transfiera al paciente al médico.
 Desinfecte con betadine o clorohezidina 2% e inyecte lidocaína 2% bajo la picadura. Después de 2 minutos, realice dos incisiones paralelas a los lados del parásito. Retire la piel junto con el parásito, evite tocar este último.
 Posteriormente suture, desinfecte con betadine o clorohezidina acuosa al 2% y cubra con un apósito.

Después de la Extracción

- Revise la piel, ¿hay presencia de Eritema Migrans?
- ¿Fiebre?
- ¿Malestar, letargia o astenia?
- ¿Cefalea, mialgias, artralgias?
- Mediante Consulta No Presencial a las 72 horas y al mes de la extracción.
- Tras 1 mes sin síntomas: ALTA
- Transfiera al médico para tratamiento antibiótico

Ilustración 10. Diagrama protocolo de extracción de garrapatas en Atención Primaria (elaboración propia)
Anexo 4. Cuestionario para los profesionales I

Cuestionario cedido por la Dra. Eva Buller Viqueira, Médico de Familia en el Servicio Andaluz de Salud, para la realización de esta intervención. Mismo cuestionario utilizado para Estudio descriptivo de la conducta de profesionales de la salud ante el caso de una picadura por garrapata (Buller Viqueira et al., 2014).

CUESTIONARIO PARA ENFERMERÍA

Cuestionario anónimo y de autocumplimentación. Recomendamos no contesten lo que se debe hacer, sino lo que usted hace en su práctica diaria.

Ante el caso de una picadura por garrapata:

1- ¿Usas algún producto para facilitar la extracción de la garrapata?
 a. Sí
 b. No

2- Si la respuesta es sì, ¿qué producto usas?
 a. Solución antiséptica
 b. Vaselina u otra solución oleosa
 c. Anestesia local
 d. Alcohol
 e. Cloreto
 f. Hielo
 g. Queroseno
 h. Otros métodos; Especificar __________

3- ¿Qué método de extracción utilizas?
 a. Extracción brusca
 b. Giro
 c. Tracción suave

4- ¿Conoces las partes de la garrapata?
 a. Sí
 b. No

5- ¿Usas una lupa para confirmar la extracción completa de la garrapata?
 a. Sí
 b. No

6- ¿Das consejos postextracción a los pacientes?
 a. Sí
 b. No

Ilustración 11. Cuestionario para enfermería

Fuente: cedido por la Dra. Eva Buller Viqueira
Anexo 5. Parte a rellenar tras cada actuación

Parte tras cada actuación

Extracción de una garrapata.

1- ¿Qué método ha elegido?
 a. Pinzas
 b. Sedal
 c. Bisturí (palanca)
 d. Quirúrgico

2- Tamaño del parásito
 a. Pequeño
 b. Mediano
 c. Grande

3- Tiempo de parasitación
 a. Menos de 24 horas
 b. Menos de 48 horas
 c. Más de 48 horas
 d. Desconocido

4- Síntomas de Lyme tras la extracción
 a. No
 b. Sí. Especifique: __________

5- Síntomas de Lyme a las 72 horas
 a. No
 b. Sí. Especifique: __________

6- Síntomas de Lyme al mes
 a. No
 b. Sí. Especifique: __________
Extracciones realizadas durante el último año

<table>
<thead>
<tr>
<th>N°</th>
<th>Método elegido</th>
<th>Tamaño del parásito</th>
<th>Tiempo de parasitación</th>
<th>Síntomas de Lyme en la extracción</th>
<th>Síntomas de Lyme a las 72 horas</th>
<th>Síntomas de Lyme al mes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P / S / B / Q</td>
<td>P / M / G</td>
<td><24 / <48h / >48h / indef</td>
<td>sí / no</td>
<td>sí / no</td>
<td>sí / no</td>
</tr>
<tr>
<td>2</td>
<td>P / S / B / Q</td>
<td>P / M / G</td>
<td><24 / <48h / >48h / indef</td>
<td>sí / no</td>
<td>sí / no</td>
<td>sí / no</td>
</tr>
<tr>
<td>3</td>
<td>P / S / B / Q</td>
<td>P / M / G</td>
<td><24 / <48h / >48h / indef</td>
<td>sí / no</td>
<td>sí / no</td>
<td>sí / no</td>
</tr>
<tr>
<td>4</td>
<td>P / S / B / Q</td>
<td>P / M / G</td>
<td><24 / <48h / >48h / indef</td>
<td>sí / no</td>
<td>sí / no</td>
<td>sí / no</td>
</tr>
<tr>
<td>5</td>
<td>P / S / B / Q</td>
<td>P / M / G</td>
<td><24 / <48h / >48h / indef</td>
<td>sí / no</td>
<td>sí / no</td>
<td>sí / no</td>
</tr>
<tr>
<td>6</td>
<td>P / S / B / Q</td>
<td>P / M / G</td>
<td><24 / <48h / >48h / indef</td>
<td>sí / no</td>
<td>sí / no</td>
<td>sí / no</td>
</tr>
<tr>
<td>7</td>
<td>P / S / B / Q</td>
<td>P / M / G</td>
<td><24 / <48h / >48h / indef</td>
<td>sí / no</td>
<td>sí / no</td>
<td>sí / no</td>
</tr>
<tr>
<td>8</td>
<td>P / S / B / Q</td>
<td>P / M / G</td>
<td><24 / <48h / >48h / indef</td>
<td>sí / no</td>
<td>sí / no</td>
<td>sí / no</td>
</tr>
<tr>
<td>9</td>
<td>P / S / B / Q</td>
<td>P / M / G</td>
<td><24 / <48h / >48h / indef</td>
<td>sí / no</td>
<td>sí / no</td>
<td>sí / no</td>
</tr>
<tr>
<td>10</td>
<td>P / S / B / Q</td>
<td>P / M / G</td>
<td><24 / <48h / >48h / indef</td>
<td>sí / no</td>
<td>sí / no</td>
<td>sí / no</td>
</tr>
<tr>
<td>11</td>
<td>P / S / B / Q</td>
<td>P / M / G</td>
<td><24 / <48h / >48h / indef</td>
<td>sí / no</td>
<td>sí / no</td>
<td>sí / no</td>
</tr>
<tr>
<td>12</td>
<td>P / S / B / Q</td>
<td>P / M / G</td>
<td><24 / <48h / >48h / indef</td>
<td>sí / no</td>
<td>sí / no</td>
<td>sí / no</td>
</tr>
<tr>
<td>13</td>
<td>P / S / B / Q</td>
<td>P / M / G</td>
<td><24 / <48h / >48h / indef</td>
<td>sí / no</td>
<td>sí / no</td>
<td>sí / no</td>
</tr>
<tr>
<td>14</td>
<td>P / S / B / Q</td>
<td>P / M / G</td>
<td><24 / <48h / >48h / indef</td>
<td>sí / no</td>
<td>sí / no</td>
<td>sí / no</td>
</tr>
<tr>
<td>15</td>
<td>P / S / B / Q</td>
<td>P / M / G</td>
<td><24 / <48h / >48h / indef</td>
<td>sí / no</td>
<td>sí / no</td>
<td>sí / no</td>
</tr>
<tr>
<td>16</td>
<td>P / S / B / Q</td>
<td>P / M / G</td>
<td><24 / <48h / >48h / indef</td>
<td>sí / no</td>
<td>sí / no</td>
<td>sí / no</td>
</tr>
</tbody>
</table>

En caso de que algún paciente haya presentado síntomas, especifíquelo aquí abajo:

N°____ Momento de Aparición_______ Síntomas__

Leyenda: P (pinzas), S (seda), B (palanca con bisturi), Q (quirúrgico), P (pequeño), M (mediano), G (grande).
Anexo 7. Cuestionario de satisfacción (al año de la primera sesión)

Cuestionario de satisfacción

Su opinión acerca de las sesiones recibidas y el protocolo propuesto es muy importante. Con ella podremos mejorar aquello que necesite cambiar a mejor, mantener lo que sea positivo y eliminar lo que sea innecesario. Muchas gracias por su colaboración.

Con respecto a la primera sesión:
- ¿El contenido fue claro y suficiente para entender el problema tratado? Sí - No
- ¿La duración se ajustó adecuadamente al contenido? Sí - No
- ¿Añadiría o suprimiría algo?

Con respecto al protocolo introducido:
- ¿Le ha resultado útil? Sí - No
- ¿Le parece que está explicado de forma clara y es fácil de seguir? Sí - No
- ¿Añadiría o suprimiría algo?

Con respecto a la segunda sesión
- ¿Le ha resultado útil? Sí - No
- ¿La duración se ajustó adecuadamente al contenido? Sí - No
- ¿Añadiría o suprimiría algo?

Añada aquí cualquier cosa que le parezca oportuno transmitirnos

¡Muchas gracias por su colaboración!

Ilustración 14. Cuestionario de satisfacción
(Fuente: elaboración propia)