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RESUMEN

El almidón es un homopolímero ramifi cado de residuos de glucosa unidos covalentemente 

a través de enlaces de tipo α-1,4 y α-1,6. Sintetizado en el plastidio, este polisacárido 

de reserva constituye la forma principal de almacenamiento de carbohidratos en plantas 

superiores y un determinante importante tanto del crecimiento de la planta como de su 

relación con el entorno. Está ampliamente aceptado que el proceso de biosíntesis del 

almidón en hojas tiene lugar exclusivamente en el cloroplasto. Según esta interpretación, 

el almidón es el producto fi nal de una ruta metabólica conectada con el ciclo de Calvin-

Benson (CBC) a través de la fosfoglucosa isomerasa plastidial (pPGI). Esta enzima 

cataliza la conversión de moléculas de fructosa-6-fosfato del CBC en moléculas 

de glucosa-6-fosfato, las cuales son metabolizadas en almidón a través de la acción 

combinada de la fosfoglucomutasa, la ADP-glucosa pirofosforilasa y la almidón sintasa. 

 Las plantas perciben estímulos bióticos mediante el reconocimiento de una gran 

cantidad de compuestos procedentes de los organismos con los que interactúan. En 

este sentido cabe destacar que los microorganismos de la rizosfera sintetizan una gran 

cantidad de sustancias que regulan el desarrollo y el crecimiento de la planta. Además, 

estos microorganismos emiten una amplia gama de compuestos volátiles (VCs) que 

actúan como “infoquímicos” en la comunicación entre la planta y el microorganismo. 

Estudios llevados a cabo por el grupo de investigación en el que he desarrollado este 

trabajo de tesis doctoral demostraron que los VCs emitidos por una amplia  gama de 

microorganismos (incluyendo patógenos y especies que normalmente no interactúan 

con la planta) fomentan la acumulación de cantidades excepcionalmente elevadas 

almidón en la planta. Dada la falta de conocimiento sobre los mecanismos implicados 

en este fenómeno y teniendo en cuenta a su vez el papel importante que juega el almidón 

en la interacción de la planta con su entorno, en este trabajo de tesis doctoral investigué 

las bases moleculares implicadas en la respuesta de la planta a los VCs microbianos, 

prestando especial atención al papel que juega la pPGI en esta respuesta.

El primer capítulo de este trabajo describe la caracterización de dos mutantes 

(pgi1-2 y pgi1-3) carentes de actividad pPGI. Ambos acumulan en sus hojas un 10-

15% del almidón existente en hojas de plantas salvaje (WT). Contrariamente a lo 

que pudiera esperarse al tener en cuenta la interpretación clásica de la biosíntesis de 

almidón, análisis por microscopía revelaron la presencia de gránulos de almidón en 
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 cado de residuos de glucosa unidos covalentemente 

a través de enlaces de tipo α-1,4 y α-1,6. Sintetizado en el plastidio, este polisacárido 
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investigué 
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mutantes 

un 10-

Contrariamente a lo 

biosíntesis de 

almidón en 

cloroplastos de las células del mesófi lo de estos mutantes. Tanto pgi1-2 como pgi1-3 

mostraron un crecimiento lento, una reducida capacidad fotosintética y un bajo balance 

NAD(P)H/NAD(P) con respecto a plantas WT. Estudios hormonómicos mostraron 

que el contenido de citoquininas (CKs) plastidiales en hojas pgi1 es muy reducido con 

respecto al existente en hojas WT. Además la aplicación exógena de CKs revirtió el 

fenotipo de defi ciencia de almidón de hojas de plantas pgi1. Los datos presentados en 

este trabajo indican que pPGI es un importante determinante de la fotosíntesis, el estado 

redox de la célula, el crecimiento y la acumulación de almidón en células del mesófi lo 

como consecuencia de su implicación en la producción de intermediarios de la vía 

oxidativa de las pentosas fosfato/glicólisis necesarios para la síntesis CKs plastidiales 

y poder reductor. 

El capítulo 2 muestra que VCs emitidos por microorganismos fi logenéticamente 

distantes (incluyendo bacterias y hongos benefi ciosos y patógenos) promueven el 

crecimiento, la acumulación de niveles excepcionalmente elevados de almidón y 

la fl oración en varias especies de plantas, incluidos cultivos de interés agronómico. 

Además, plantas de Arabidopsis expuestas a VCs emitidos por el fi topatógeno Alternaria 

alternata experimentaron un incremento en la fotosíntesis y un aumento del contenido de 

CKs. La magnitud de este fenómeno fue reducida en el mutante 35S:AtCKX1 defi ciente 

en CKs y en el mutante ahk2/3 de señalización de CKs, proporcionando así evidencia 

de que este tipo de hormonas juega un papel importante en la respuesta de las plantas 

a VCs microbianos. El análisis transcriptómico de hojas de Arabidopsis expuestas a 

VCs de A. alternata reveló cambios en la expresión de genes regulados por luz y CKs 

implicados en la fotosíntesis, la fl oración, el crecimiento y el metabolismo del almidón. 

Sorprendentemente, una gran cantidad de genes diferencialmente expresados en plantas 

tratadas con VCs de A. alternata son genes cuya expresión se ve alterada también en 

plantas expuestas a VCs emitidos por la bacteria benefi ciosa Bacillus subtilis GB03, 

sugiriendo que las plantas han desarrollado la capacidad de reaccionar a VCs emitidos 

por diferentes microorganismos a través de la activación o estimulación de mecanismos 

altamente conservados.

Para entender mejor los mecanismos implicados en las respuestas de las plantas a 

los VCs emitidos por microorganismos e investigar en qué medida pPGI está implicada 

en este fenómeno, en el trabajo presentado en el capítulo 3 se caracterizó la respuesta 

del mutante pgi1-2 a los VCs emitidos por A. alternata. VCs emitidos por este hongo 



5

Á.M. Sánchez-López Resumen

fi topatógeno promovieron el crecimiento, la fotosíntesis y la acumulación de CKs 

plastidiales en hojas pgi1-2. Contra todo pronóstico, VCs emitidos por A. alternata 

promovieron la acumulación de niveles excepcionalmente elevados de almidón en 

hojas pgi1-2. Análisis proteómicos revelaron que los VCs microbianos promueven 

cambios en la acumulación de proteínas involucradas en la fotosíntesis, el metabolismo 

del almidón y el crecimiento que pueden explicar las respuestas observadas en plantas 

pgi1-2. Los datos presentados en este capítulo muestran que las plantas de Arabidopsis 

son capaces de responder a VCs microbianos mediante la activación o la estimulación 

de mecanismos independientes de pPGI.
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SUMMARY

Starch is a branched homopolymer of a-1,4-linked glucose subunits with a-1,6-linked 

glucose at the branching points. Synthesized in plastids, this reserve polysaccharide is 

the major storage carbohydrate in most higher plants and is an important determinant 

of plant growth and its relationship with the environment. It is widely accepted that 

the whole photosynthesis-driven starch biosynthetic process occurring in leaves resides 

exclusively in the chloroplast. According to this view, starch is considered the end-

product of a metabolic pathway that is linked to the Calvin-Benson cycle (CBC) by 

means of the plastidic phosphoglucose isomerase (pPGI). This enzyme catalyzes the 

conversion of fructose-6-phosphate from the CBC into glucose-6-phosphate, which is 

metabolized into starch by the combined action of phosphoglucomutase, ADP-glucose 

pyrophosphorylase and starch synthase.

Plants are able to perceive biotic stimuli by recognizing a multitude of compounds 

originating from the interacting organisms. In this regard it is noteworthy that rhizosphere 

microorganisms synthesize a multitude of substances which regulate morphogenesis 

and plant growth. Moreover, these microbes emit many volatile compounds (VCs) that 

play potentially important roles as semiochemicals in the communication between plant 

and microorganism. Studies carried out by the research group where I have developed 

this doctoral thesis showed that VCs emitted by a wide range of microorganisms 

(including plant pathogens and microbes that do not normally interact with plants) 

promote accumulation of exceptionally high levels of starch in plants. Given the lack of 

knowledge about the mechanisms involved in this phenomenon and taking into account 

the important role that plays starch in the interaction of the plant with the environment, 

in this doctoral thesis, I investigated the molecular basis involved in the plant response 

to VCs, giving special attention to the role played by pPGI in this response.

The First chapter of this work describes the characterization of two mutants (pgi1-2 

and pgi1-3) lacking pPGI activity. Starch content in leaves in both mutants was 10-15% 

of that accumulated by wild type (WT) leaves. Contrary to what might be expected 

considering the classical view of starch biosynthesis, microscopy analyses revealed the 

presence of starch granules in the chloroplasts of mesophyll cells of these mutants. 

Both pgi1-2 and pgi1-3 displayed slow growth, reduced photosynthetic capacity 

phenotypes and a decrease of the NAD(P)H/NAD(P) ratio with respect to WT leaves. 
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 displayed slow growth, reduced photosynthetic capacity 

a decrease of the NAD(P)H/NAD(P) ratio with respect to WT leaves. 

Hormonomic analyses showed that the content of plastidic cytokinins (CKs) in pgi1 

leaves is exceedingly lower than in WT leaves. Noteworthy, exogenous application 

of CKs largely reverted the low starch content phenotype of pgi1 leaves. The data 

presented in this work show that pPGI is an important determinant of photosynthesis, 

redox status, growth and starch accumulation in mesophyll cells likely as a consequence 

of its involvement in the production of oxidative pentose phosphate pathway/glycolysis 

intermediates necessary for the synthesis of plastidic CKs and reducing power.

Chapter 2, shows that VCs emitted by phylogenetically diverse microorganisms 

(including bacteria and fungi pathogens and nonpathogens) promote growth, 

accumulation of exceptionally high levels of starch and fl owering of various plant species, 

including crops of agronomic interest. Moreover, Arabidopsis plants exposed to VCs 

emitted by the phytopathogen Alternaria alternata, showed enhanced of photosynthesis 

and accumulated high levels of CKs. The magnitude of this phenomenon was reduced 

in the mutant 35S:AtCKX1 with CK-defi ciency and the CKs signaling ahk2/3 mutant, 

providing evidence that CKs play essential roles in this phenomenon. Transcriptomic 

analyses of Arabidopsis leaves exposed to A. alternata VCs revealed changes in the 

expression of light- and CK-responsive genes involved in photosynthesis, fl owering, 

growth and starch metabolism. Notably, many genes differentially expressed in plants 

treated with fungal VCs were also differentially expressed in plants exposed to VCs 

emitted by Bacillus subtilis GB03, suggesting that plants react to microbial VCs through 

activation/stimulation highly conserved regulatory mechanisms.

To better elucidate the mechanisms involved in the responses of plants to microbial 

VCs, and to investigate the extent to which pPGI is involved in this phenomenon, 

the work of chapter 3 of the work is characterized the response of pgi1-2 mutant to 

VCs emitted by A. alternata. VCs emitted by this fungal phytopathogen promoted 

growth, photosynthesis and accumulation of plastidic CKs in pgi1-2 leaves. Notably, 

VCs emitted by A. alternata promoted accumulation of exceptionally high levels of 

starch in pgi1-2 leaves thus challenging the “classic” interpretation of transitory starch 

biosynthesis. Proteomic analyses revealed that microbial VCs promote global changes 

in the expression of proteins involved in photosynthesis, starch metabolism and growth 

that account for the observed response in pgi1-2 plants. The data presented in this 

chapter show that Arabidopsis plants are capable of responding to microbial VCs by 

activation/stimulation of pPGI independent mechanisms.
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Starch is the main storage carbohydrate in vascular plants. Its abundance as a naturally 

occurring compound of living terrestrial biomass is surpassed only by cellulose, and 

represents the primary source of calories in the human diet. Because starch is the 

principal constituent of the harvestable organ of many agronomic plants, its synthesis 

and accumulation also infl uences crop yields. 

 Synthesized in the plastids of both photosynthetic and non-photosynthetic cells, 

starch is an insoluble polyglucan produced by starch synthase (SS) using ADP-glucose 

(ADPG) as the sugar donor molecule. Starch has two major components, amylopectin 

and amylose, both of which are polymers of α-D-glucose units. Amylose is a linear 

polymer of up to several thousand glucose residues, whereas amylopectin is a larger 

polymer regularly branched with α-1,6-branch points. These two molecules are 

assembled together to form a semi-crystalline starch granule. The exact proportions 

of these molecules and the size and shape of the granule vary between species and 

between organs of the same plant. The diversity of both composition and physical 

parameters of starches from different botanical sources gives rise to their diverse 

processing properties and applications in both non-food sectors such as sizing agents 

in textile and paper industry, adhesive gums, biodegradable materials, etc., and in food 

industries, particularly in bakery, thickening, confectionary and emulsifi cation (Slattery 

et al., 2000; Burrell, 2003; Mooney, 2009). Starch is also used as a feedstock for fi rst 

generation bioethanol production (Goldemberg, 2007). From an industrial perspective, 

the utilization of starch as a cheap and renewable polymer and clean energy source is 

becoming increasingly attractive as a consequence of social concerns about industrial 

wastes generated from fossil fuels.

 In general, the harvested parts of our staple crop plants are heterotrophic starch-

storing organs. Worldwide annual starch production of cereal seeds (rice, maize, 

wheat, barley, etc.) is approximately 2000 million tones, whereas worldwide annual 

starch production of roots (e.g. cassava and taro) and tubers (e.g. potato and sweet 

potato) exceeds 700 million tones (Food and Agriculture Organization of the United 

Nations, http://faostat.fao.org), much of which are destined to non-food purposes. In 

2012 for instance, 75 million tons of starch were extracted and used in many industrial 

applications (http://www.starch.dk/). The increasing demand of starch from non-food 

industries, the continuing rapid increase in the world´s population, predicted to reach 9 

billion by 2050, and the growing loss of arable land to urbanization has spurred on efforts 
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to synthesize plants with higher starch content. Therefore, a thorough understanding of 

the mechanisms involved in starch metabolism and regulation is critically important for 

the rational design of experimental traits aimed at improving yields in agriculture, and 

producing more and better polymers that fi t both industrial needs and social demands. 

1. PROPOSED STARCH BIOSYNTHETIC PATHWAYS

Starch is found in the plastids of photosynthetic and non-photosynthetic tissues. 

Mature chloroplasts occurring in photosynthetically active cells possess the capacity of 

providing energy (ATP) and fi xed carbon for the synthesis of starch during illumination. 

By contrast, production of long-term storage of starch taking place in amyloplasts of 

reserve organs such as tubers, roots and seed endosperms depends upon the incoming 

supply of carbon precursors and energy from the cytosol. This difference between the 

metabolic capacities of chloroplasts and amyloplasts has lead to the generally accepted 

view that the pathway(s) involved in starch production are different in photosynthetic 

and non-photosynthetic cells. 

1.1. Starch biosynthesis in leaves

In leaves, a portion of the photosynthetically fi xed carbon is retained within the 

chloroplasts during the day to synthesize starch, which is then remobilized during the 

subsequent night to support non-photosynthetic metabolism and growth by continued 

export of carbon to the rest of the plant. Due to the diurnal rise and fall cycle of its levels, 

foliar starch is termed “transitory starch”. 

 Transitory starch is a major determinant of plant growth (Sulpice et al., 2009), and 

its metabolism is regulated to avoid a shortfall of carbon at the end of the dark period. It 

is typically degraded in a near-linear manner during darkness, with only a small amount 

remaining at the end of the night. When changes in the day length occurs that leads to a 

temporary periods of carbon starvation, the carbon budget is rebalanced by increasing 

the rate of starch synthesis, decreasing the rate of starch breakdown and, consequently, 

decreasing the rate of growth during darkness. The importance of starch turnover in 

plant growth and biomass production is demonstrated by studies of mutants that are 

defective in starch synthesis and mobilization. These mutants grow at the same rate as 

wild-type (WT) plants under continuous light or during very long days, but show a large 

inhibition of growth in short days (Caspar et al., 1985; Lin et al., 1988; Gibon et al., 
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2004), which is due to the transient depletion of carbon during the night.  

 Leaf starch mainly accumulates in the photosynthetic palisade and spongy mesophyll 

cells, although it can also be synthesized in epidermal cells, stomatal guard cells and 

in the bundle sheath cells surrounding the vasculature (Tsai et al., 2009). Various 

mechanisms have been proposed to describe starch synthesis and degradation in leaves. 

Given that starch breakdown has been thoroughly discussed in recent reviews (Streb 

and Zeeman, 2012), in the following lines we will focus on describing, analyzing and 

comparing the proposed mechanisms of starch synthesis in leaves. 

 

1.1.1. A classic model of starch biosynthesis according to which the starch biosynthetic 

pathway is linked to the Calvin-Benson cycle by means of plastidial phosphoglucose 

isomerase 

It is widely assumed that the whole starch biosynthetic process resides exclusively in the 

chloroplast and segregated from the sucrose biosynthetic process that takes place in the 

cytosol (Neuhaus et al., 2005; Streb et al., 2009; Stitt and Zeeman, 2012). According to 

this classical view of starch biosynthesis (which is schematically illustrated in Figure 1, 

starch is considered the end-product of a metabolic pathway that is linked to the Calvin-

Benson cycle by means of the plastidial phosphoglucose isomerase (pPGI). This enzyme 

catalyzes the conversion of fructose-6-phosphate (F6P) from the Calvin-Benson cycle 

into glucose-6-phosphate (G6P), which is then converted into glucose-1-phosphate 

(G1P) by the plastidial phosphoglucomutase (pPGM). ADPG pyrophosphorylase 

(AGP) then converts G1P and ATP into inorganic pyrophosphate (PPi) and ADPG 

necessary for starch biosynthesis. These three enzymatic steps are reversible, but the 

last step is rendered irreversible upon hydrolytic breakdown of PPi by plastidial alkaline 

pyrophosphatase.

 pPGI is strongly inhibited by light (Heuer et al., 1982) and by Calvin-Benson cycle 

intermediates such as erythrose-4-P and 3-phosphoglycerate (3PGA) (the latter being an 

indicator of photosynthetic carbon assimilation) that accumulate during the day at stromal 

concentrations higher than the Ki values for pPGI (Kelly and Latzko, 1980; Dietz, 1985; 

Backhausen et al., 1997; Zhou and Cheng, 2008). Although both these characteristics of 

pPGI, and the low stromal G6P/F6P ratio occurring during illumination (Dietz, 1985) 

would indicate that this enzyme is inactive during illumination (and thus not involved 

in transitory starch biosynthesis), genetic evidence showing that transitory starch 
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biosynthesis occurs solely by the pPGI pathway has been obtained from characterization 

of starch-defi cient pPGI mutants from various species (Jones et al., 1986; Kruckeberg et 

al., 1989; Yu et al., 2000; Niewiadomski et al., 2005; Kunz et al., 2010).

 The classic view of leaf starch biosynthesis illustrated in Figure 1 also implies that 

AGP is the sole source of ADPG, and functions as the major regulatory step in the 

starch biosynthetic process (Neuhaus et al., 2005; Streb et al., 2009; Stitt and Zeeman, 

2012; Streb and Zeeman, 2012). This enzyme is a heterotetramer comprising two types 

of homologous but distinct subunits, the small (APS) and the large (APL) subunits 

(Crevillén et al., 2003, 2005). In Arabidopsis, six genes encode proteins with homology 

to AGP. Two of these genes code for small subunits (APS1 and APS2, the latter being in 

a process of pseudogenization) and four (APL1-APL4) encode large subunits. Whereas 

APS1, APL1 and APL2 are catalytically active, APL3 and APL4 have lost their catalytic 

properties during evolution (Ventriglia et al., 2008). In Arabidopsis, the large subunits 
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Figure 1. Classic interpretation of the mechanisms of starch and sucrose synthesis in leaves. The enzymes 
are numbered as follows: 1, 1´, fructose-1,6-bisphosphate aldolase; 2, 2´, fructose 1,6-bisphosphatase ; 3, 
PPi : fructose-6-P 1- phosphotransferase; 4, 4´, PGI; 5, 5´, PGM; 6, UGP; 7, sucrose-phosphate-synthase; 
8, sucrose phosphate phosphatase; 9, AGP; 10, SS. According to this view, the starch biosynthetic process 
resides exclusively in the chloroplast and is segregated from the sucrose biosynthetic pathway that takes place 
in the cytosol. 
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are highly unstable in the absence of small subunits (Wang et al., 1998). Therefore, APS1 

T-DNA null mutants contain neither the large nor the small subunit proteins, which results

in a total lack of AGP activity (Ventriglia et al., 2008; Bahaji et al., 2011).

 AGP is allosterically activated by 3PGA, and inhibited by Pi (Kleczkowski, 1999). This 

property makes the production of ADPG highly sensitive to changes in photoassimilate 

(e.g. 3PGA) availability in the chloroplast, and helps to coordinate photosynthetic CO
2
 

fi xation with starch synthesis in leaves. AGP activity is also subjected to APS redox 

regulation (Hendriks et al., 2003; Kolbe et al., 2005; Michalska et al., 2009; Li et al., 

2012). Under oxidizing conditions the two APS subunits are covalently linked via an 

intermolecular disulfi de bridge, thus forming a stable dimer within the heterotetrameric 

AGP enzyme (Fu et al., 1998; Hendriks et al., 2003). Conversely, under reductive 

conditions APS monomerization is accompanied by activation of AGP activity. APS 

dimerisation markedly decreases the activity of AGP and alters its kinetic properties, 

making it less sensitive to activation by 3PGA and increasing its K
m
 for ATP (Hendriks 

et al., 2003). In turn, APS monomerization activates AGP, which is then sensitive to fi ne 

control through allosteric activation by 3PGA. 

 By examining the correlation between APS redox status, AGP activity and starch levels 

in leaves, different works have provided evidence that transitory starch accumulation is 

fi nely regulated by APS post-translational redox modifi cation in response to environmental 

inputs such as light, sugars and biotic stress (Hendriks et al., 2003; Gibon et al., 2004; 

Kolbe et al., 2005; Li et al., 2011). However, using aps1 Arabidopsis plants ectopically 

expressing a redox-insensitive, mutated APS1 form, Li et al. (2012) and Hädrich et al. 

(2012) have independently shown that the rates of transitory starch accumulation in these 

plants are comparable to that of WT leaves. In addition, Li et al. (2012) reported WT rates 

of starch accumulation in aps1 plants expressing in the chloroplast a redox-insensitive 

AGP from Escherichia coli, and concluded that post-translational redox modifi cation of 

APS1 in response to light is not a major determinant of fi ne regulation of transitory starch 

accumulation in Arabidopsis leaves.

 Plastidial NADP-thioredoxin reductase C (NTRC) plays an important role in protecting 

plants against oxidative stress (Serrato et al., 2004; Pulido et al., 2010). Serrato et al. 

(2004) and Michalska et al. (2009) reported that Arabidopsis ntrc mutants grown at 180 

µmol photons sec–1 m-2 are small and their leaves accumulate low levels of starch when 

compared with WT leaves. Furthermore, Michalska et al. (2009) reported that ntrc leaves 



18

Á.M. Sánchez-López Á.M. Sánchez-López Introduction

1998). Therefore, APS1 

T-DNA null mutants contain neither the large nor the small subunit proteins, which results 

is allosterically activated by 3PGA, and inhibited by Pi (Kleczkowski, 1999). This 

photoassimilate 

photosynthetic CO
2

fixation with starch synthesis in leaves. AGP activity is also subjected to APS redox 

Li et al., 

via an 

de bridge, thus forming a stable dimer within the heterotetrameric 

enzyme (Fu et al., 1998; Hendriks et al., 2003). Conversely, under reductive 

activity. APS 

and alters its kinetic properties, 

for ATP (Hendriks 

, which is then sensitive to fine 

By examining the correlation between APS redox status, AGP activity and starch levels 

accumulation is 

finely regulated by APS post-translational redox modification in response to environmental 

al., 2004; 

plants ectopically 

a redox-insensitive, mutated APS1 form, Li et al. (2012) and Hädrich et al. 

in these 

WT leaves. In addition, Li et al. (2012) reported WT rates 

a redox-insensitive 

cation of 

a major determinant of fine regulation of transitory starch 

Plastidial NADP-thioredoxin reductase C (NTRC) plays an important role in protecting 

Serrato et al. 

mutants grown at 180 
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leaves 

exhibit a decrease in the extent of APS1 activation (reduction) by light. These authors 

thus concluded that NTRC is a major determinant of both light-dependent APS1 redox 

status and transitory starch accumulation. However, Li et al. (2012) have recently found 

that the size of Arabidopsis ntrc mutants is similar to that of WT plants when cultured 

at 90 µmol photons sec–1 m-2. Under these conditions, APS1 redox status and starch 

accumulation rates in leaves of ntrc mutants are similar to those of WT leaves, strongly 

indicating that NTRC plays a minor role, if any, in the control of both light-dependent 

APS1 redox status and transitory starch accumulation in Arabidopsis cultured under 

non-stressing conditions.

 In vitro assays using heterologously expressed potato and pea AGP have shown that 

APS can be activated by plastidial thioredoxins (Trxs) f and m (Ballicora et al., 2000; 

Geigenberger et al., 2005), indicating that these proteins could act as major determinants 

of APS redox status and of fi ne regulation of transitory starch accumulation. However, 

Li et al. (2012) found no differences in the rate of starch accumulation between WT 

leaves and leaves of homozygous trxf1, trxf2, trxm2 and trxm3 mutants. Furthermore, 

Thormählen et al. (2013) reported that starch levels in trxf1 leaves were only slightly 

reduced when compared with WT leaves. In addition, Sanz-Barrio et al. (2013) have 

shown that APS redox status in high-starch tobacco leaves overexpressing Trxf and 

Trxm genes from the plastid genome is similar to that of WT leaves. The overall data 

thus indicate that, individually, plastidial Trxs are not major determinants of APS1 redox 

status-controlled transitory starch content. 

 Genetic evidence showing that transitory starch biosynthesis occurs solely by the 

pPGI-pPGM-AGP pathway has been obtained from the characterization of leaves with 

reduced pPGM and AGP activity. For example, leaves of APS1 and pPGM antisensed 

potato plants accumulate low levels of starch when compared with WT leaves (Müller-

Röber et al., 1992; Lytovchenko et al., 2002; Muñoz et al., 2005). Furthermore, 

Arabidopsis pgm null mutants (Caspar et al., 1985; Kofl er et al., 2000), adg1-1 mutants 

with less than 3% of the WT AGP activity (Lin et al., 1988; Wang et al., 1998), and 

APS1 T-DNA null mutants completely lacking AGP activity (Ventriglia et al., 2008; 

Bahaji et al., 2011) accumulate less than 2% of the WT starch. Further evidence 

supporting that AGP plays a crucial role in starch biosynthesis in leaves comes from 

alkaline pyrophosphatase-silenced plants of Nicotiana benthamiana, since their leaves 

accumulate ca. 60% of the WT starch (George et al., 2010). 
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1.1.2. Models of starch biosynthesis according to which the starch biosynthetic pathway 

is not linked to the Calvin-Benson cycle by means of plastidial phosphoglucose 

isomerase 

A vast amount of biochemical and genetic data appear to support the starch biosynthetic 

pathway illustrated in Figure 1 according to which (a) the whole starch biosynthetic 

process resides exclusively in the chloroplast, (b) pPGI links the Calvin-Benson cycle 

with starch biosynthesis, and (c) AGP is the sole source of ADPG linked to starch 

biosynthesis. However, in recent years an increasing volume of evidence has been 

provided that supports the occurrence of additional/alternative starch biosynthetic 

pathways involving the cytosolic and plastidial compartments wherein the supply 

of ADPG is not directly linked to the Calvin-Benson cycle by means of pPGI. Thus, 

Fettke et al. (2011) found that the envelope membranes of chloroplasts in mesophyll 

cells possess a yet to be identifi ed G1P transport machinery enabling the incorporation 

of cytosolic G1P into the stroma, which is subsequently converted into starch by the 

stepwise AGP and SS reactions. According to these authors, such mechanism would 

only allow the accumulation of 1% of the WT starch, and would explain the occurrence 

of some trace amounts of starch in the pPGM mutants (Caspar et al., 1985; Muñoz et al., 

2005; Streb et al., 2009). 

 Kunz et al. (2010) found that leaves of the pgi1-2 null mutant impaired in pPGI 

activity accumulate 10% of the WT starch content, which is restricted to bundle sheath 

cells adjacent to the mesophyll and stomatal guard cells. This mutant exhibits high 

G6P transport activity as a consequence of the elevated expression of GPT2 (Kunz 

et al., 2010), a gene that codes for a G6P/Pi translocator (GPT) mainly operating in 

heterotrophic tissues where the imported G6P can be used for the synthesis of starch 

and fatty acids or to drive the oxidative pentose phosphate pathway (Kang and 

Rawsthorne, 1996; Kammerer et al., 1998; Bowsher et al., 2007; Zhang et al., 2008a). 

According to Kunz et al. (2010) the unexpected high levels of starch occurring in leaves 

of pPGI mutants can be ascribed to high GPT2-mediated incorporation of G6P into 

the chloroplast of bundle sheath cells adjacent to the mesophyll and stomatal guard 

cells, where this hexose-phosphate can be then converted to starch by means of pPGM, 

AGP and SS as schematically illustrated in Figure 2. This interpretation, however, is 

hardly reconcilable with previous studies carried out by the same group showing that 

the starch-defi cient phenotype of pPGI mutants can be totally reverted to WT starch 
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showing that 

 cient phenotype of pPGI mutants can be totally reverted to WT starch 

phenotype by the ectopic expression of GPT2 (Niewiadomski et al., 2005), and with 

the fact that leaves of the pgi1-2/gpt2 double mutant accumulate as much as 60% of 

the starch occurring in pgi1-2 leaves (Kunz et al., 2010). Furthermore, considering that 

(a) most of leaf starch accumulates in the mesophyll cells, (b) microscopic analyses 

revealed that stomatal guard cells and bundle sheath cells adjacent to the mesophyll 

of pPGI mutants accumulate nearly WT starch content (Tsai et al., 2009; Kunz et al., 

2010), and (c) guard cells of WT leaves possess a G6P transport machinery (Overlach et 
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to the mesophyll of pPGI mutants can accumulate as much as 10% of the WT starch 

as a consequence of high GPT2 activity. Needles to say, further investigations will be 

necessary to understand how and where pgi mutants accumulate ca. 10% of the WT 

starch.

 Gerrits et al. (2001) have provided evidence that a sizable pool of sucrose in the plant 

cell has a plastidial localization. Consistent with the occurrence of a plastidial pool of 

sucrose, Murayama and Handa (2007) and Vargas et al. (2008) reported the presence of 
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a functional alkaline/neutral invertase (A/N-inv) inside plastids. Noteworthy, Vargas et 

al. (2008) reported that leaves of Arabidopsis mutants impaired in A/N-inv accumulate 

ca. 70% of the WT starch content. The same authors hypothesized that chloroplastic 

sucrose plays a sensing role in a mechanism of control of carbon partitioning and 

sucrose/starch ratio wherein glucose and fructose generated by A/N-inv are sensed 

through plastidial hexokinase (pHK) (Olsson et al., 2003; Giese et al., 2005). However, 

a possibility cannot be ruled out that, as schematically illustrated in Figure 3, plastidial 

sucrose acts as precursor for starch biosynthesis, its A/N-inv breakdown products being 

converted into starch by means of pHK, pPGM and AGP. 

 Suffi cient evidence exists to support the view that a sizable pool of ADPG in leaves 

accumulates in the cytosol of photosynthetically competent cells. This hypothesis is 

compatible with the occurrence of cytosolic ADPG metabolizing enzymes such as 

ADPG phosphorylase (McCoy et al., 2006), glucan synthases (Tacke et al., 1991), 

sucrose synthase (SuSy) and ADPG hydrolases (Rodríguez-López et al., 2000; Olejnik 

and Kraszewska, 2005), and with the occurrence in the chloroplast envelope membranes 

of yet to be molecularly identifi ed ADPG transport machineries whose activities can 

account for rates of starch accumulation occurring in leaves (Pozueta-Romero et al., 

1991a). Genetic evidence supporting the occurrence of important ADPG source(s), 

other than AGP, has been obtained from different sources. First, leaves of transgenic 

potato and Arabidopsis plants ectopically expressing in the cytosol a bacterial ADPG 

hydrolase (Moreno-Bruna et al., 2001) accumulate lower ADPG levels than WT leaves, 

as determined by HPLC analyses (Baroja-Fernández et al., 2004; Bahaji et al., 2011). 

Second, ADPG content in the leaves of AGP and pPGM mutants is comparable to that 

of WT leaves, as confi rmed by both HPLC (Muñoz et al., 2005; Bahaji et al., 2011) and 

HPLC:MS analyses (Baroja-Fernández et al., 2013). Third, HPLC:MS analyses of the 

triple ss3/ss4/aps1 mutant impaired in AGP and SS class III and IV revealed that leaves 

from this mutant accumulate ca. 40-fold more ADPG than WT leaves (Ragel, 2012).

 SuSy catalizes the reversible conversion of sucrose and NDP into fructose and 

the corresponding NDP-glucose, where N stands for uridine, adenosine, guanosine, 

cytidine, thymidine or inosine. Although UDP is generally considered to be the 

preferred nucleoside diphosphate for SuSy, ADP also serves as an effective substrate to 

produce ADPG (Delmer, 1972; Silvius and Snyder, 1979; Nakai et al., 1998; Zervosen 

et al., 1998; Porchia et al., 1999; Baroja-Fernández et al., 2003; Cumino et al., 2007;  
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Baroja-Fernández et al., 2012). SuSy is highly regulated at both transcriptional and post-

transcriptional levels (Pontis et al., 1981; Koch et al., 1992; Fu and Park, 1995; Purcell 

et al., 1998; Déjardin et al., 1999; Asano et al., 2002; Ciereszko and Kleczkowski, 2002; 

Hardin et al., 2004; for a review see Kleczkowski et al., 2010). Although this sucrolytic 

enzyme is very active in reserve organs, it also expresses in the mesophyll cells of source 

leaves (Fu et al., 1995; Wang et al., 1999), its activity in potato and Arabidopsis leaves 

greatly exceeding the minimum needed to support normal rate of starch accumulation 

during illumination (Muñoz et al., 2005; Baroja-Fernández et al., 2012 ). Accordingly, 

a metabolic model of transitory starch biosynthesis has been proposed wherein (a) both 

sucrose and starch metabolic pathways are tightly interconnected by means of cytosolic 

ADPG producing enzymes such as SuSy (acting when cytosolic sucrose transiently 

accumulates during illumination), and by the action of an ADPG translocator located at 

the chloroplast envelope membranes, and (b) both AGP and pPGM play an important 

role in the scavenging of glucose units derived from starch breakdown occurring during 

starch biosynthesis and during the biogenesis of the starch granule (Baroja-Fernández 

et al., 2005; Muñoz et al., 2005, 2006; Bahaji et al., 2011) (Figure 4). Thus, the net 

Figure 3. Suggested model of starch biosynthesis where sucrose entering the plastid is broken down by 
A/N-inv to produce fructose and glucose, the latter being converted to G6P by means of pHK. G6P is 
subsequently metabolized to starch by the stepwise reactions of pPGM, AGP and SS. Enzyme activities 
1-10 and 4´ and 5´ are the same as in legend of Figure 1. Other enzymes involved are numbered as follows: 
11, A/N-inv; 12, pHK.
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rate of starch accumulation is determined by the balance between the rates of SuSy-

mediated ADPG synthesis in the cytosol, import of cytosolic ADPG to the chloroplast, 

starch synthesis, starch breakdown and by the effi ciency with which starch breakdown 

products can be recycled back to starch via the coupled reactions of pPGM and AGP. 

Accordingly, this view predicts that the recovery towards starch biosynthesis of the 

glucose units derived from the starch breakdown will be defi cient in pPGM and AGP 

mutants, resulting in a parallel decline of starch accumulation. 

 The occurrence of a substrate or “futile” cycle as a result of the simultaneous 
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Figure 4. Suggested interpretation of the mechanism of starch biosynthesis in leaves according to which 
(a) ADPG is produced in the cytosol and transported to the chloroplast by the action of a yet to be 
identifi ed ADPG translocator, (b) AGP and pPGM play an important role in the scavenging of glucose 
units derived from starch breakdown, and (c) starch metabolism is connected with other metabolic 
pathways through the metabolites generated by the starch futile cycle. Enzyme activities 1-10 and 1´-
5´ are the same as in legend of Figure 1. Other enzymes involved are numbered as follows: 12, pHK; 13, 
plastidial UGP (Okazaki et al., 2009); 14, plastidial AGPP; 15, pSP (Zeeman et al., 2004); 16, SuSy. Starch to 
glucose conversion would involve the coordinated actions of amylases, isoamylases and disproportionating 
enzymes (Asatsuma et al., 2005; Kaplan and Guy, 2005; Fulton et al., 2008). Note that starch futile cycling 
(indicated with red arrows) may entail advantages such as rapid metabolic channeling toward various 
pathways (such as fatty acid (Periappuram et al., 2000), OPPP under stress conditions (Zeeman et al. 2004) 
and sulfolipid biosynthesis (Okazaki et al., 2009)) in response to physiological and biochemical needs. This 
view predicts that the recovery towards starch biosynthesis of the glucose units derived from the starch 
breakdown will be defi cient in pPGM and AGP mutants, resulting in a parallel decline of starch accumulation 
and enhancement of soluble sugars content since starch breakdown derived products (especially glucose 
and G6P) will leak out the chloroplast through very active glucose translocator (Cho et al., 2011) and GPT2 
(which is highly expressed in pgi, pgm and agp mutants, Kunz et al., 2010).
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a substrate or “futile” cycle as a result of the simultaneous 

synthesis and breakdown of starch in leaves is not surprising since pulse-chase and 

starch-preloading experiments using isolated chloroplasts (Stitt and Heldt, 1981; Fox 

and Geiger, 1984), intact leaves (Scott and Kruger, 1995; Walters et al., 2004), or 

cultured photosynthetic cells (Lozovaya et al., 1996) have shown that the illuminated 

chloroplasts can synthesize and mobilize starch simultaneously. Furthermore, enzymes 

involved in starch breakdown such as SEX1 and BAM1 are redox-activated during the 

light under different environmental conditions (Mikkelsen et al., 2005; Sparla et al., 

2006; Valerio et al., 2010). Futile cycles lead to a net consumption of ATP, which in 

some instances can be estimated at about 60% of the total ATP produced by the cell 

(Hill and ap Rees, 1994; Alonso et al., 2005). Although these cycles appear to waste 

energy without any apparent physiological reason, they form part of the organization of 

the plant central metabolism, and contribute to its fl exibility (Rontein et al., 2002). As 

presented above, starch acts as a major integrator in the plant growth that accumulates 

to cope with temporary starvation imposed by the environment (Sulpice et al., 2009). 

It is thus conceivable that highly regulated starch futile cycling may entail advantages 

such as sensitive regulation and rapid metabolic channeling toward various pathways 

in response to physiological and biochemical needs of the plant. Therefore, due to 

the importance of starch in the overall plant metabolism and growth, it is tempting to 

speculate that both redundancy of ADPG sources and starch futile cycling have been 

selected during plant evolution to warrant starch production and rapid connection of 

starch metabolism with other metabolic pathways.

 The postulated starch biosynthetic pathways involving the plastidial and cytosolic 

compartments are consistent with still enigmatic results obtained from experiments 

carried out more than 50 years ago showing that 14C in the glucose moiety of sucrose, 

starch, UDP-glucose and hexose-Ps is asymmetrically distributed in green leaves exposed 

to 14CO
2
 for a short period of time (Kandler and Gibbs, 1956; Gibbs and Kandler, 1957; 

Havir and Gibbs, 1963). Unlike the “classic” view on transitory starch biosynthesis 

(Figure 1) predicting that green leaves exposed to 14CO
2
 for a short period of time

should synthesize starch with 14C symmetrically distributed in the glucose moiety, the 

proposed mechanisms of starch synthesis illustrated in Figures 2-4 provide a possible 

explanation for solving the above enigma. As shown in these fi gures, triose-Ps produced 

in the Calvin-Benson cycle are exported to the cytosol where they can be channeled 

into the oxidative pentose-P pathway (OPPP), thereby leading to a randomization of the 

e 4. Suggested interpretation of the mechanism of starch biosynthesis in leaves according to which 
produced in the cytosol and transported to the chloroplast by the action of a yet to be 

ed ADPG translocator, (b) AGP and pPGM play an important role in the scavenging of glucose 
from starch breakdown, and (c) starch metabolism is connected with other metabolic 

and 1´-
. Other enzymes involved are numbered as follows: 12, pHK; 13, 

(Okazaki et al., 2009); 14, plastidial AGPP; 15, pSP (Zeeman et al., 2004); 16, SuSy. Starch to 
disproportionating 

, 2005; Fulton et al., 2008). Note that starch futile cycling 
various 

under stress conditions (Zeeman et al. 2004) 
needs. This 

starch 
cient in pPGM and AGP mutants, resulting in a parallel decline of starch accumulation 

glucose 
GPT2 
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carbons giving rise to the asymmetric 14C distribution observed in hexose-Ps, nucleotide-

sugars and sucrose upon exposure to 14CO
2
 for a short period of time. Cytosolic G1P, 

G6P, sucrose and/or ADPG will be then transported into the chloroplast and utilized 

as precursors for the synthesis of starch molecules possessing glucose molecules with 

asymmetric 14C distribution. 

 Genetic evidence consistent with the occurrence of a link between sucrose and 

transitory starch metabolism can be obtained from sucrose-phosphate-synthase and 

cytosolic PGM defi cient plants (Strand et al., 2000; Fernie et al., 2002), since their leaves 

contain low levels of both sucrose and starch as compared with WT leaves. Further 

genetic evidence can be obtained from sedoheptulose-1,7-bisphosphate overexpressing 

plants (Miyagawa et al., 2001; Lefebvre et al., 2005), since their leaves are characterized 

by having high levels of both sucrose and starch when compared with WT leaves. 

Finally, genetic evidence indicating that leaf sucrose and starch metabolic pathways 

are linked by SuSy has been obtained from SuSy-overexpressing potato plants whose 

leaves accumulate higher ADPG and starch contents than WT leaves (Muñoz et al., 

2005). Further endeavors based on the characterization of mutants totally lacking SuSy 

will be necessary to confi rm (or refute) the involvement of SuSy in starch biosynthesis 

in leaves. 

1.2. Starch biosynthesis in heterotrophic organs

Sucrose produced in leaves is imported by the heterotrophic organs and used as carbon 

source for energy production and starch synthesis in the amyloplast. As in the case of 

leaves, various mechanisms have been proposed to describe starch biosynthesis in the 

heterotrophic organs, which together with the mechanisms of sucrose unloading, will be 

presented and discussed below.

1.2.1. Mechanisms of sucrose unloading in heterotrophic organs

Unloading of sucrose arriving from aerial parts of the plant into sink organs occurs 

either symplastically (moving via plasmodesmata) or apoplastically. The route depends 

on the species, organ or tissue. In the apoplastic delivery of sucrose to rapidely growing 

sinks, apoplastic sucrose that has been released into the extracellular space can be split 

by cell wall-bound invertases into glucose and fructose for subsequent uptake into the 

cell by hexose transporters. Alternatively, sucrose can be taken up by plasma membrane-
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case of 

biosynthesis in the 

organs, which together with the mechanisms of sucrose unloading, will be 

organs occurs 

. The route depends 

organ or tissue. In the apoplastic delivery of sucrose to rapidely growing 

be split 

into the 

, sucrose can be taken up by plasma membrane-

bound sink specifi c sucrose transporters of non-dividing storage sinks (Sauer, 2007). 

Sucrose is then transported via yet-to-be-identifi ed tonoplast sucrose transporters 

to the vacuole, which serves as temporary reservoir. Apoplastic sucrose can also be 

taken up by a sucrose-induced endocytic process, and transported to the central vacuole 

of heterotrophic cells (Etxeberria et al., 2005a, 2005b; for a review see Etxeberria et 

al., 2012). Endocytic uptake of extracellular sucrose and subsequent transport to the 

vacuole is not in confl ict with transport through membrane-bound carriers given that cell 

homeostasis can be better maintained if both mechanisms operate in parallel (Etxeberria 

et al., 2005a). Consistent with this view, Baroja-Fernández et al. (2006) reported that 

carrier-mediated sucrose import in starved cells of sycamore (Acer pseudoplatanus 

L.) plays an important role in the overall sucrose-starch conversion process during the 

initial period of sucrose unloading, whereas endocytosis may play an important role in 

transporting the bulk of sucrose to the vacuole and its subsequent conversion into starch 

after prolonged period of sucrose unloading. 

1.2.2. Proposed mechanisms of sucrose-starch conversion in heterotrophic cells

Sucrose entering the heterotrophic cell by any of the mechanisms described above must 

be metabolized to molecules that can be transported to the amyloplast for subsequent 

conversion into starch. Because both chloroplasts and amyloplasts are ontogenically 

related, and because chloroplasts possess a very active triose-P translocator connecting 

the plastidial and cytosolic compartments, it was originally assumed that cytosolic 

triose-Ps entering the amyloplast by means of a triose-P translocator act as precursors for 

starch biosynthesis (Boyer, 1985). However, NMR spectroscopy experiments of starch 

biogenesis in wheat and maize grains using 13C-NMR (Keeling et al., 1988; Hatzfeld 

and Stitt, 1990) demonstrated that a C-6 molecule, not a triose-P (C-3), is the precursor 

of starch biosynthesis in amyloplasts. Further investigations of the enzyme capacities 

of amyloplasts (Entwistle and ap Rees, 1988; Frehner et al., 1990) supported the view 

that C-6 molecules entering amyloplasts are the precursors of starch biosynthesis. 

Depending on the nature of the C-6 molecule entering the amyloplast (G6P or ADPG), 

and depending on the enzymes involved in ADPG synthesis, various mechanisms have 

been proposed to explain the sucrose-starch conversion process in heterotrophic cells.

1.2.2.1. Models of sucrose-starch conversion in heterotrophic cells according to which 
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AGP is the sole source of ADPG linked to starch biosynthesis

It is widely assumed that AGP is the sole source of ADPG in heterotrophic organs of 

mono- and di-cotyledonous plants. Maximal in vitro AGP activity greatly exceeds the 

minimum required to support the normal rate of starch accumulation in starch storing 

organs (Denyer et al., 1995; Weber et al., 2000; Li et al., 2013). This would indicate 

that AGP is not a rate-limiting step in the sucrose-starch conversion process in many 

heterotrophic organs. In fact, the fl ux control coeffi cient of AGP has been estimated 

to be as low as 0.08 in some heterotrophic organs (Denyer et al., 1995; Weber et al., 

2000; Rolletschek et al., 2002). As presented above, AGP is a highly regulated enzyme. 

However, whereas evidence has been provided that starch synthesis is regulated by post-

translational redox modifi cation of AGP and 3PGA/Pi balance in potato tubers (Tiessen 

et al., 2003), AGP in developing barley, wheat, pea and bean seeds is insensitive to 

3PGA and Pi regulation (Hylton and Smith, 1992; Kleczkowski et al., 1993; Weber et 

al., 1995; Gómez-Casati and Iglesias, 2002). 

 In heterotrophic organs of dicotyledonous plants, sucrose entering the cytosolic 

compartment of the heterotrophic cell is broken down by SuSy to produce fructose 

and UDPglucose (UDPG), the latter being converted to G1P and PPi by UDPG 

pyrophosphorylase (UGP). G1P is subsequently metabolized to G6P by means of the 

cytosolic phosphoglucomutase. Cytosolic G6P then enters the amyloplast, where it is 

converted to starch by the sequential activities of pPGM, AGP and SS (Figure 5A). 

Unlike chloroplasts, amyloplasts are unable to photosynthetically generate ATP and 

therefore, cytosolic ATP must enter the amyloplast to produce ADPG by means of AGP. 

The presence of an ATP/ADP translocator in the envelope membranes of amyloplasts 

has been fi rmly established by different laboratories (Pozueta-Romero et al., 1991b; 

Tjaden et al., 1998), and evidence about its relevance in the starch biosynthetic process 

has been provided by Tjaden et al. (1998) and Geigenberger et al. (2001) who reported 

that potato tubers with decreased plastidic ATP/ADP transporter activities exhibit 

reduced starch content. 

 Genetic evidence demonstrating the importance of SuSy in the sucrose-starch 

conversion process in heterotrophic organs of dicotyledonous plants comes from the 

reduced levels of starch in potato tubers and carrot roots exhibiting low SuSy activity 

(Zrenner et al., 1995; Tang and Sturm, 1999). In addition, genetic evidence showing 

that starch biosynthesis in heterotrophic organs involves the incorporation of G6P and 
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its subsequent conversion into ADPG by means of pPGM and AGP has been obtained 

from the characterization of Vicia narbonensis embryos expressing antisense GPT 

(Rolletschek et al., 2007) (these embryos, however, expressed lower levels of starch-

related genes such as AGP and SuSy encoding genes), genetically engineered pea seeds 

and potato tubers with reduced pPGM (Harrison et al., 1998; Tauberger et al., 2000) and 

from V. narbonensis seeds and potato tubers with reduced AGP activity (Müller-Röber 
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Figure 5. Classic interpretation of the mechanisms of sucrose-starch conversion in (A) heterotrophic 
cells of dicotyledonous plants and (B) cereal endosperm cells according to which AGP is the sole source 
of ADPG linked to starch biosynthesis. Note that in heterotrophic cells of dicotyledonous plants (a) AGP is 
exclusively localized in the plastid, (b) the cytosolic carbon substrate compound entering the amyloplast for 
subsequent conversion into starch is G6P, and (c) cytosolic UGP is involved in the sucrose-G6P conversion 
process. Plastidial and cytosolic G1P pools are likely connected by means of a yet to be identifi ed G1P 
translocator occurring in amyloplasts (Fettke et al., 2010). Note also that in cereal endosperms cells (a) most 
of AGP has a cytosolic localization, and (b) the cytosolic carbon substrate compound entering the amyloplast 
for subsequent conversion into starch is ADPG. Numbering of enzyme activities is the same as in legends of 
Figures 1-4.
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 Using discs from WT and pPGM antisensed potato tubers incubated with 

radiolabelled G1P, Fettke et al. (2010) reported that G1P can be effi ciently taken up by 

potato tuber parenchyma cells and converted to starch. Moreover, these authors reported 

that exogenously added G1P-dependent starch synthesis was diminished in tuber discs 

of potato plants with low plastidial starch phosphorylase (pSP) activity. Fettke et al. 

(2010) thus proposed that G1P can be taken up by amyloplast by a yet to be identifi ed 

transporter to be subsequently used as substrate for pSP- and/or AGP-mediated starch 

biosynthesis. However, although this hypothesis can explain the results obtained using 

potato tuber discks, it confl icts with previous reports using pSP antisensed potato tubers 

showing that, in planta, the lack of pSP did not exert any effect on starch accumulation 

(Sonnewald et al., 1995). Furthermore, this hypothesis is hardly reconcilable with the 

strong reduction of starch content in tubers of pPGM antisensed potato tubers, indicating 

that plastidial G6P is linked to starch biosynthesis (Tauberger et al., 2000).

 Unlike dicotyledonous plants where AGP is exclusively localized in the plastidial 

compartment, most of AGP in cereal endosperm cells has a cytosolic localization (Villand 

and Kleczkowski, 1994; Denyer et al., 1996; Kleczkowski, 1996; ThornbjØrnsen et 

al., 1996a, 1996b; Beckles et al., 2001; Johnson et al., 2003). Consistently, most of 

ADPG has a cytosolic localization in cereal endosperm cells (Liu and Shannon, 1981; 

Tiessen et al., 2012). Import studies using amyloplasts isolated from maize and barley 

endosperms of WT plants and starch-defi cient/ADPG-excess maize Zmbt1 and barley 

Hvbt1 mutants provided genetic evidence that Zea mays brittle1 (BT1) (ZmBT1) and 

Hordeum vulgare BT1 (HvBT1) are membrane proteins that can incorporate cytosolic 

ADPG into the amyloplast (Liu et al., 1992; Shannon et al., 1996; Möhlmann et al., 

1997; Shannon et al., 1998; Patron et al., 2004). Furthermore, cell fractionation studies 

revealed that most of ADPG accumulating in “high-ADPG” developing endosperms 

of the Riso 13 Hvbt1 mutant has a cytosolic localization (Tiessen et al., 2012). The 

overall data thus indicate that, in cereal endosperm cells, BT1 proteins facilitate the 

transfer of cytosolic ADPG into the amyloplast for starch biosynthesis and are rate-

limiting steps in this process. Based on this evidence, a starch biosynthesis model has 

been proposed for cereal endosperms wherein the stepwise reactions of SuSy, UGP 

and AGP take place in the cytosol to convert sucrose into ADPG, which enters the 

amyloplast by means of BT1 to be utilized as glucosyl donor for starch biosynthesis 

(Figure 5B) (Villand and Kleczkowski, 1994; Denyer et al., 1996). Genetic evidence 
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biosynthesis 

evidence 

demonstrating the importance of SuSy in the sucrose-starch conversion process in cereal 

endosperms comes from QTL analyses in maize endosperms (Thévenot et al., 2005) and 

from the reduced levels of starch in maize seeds exhibiting low SuSy activity (Chourey 

and Nelson, 1976). Evidence showing the importance of AGP in starch biosynthesis in 

cereal endosperms comes from AGP mutants exhibiting reduced starch content (Tsai 

and Nelson, 1966; Johnson et al., 2003).

1.2.2.2. Models of sucrose-starch conversion in heterotrophic cells according to which 

both SuSy and AGP are involved in the synthesis of ADPG linked to starch biosynthesis

Suffi cient evidence exists to support the view that heterotrophic organs possess in the 

cytosol important sources, other than AGP, of ADPG linked to starch biosynthesis. This 

hypothesis is compatible with the occurrence in the amyloplast envelope membranes of 

ADPG transporters (Pozueta-Romero et al., 1991b; Naeem et al., 1997; Shannon et al., 

1998), and with the occurrence in heterotrophic organs of cytosolic ADPG metabolizing 

enzymes such as ADPG phosphorylase (Dankert et al., 1964; Murata, 1977; McCoy 

et al., 2006) and SuSy. As presented in section 1.1.2, SuSy is a highly regulated 

enzyme that can produce ADPG from sucrose and ADP. It plays a predominant role 

in determining both sink strength and phloem loading, and in the entry of carbon into 

metabolism in nonphotosynthetic cells. Maximum in vitro ADPG producing SuSy 

activity is particularly high in starch storing organs, being comparable to that of AGP 

in potato tubers (Baroja-Fernández et al., 2009) and 3-4 fold higher than that of AGP 

in developing barley and maize endosperms (Baroja-Fernández et al., 2003; Li et al., 

2013). Furthermore, maximal ADPG producing SuSy activity in heterotrophic organs 

such as developing maize endosperm greatly exceeds the minimum required to support 

the normal rate of starch accumulation in this organ (Li et al., 2013), which would 

indicate that ADPG producing SuSy activity is not a rate limiting step in the sucrose-

starch conversion process in heterotrophic organs. 

 Essentially in line with investigations describing the occurrence of simultaneous 

synthesis and breakdown of glycogen in heterotrophic bacteria and animals (David et 

al., 1990; Gaudet et al., 1992; Massillon et al., 1995; Bollen et al., 1998; Guedon et 

al., 2000; Montero et al., 2011), pulse chase as well as starch pre-loading experiments 

using isolated amyloplasts and heterotrophic organs have provided evidence about the 

occurrence of simultaneous synthesis and breakdown of starch in non-photosynthetic 
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cells of plants under conditions of active starch accumulation (Pozueta-Romero and 

Akazawa, 1993; Neuhaus et al., 1995; Sweetlove et al., 1996). The occurrence of 

starch futile cycling in heterotrophic organs has been further fortifi ed by recent studies 

showing that global regulators of storage substance accumulation such as FLOURY 

ENDOSPERM2 (FLO2) positively co-regulates the expression of starch synthesis 

and breakdown genes during starch accumulation in developing rice seeds (She et al., 

2010), and by the fact that down-regulation of starch breakdown functions in genetically 

engineered wheat and rice plants results in increased grain yield (Hakata et al., 2012; 

Ral et al., 2012). Furthermore, starch breakdown enzymatic activities are high in 

heterotrophic organs (Li et al., 2013). Consistently, “alternative/additional” models for 

the sucrose-starch conversion process in heterotrophic organs of dicotyledonous and 

monocotyledonous plants have been proposed according to which (a) cytosolic enzymes 

such as SuSy catalyze directly the de novo production from sucrose of ADPG, which 

is subsequently imported into the amyloplast by the action of an ADPG translocator, 

and (b) pPGM and AGP play an important role in the scavenging of the glucose units 

derived from the starch breakdown (Figure 6). Accordingly, these models preview that 

the net rate of starch accumulation in heterotrophic cells is determined by the balance 

between the rates of ADPG synthesis in the cytosol, import of cytosolic ADPG to the 

amyloplast, starch synthesis and starch breakdown, and by the effi ciency with which 

starch breakdown products can be recycled back to starch via the coupled reactions of 

pPGM and AGP. Also, these models predict that the recovery towards starch biosynthesis 

of starch breakdown products will be defi cient in pPGM and AGP mutants, resulting in a 

parallel decline of starch accumulation.

 The occurrence of the sucrose-starch conversion pathway illustrated in Figure 6A 

implies that neither UDPG produced by SuSy, nor cytosolic hexose-Ps derived from the 

action of UGP on UDPG, are involved in starch biosynthesis in heterotrophic organs of 

dicotyledonous plants. This view is consistent with the unexpected WT starch content 

phenotype of UGP antisensed potato tubers (Zrenner et al., 1993), and with the WT G6P 

and G1P contents of starch-defi cient SuSy antisensed potato tubers (Baroja-Fernández et 

al., 2003). Also, this view is coherent with the unexpected starch-defi cient phenotype of 

transgenic potato tubers heterologously expressing in the cytosol either yeast invertase 

plus glucokinase (Trethewey et al., 1998) or bacterial sucrose phosphorylase (Trethewey 

et al., 2001), since the high sucrolytic activity occurring in these tubers leads to drastic 
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Figure 6. Suggested interpretation of the mechanisms of sucrose-starch conversion in (A) heterotrophic 
cells of dicotyledonous plants and (B) cereal endosperms according to which (a) both SuSy and AGP 
are involved in the synthesis of ADPG linked to starch biosynthesis, (b) the cytosolic carbon substrate 
compound entering the amyloplast for subsequent conversion into starch is ADPG, (c) pPGM and AGP 
are involved in the scavenging of starch breakdown products, and (d) the rate of starch accumulation 
would be the result of the net balance between starch synthesis and breakdown. Note that in heterotrophic 
cells of dicotyledonous plants neither cytosolic hexose-phosphates, nor cytosolic UGP are involved in 
the sucrose-starch conversion process. Note also that in cereal endosperm cells SuSy catalyzes the direct 
conversion of sucrose into both ADPG and UDPG, the latter being converted to ADPG in the cytosol by the 
stepwise reactions of UGP and AGP. This view predicts that in pPGM and AGP mutants the recovery towards 
starch biosynthesis of the glucose units derived from the starch breakdown will be defi cient, resulting in a 
parallel decline of starch accumulation since starch breakdown products (especially glucose and G6P) will 
leak out the amyloplast. Numbering of enzyme activities is the same as in legends of Figures 1-4.
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cotyledonous plants are the same as those presented in section 1.2.2.1. 

2. MICROBIAL VOLATILES PROMOTE BOTH GROWTH AND ACCUMU-

LATION OF EXCEPTIONALLY HIGH LEVELS OF STARCH IN MONO- AND 

DICOTYLEDONOUS PLANTS

Microbes synthesize and emit many volatile compounds (VCs). Volatile emissions from 

rhizobacterial isolates of benefi cial Bacillus spp. promote growth in Arabidopsis plants 

by facilitating nutrient uptake, photosynthesis and defense responses, and by decreasing 

glucose sensing and abscisic acid levels (Ryu et al., 2003, 2004; Zhang et al., 2008b, 

2009). In contrast, volatiles from Pseudomonas spp., Serratia spp. and Stenotrophomon-

as spp., and from some fungal species inhibit growth in Arabidopsis plants (Splivallo 

et al., 2007; Tarkka and Piechulla, 2007; Vespermann et al., 2007). Given the lack of 

knowledge on how microbial VCs affect reprogramming of carbohydrate metabolism 

in plants, Ezquer et al. (2010a) explored the effect on starch metabolism of volatiles re-

leased from different microbial species ranging from Gram-negative and Gram-positive 

bacteria to different fungi. Towards this end, the authors measured the starch and soluble 

sugars content in leaves of plants cultured in the presence or in the absence of adjacent 

microbial cultures. Noteworthy, Ezquer et al. (2010a) found that, in the absence of phys-

ical contact between plant and microbe, all microbial species tested (including plant 

pathogens and microbes that normally do not interact with plants) emitt volatiles that 

promote a rapid accumulation of exceptionally high levels of starch in leaves of both 

mono- and di-cotyledonous plants. Levels of starch reached by VCs-treated leaves were 

comparable to those occurring in heterotrophic organs such as tubers and cereal seeds. 

This phenomenon, initially designated as MIVOISAP (for MIcrobial VOlatiles Induced 

Starch Accumulation Process), was also accompanied by strong promotion of growth. 

Therefore, MIVOISAP cannot be ascribed to utilization of surplus photosynthates and/

or ATP for starch biosynthesis that would occur under growth arrest conditions.    

 Transcriptome, metabolite content and enzyme activity analyses of potato leaves 

exposed to volatiles emitted by the plant pathogen Alternaria alternata revealed that 

starch over-accumulation was accompanied by enhanced 3PGA/Pi ratio and up-regula-

tion of SuSy, acid invertase inhibitors, SSIII and SSIV, starch branching enzyme, GPT2, 

and synthesis of phosphatidylinositol-phosphates implicated in processes such as en-
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VOLATILES PROMOTE BOTH GROWTH AND ACCUMU-

LATION OF EXCEPTIONALLY HIGH LEVELS OF STARCH IN MONO- AND 

Volatile emissions from 

Arabidopsis plants 

decreasing 

(Ryu et al., 2003, 2004; Zhang et al., 2008b, 

ophomon-

spp., and from some fungal species inhibit growth in Arabidopsis plants (Splivallo 

Tarkka and Piechulla, 2007; Vespermann et al., 2007). Given the lack of 

affect reprogramming of carbohydrate metabolism 

effect on starch metabolism of volatiles re-

Gram-positive 

Towards this end, the authors measured the starch and soluble 

adjacent 

, Ezquer et al. (2010a) found that, in the absence of phys-

(including plant 

volatiles that 

a rapid accumulation of exceptionally high levels of starch in leaves of both 

leaves were 

organs such as tubers and cereal seeds. 

(for MIcrobial VOlatiles Induced 

growth. 

cannot be ascribed to utilization of surplus photosynthates and/

ATP for starch biosynthesis that would occur under growth arrest conditions.   

Transcriptome, metabolite content and enzyme activity analyses of potato leaves 

revealed that 

up-regula-

, acid invertase inhibitors, SSIII and SSIV, starch branching enzyme, GPT2, 

such as en-

docytosis and vesicle traffi c (Ezquer et al., 2010a). MIVOISAP was also accompanied 

by down-regulation of acid invertase, plastidial Trxs, plastidial β-amylase and pSP, and 

proteins involved in the conversion of plastidial triose-phosphates into cytosolic G6P. 

No changes were found neither in the expression levels of AGP encoding genes nor in 

the redox status of APS1. Furthermore AGP-antisensed potato leaves accumulated ex-

ceptionally high levels of starch in the presence of VCs. The overall data thus indicated 

that potato MIVOISAP is the consequence of transcriptionally and post-transcriptional-

ly regulated metabolic reprogramming involving (a) up-regulation of ADPG-producing 

SuSy, SSIII and SSIV, and proteins involved in the endocytic uptake and traffi c of su-

crose, and (b) down-regulation of acid invertase and starch breakdown enzymes. During 

potato MIVOISAP there also occurs a down-regulation of ATP-consuming functions 

involved in internal amino acid provision such as proteases and enzymes involved in 

de novo synthesis of amino acids. Ezquer et al. (2010a, 2010b) thus hypothesized that, 

under conditions of limited ATP-consuming protein breakdown occurring during expo-

sure to VCs, the surplus ATP and carbon is diverted from protein metabolism to starch 

biosynthesis.

 Time-course analyses of starch and maltose contents in illuminated Arabidopsis 

leaves of plants exposed to volatiles emitted by A. alternata revealed that both starch 

synthesis and β-amylase-dependent starch degradation were enhanced upon VCs treat-

ment, although the fi nal balance was positive for synthesis over breakdown (Li et al., 

2011). The increase of starch content in illuminated leaves of VCs-treated hy1/cry1, 

hy1/cry2 and hy1/cry1/cry2 Arabidopsis mutants was many-fold lower than that of WT 

leaves, indicating that Arabidopsis MIVOISAP is subjected to photoreceptor-mediated 

control. Transcriptomic analyses of Arabidopsis leaves exposed to A. alternata volatiles 

revealed changes in the expression of genes involved in multiple processes. However, 

unlike potato, no changes could be observed in the expression of starch related genes 

(Li et al., 2011). Also, unlike potato plants, Arabidopsis MIVOISAP was accompanied 

by 2-3-fold increase of the levels of reduced (active) form of APS1. Using different 

Arabidopsis knockout mutants Li et al. (2011) observed that the magnitude of the VCs-

induced starch accumulation was low in mutants impaired in SSIII, SSIV and NTRC. 

Unlike WT leaves, no changes in the redox status of AGP occurred in ntrc mutants, pro-

viding evidence that VCs-promoted monomerization (activation) of AGP is mediated by 
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NTRC. The overall data thus strongly indicated that Arabidopsis MIVOISAP involves a 

photocontrolled, transcriptionally and post-transcriptionally regulated network wherein 

photoreceptors and post-translational changes (e.g. changes in the redox status) of plas-

tidial enzyme(s) such as AGP, SSIII and SSIV play important roles. Consistent with the 

possible involvement of changes in redox status of SSs in MIVOISAP, Glaring et al. 

(2012) have recently reported that SSI and SSIII are reductively activated enzymes.
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OBJECTIVES

The studies on stimulatory effects of microbial VCs on plant growth and metabolism 

have been mainly focused on a few benefi cial rhizosphere bacteria and fungi. To increase 

knowledge of microbial VCs-mediated interactions between plants and microorganisms 

in this thesis I explored the biochemical and molecular mechanisms involved in the 

response of plants to VCs emitted by phytopathogenic A. alternata, giving special 

attention to the role played by pPGI.

 The fi rst objective of this work was to study the role of pPGI in starch biosynthesis. 

The chapter 1 shows that pPGI is an important determinant of photosynthesis, energy 

status, growth and starch accumulation in mesophyll cells likely as a consequence of 

its involvement in the production of OPPP/glycolysis intermediates necessary for the 

synthesis of plastidic MEP-pathway derived hormones such as CKs, and not only the 

consequence of lack of pPGI-mediated fl ow between the Calvin-Benson cycle and the 

pPGM-AGP-SS starch biosynthetic pathway.

 The second objective of this book was to investigate the biochemical and 

molecular mechanisms triggered in plants by VCs emitted by phylogenetically 

diverse microorganisms (including plant pathogens and microbes that do not normally 

interact mutualistically with plants). The overall data presented in this chapter show 

that VCs emitted by diverse phytopathogenic microorganisms promote plant growth, 

photosynthesis, starch accumulation, and fl owering through cytokinin action.

 The objective of the third part of this work was to explore the role of pPGI in the 

response of Arabidopsis thaliana to VCs. Data presented in this part of the thesis show 

that Arabidopsis plants are capable of responding to VCs emitted by phytopathogens by 

triggering pPGI independent mechanisms.
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Plastidic phosphoglucose isomerase is an important determinant 
of starch accumulation in mesophyll cells, growth, photosynthetic 

capacity, and biosynthesis of plastidic cytokinins in Arabidopsis
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ABSTRACT

Phosphoglucose isomerase (PGI) catalyzes the reversible isomerization of glucose-6-

phosphate and fructose-6-phosphate. It is involved in glycolysis and in the regeneration 

of glucose-6-P molecules in the oxidative pentose phosphate pathway (OPPP). In 

chloroplasts of illuminated mesophyll cells PGI also connects the Calvin-Benson cycle 

with the starch biosynthetic pathway. In this work we isolated pgi1-3, a mutant totally 

lacking pPGI activity as a consequence of aberrant intron splicing of the pPGI encoding 

gene, PGI1. Starch content in pgi1-3 source leaves was ca. 10-15% of that of wild type 

(WT) leaves, which was similar to that of leaves of pgi1-2, a T-DNA insertion pPGI 

null mutant. Starch defi ciency of pgi1 leaves could be reverted by the introduction of a 

sex1 null mutation impeding β-amylolytic starch breakdown. Although previous studies 

showed that starch granules of pgi1-2 leaves are restricted to both bundle sheath cells 

adjacent to the mesophyll and stomata guard cells, microscopy analyses carried out in 

this work revealed the presence of starch granules in the chloroplasts of pgi1-2 and pgi1-3 

mesophyll cells. RT-PCR analyses showed high expression levels of plastidic and extra-

plastidic β-amylase encoding genes in pgi1 leaves, which was accompanied by increased 

β-amylase activity. Both pgi1-2 and pgi1-3 mutants displayed slow growth and reduced 

photosynthetic capacity phenotypes even under continuous light conditions. Metabolic 

analyses revealed that the adenylate energy charge and the NAD(P)H/NAD(P) ratios 

in pgi1 leaves were lower than those of WT leaves. These analyses also revealed that 

the content of plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP)-pathway derived 

cytokinins (CKs) in pgi1 leaves were exceedingly lower than in WT leaves. Noteworthy, 

exogenous application of CKs largely reverted the low starch content phenotype of pgi1 

leaves. The overall data show that pPGI is an important determinant of photosynthesis, 

energy status, growth and starch accumulation in mesophyll cells likely as a consequence 

of its involvement in the production of OPPP/glycolysis intermediates necessary for the 

synthesis of plastidic MEP-pathway derived hormones such as CKs. 
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INTRODUCTION

Starch is a branched homopolysaccharide of α-1,4-linked glucose subunits with α-1,6-

linked glucose at the branched points. Synthesized by starch synthases (SS) using ADP-

glucose (ADPG) as the sugar donor molecule, this polyglucan accumulates as predomi-

nant storage carbohydrate in plants. Starch is found in the plastids of photosynthetic and 

non-photosynthetic tissues. Mature chloroplasts occurring in photosynthetically active 

cells possess the capacity of providing energy (ATP) and fi xed carbon for the synthesis 

of starch during illumination. By contrast, production of long-term storage of starch 

taking place in amyloplasts of reserve organs such as tubers, roots and seed endosperms 

depends upon the incoming supply of carbon precursors and energy from the cytosol. 

This difference between the metabolic capacities of chloroplasts and amyloplasts has 

lead to the generally accepted view that the pathway(s) involved in starch production 

are different in photosynthetic and non-photosynthetic cells (for a review see Bahaji et 

al., 2014b).

  In leaves, up to 50% of the photosynthetically fi xed carbon is retained within the 

chloroplasts during the day to synthesize starch (Stitt and Quick, 1989; Rao and Terry, 

1995) which is then remobilized during the subsequent night to support non-photosyn-

thetic metabolism and growth by continued export of carbon to the rest of the plant. Due 

to the diurnal rise and fall cycle of its levels, foliar starch is termed “transitory starch”. 

Many environmental factors such as photoperiod, light quality, senescence, tempera-

ture, contact with microorganisms, etc., infl uence transitory starch metabolism (Dreier 

et al., 1995; Kaplan and Guy, 2005; Ezquer et al., 2010; Valerio et al., 2010; Li et al., 

2011). Because starch is a major integrator in the regulation of plant growth to cope 

with fl uctuations in the carbon and energy status of the plant (Sulpice et al., 2009) the 

synthesis of this polyglucan in leaves is highly regulated at multiple levels in response 

to light and sugar signals and hormones such as cytokinins (CKs) (Werner et al., 2008; 

Erickson et al., 2014), abscisic acid (Ramon et al., 2007; Muñoz-Bertomeu et al., 2011) 

and brassinosteroids (Schlüter et al., 2002; Oh et al., 2011)

 It is widely accepted that the whole photosynthesis-driven starch biosynthetic pro-

cess occurring in mesophyll cells of leaves resides exclusively in the chloroplast (Ar-

non, 1955; Streb et al., 2009; Stitt and Zeeman, 2012). According to this classical view 

of starch biosynthesis, starch is considered the end-product of a metabolic pathway that 

is linked to the Calvin-Benson cycle by means of the plastidic phosphoglucose isomer-
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ase (pPGI). This enzyme catalyzes the conversion of fructose-6-phosphate (F6P) from 

the Calvin-Benson cycle into glucose-6-phosphate (G6P), which is then converted into 

glucose-1-phosphate (G1P) by the plastidic phosphoglucomutase (pPGM). ADPG py-

rophosphorylase (AGP) then converts G1P and ATP into inorganic pyrophosphate and 

ADPG necessary for starch biosynthesis. This view also implies that AGP is the sole 

source of ADPG, and functions as the major regulatory step in the starch biosynthetic 

process (Kleczkowski 1999, 2000; Streb et al., 2009; Stitt and Zeeman, 2012) However, 

despite the monumental amount of data supporting the classic interpretation of transi-

tory starch biosynthesis in mesophyll cells, mounting evidence previews the possible 

occurrence of important additional pathway(s) involving the cytosolic and plastidic 

compartments (reviewed in Bahaji et al., 2014b).

 In addition to its involvement in the connection of the Calvin-Benson cycle with the 

starch biosynthetic pathway in illuminated leaves, pPGI is involved in glycolysis and in 

the regeneration of G6P molecules in the oxidative pentose pathway (OPPP) in hetero-

trophic organs and non-illuminated leaves. pPGI is strongly inhibited by light (Heuer 

et al., 1982) and by 3-phosphoglycerate (3PGA) (Dietz, 1985) a Calvin-Benson cycle 

intermediate accumulating in the chloroplast during illumination that allosterically acti-

vates AGP (Kleczkowski, 1999, 2000). Although these characteristics of pPGI, and the 

low stromal G6P/F6P ratio occurring in the illuminated chloroplast (far lower than the 

equilibrium constant for pPGI (Dietz, 1985; Sharkey and Vassey, 1988) would indicate 

that this enzyme is inactive to some extent during illumination (and thus during transi-

tory starch accumulation), genetic evidence showing that transitory starch biosynthesis 

occurs solely by the pPGI pathway has been obtained from characterization of starch-

defi cient mutants impaired in pPGI (Jones et al., 1986; Kruckeberg et al., 1989; Yu et 

al., 2000; Niewiadomski et al., 2005, Kunz et al., 2010). In Arabidopsis, such evidence 

has been obtained from the characterization of the pgi1-1 and pgi1-2 pPGI mutants 

accumulating up to 40% and 10% of the wild type (WT) starch content, respectively 

(Niewiadomski et al., 2005; Kunz et al., 2010). The pgi1-1 allele has a single nucleotide 

substitution resulting in ca. 7% of the WT pPGI activity (Yu et al., 2000), whereas pgi1-

2 is a T-DNA insertion null mutant of PGI1 that completely lacks pPGI activity (Kunz 

et al., 2010). 

 pgi1-2 leaves accumulate ca. 10-fold more starch than leaves impaired in pPGM and 

AGP (Caspar et al., 1985; Kofl er et al., 2000; Ventriglia et al., 2008; Kunz et al., 2010; 
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 (Caspar et al., 1985; Kofl er et al., 2000; Ventriglia et al., 2008; Kunz et al., 2010; 

Bahaji et al., 2011), which would apparently confl ict with the widely accepted idea that 

the whole photosynthesis-driven starch biosynthetic process solely involves the Calvin-

Benson cycle-pPGI-pPGM-AGP-SS pathway in mesophyll cells. However, consistent 

with the idea that pPGI-pPGM-AGP is the sole starch biosynthetic pathway operating 

in mesophyll cells, Kunz et al. (2010) showed that starch granules are restricted to both 

bundle sheath cells adjacent to the mesophyll and stomatal guard cells, and suggested 

that the occurrence of starch in these cells is due to the incorporation of cytosolic G6P 

into the chloroplast, where it is then metabolized into starch (Kunz et al., 2010).

 During our searches for starch defi cient plants of Arabidopsis we isolated and char-

acterized a mutant, designated as pgi1-3, totally lacking pPGI activity as a consequence 

of the aberrant splicing of intron 6 of the pPGI encoding gene, PGI1. We found that, 

similar to pgi1-2 leaves, starch content in pgi1-3 leaves was ca. 10-15% of that of WT 

leaves. Contrary to expectations, microscopy analyses carried out in this work revealed 

the presence of starch granules in the mesophyll cells of the two pgi1 mutants. Subse-

quent biochemical characterization of pgi1 plants showed that pPGI is an important 

determinant of photosynthesis, energy status, growth and starch accumulation in me-

sophyll cells likely as a consequence of its involvement in the production of OPPP/

glycolysis intermediates necessary for the synthesis of plastidic 2-C-methyl-D-erythri-

tol 4-phosphate (MEP)-pathway derived hormones such as CKs. The data also support 

the occurrence in mesophyll cells of important pPGI independent starch biosynthetic 

pathway(s) involving the cytosolic and chloroplastic compartments.

MATERIAL AND METHODS

Plants, growth conditions and sampling

The work was carried out using Arabidopsis thaliana L. (Heynh) (ecotypes Col-0 with 

erecta-105 mutation (er-105) , Col-0 and Ws-2), the NASC N92274 (pgi1-3), the pgi1-

2 mutant (Kunz et al., 2010), the aps1::T-DNA mutant (SALK_040155), the pgm::T-

DNA mutant (GABI_094D07), the gpt2::T-DNA mutant (GABI_454H06), pgi1-3 plants 

expressing either PGI1 from WT plants or PGI1* from pgi1-3 plants, the pgi1-3/gpt2 

and pgi1-2/gpt2 double mutants and the pgi1-2/sex1 and pgi1-3/sex1 double mutants. 

The pgi1-2/sex1 and pgi1-2/gpt2 double mutants were confi rmed by PCR using the 

oligonucleotide primers listed in Table 1. The 35S-PGI1 and 35S-PGI1* plasmid 
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constructs utilized to produce PGI1 or PGI1* expressing pgi1-3 plants were produced 

as illustrated in Supplemental Figure 1. pgi1-3 plants expressing granule bound starch 

synthase fused with green fl uorescent protein (GBSS-GFP) were produced using the 

35S-GBSS-GFP plasmid construct (Szydlowskiet al., 2009) whereas pgi1-2 plants 

expressing GBSS-GFP were produced using the 35S-GBSS-GFP* plasmid construct 

produced as illustrated in Supplemental Figure 2. The plasmid constructs were 

transferred to Agrobacterium tumefaciens EHA105 cells by electroporation and utilized 

to transform Arabidopsis plants according to Clough and Bent (1998). Transgenic plants 

were selected on the appropriate antibiotic-containing selection medium.

Unless otherwise indicated plants were cultured in soil in growth chambers under the 

indicated photoperiodic conditions (light intensity of 90 µmol photons sec–1 m-2) and 

at a constant temperature of 22oC. Harvested source leaves were immediately freeze-

clamped and ground to a fi ne powder in liquid nitrogen with a pestle and mortar. To 

analyze the effects of exogenously applied CKs on starch content plants were grown 

in vitro on MS agar plates at a constant temperature of 22oC under long day (LD) (16 

h light/8 h dark) conditions. Three-weeks old plants were then transferred to MS agar 

plates containing the indicated concentrations of trans-zeatin (tZ). After two additional 

days leaves were harvested, and starch content was measured as described below.

Mutant Designation Sequence 

pgi1-2 Forward 5’-TATACTCTTCTTCTCCATCTCTCAAAC-3’ 

Reverse 5’-CTTTTAATCAGAAAAACCTAAGAGAGG-3’ 

T-DNA 5’-CATTTTATAATAACGCTGCGGACATCTAC-3’ 

sex1 Forward 5’-GTCAGTCTATCCTGCGCTTTG-3’ 

Reverse 5’-TCCGGTATGACAAGTCGAATC-3’ 

T-DNA 5’-GCGTGGACCGCTTGCTGCAACT-3’ 

gpt2 Forward 5’-CTTCATGGGAGAGACTTTCCC-3’ 

Reverse 5’-TGATCTCACCGGAATGTTCTC-3’ 

T-DNA 5’-CCCATTTGGACGTGAATGTAGACAC-3’

Table 1. Primers used to identify pgi1-2/sex1 and pgi1-2/gpt2 mutants by PCR
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Enzyme assays

One g of the frozen powder (see above) was resuspended at 4oC in 3 ml of 100 mM 

HEPES (pH 7.5), 2 mM EDTA and 2 mM dithiothreitol, 1 mM PMSF and 10 ml/L 

protease inhibitor cocktail (Sigma P9599), and centrifuged at 14,000 x g for 20 min. 

The supernatant was desalted by ultrafi ltration on Vivaspin 500 centrifugal concentrator 

(Sartorius) and the protein extract thus obtained was assayed for enzymatic activities. 

AGP and UDP-glucose (UDPG) pyrophosphorylase (UGP) activities were measured 

following the two-step assay method described in Li et al. (2012). PGI and sucrose 

synthase (SuSy) were measured as described in Jones et al. (1986) and Baroja-Fernández 

et al. (2102), respectively. Adenylate kinase was assayed in the two directions of the 

reaction as described in Kleczkowski and Randall (1986) using an HPLC system 

(Waters corporation) fi tted with a Partisil 10-SAX column. PGM and acid invertase 

were assayed as described in Caspar et al. (1985) and Baroja-Fernández et al. (2009), 

respectively. ribulose 1,5-bisphosphate carboxylase oxygenase (Rubisco) activity 

was measured according to Pérez et al. (2005). Amylolytic activities were assayed as 

described in Liu et al. (2005). Alkaline pyrophosphatase (PPase) and sucrose-phosphate 

synthase (SPS) were measured as described in Linden et al. (1975).  Starch synthase 

(SS) activity was measured in two steps: (1) SS reaction and (2) measurement of ADP 

produced during the reaction. The SS assay mixture contained 50 mM HEPES (pH 

7.5), 6 mM MgCl
2
, 3 mM dithiothreitol, 1 mM ADPG and 3% glycogen. After 5 min at 

37oC reactions were stopped by boiling the assay mixture for 2 min. ADP was measured 

by HPLC on a Waters Associate´s system fi tted with a Partisil-10-SAX column. One 

unit (U) is defi ned as the amount of enzyme that catalyzes the production of 1 µmol of 

product per min. 

Non-reducing western blot analyses of AGP

For non-reducing western blots of AGP, 50 mg of the homogenized frozen material (see 

above) was extracted in cold 16% (w/v) TCA in diethyl ether, mixed, and stored at –20oC 

for at least 2 h as described in Li et al. (2012). The pellet was collected by centrifugation 

at 10,000 x g for 5 min at 4oC, washed 3 times with ice-cold acetone, dried briefl y 

under vacuum, and resuspended in 1x Laemmli sample buffer containing no reductant. 

Protein samples were separated on 10% SDS-PAGE, transferred to nitrocellulose fi lters, 

and immunodecorated by using antisera raised against maize AGP as primary antibody 
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Li et al. (2012), and a goat anti-rabbit IgG alkaline phosphatase conjugate (Sigma) as 

secondary antibody.

Chromatographic separation of cytPGI and pPGI

Chromatographic separation of the two PGI isoforms was conducted using an AKTA 

FPLC from Amersham Pharmacia Biotech. Protein extracts of WT and pgi1-3 leaves 

(see above) were loaded onto a HiLoad 16/10 Q-sepharose HP anion exchange column 

(Amersham Pharmacia Biotech) equilibrated with 50 mM HEPES (pH 7.5). After 

washing the column, the adsorbed proteins were eluted with a linear 0-0.8 M NaCl 

gradient in 50 mM HEPES (pH 7.5). The fl ow rate was 5 ml/min and 2.5 ml fractions 

were collected. Fractions were analyzed for PGI activity as described above.

Native gel assay for PGI activity

PGI zymograms were performed as described in Caspar et al. (1985). Protein extracts 

(see above) of both WT and pgi1 leaves were loaded onto a 7.5% (w/v) polyacrylamide 

gel. After electroforesis gels were stained by incubating in darkness at room temperature 

with 0.1 M Tris-HCl (pH 8.0), 5 mM F6P, 1 mM NAD+, 4 mM MgCl
2
, 0.2 mM 

methylthiazolyldiphenyl-tetrazolium bromide (Sigma M5655) and 0.25 mM phenazine 

methosulfate (Sigma P9625) and 1 U/mL of G6P dehydrogenase from Leuconostoc 

mesenteroides (Sigma G8404).

Analytical procedures

For determination of metabolites content, fully expanded source leaves of 30 days after 

sowing (DAS) plants were harvested at the indicated illumination period, freeze-clamped 

and ground to a fi ne powder in liquid nitrogen with a pestle and mortar. ADPG content 

was measured by HPLC-MS/MS as described in Bahaji et al. (2014a). For measurement 

of sucrose, glucose and fructose, a 0.1 g aliquot of the frozen powder was resuspended 

in 1 mL of 90% ethanol, left at 70oC for 90 min and centrifuged at 13,000 x g for 10 

min. For measurement of G6P, F6P and G1P 0.5 g aliquot of the frozen powdered tissue 

was resuspended in 0.4 ml of 1 M HClO
4
, left at 4oC for 2 h and centrifuged at 10,000 

x g for 5 min. The supernatant was neutralized with K
2
CO

3
 and centrifuged at 10,000 

x g. Sucrose, glucose, fructose, F6P, G6P and G1P from supernatants were determined 

by HPLC with pulsed amperometric detection on a DX-500 Dionex system. NADP(H) 
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a DX-500 Dionex system. NADP(H) 

and NAD(H) were measured as described in Queval and Noctor (2007). Starch was 

measured by using an amyloglucosydase–based test kit (Boehringer Mannheim, 

Germany). For measurement of adenine nucleotides a 0.5 g aliquot of the frozen powder 

was resuspended in 0.4 ml HClO
4
, left at 4ºC for 2 h and centrifuged at 10,000 x g 

for 5 min. The supernatant was neutralized with K
2
CO

3
 and centrifuged at 10,000 x g. 

Nucleotides content in the supernatant was measured by HPLC (Waters corporation) 

fi tted with a Partisil 10-SAX column as described in Sweetlove  et al. (1996). Recovery 

experiments were carried out by the addition of known amounts of metabolites standards 

to the frozen tissue slurry immediately after addition of extraction solutions.

For determination of CKs levels, aliquots of the frozen leaves (see above) were 

lyophilized and CKs were quantifi ed according to the method described in Novák et al. 

(2008). 

Iodine staining 

Leaves harvested at the end of the light period were fi xed by immersion into 3.7% 

formaldehyde in phosphate buffer. Leaf pigments were then removed in 96% ethanol. 

Re-hydrated samples were stained in iodine solution (KI 2% (w/v) I
2
 1% (w/v)) for 30 

min, rinsed briefl y in deionized water and photographed.

Gas exchange determinations

Fully expanded apical leaves were enclosed in a LI-COR 6400 gas exchange portable 

photosynthesis system (LI-COR, Lincoln, Nebraska, USA). The gas exchange 

determinations were conducted at 25ºC with a photosynthetic photon fl ux density of 350 

µmol m-2 s-1. Net photosynthetic CO
2
 fi xation rates (A

n
) was calculated using equations 

developed by von Caemmerer and Farquhar (1981). Stomatal conductance (g
s
) values 

were determined as described in Harley et al. (1992). From the A/intercellular CO
2
 

concentrations (Ci) curves, maximum carboxylation rate (Vcmax), triose phosphate use 

(TPU) and maximum rate of the electron transport (Jmax) were calculated according to 

Long and Bernacchi (2003). To avoid miscalculation of A
n
 and Ci due to leakage into the 

gasket of the gas analyzer, we performed CO
2
 response curves using an empty chamber. 

The values obtained for A
n
 and Ci in the empty chamber were compared with those of 

the chamber fi lled with a leaf and substracted from the values obtained with the empty 

chamber. The photosynthetic electron transport rate (ETR) values were calculated 
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according to Krall and Edwards (1992) as photosystem II (PSII) operating effi ciency (Φ 

PSII
) x PPFD x 0.84 x 0.5, where PPFD is the photosynthetic photon fl ux density incident 

on the leaf, 0.5 was used as the fraction of excitation energy distributed to PSII (Ögren 

and Evans, 1993) and 0.84 as the fractional light absorbance (Morales et al., 1991). The 

rate of mitochondrial respiration in the dark was determined by measuring the rate of 

CO
2
 evolution in the dark. 

Real-time quantitative PCR

Total RNA was extracted from leaves using the trizol method according to the 

manufacturer´s procedure (Invitrogen). RNA was treated with RNAase free DNAase 

(Takara). 1.5 µg RNA was reverse transcribed using polyT primers and the Expand 

Reverse Transcriptase kit (Roche) according to the manufacturer’s instructions. Real 

time quantitative PCR reaction was performed using a 7900HT sequence detector 

system (Applied Biosystems) with the SYBR Green PCR Master Mix (Applied 

Biosystems) according to the manufacturer’s protocol. Each reaction was performed in 

triplicate with 0.4 µL of the fi rst strand cDNA in a total volume of 20 µL.  The specifi city 

of the PCR amplifi cation was checked with a heat dissociation curve (from 60ºC to 

95ºC). Comparative threshold values were normalized to 18S RNA internal control. 

The specifi city of the obtained RT-PCR products was controlled on 1.8% agarose gels. 

Primers used for RT-PCRs of PGI1, β-amylase (BAM)1, BAM2, BAM3 and BAM5 are 

listed in Table 2.

Confocal microscopy

Subcellular localization of GFP-tagged GBSS was performed using D-Eclipse C1 

confocal microscope (NIKON, Japan) equipped with standard Ar 488 laser excitation, 

BA515/30 fi lter for green emission and BA650LP fi lter for red emission.

Light and electron microscopy

Light microscopy and transmission electron microscopy (TEM) analyses were carried 

out essentially as described in Szydlowski et al. (2009). Briefl y, small pieces (2 mm2) of 

leaves were immediately fi xed by submersion in a solution of 3% glutaraldehyde (v/v) 

in 0.05 M sodium cacodylate buffer, pH 7.4 (3 h at 4ºC, under vacuum). After fi xing, the 

specimens were washed in a cacodylate buffer (0.05 M sodium cacodylate, 1% sucrose), 
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 ciency (Φ 

) x PPFD x 0.84 x 0.5, where PPFD is the photosynthetic photon fl ux density incident 

(Ögren 

1991). The 

rate of 

Total RNA was extracted from leaves using the trizol method according to the 

 was treated with RNAase free DNAase 

(Takara). 1.5 µg RNA was reverse transcribed using polyT primers and the Expand 

Transcriptase kit (Roche) according to the manufacturer’s instructions. Real 

a 7900HT sequence detector 

(Applied 

’s protocol. Each reaction was performed in 

µL of the fi rst strand cDNA in a total volume of 20 µL.  The specifi city 

 cation was checked with a heat dissociation curve (from 60ºC to 

 internal control. 

 city of the obtained RT-PCR products was controlled on 1.8% agarose gels. 

are 

D-Eclipse C1 

excitation, 

carried 

 y, small pieces (2 mm ) of 

fi xed by submersion in a solution of 3% glutaraldehyde (v/v) 

M sodium cacodylate buffer, pH 7.4 (3 h at 4ºC, under vacuum). After fi xing, the 

a cacodylate buffer (0.05 M sodium cacodylate, 1% sucrose), 

three times for 30 min each at 4ºC, and post-fi xed with a solution of 1% osmium 

tetroxide in the above cacodylate buffer (overnight, 4ºC). After two washes, 30 min 

each, at 4ºC with the same cacodylate buffer, the samples were dehydrated in an ethanol 

series and progressively embedded in LR White resin (London Resin Co., Reading, 

UK). Semithin (1 μm) sections were stained with 1% (w/v) toluidine blue in aqueous 

1% sodium borate for direct observation with a Zeiss Axiophot photomicroscope (Zeiss, 

Oberkochen, Germany). Ultrathin (70-90 nm) sections for TEM were constructed with 

2% aqueous uranyl acetate and lead citrate. Observations were performed with a STEM 

LEO 910 electron microscope (Oberkochen, Germany) at 80 kV, equipped with a Gatan 

Bioscan 792 camera (Gatan, Pleasanton, CA, USA).

Statistical analysis

The data presented are the means of three independent experiments, with 3-5 replicates 

for each experiment (means ± SE). The signifi cance of differences between the control 

Gene Direction Sequence 

18S RNA Forward 5´-GGGCATTCGTATTTCATAGTCAGAG-3´ 

At3g41768 Reverse 5´-CGGTTCTTGATTAATGAAAACATCCT-3´ 

pPGI Forward 5´-GGGATTAATGTTAGGGAGATGC-3´

At4g24620 Reverse 5´-TGTTACCGTCAAGATCAAACTC-3´

BAM1 Forward 5´-CTTGATCAAAACAATGAGGGAG-3´ 

At3g23920 Reverse 5´-CTTCCCGACATCTATGTGAG-3´ 

BAM2 Forward 5´-ACCGATCCTGATGGTCGCC-3´ 

At4g00490 Reverse 5´-CTCTTGTGTCCCTGGAGCC-3´ 

BAM3 Forward 5´-GATTCTGGAAATGGGTTAACC-3´ 

At4g17090 Reverse 5´-GTCACTTCCAGTTGTGTCTTC-3´ 

BAM5 Forward 5´-CACTACGGCATTCTCAACTTC-3’ 

At4g15210 Reverse 5´-CCTTTGGCTCCATAGGTCTC-3’ 

Table 2.  Primers used in Real Time PCR
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and the transgenic lines was statistically evaluated with Student´s t-test using the SPSS 

software. Differences were considered signifi cant at a probability level of P<0.05. In 

CKs analyses, signifi cance was determined by one-way univariate analysis of variance 

(ANOVA) for parametric data and Kruskal Wallis for non-parametric data, using the 

open source R software 2.15.1 (http://cran.r-project.org/). Multiple comparisons after 

ANOVA were calculated using the post hoc Tukey’s honestly signifi cant difference 

(HSD) test.

RESULTS  

Identifi cation and molecular characterization of a new pPGI null allele

Data available from the Arabidopsis Information Resource (http://www.arabidopsis.org) 

on the pPGI encoding At4g24620 gene (PGI1) includes the Cs92274 PGI1 polymorfi sm 

occurring in ethyl methanesulfonate-mutagenized plants in the er-105 background. To 

identify its mutations site(s) we cultured plants from N92274 seeds obtained from the 

Nottingham Arabidopsis Stock Centre (NASC), and sequenced the PGI1 gene. 

 PGI1 contains 14 exons interrupted by 13 introns (Figure 1A) (Yu et al., 2000).

Sequencing analyses revealed that the pPGI N92274 allele harbors a G to A transition 

in the UUCAG/AU sequence of the 3´splice donor site of intron 6 (Figure 1B,C). To 

investigate whether this mutation would cause mis-splicing of the PGI1 pre-mRNA in 

N92274, we amplifi ed by reverse transcripion (RT)-PCR the PGI1 mRNA from both 

WT and the N92274 leaves. Sequencing of the resulting complete cDNAs revealed that 

the cDNA obtained from N92274 leaves lacks 6 nucleotides (ATCAAG) downstream 

the single point mutation site (Supplemental Figure 3). The overall data thus showed 

that (i) the N92274 mutation leads to aberrant splicing of intron 6 during PGI1 pre-

mRNA maturation (Figure 1C), resulting in the production of a 6 nucleotides shorter 

PGI1 mRNA, (ii) the 3´ splicing site of intron 6 of N92274 PGI1 pre-mRNA occurs 

in a non-canonical UCAAG/AA sequence located 6 nucleotides downstream the WT 

3´splicing site of PGI1 pre-mRNA, and (iii) N92274 PGI1 encodes a protein that lacks 

two amino acids (Ile346-Lys347) occurring in the WT pPGI (Figure 1C, Supplemental 

Figure 4). 

 As a fi rst step to investigate whether the above mutation affects pPGI activity we 

measured the starch content in leaves of N92274 plants and its corresponding WT (er-
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the SPSS 
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105) plants. As reference, we also measured the starch content in the leaves of pgi1-2 

T-DNA insertion mutant totally impaired in pPGI activity (Kunz et al., 2010) and its 

corresponding WT Wasilewskija (Ws-2) plants. Preliminary iodine staining analyses 

of leaves revealed that both N92274 and pgi1-2 display a pale brown stain phenotype 

(Figure 2A). This phenotype contrasts with the dark brown staining phenotype of WT 

leaves and the yellow stain phenotype of the near starch-less aps1 and pgm leaves 

impaired in AGP and pPGM, respectively (Figure 3). This indicated the presence of 

reduced starch content in both N92274 and pgi1-2 leaves. In line with this presumption, 

quantitative starch content measurement analyses revealed that starch content in both 

N92274 and pgi1-2 leaves was ca. 10-15% of that accumulated by WT leaves (Figure 

2B). 

 The above results indicated that the mutation in the pPGI N92274 allele (thereafter 

designated as pgi1-3) totally abolishes pPGI activity. To test this hypothesis we 

measured total PGI activity in pgi1-3 plants. We also carried out zymogramic and 

Q-sepharose chromatographic analyses of PGI activity as described in Materials and 

Methods. Two PGI isozymes exist 

in Arabidopsis, one in the plastids 

and the other in the cytosol (Caspar 

et al., 1985; Kofl eret al., 2000; Yu et 

al., 2000; Niewiadomskiet al., 2005; 

Ventriglia et al., 2008; Tsai et al., 2009; 

Kunz et al., 2010; Bahaji et al., 2011). 

Typically, pPGI activity constitutes ca. 

20-30% of the total cellular PGI (Jones 

et al., 1986; Kruckeberg et al., 1989; 

Yu et al., 2000; Niewiadomski et al., 

2005, Kunz et al., 2010). Similarly to 

leaves of the pgi1-2 T-DNA insertion 

mutant (Kunz et al., 2010), total PGI 

activity in pgi1-3 leaves (928 ± 52 

mU/g FW) was ca. 80% of the WT 

PGI activity (1264 ± 134 mU/g FW). 

Zymogramic analyses of PGI activity 

Figure 2. Leaves of the pgi1-3 mutant accumulate 
low starch. (A) Iodine staining and (B) starch content 
of er-105, pgi1-3, Ws-2 and pgi1-2 leaves. Plants were 
cultured on soil under LD conditions and source leaves 
harvested from 30 DAS plants after 12 h of illumination. 
In “B” values represent the mean ± SE of determinations 
on fi ve independent samples.

0

20

10

40

50

30

er-105 Ws-2

N92274

(pgi1-3)

Ws-2 pgi1-2

N92274

(pgi1-3) pgi1-2
A

B

S
ta

rc
h

 (
µ

m
o

l 
g

lu
c
o

s
e

/g
 F

W
)

er-105



72

Á.M. Sánchez-López Á.M. Sánchez-López Chapter 1

pgi1-2 

T-DNA insertion mutant totally impaired in pPGI activity (Kunz et al., 2010) and its 

WT Wasilewskija (Ws-2) plants. Preliminary iodine staining analyses 

a pale brown stain phenotype 

of WT 

leaves 

presence of 

presumption, 

in both 

Figure 

 The above results indicated that the mutation in the pPGI N92274 allele (thereafter 

) totally abolishes pPGI activity. To test this hypothesis we 

We also carried out zymogramic and 

Materials and 

Two PGI isozymes exist 

plastids 

(Caspar 

 eret al., 2000; Yu et 

al., 2005; 

Ventriglia et al., 2008; Tsai et al., 2009; 

al., 2011). 

Typically, pPGI activity constitutes ca. 

PGI (Jones 

g et al., 1989; 

Yu et al., 2000; Niewiadomski et al., 

Similarly to 

T-DNA insertion 

total PGI 

(928 ± 52 

the WT 

± 134 mU/g FW). 

activity 

revealed the occurrence of cytosolic PGI 

(cytPGI) and pPGI in WT leaves, but 

only cytPGI in pgi1-3 leaves (Figure 

4A). PGI activity analyses of Q-sepharose 

chromatography eluted fractions revealed 

two activity peaks in WT leaves, whereas 

a single peak (corresponding to cytPGI) 

could be detected in pgi1-3 leaves (Figure 

4B). The overall data thus provided strong 

evidence that the pgi1-3 chloroplasts 

totally lack PGI activity.

  Whether pgi1-3 is a pPGI null 

mutation was further investigated by generating and characterizing various pgi1-3 plants 

expressing the PGI1 encoding cDNA obtained from either WT or pgi1-3 plants under 

the control of the CaMV 35S promoter (designated as pgi1-3::PGI1 and pgi1-3::PGI1* 

plants, respectively). As shown in Figure 5A, real time RT-PCR analyses showed that 

leaves of plants of two independent lines each of pgi1-3::PGI1 and pgi1-3::PGI1* 

exhibited high expression levels of the transgene. Furthermore, leaves of plants of two 

independent pgi1-3::PGI1 lines accumulated WT starch content whereas, similar to 

pgi1-3 leaves, pgi1-3::PGI1* leaves accumulated ca. 10-15% of the WT starch content 

(Figure 5B). The overall data thus further provided evidence that pgi1-3 is a pPGI null 

allele. 

Mesophyll cells of pgi1 null mutants contain starch

We carried out TEM analyses of pgi1-2 and pgi1-3 mature leaves, and confocal 

fl uorescence microscopy (CFM) analyses of mature leaves of GBSS-GFP expressing 

pgi1-2 and pgi1-3 plants. Preliminary light microscopy analyses of toluidine stained 

leaves showed that mesophyll cells of WT leaves produced several starch granules per 

chloroplast (Figure 6A,D). Noteworthy, these analyses also revealed that chloroplasts 

of pgi1-2 and pgi1-3 mesophyll cells contain starch granules (Figure 6B,C,E,F). 

These observations were further confi rmed by TEM analyses of WT, pgi1-2 and pgi1-3 

leaves (Figure 6G-I), and CFM analyses of transgenic WT, pgi1-2 and pgi1-3 leaves 

expressing the starch granule marker GBSS-GFP (Figure 6J-L). 

Figure 3. Iodine staining of source leaves of er-

105, pg1-3, Ws-2, pgi1-2, aps1 and pgm plants. 
Leaves were harvested from 30 DAS plants after 
12 h of illumination. Plants were cultured under LD 
conditions.

er-105 Ws-2
N92274

(pgi1-3)

pgi1-2 aps1 pgm
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 SEX1 is required for β-amylase-mediated leaf starch mobilization during the night. 

Mutants impaired in this function accumulate high levels of starch in the mesophyll 

cells (Yu et al., 2001; Edner et al, 2007). Whether mesophyll cells of pgi1 null mutants 

accumulate starch was further investigated by characterizing pgi1-2/sex1 and pgi1-3/sex1 

double mutants. The rationale behind this experimental approach was that, if pgi1-2 and 

pgi1-3 mesophyll cells do indeed accumulate starch, pgi1-2/sex1 and pgi1-3/sex1 leaves 

should accumulate more starch than pgi1-2 and pgi1-3 leaves, respectively. Confi rming 

this presumption, both iodine staining (Figure 7A) and starch content measurement 
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Figure 4. pgi1-3 leaves lack pPGI activity. (A) PGI zymogram of proteins extracted from WT (er-105) and 
pgi1-3 leaves. (B) Q-sepharose chromatography profi le of PGI activity in WT and pgi1-3 leaves. In “B”, 
loaded WT extract contained 850 mU of total PGI activity, whereas pgi1-3 extract loaded on the column 
contained 650 mU of PGI activity.
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 SEX1 is required for β-amylase-mediated leaf starch mobilization during the night. 

mesophyll 

mutants 

pgi1-3/sex1 

and 

 leaves 

. Confi rming 

) and starch content measurement 

analyses (Figure 7B) revealed that pgi1-

2/sex1 and pgi1-3/sex1 mature leaves 

accumulate exceedingly higher levels 

of starch than pgi1-2 and pgi1-3 leaves, 

respectively (see also Figure 2). 

GPT2 is not involved in starch 

biosynthesis in mesophyll cells of pgi1 

leaves 

Arabidopsis contains two functional 

plastidic G6P/Pi translocators (GPT) 

mainly expressed in heterotrophic tissues 

(GPT1 and GPT2) whose suggested role 

is delivery of G6P to non-green plastids 

as carbon skeletons for the synthesis of 

starch and fatty acids, or to drive the 

OPPP (Kang and Rawsthorne, 1996; 

Kammerer et al., 1998; Fox et al., 2000; 

Weber and Flügge, 2002; Bowsher et al., 

2007; Zhang et al., 2008). Kunz et al. 

(2010) proposed that the occurrence of 

ca. 10% of the WT starch in pgi1-2 leaves 

is ascribed to transport of G6P from the 

cytosol to the plastids of bundle sheath cells adjacent to the mesophyll and stomatal 

guard cells. The same authors reported that, unlike WT leaves, pgi1-2 leaves exhibit 

substantial GPT activity as a consequence of the induction of GPT2, and proposed that 

GPT2 could partially contribute in the synthesis of starch in stomatal guard cells and 

bundle sheath cells of pgi1-2 leaves (Kunz et al., 2010). Whether GPT2 is involved in 

the synthesis of starch in mesophyll cells of pgi1 leaves was investigated by carrying out 

time-course analyses of the starch content in mature leaves of pgi1 and pgi1/gpt2 plants 

cultured under LD conditions. In these conditions pgi1/gpt2 leaves accumulated as 

much starch as pgi1 leaves (Figure 8A). We also measured the starch content in leaves 

of pgi1 and pgi1/gpt2 plants cultured under continuous light (CL) conditions, and found 
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Figure 5. pgi1-3 is a pPGI null allele. (A) RT-PCR 
of PGI1 and (B) starch content in source leaves of 
WT (er-105), pgi1-3 and two independent lines 
each of pgi1-3::PGI1 and pgi1-3::PGI1*. Plants 
were cultured on soil under LD conditions and 
leaves harvested from 30 DAS plants after 12 h of 
illumination. In “B” values represent the mean ± SE 
of determinations on fi ve independent samples.



75

Á.M. Sánchez-López Chapter 1

that pgi1 and pgi1/gpt2 leaves accumulate comparable levels of starch (Figure 8B). The 

overall data thus show that GPT2 plays a minor role in starch biosynthesis in mesophyll 

cells of mature pgi1 leaves when plants are cultured under LD and CL conditions. 

Enzymatic characterization of pgi1 leaves

To examine for possible occurrence of pleiotropic effects that could determine the 

starch defi cient phenotype of pgi1 leaves we measured the maximum catalytic activities 

of a range of enzymes closely connected to starch and sucrose metabolism in mature 

Figure 6. Microscopic analysis of starch granules in WT (er-105), pgi1-2 and pgi1-3 source leaves. (A-C) 
Light microscopy of toluidine stained leaf sections (Bar = 50 µm). (D-F) Magnifi cation of mesophyll sections 
indicated in A-C (Bar = 10 µm). (G-I) TEM of WT, pgi1-2 and pgi1-3 leaves. Bar = 2 µm. (J-L) CFM of leaves 
of GBSS-GFP expressing WT, pgi1-2 and pgi1-3 leaves. Bar = 5 µm. Plants were cultured on soil under LD 
conditions and source leaves harvested from 30 DAS plants after 12 h of illumination. In D-F, arrows indicate 
the position of starch granules. St: starch.
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). The 

a minor role in starch biosynthesis in mesophyll 

 conditions. 

To examine for possible occurrence of pleiotropic effects that could determine the 

activities 

a range of enzymes closely connected to starch and sucrose metabolism in mature 

leaves of pgi1-2 and pgi1-3 plants, and in 

leaves of their corresponding WT plants 

cultured under LD conditions. Only 

minor changes likely due to statistical 

variation were observed for AGP, 

PPase, UGP, SPS, SuSy, acid invertase, 

α-amylase, adenylate kinase and Rubisco 

in pgi1 leaves (Figure 9). However, both 

pgi1-2 and pgi1-3 leaves displayed low 

total PGM and soluble SS activities, and 

high β-amylase activity. 

 Increase of total β-amylase 

activity is a common feature of various 

mutants impaired in starch synthesis or 

breakdown (Caspar et al., 1989). Of the 

nine β-amylase-like proteins encoded 

in the Arabidopsis genome (BAM1-9), 

only BAM1-4 are plastidial and thus have 

direct access to starch (Lao et al., 1999; 

Sparla et al., 2006; Fulton et al., 2008). 

BAM1 degrades starch during the day in both mesophyll and in guard cells subjected 

to heat shock and osmotic stress (Kaplan and Guy., 2004; Valerio et al., 2010). BAM3 

is a major determinant of leaf starch degradation during the night (Fulton et al., 2008), 

playing also an important role in starch degradation during the day upon cold shock 

(Kaplan and Guy, 2005). BAM4 is a noncatalytic protein required for starch breakdown, 

acting upstream of BAM1-3 (Fulton et al., 2008). Increase of total β-amylase activity 

in mutants impaired in starch metabolism is largely due to enhanced extraplastidial 

β-amylase (Caspar et al., 1989). Consistently, RT-PCR analyses revealed that the 

expression levels of the extraplastidial BAM5 encoding gene in pgi1 leaves are many 

fold higher than those of WT leaves (Figure 10). Noteworthy, these analyses also 

revealed that the expression levels of BAM1-3 in pgi1 leaves are exceedingly higher than 

those of WT leaves, the overall data suggesting that high plastidic β-amylase activity in 

pgi1 leaves can be the consequence of high expression levels of both intra- and extra-
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Figure 7. Introduction of sex1 mutation into pgi1 

plants reverts the low starch content phenotype. 
(A) Iodine staining and (B) starch content of er-105, 
pgi1-3/sex1, Ws-2 and pgi1-2/sex1 leaves. Plants 

were cultured on soil under LD conditions and 

leaves harvested from 30 DAS plants after 12 h of 

illumination. In “B” values represent the mean ± SE 

of determinations on fi ve independent samples.

. (A-C) 
= 50 µm). (D-F) Magnifi cation of mesophyll sections 

= 2 µm. (J-L) CFM of leaves 
= 5 µm. Plants were cultured on soil under LD 

h of illumination. In D-F, arrows indicate 
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plastidial β-amylases.

  AGP activity is subjected to redox 

regulation of the small AGP subunit 

(APS1) (Hendriks et al., 2003; Li et 

al., 2012). To investigate whether the 

reduced levels of starch in the pgi1 

leaves could be ascribed to redox 

inactivation of APS1, we carried 

out APS1 immunoblot analyses of 

proteins from WT and pgi1 leaves 

that had previously been extracted and 

electrophoretically separated under non-

reducing conditions. In these conditions 

APS1 is present as a mixture of ca. 50 

kDa active (reduced) monomers and 

ca. 100 kDa inactive (oxidized) dimers 

formed by intermolecular links involving 

Cys bridges. Consistent with previous 

reports (Hendriks et al., 2003; Li et al., 

2012), these analyses revealed that most 

of APS1 is largely oxidized (inactive) in 

both WT and pgi1 leaves (Figure 11). 

These analyses also revealed that pgi1 

leaves accumulate identical amounts of 

ca. 50 kDa monomers and ca. 100 kDa 

dimers of APS1 than WT leaves, the overall data strongly indicating that the reduced 

starch content of pgi1 leaves is not ascribed to redox inactivation of APS1.

pgi1 plants display a slow growth phenotype even under continuous light conditions

Transitory starch is a major determinant of plant growth (Smith and Stitt, 2007). The 

importance of starch turnover in plant growth is demonstrated by studies of mutants that 

are defective in starch synthesis and mobilization. Thus, near-starchless plants impaired 

in AGP or pPGM show a large inhibition of growth when cultured in short day (SD) 

Figure 8. GPT2 is not involved in starch biosynthesis 
in mesophyll cells of pgi1 leaves cultured on soil 
under LD and CL conditions. (A) Time-course of 
starch content in source leaves of pgi1-3 and pgi1-3/
gpt2 plants cultured under LD conditions. Essentially 
the same results were obtained with pgi1-2/gpt2 plants 
(not shown). (B) Starch content in source leaves of 
pgi1-3 and pgi1-3/gpt2 plants cultured under CL 
conditions. Leaves were harvested from 30 DAS plants. 
Values represent the mean ± SE of determinations 
on fi ve independent samples. Each sample included 
leaves from 3 different rosettes.
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  AGP activity is subjected to redox 

 subunit 

2003; Li et 

To investigate whether the 

the pgi1 

redox 

carried 

analyses of 

 leaves 

extracted and 

under non-

conditions 

a mixture of ca. 50 

monomers and 

dimers 

involving 

previous 

Li et al., 

that most 

(inactive) in 

Figure 11). 

that pgi1 

amounts of 

100 kDa 

WT leaves, the overall data strongly indicating that the reduced 

a slow growth phenotype even under continuous light conditions

Transitory starch is a major determinant of plant growth (Smith and Stitt, 2007). The 

mutants that 

impaired 

 or pPGM show a large inhibition of growth when cultured in short day (SD) 

conditions, but grow at the same rate as WT plants under CL photoperiod conditions 

(Caspar et al., 1985; Hanson and McHal, 1988; Lin et al., 1988; Schneider et al., 2002; 

Ragel et al., 2013). Previous studies on pgi1 mutants did not include analyses of plant 

Figure 9. Activities of enzymes closely connected to starch and sucrose metabolism in source leaves of 
WT (er-105 and Ws-2), pgi1-2 and pgi1-3 plants. Plants were cultured on soil under LD conditions. Fully 
developed, source leaves were harvested from 30 DAS plants after 12 h of illumination. Values represent the 
mean ± SE of determinations on four independent samples. Asterisks indicate signifi cant differences based on 
Student´s t-tests. (*P<0.05, pgi1-2 vs. Ws-2; **P<0.05, pgi1-3 vs. er-105).
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growth under CL conditions (Yu et al., 2000; Kunz et al., 2010, 2014). We thus carried 

out time-course analyses of FW of rosettes of pgi1-2, pgi1-3 and WT plants cultured 

either under SD (12 h light/12 h dark) or CL photoperiod conditions. We also carried out 

analyses of growth of near-starchless 

aps1 and pgm mutants (Columbia 

(Col-O) background)) impaired in 

AGP and pPGM, respectively. As 

shown in Figure 12, aps1 and pgm 

plants displayed a marked slow growth 

phenotype when cultured under SD 

conditions, and grew as WT plants 

when cultured under CL conditions. 

In clear contrast, pgi1-2 and pgi1-3 

displayed a slow growth phenotype at 
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Figure 10. High expression levels of plastidial and extraplastidial β-amylase encoding genes in pgi1 

plants. RT-PCR of (A) BAM1, (B) BAM2, (C) BAM3 and (D) BAM5 in source leaves of WT (er-105 and Ws-
2), pgi1-2 and pgi1-3 plants. Fully developed, source leaves were harvested from 30 DAS plants after 16 h 
of illumination.
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Figure 11. Non-reducing western blot of APS1 in 

leaves of er-105, pg1-3, Ws-2 and pgi1-2 plants. 
Leaves were harvested from 30 DAS plants after 
12 h of illumination. Plants were cultured under LD 
conditions.
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CL conditions (Yu et al., 2000; Kunz et al., 2010, 2014). We thus carried 

WT plants cultured 

h light/12 h dark) or CL photoperiod conditions. We also carried out 

-starchless 

(Columbia 

) background)) impaired in 

and pPGM, respectively. As 

and pgm 

a marked slow growth 

under SD 

WT plants 

CL conditions. 

pgi1-3 

a slow growth phenotype at 

any photoperiod regime (Figure 12) strongly indicating that (a) reduced starch turnover 

is not the reason of the slow growth phenotype of pgi1 mutants, and (b) pPGI is an 

important determinant of plant growth.
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Figure 12. pgi1-2 and pgi1-3 leaves display a slow growth phenotype under SD and CL photoperiod 

conditions. (A) Photographs of 25 DAS WT, aps1, pgm, pgi1-2 and pgi1-3 plants cultivated in growth 
cabinets under CL conditions. (B) Time-course of FW of rosettes of WT, aps1, pgm, pgi1-2 and pgi1-3 plants 
cultured on soil under SD and CL conditions. In “B”, values represent the mean ± SE of determinations on 
four independent samples.
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pgi1 leaves have reduced photosynthetic capacity even under continuous light 

conditions

The low rates of growth and leaf starch accumulation of pgi1 plants in both SD and CL 

conditions (see above) pointed to the possible occurrence of reduced photosynthetic 

capacity of pgi1 leaves and/or altered mitochondrial respiration. We thus measured A
n
 

in mature leaves of pgi1-2 and pgi1-3 plants under saturating light intensity of 350 

µmol m-2 s-1 and with a CO
2 
concentration of 450 µmol mol-1, and compared with those 

of WT plants when cultured under either LD or CL photoperiod conditions. We also 

analyzed the g
s
 under the same conditions. Moreover, we evaluated respiration rates in 

darkened pgi1-2 and pgi1-3 leaves. These analyses revealed that whereas respiration 

rates of darkened pgi1 leaves were comparable to that of WT leaves (not shown), the 

photosynthetic capacities of pgi1-2 and pgi1-3 mature leaves were ca. 40-50% lower 

than that of WT leaves at any photoperiod regime. Furthermore, g
s
 values in pgi1 plants 

were moderately (although not signifi cantly) lower than those of WT plants (Figure 13). 

 A strong reduction in A
n
 in pgi1 plants without a parallel strong reduction in g

s
 

(and thus limitation in CO
2
 availability) would suggest the occurrence of biochemical 

limitations restricting photosynthesis. To test this hypothesis, we measured A
n
 in pgi1 

plants cultured under both LD and CL conditions, and under varying Ci. We also 

measured the ETR with respect to varying Ci. As shown in Figure 14, irrespective of the 

photoperiod conditions, pgi1 plants had strongly reduced values of A
n
 when compared 

with WT plants. Analyses of the Vcmax, the TPU and the Jmax (that is equivalent to the 

ribulose-1,5-bisP (RuBP) regeneration rate) calculated from the A
n
/Ci curves revealed 

that Vcmax of Rubisco in pgi1 leaves is signifi cantly lower than that of WT leaves 

(Table 3). This indicated that the reduction in A
n
 observed in pgi1 plants was related to 

differences in in planta Rubisco activity. Furthermore, pgi1 plants displayed signifi cant 

reductions in Jmax and TPU with respect to WT plants, thus indicating a role of pPGI 

in the protection of the electron transport leading to the regeneration of RuBP and the 

capacity of the chloroplast reactions to use triose-phosphates. The absence of signifi cant 

differences on Jmax/Vcmax between pgi1 leaves and WT leaves indicate that reductions 

in Jmax and Vcmax in pgi1 leaves are the consequence of similar factor(s), most likely 

perturbation in photosynthetic energy transduction in pgi1 plants. Supporting this view, 

ETR values in WT plants were exceedingly higher than those of pgi1 plants under any 

Ci conditions (Figure 14). 
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reduced photosynthetic capacity even under continuous light 

and CL 

photosynthetic 

We thus measured A
n
 

of 350 

, and compared with those 

WT plants when cultured under either LD or CL photoperiod conditions. We also 

 under the same conditions. Moreover, we evaluated respiration rates in 

respiration 

WT leaves (not shown), the 

40-50% lower 

plants 

Figure 13). 

a parallel strong reduction in g
s
 

 availability) would suggest the occurrence of biochemical 

 in pgi1 

. We also 

, irrespective of the 

compared 

 (that is equivalent to the 

revealed 

 leaves is signifi cantly lower than that of WT leaves 

related to 

signifi cant 

 and TPU with respect to WT plants, thus indicating a role of pPGI 

 and the 

signifi cant 

WT leaves indicate that reductions 

most likely 

this view, 

under any 

Metabolic characterization of pgi1 leaves

We measured metabolites content in leaves of pgi1-2, pgi1-3 and their corresponding 

WT plants cultured under LD conditions. Under these conditions pgi1-2 and pgi1-3 

leaves accumulated nearly WT levels of glucose, fructose, sucrose, G6P, F6P and G1P 

(Figure 15). Levels of ATP in pgi1 leaves were slightly (but not signifi cantly) lower 

than those of WT leaves, whereas levels of ADP and AMP in pgi1-2 and pgi1-3 leaves 

were signifi cantly higher than in their corresponding WT leaves. Consistently,  adenylate 

energy charge of pgi1-2 and pgi1-3 leaves was lower than that of WT leaves (Figure 

15). The NADPH/NADP and NADH/NAD ratios in pgi1 leaves were signifi cantly 

lower than in WT leaves (Figure 15), which would indicate that pPGI is a determinant 
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Figure 13. pgi1 leaves have reduced photosynthetic capacity. The graphics represent net CO
2
 uptake (A) 

and stomatal conductance (g
s
) in source leaves of WT (Ws-2 and er-105), pgi1-2 and pgi1-3 plants cultured 

on soil under SD and CL conditions. Values represent the mean ± SE of determinations on four independent 
samples. Asterisks indicate signifi cant differences based on Student´s t-tests. (*P<0.05, pgi1-2 vs. Ws-2; 
**P<0.05, pgi1-3 vs. er-105).
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of the cellular redox potential. Consistent with previous reports showing the occurrence 

of important ADPG sources other than the pPGI-pPGM-AGP pathway (Bahaji et al., 

2011, 2014a), pgi1-2 and pgi1-3 leaves accumulated WT ADPG content (Figure 15).

 

pgi1 leaves accumulate low levels of active forms of cytokinins derived from the 

plastidic MEP pathway

pPGI is involved in the OPPP and glycolytic pathways in non-illuminated leaves and 

heterotrophic organs. Glyceraldehyde 3-phosphate (GAP) is a glycolytic and OPPP 

metabolic intermediate that acts as substrate for the initial reaction of the plastidic MEP 
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Figure 14. pgi1-2 leaves have reduced photosynthetic capacity and ETR. (A) CO
2
 assimilation rates, and 

(B) photosynthetic electron transport at different intercellular CO
2
 concentrations in WT and pgi1-2 source 

leaves. Plants were cultured on soil under LD conditions. Values represent the mean ± SE (n=5)
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occurrence 

 pathway (Bahaji et al., 

e 15).

from the 

 and glycolytic pathways in non-illuminated leaves and 

organs. Glyceraldehyde 3-phosphate (GAP) is a glycolytic and OPPP 

plastidic MEP 

pathway involved in the synthesis of isoprenoids (Lichtenthaler et al., 1997; Phillips et 

al., 2008; Pulido et al., 2012) (Figure 16). Therefore, pPGI could potentially act as a 

determinant for the synthesis of plastidic MEP-pathway derived isoprenoid compounds. 

Among different plastidic isoprenoid derived molecules, CKs have been shown to act 

as major determinants of growth, energy status, starch content and photosynthesis in 

mature leaves (Synková et al., 1999; Yang et al., 2003; Yaronskaya et al., 2006; Werner 

et al., 2008; Cortleven et al., 2011; Cortleven and Valcke, 2012; Erickson et al., 2014). 

Therefore, we considered of interest to investigate the possible involvement of pPGI in 

CKs metabolism by measuring the levels of different CKs in mature leaves of both Ws-2 

and pgi1-2 plants. These analyses revealed that the lack of pPGI causes a decrease of the 

total content of plastidic-type, MEP pathway-derived isopentenyladenine (iP)- and  tZ-

type CKs, mainly as a consequence of the reduction of the main precursors of the active 

CKs iPRMP and tZRMP (Table 4, Figure 16). The tZRMP content in pgi1-2 leaves was 

only 32% of that of WT leaves (Table 4). As a consequence, the levels of tZ (the most 

abundant biologically active CKs) and its riboside tZR in pgi1-2 leaves were only 51% 

and 28% of those of WT leaves, respectively (Table 4). The iPRMP content in pgi1-2 

leaves was ca. 70% of that of WT leaves, whereas the iPR content in pgi1-2 leaves was 

ca. 15% of that of WT leaves (Table 4 ), pointing to the possible occurrence of a general 

Line Jmax Vcmax TPU

Ws-2 (LD) 77.5  6.6 56.0  4.0 2.3  0.29 

pgi1-2 (LD) 24.3  1.2 21.6  1.9 1.4  0.20 

Ws-2 (CL) 65.5  3.4 29.4  2.9 2.6  0.21 

pgi1-2 (CL) 30.2  1.9 17.7  3.1 1.9  0.15 

(LD) 63.1  6.5 38.9  4.0 2.4  0.22 

pgi1-3 (LD) 30.8  6.5 15.1  1.4 1.5  0.12 

(CL) 59.3  4.4 64.5  4.3 2.6  0.30 

pgi1-3 (CL) 38.1  2.7 36.7  4.2 1.7  0.19 

Table 3. Photosynthetic parameters of WT (Ws-2 and er-105), pgi1-2 and pgi1-3 source 
leaves. Plants were cultured under LD and CL conditions. Values represent the mean ± 
SE of determinations on fi ve independent samples.

 assimilation rates, and 
source 
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Figure 15. Metabolites content in mature leaves of WT (Ws-2 and er-105), pgi1-2 and pgi1-3 plants 

cultured on soil under LD conditions. Fully developed, source leaves were harvested from 30 DAS plants 
after 12 h of illumination. Values represent the mean ± SE of determinations on fi ve independent samples. 
Each sample included leaves from 3 different rosettes. Asterisks indicate signifi cant differences based on 
Student´s t-tests. (*P<0.05, pgi1-2 vs. Ws-2; **P<0.05, pgi1-3 vs. er-105).
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down-regulation of conversion of active CK free bases to their corresponding ribosides 

in pgi1-2 plants. The content of the biologically less active DHZ in pgi1-2 leaves was 

50% of that of WT leaves (Table 4). The levels of the irreversibly glycosylated N9- 

and N7-glycosylated CKs (tZ9G, tZ7G, iP9G) and the reversibly O-glycosylated forms 

of tZ (tZOG and tZROG) were signifi cantly lower than those of WT leaves (Table 

4). Noteworthy, virtually no differences were found between the content of cytosolic 

mevalonate (MVA) pathway derived cis-zeatins (cZ) in pgi1-2 and WT leaves (Table 4). 

The overall data would indicate that the lack of pPGI causes reduction of plastidic MEP 

pathway derived CKs, but not of cytosolic MVA pathway derived CKs in pgi1-2 leaves. 
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Exogenous application of CKs reverts the starch defi cient phenotype of pgi1 plants

pgi1 mutants exhibit symptoms indicative of reduced plastidic CKs content such as 

reduced size, low starch content and reduced photosynthetic capacity at any photoperiod 

condition (see above). Whether the low starch content phenotype of pgi1 leaves could be 

the consequence, at least in part, of reduced plastidic CKs (see Table 4) was investigated 

by measuring the starch content in leaves of adult pgi1 plants cultured for 2 days in solid 

MS medium supplemented with different concentrations of tZ. As shown in Figure 

17, these analyses revealed that exogenous CK application largely reverts the starch 

defi cient phenotype of pgi1 leaves.

 

 MEP pathway (plastid) derived CKs  MVA pathway (cytosol) derived CKs  

 WS-2 pgi1-2  WS-2 pgi1-2 

P
re

cu
rs

o
rs

 iPRMP 465  43.4 329  34.5 ns cZMRP 51.4  8.5 48.2  7.4 ns 

tZRMP 845.6  100.4 269.1 20.5 **    

DHZMP 4.8  0.3 3.5  0.2 ns    

 (%) 1315.4 (100%) 601.6 (45.7%)  (100%) 93.8% 

T
ra

n
sp

o
rt

 

fo
rm

s 

iPR 34.8  4.4 5.5  0.5 *** cZR 2.9  0.2 2.0  0.2 ns 

tZR 100.2  10.5 28.4  4.6 **    

DHZR 1.6  0.2 2.1  0.1 *    

 (%) 136.6 (100%) 36 (26.4%)  (100%) 69% 

A
ct

iv
e 

fo
rm

s 

iP 9.7  0.8 11.8  1.1 ns cZ 1.8  0.2 1.6  0.1 ns 

tZ 45.3  4.2 23.3  1.5 **    

DHZ 0.8  0.18 0.4  0.01 **    

 (%) 55.8 (100%) 35.5 (63.6%) 
 

(100%) 88.9% 

G
ly

co
sy

la
te

d
 (

in
ac

ti
v

e)
 f

o
rm

s 

iP7G 10.2  0.7 12.7  1.2 ns cZ7G n.a. n.a. 

tZ7G 65.9  2.7 42.5  2.1 *    

DHZ7G 6.1  0.6 5.8  0.1 ns    

iP9G 16.7  2.0 7.9  0.2 *** cZ9G 0.9  0.1 0.5  0.0 ** 

tZ9G 445.4  8.0 216.7  12.9 **    

DHZ9G 4.2  0.6 3.5  0.2 ns    

tZOG 193.4  5.1 146.3  8.9 ns cZOG 19.0  2.1 32.1  0.9 ** 

DHZOG 1.8  0.1 3.9  0.3 **    

tZROG 18.5  0.5 9.7  1.3 ns cZROG 23.0  3.0 24.0  2.5 ns 

DHZROG 1.2  0.1 1.3  0.2 ns    

 (%) 763.4 (100%) 450.3 (59%)  42.9 (100%) 56.6 (131.9%) 

  Total  (%) 2271.2 (100%) 1123.4 (49.5%)  47.6 (100%) 60.2 (126.5%) 

 

Table 4. CKs content (pmol g-1 DW) in leaves of 30 DAS Ws-2 and pgi1-2 plants. CK 
precursors, transport forms, active forms and glycosylated inactive forms are separated 
in two groups based on their origin from MEP and MVA pathway, respectively. Total 
sums and corresponding percentage is shown for individual forms. Symbols indicate 
signifi cant differences according to ANOVA. *< 0.05; **<0.01; **<0.001; ns, not 
signifi cant; n.a., not analyzed.
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DISCUSSION

The initial objective of this work was to characterize the pgi1-3 mutant both at the 

molecular and biochemical levels, using pgi1-2 as reference. Contrary to expectations, 

during the course of our studies we found that mesophyll cells of mature leaves of 

the two pgi1 null mutants accumulate ca. 10-15% of the WT starch content (Figure 

2, Figure 5, Figure 6). The discrepancy between our results showing the presence of 

starch granules in mesophyll cells of pgi1 leaves and those of Kunz et al. (2010) showing 

that starch granules are restricted to bundle sheath cells adjacent to the mesophyll and 

stomatal guard cells are likely ascribed to the use of different growth conditions. Thus, 

whereas Kunz et al. (2010) carried out their experiments using plants cultured under SD 

conditions, we cultured the plants under LD and CL conditions. Another possible reason 

explaining the discrepancy between our results and those of Kunz et al. (2010) is the use 

of different microscopic techniques. 

 The occurrence of starch granules in the chloroplasts of mesophyll cells confl icts 

with the widely accepted view that the whole photosynthesis-driven starch biosynthetic 

process in mesophyll cells solely occurs in the chloroplast by means of the Calvin-

Benson cycle-pPGI-pPGM-AGP-SS pathway. Therefore, it is conceivable that at least 

10-15% of the starch accumulated in the leaf mesophyll cells is produced by metabolic

pathway(s) wherein (a) the Calvin-Benson cycle is not directly connected to the starch 

biosynthetic pPGM-AGP-SS pathway by means of pPGI, and (b) carbon units linked 
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to starch biosynthesis are imported from the cytosol. Taking into account that (a) the 

photosynthetic capacity of pgi1 leaves at any photoregime is exceedingly lower than 

that of WT plants (Figure 13, Figure 14), and (b) the adenylate energy charge and 

cellular redox potential of pgi1 leaves are lower than those of WT leaves (Figure 15), it 

is highly likely that starch defi ciency of pgi1 leaves is partially the consequence of either 

reduced CO
2
 fi xation capacity and/or low energy status and cellular redox potential, and 

not only the consequence of lack of pPGI-mediated fl ow between the Calvin-Benson 

cycle and the pPGM-AGP-SS starch biosynthetic pathway. 

 Chloroplasts of mature leaves are not capable of transporting G6P (Quick et al., 

1995). Consistently, studies of functional reconstitution of membrane proteins in pro-

teoliposomes revealed that chloroplasts from Ws-2 and er-105 plants do not transport 

G6P (cf. Table 2 in (Kunz et al., 2010)). These studies also revealed that 97% of capacity 

of pgi1-2 chloroplasts to transport G6P depends on GPT2, since G6P/Pi transport activ-

ity in proteoliposomes prepared from pgi1-2/gpt2 leaves was only 3% of that found in 

proteoliposomes prepared from pgi1-2 leaves (cf. Table 2 in (Kunz et al., 2010)). Al-

though this would indicate in principle that GPT2 could be involved in the incorporation 

of cytosolic G6P for its subsequent conversion into starch in pgi1-2 mature leaves, re-

sults presented in Figure 8 showing that the rate of starch accumulation in mature leaves 

of pgi1 plants cultured under LD and CL conditions is comparable to that of leaves of 

pgi1/gpt2 plants provide strong evidence that GPT2-mediated incorporation of cytosolic 

G6P into chloroplasts plays a minor role in the synthesis of starch in mesophyll cells of 

pgi1 leaves. Although GPT1 only catalyzes the 3% of the total GP6/Pi transport activity 

in pgi1-2 leaves, a possibility cannot be ruled out that GPT1 may contribute to some 

extent to the production of starch in mesophyll cells of pgi1 plants cultured under LD 

and CL conditions.

 Among a large group of plastidic metabolite transporters functionally related to the 

metabolism of sugars or sugar derivatives, none of them is able to transport G1P (Kam-

merer et al., 1998; Eicks et al., 2002). However, Fettke et al. (2011) reported that the 

envelope membranes of chloroplasts of mesophyll cells possess a yet to be identifi ed 

G1P transport machinery enabling the incorporation into the stroma of cytosolic G1P. 

According to these authors, however, such mechanism would only account for the accu-

mulation of 1% of the WT starch, explaining the occurrence of trace amounts of starch 

in mutants impaired in pPGM. Thus, incorporation of cytosolic G1P into the chloroplast 
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, such mechanism would only account for the accu-

WT starch, explaining the occurrence of trace amounts of starch 

into the chloroplast 

and its subsequent conversion into starch could minimally explain the accumulation 

of some starch in pgi1 mesophyll cells chloroplasts. Chloroplasts possess a glucose 

transporter (pGlcT) (Weber et al., 2000) and hexokinase (Giese et al., 2005) potentially 

enabling the incorporation of cytosolic glucose and subsequent conversion into G6P 

thus bypassing the pPGI step in pgi1 leaves. However pglct mutants accumulate WT 

levels of starch during the day (Cho et al., 2011), and GlcT has been shown to act in 

the export to the cytosol of glucose from the starch breakdown during the night rather 

than in the import of cytosolic glucose to the chloroplast (Weber et al., 2000; Cho et al., 

2011). Chloroplasts from mature leaves also possess a yet to be identifi ed ADPG trans-

port machinery (Pozueta-Romero et al., 1991). Taking into account that a sizable pool 

of ADPG linked to starch biosynthesis has a cytosolic localization in leaves (Baroja-

Fernández et al., 2004; Bahaji et al., 2011, 2014a) it is likely that starch biosynthesis in 

mesophyll cells of pgi1 mature leaves involves the cytosolic production of ADPG and 

its subsequent transport into the chloroplast and conversion into starch. Needless to say, 

further research will be necessary to identify the cytosolic hexose molecules entering 

the chloroplast for their subsequent metabolization into starch in pgi1 leaves.

The occurrence of a starch biosynthetic pathway in mesophyll cells involving 

the incorporation into the chloroplast of cytosolic hexoses (either glucose, hexose-

phosphates and/or ADPG) likely provides a clue to explain still enigmatic results 

reported almost 60 years ago using green leaves exposed to 14CO
2
 for a short period 

of time (Kandler and Gibbs, 1956; Gibbs and Kandler, 1957). According to the widely 

accepted view of starch biosynthesis, leaves exposed to 14CO
2
 for a short period of 

time should produce starch with 14C symmetrically distributed in the glucose molecules. 

However, leaves shortly exposed to 14CO
2
 synthesized starch with 14C asymmetrically 

distributed in the glucose molecules (Kandler and Gibbs, 1956; Gibbs and Kandler, 

1957). Noteworthy, the same asymmetric distribution of 14C was found in the glucose 

moiety of hexose-phosphates, sucrose and nucleotide-sugars (Kandler and Gibbs, 1956; 

Gibbs and Kandler, 1957). According to the models of starch biosynthesis involving the 

incorporation into the chloroplast of cytosolic hexoses (reviewed in Bahaji et al., 2014b), 

triose-Ps exported from the chloroplast to the cytosol can be channeled into the OPPP, 

thereby leading to a randomization of the carbons that gives rise to the asymmetric 14C 

distribution observed in sucrose, hexose-phosphates and nucleotide-sugars (see Figure 

4 in ref. Bahaji et al., 2014b). Asymmetrically labeled cytosolic hexoses would enter the 
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chloroplast, thus explaining why leaves shortly exposed to 14CO
2
 synthesize starch and 

sucrose with identical 14C asymmetric distribution. Also, the occurrence of metabolic 

pathways involving both the incorporation into the chloroplast of cytosolic hexoses, and 

the occurrence of simultaneous synthesis and breakdown of starch in the illuminated 

chloroplast (see Bahaji et al., 2014b and references contained therein) likely provide 

clues to explain the rapid formation of radiolabelled maltose in leaves when plants are 

cultured in 13CO
2
 or 14CO

2
-enriched environments (Linden et al., 1975; Szecowka et al., 

2013), and the asymmetric labeling of maltose formed by illuminated leaves cultured for 

a short period of time in 14CO
2
-enriched environment (Linden et al., 1975).

 It is widely accepted that starch turnover is a major determinant of plant growth as 

demonstrated by studies of mutants that are defective in starch synthesis and mobiliza-

tion. Some authors postulated that restricted growth of starch-defi cient plants is the con-

sequence of carbon starvation occurring every night due to the inability to accumulate 

starch during the day or to degrade it during the night (Schulze et al., 1991; Huber and 

Hanson, 1992; Smith and Stitt, 2007). Others postulated that acute defi ciency of sugars 

occurring in starch mutants during the end part of the dark period temporary inhibits 

growth (Gibon et al., 2004). Restricted growth of starch-defi cient plants has also been 

ascribed to regulatory imbalances in photosynthetic capacities and enzymatic activities 

triggered by high sugars during the day (Caspar et al., 1985; Stitt, 1991; Koch, 1996). 

However, as shown in Figure 15, pgi1 leaves accumulate nearly WT levels of soluble 

sugars. Thus, factors other than high sugar levels must be responsible for the restricted 

growth (Figure 12), reduced photosynthetic capacity (Figure 13, Figure 14) and altered 

activities of some carbohydrate metabolism enzymes (Figures 9) of pgi1 mutants.  

 Results presented in Figure 12 showing that pgi1 plants cultured under CL condi-

tions are smaller than WT plants, whereas the near-starchless aps1 and pgm plants dis-

play a WT growth phenotype in the same culture conditions, provide strong evidence 

that (a) reduced starch turnover is not the reason of the slow growth phenotype of pgi1 

mutants, and (b) pPGI is an important determinant of plant growth. pPGI is involved in 

the regeneration of G6P molecules in the OPPP in heterotrophic organs and non-illumi-

nated leaves. OPPP provides precursors for the synthesis of RNA, DNA and phenolic 

compounds such as aromatic amino acids, lignin, fl avonoids and phytoalexins (Her-

rman, 1995). This metabolic pathway also provides NADPH necessary for biosynthetic 

redox reactions involved in lipid biosynthesis and nitrogen assimilation (Kang and Raw-
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biosynthetic 
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sthorne, 1996; Bowsher et al., 2002; Bowsher et al., 2007; Jong et al., 2014), and for 

NADP-thioredoxin reductase (NTRC) dependent processes such as supply of reductant 

necessary for detoxifying hydrogen peroxide in the dark, and maintaining the redox 

homeostasis of plastids which in turn determines plant growth and development (Pérez-

Ruiz et al., 2006; Lepistö et al., 2009; Kirchsteiger et al., 2012). Noteworthy, it has been 

reported that G6P metabolization within the OPPP is required for generating a signal 

that governs the regulation of root mediated acquisition of nitrogen and sulfur neces-

sary for amino acid synthesis (Lejay et al., 2008). Also, previous reports have shown 

that, similar to plants impaired in pPGI, mutants impaired in other plastidic OPPP en-

zymes such as 6-phosphogluconolactonase display a reduced size phenotype (Xiong et 

al., 2009; Bussell et al., 2013). Therefore, it is conceivable that the reduced size of pgi1 

mutants is ascribed, at least in part, to impairments in some OPPP-dependent processes 

occurring in heterotrophic organs that are important for growth. 

Results presented in Figures 13 and 14 show that the photosynthetic capacities 

of starch defi cient pgi1 plants are lower than that of WT plants at any photoregime.  

Noteworthy, recent studies have shown that the near-starchless pgm1 mutant impaired 

in pPGM has WT photosynthetic CO
2
 fi xation rates (Brauner et al., 2014; our unpub-

lished results), providing evidence that starch turnover exerts a minor infl uence on the 

photosynthetic capacity of the plant. This would strongly indicate that (a) the lack of 

pPGI, but not the reduced levels of starch, is the reason for the reduced photosynthetic 

capacity of pgi1 plants, and (b) pPGI is an important determinant of the photosynthetic 

capacity of the plant. That pgi1 mutants display reduced Vcmax, TPU and Jmax (Table 

3) and ETR (Figure 14) at any photoregime strongly indicates that impaired Rubisco 

carboxylation activity, together with limitations in RubP regeneration (as a consequence 

of reduced electron fl ux towards Rubisco carboxylation) and reduced capacity to use 

triose-phosphates are responsible for the low photosynthetic capacity of these mutants.

 GAP and pyruvate are the substrates for the initial reaction of the plastidic MEP 

pathway involved in the synthesis of isoprenoid derived molecules such as CKs (Figure 

16) (Pulido et al., 2012). In non-illuminated leaves and heterotrophic organs GAP can 

be produced in the OPPP and glycolytic pathways involving pPGI. On the contrary, 

pyruvate biosynthesis in heterotrophic plastids largely depends on pPGI independent 

pathways, since enzymatic activities of the lower part of the glycolytic pathway such 

as phosphoglycerate mutase are marginally low in heterotrophic plastids (Frehner et al., 
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1990; apRees et al., 1975; Journet and Douce, 1985). Plastidic MEP pathway derived 

CKs are mainly synthesized in roots and transported to the aerial parts of the plant, 

where they regulate plant growth (Ko et al., 2014). Noteworthy, in addition to their in-

volvement in regulating plant growth and development, CKs act as major determinants 

of photosynthetic activity, Jmax and TPU by regulating the biogenesis of chloroplasts, 

and providing components of the electron transport chain, structural proteins and the 

enzymes for their formation (Synková et al., 1999; Yang et al., 2003; Yaronskaya et al., 

2006; Rivero et al., 2009; Cortleven et al., 2011; Cortleven and Valcke, 2012). Also, CKs 

maintain stomata open (Tanaka et al., 2006; Havlová et al., 2008). Moreover, CKs exert 

a positive effect on starch accumulation both in leaves and heterotrophic sink organs 

(Werner et al., 2008; Peleg et al., 2011; Erickson et al., 2014), most likely by regulating 

the expression of starch metabolism related genes (Miyazawa et al., 1999). Importantly, 

results presented in Table 4 showed that total levels of plastidic MEP pathway derived 

forms of CKs in pgi1-2 leaves are low when compared with WT leaves, which provides 

evidence that pPGI is an important determinant of plastidic MEP pathway derived CKs 

(see below). Therefore, it is conceivable that the low net CO
2
 assimilation rate, Jmax, 

TPU and ETR (Figures 13, Figure 14) (Table 3) as well as the reduced growth, energy 

and redox potential, and leaf starch content phenotypes of pgi1 plants (Figure 2, Figure 

6, Figure 12, Figure 15) can be ascribed, at least in part, to the low content of active 

forms of plastidic MEP pathway derived CKs. In this respect we must emphasize that, 

similar to pgi1 plants, CKs-defi cient plants have reduced size and accumulate low starch 

in their source leaves (Werner et al., 2001; Yang et al., 2003; Werner et al., 2008). That 

exogenous application of CKs partially reverted the reduced starch content phenotype of 

pgi1 leaves (Figure 17) further supports the view that the low starch content phenotype 

of pgi1 leaves can be partially the consequence of reduced pPGI-mediated production 

of CKs.

 In Arabidopsis the prenyl group of tZ- and iP-type CKs is mainly produced through 

the plastidic MEP pathway, whereas a large fraction of the prenyl group of cZ derivatives 

is provided by the cytosolic MVA pathway (Kasahara et al., 2004). In pgi1 leaves the 

most dramatic decrease in CKs content was found in the levels of CKs derived from the 

plastidic MEP pathway (iP- and tZ-type CKs), but not in the levels of cytosolic MVA-

pathway dependent cZ-type CKs (Table 4). This would strongly indicate that pPGI is an 

important determinant of biosynthesis of CKs in plastids, but not in cytosol. Visible dif-
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Visible dif-

ferences between WT and pgi1-2 leaves were found in the levels of iP- and tZ-type CKs 

(Table 4). While the level of iPRMP (the product of the fi rst dimethylallyl diphosphate 

(DMAPP)-dependent step of CK biosynthesis) in pgi1-2 leaves was 70% of that occur-

ring in WT leaves, the level of tZRMP in pgi1-2 leaves was only 32% of that occurring 

in WT leaves (Table 4). Noteworthy, while the lack of pPGI in pgi1-2 leaves resulted in 

a 50% reduction of the level of tZ free base, the lack of pPGI did not affect the level of 

iP free base at all (Table 4). The relatively high level of iPRMP and iP in pgi1-2 leaves 

could be explained by the transport of DMAPP from cytosolic MVA pathway into plas-

tids (Kasahara et al., 2004) to increase the DMAPP pool accessible for plastid localized 

isopentenyltransferases (IPTs). Such mechanism of common isoprenoid precursors (e.g. 

isopentenyl diphosphate or DMAPP) exchange between the cytosol and plastids was 

proposed to explain MVA-derived contribution to plastidic biosynthesis of gibberellins 

(Helliwell et al., 2001). Another explanation for the relatively high level of iPRMP and 

iP in pgi1-2 leaves can be that MVA-derived DMAPP serves as a substrate for AtIPT4, 

the cytosolic IPT isoform capable of de novo biosynthesis of iP, which can increase the 

overall iP cell pool (Kasahara et al., 2004). It is worth mentioning here that tZRMP can 

be formed by the iPRMP-dependent pathway through hydroxylation of its side chain by 

CYP735A (Takei et al., 2004), and also directly through the iPRMP-independent path-

way, utilizing a yet unknown side-chain donor of terpenoid origin (Åstot et al., 2000) 

(Figure 16). In this last respect, it can be speculated that the side-chain precursor is 

1-hydroxy-2-methyl-2-butenyl 4-diphosphate (HMBDP), which is downstream of GAP 

in the MAP pathway (Figure 16). The dramatic decrease of tZRMP and tZ levels can 

be thus explained as a combination of the lack of DMAPP needed to form iPRMP that 

is subsequently hydroxylated to tZRMP, together with the lack of a prenyl side chain 

precursor to form tZRMP.

 Results presented in this work have provided evidence that pPGI is an important 

determinant of plastidic MEP pathway derived CKs likely as a consequence of its re-

quirement in the production of GAP. GAP is the substrate for the initial reaction of the 

plastidic MEP pathway involved in the synthesis of isoprenoid derived molecules other 

than CKs such as gibberelins, abscisic acid, strigolactones, monoterpenes, carotenoids, 

tocopherols and prenylquinones (Figure 16), some of them mutually interacting and 

acting as important determinants of growth, photosynthetic capacity, starch content and 

energy status of the plant (Lichtenthaler et al., 1997; Schlüter et al., 2002; Phillips et 
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al., 2008; Oh et al., 2011; Pulido et al., 2012). It is thus likely that the reduced size and 

low starch content phenotypes of pgi1 mutants are largely the consequence of changes 

in the overall plastidic MEP pathway-derived isoprenoid metabolism and its regulated 

processes. Needless to say, further research will be necessary to test this hypothesis. 
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size and 

changes 

pathway-derived isoprenoid metabolism and its regulated 

, further research will be necessary to test this hypothesis. 
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Supplemental Figure 1. Stages to construct the 35S-PGI1 and 35S-PGI1* plasmids necessary to produce 

PGI1 and PGI1* expressing plants. 
To obtain PGI1 and PGI1* cDNAs, 1.5 µg RNA extracted from WT and pgi1-3 roots was reverse 
transcribed using polyT primers and the Expand Reverse Transcriptase kit (Roche) according to the 
manufacturer’s instructions. PCR reactions were performed to generate attB-fl anked PCR products 
using PGI1 specifi c primers containing attB1 and attB2 recombinational cloning sites (attB1 primer: 5‘ 
GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCCTCTCTCTCAGGC-3’; attB2 primer: 
5’-GGGGACCACTTTGTACAAGAAAGCTGGGTATTATGCGTACAGGTCATCCAC-3’) to incorporate 
complete attB1 and attB2 sequences into the fi nal PCR products.
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Supplemental Figure 3. Nucleotide sequences of complete pPGI encoding cDNAs obtained from er-105 

and N92274 (pgi1-3) plants.
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L K T L I E N T L D S I C A F S D D I I S G K I K P P S S P E G R F T Q I L S V G I G G S A L G P Q151

L K T L I E N T L D S I C A F S D D I I S G K I K P P S S P E G R F T Q I L S V G I G G S A L G P Q151

F V A E A L A P D N P P L K I R F I D N T D P A G I D H Q I A Q L G P E L A S T L V V V I S K S G G201

F V A E A L A P D N P P L K I R F I D N T D P A G I D H Q I A Q L G P E L A S T L V V V I S K S G G201

T P E T R N G L L E V Q K A F R E A G L N F A K Q G V A I T Q E N S L L D N T A R I E G W L A R F P251

T P E T R N G L L E V Q K A F R E A G L N F A K Q G V A I T Q E N S L L D N T A R I E G W L A R F P251

M Y D W V G G R T S I M S A V G L L P A A L Q G I N V R E M L T G A A L M D E A T R T T S I K N N P301

M Y D W V G G R T S I M S A V G L L P A A L Q G I N V R E M L T G A A L M D E A T R T T S - - N N P301

A A L L A M C W Y W A S N G V G S K D M V V L P Y K D S L L L F S R Y L Q Q L V M E S L G K E F D L351

A A L L A M C W Y W A S N G V G S K D M V V L P Y K D S L L L F S R Y L Q Q L V M E S L G K E F D L349

D G N T V N Q G L T V Y G N K G S T D Q H A Y I Q Q L R D G V H N F F A T F I E V L R D R P P G H D401

D G N T V N Q G L T V Y G N K G S T D Q H A Y I Q Q L R D G V H N F F A T F I E V L R D R P P G H D399

W E L E P G V T C G D Y L F G M L Q G T R S A L Y A N G R E S I S V T I Q E V T P T S V G A I I A L451

W E L E P G V T C G D Y L F G M L Q G T R S A L Y A N G R E S I S V T I Q E V T P T S V G A I I A L449

Y E R A V G L Y A S I V N I N A Y H Q P G V E A G K K A A A E V L A L Q K R V L S V L N E A T C K D501

Y E R A V G L Y A S I V N I N A Y H Q P G V E A G K K A A A E V L A L Q K R V L S V L N E A T C K D499

P V E P L T L E E I A D R C H A P E E I E M I Y K I I A H M S A N D R V L I A E G N C G S P R S I K551

P V E P L T L E E I A D R C H A P E E I E M I Y K I I A H M S A N D R V L I A E G N C G S P R S I K549

V Y L G E C N V D D L Y A .601

V Y L G E C N V D D L Y A .599

N92274

N92274

N92274

N92274

N92274

N92274

N92274

N92274

N92274

N92274

N92274

N92274

Supplemental Figure 4. Amino acid sequences deduced from the nucleotide sequences shown in 

Supplemental Figure 3.
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CHAPTER 2

Volatile compounds emitted by diverse phytopathogenic 

microorganisms promote plant growth and fl owering through 
cytokinin action
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ABSTRACT:

It is known that volatile emissions from some beneficial rhizosphere microorganisms 
promote plant growth. Here we show that volatile compounds (VCs) emitted by 
phylogenetically diverse rhizosphere and non-rhizhosphere bacteria and fungi 
(including plant pathogens and microbes that do not normally interact mutualistically 
with plants) promote growth and flowering of various plant species, including crops. 
In Arabidopsis plants exposed to VCs emitted by the phytopathogen Alternaria 
alternata, changes included enhancement of photosynthesis and accumulation of high 
levels of cytokinins (CKs) and sugars. Evidence obtained using transgenic Arabidopsis 
plants with altered CK status show that CKs play essential roles in this phenomenon, 
because growth and flowering responses to the VCs were reduced in mutants with CK-
deficiency (35S:AtCKX1) or low receptor sensitivity (ahk2/3). Further, we 
demonstrate that the plant responses to fungal VCs are light-dependent. 
Transcriptomic analyses of Arabidopsis leaves exposed to A. alternata VCs revealed 
changes in the expression of light- and CK-responsive genes involved in 
photosynthesis, growth and flowering. Notably, many genes differentially expressed in 
plants treated with fungal VCs were also differentially expressed in plants exposed to 
VCs emitted by the plant growth promoting rhizobacterium Bacillus subtilis GB03, 
suggesting that plants react to microbial VCs through highly conserved regulatory 
mechanisms.

KEYWORDS: cytokinin; flowering; growth promotion; microbial volatile 
compounds; photoregulation; photosynthesis; plant-microbe interaction; starch
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GENERAL DISCUSSION

Starch is the main storage carbohydrate in vascular plants. Synthesized in plastids, this 

reserve polysaccharide is an important determinant of plant growth and its relationship 

with the environment. It is widely assumed that the whole starch biosynthetic process 

resides exclusively in the chloroplast and segregated from the sucrose biosynthetic 

process that takes place in the cytosol (Neuhaus et al., 2005; Streb et al., 2009; Stitt 

and Zeeman, 2012). According to this classical view of starch biosynthesis starch is 

considered the end-product of a metabolic pathway that is linked to the Calvin-Benson 

cycle (CBC) by means of the plastidial phosphoglucose isomerase (pPGI). However, 

results presented in Chapter 1 showing that mesophyll cells of mature leaves of the two 

pgi1 null mutants impaired in pPGI accumulate ca. 10-15% of the WT starch content 

strongly indicate that the CBC is not directly connected to the starch biosynthetic 

pathway by means of pPGI. Kunz et al. (2010) reported that pgi1-2 leaves exhibit 

substantial GPT activity as a consequence of the induction of GPT2 and proposed that 

the occurrence of ca. 10% of the WT starch in pgi1-2 leaves is ascribed to transport of 

G6P from the cytosol to the plastids of bundle sheath cells adjacent to the mesophyll 

and stomatal guard cells. Although this would indicate in principle that GPT2 could be 

involved in the incorporation of cytosolic G6P for its subsequent conversion into starch 

in pgi1-2 mature leaves, results presented in chapter 1 showing that the rate of starch 

accumulation in mature leaves of pgi1 plants is comparable to that of leaves of pgi1/

gpt2 plants provide strong evidence that GPT2-mediated incorporation of cytosolic G6P 

into chloroplasts plays a minor role in the synthesis of starch in mesophyll cells of pgi1 

leaves. Our results showing that pgi1 plants cultured under CL conditions are smaller 

than WT plants, whereas the near-starchless aps1 and pgm plants display a WT growth 

phenotype in the same culture conditions, strongly indicate that (a) reduced starch 

turnover is not the reason of the slow growth phenotype of pgi1 mutants, and (b) pPGI 

is an important determinant of plant growth. 

pPGI is involved in the regeneration of G6P molecules in oxidative pentose phosphate 

pathway (OPPP) in heterotrophic organs and non-illuminated leaves. OPPP provides 

precursors for the synthesis of RNA, DNA and phenolic compounds such as aromatic 

amino acids, lignin, fl avonoids and phytoalexins (Herrman, 1995). This metabolic 

pathway also provides NADPH necessary for biosynthetic redox reactions involved in 
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molecules in oxidative pentose phosphate 

organs and non-illuminated leaves. OPPP provides 

and phenolic compounds such as aromatic 

flavonoids and phytoalexins (Herrman, 1995). This metabolic 

involved in 

lipid biosynthesis and nitrogen assimilation (Kang and Rawsthorne, 1996; Bowsher et 

al., 2002; Bowsher et al., 2007; Jong et al., 2014), and for NADP-thioredoxin reductase 

(NTRC) dependent processes such as supply of reductant necessary for detoxifying 

hydrogen peroxide in the dark, and maintaining the redox homeostasis of plastids which 

in turn determines plant growth and development (Pérez-Ruiz et al., 2006; Lepistö et al., 

2009; Kirchsteiger et al., 2012). Noteworthy, it has been reported that G6P metabolization 

within the OPPP is required for generating a signal that governs the regulation of root 

mediated acquisition of nitrogen and sulfur necessary for amino acid synthesis (Lejay et 

al., 2008). Also, previous reports have shown that, similar to plants impaired in pPGI, 

mutants impaired in other plastidic OPPP enzymes such as 6-phosphogluconolactonase 

display a reduced size phenotype (Xiong et al., 2009; Bussell et al., 2013). Therefore, 

it is conceivable that the reduced size of pgi1 mutants is ascribed, at least in part, to 

impairments in some OPPP-dependent processes occurring in heterotrophic organs that 

are important for growth. 

 The low rates of growth and leaf starch accumulation of pgi1 plants pointed to the 

possible occurrence of reduced photosynthetic capacity of pgi1 leaves. In line with this 

presumption, results presented in chapter 1 showed that the photosynthetic capacities 

of starch defi cient pgi1 plants are lower than that of WT plants. In addition, we observed 

that the adenylate energy charge and cellular redox potential of pgi1 leaves are lower 

than those of WT leaves. This would indicate that starch defi ciency of pgi1 leaves is 

partially the consequence of either reduced CO
2
 fi xation capacity and/or low energy 

status and cellular redox potential, and not only the consequence of lack of pPGI-

mediated fl ow between the CBC and the plastidic phosphoglucomutase (pPGM)- ADPG 

pyrophosphorylase (AGP)-starch synthases (SS) starch biosynthetic pathway. 

 Glyceraldehyde 3-phosphate (GAP) is a glycolytic and OPPP metabolic intermediate 

that acts as substrate for the initial reaction of the plastidic 2-C-methyl-D-erythritol 

4-phosphate (MEP) pathway involved in the synthesis of isoprenoids (Lichtenthaler

et al., 1997; Phillips et al., 2008; Pulido et al., 2012). In non-illuminated leaves and

heterotrophic organs GAP can be produced in the OPPP and glycolytic pathways involving

pPGI. Therefore, pPGI could potentially act as a determinant for the synthesis of plastidic

MEP-pathway derived isoprenoid compounds. Among different plastidic isoprenoid

derived molecules, cytokinins (CKs) have been shown to act as major determinants of

growth, energy status, starch content and photosynthesis in mature leaves (Synková et
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al., 1999; Yang et al., 2003; Yaronskaya et al., 2006; Werner et al., 2008; Cortleven et 

al., 2011; Cortleven and Valcke, 2012; Erickson et al., 2014). Moreover, plastidic MEP 

pathway derived CKs are mainly synthesized in roots and transported to the aerial parts 

of the plant, where they regulate plant growth (Ko et al., 2014). The results presented 

in chapter 1 showed that total levels of plastidic MEP pathway derived forms of CKs 

in pgi1-2 leaves are low when compared with WT leaves, which provides evidence that 

pPGI is an important determinant of plastidic MEP pathway derived CKs. Moreover, 

exogenous application of CKs partially reverted the reduced starch content phenotype 

of pgi1 leaves. Thus, the overall data show that pPGI is an important determinant of 

photosynthesis, energy status, growth and starch accumulation in mesophyll cells likely 

as a consequence of its involvement in the production of OPPP/glycolysis intermediates 

necessary for the synthesis of plastidic CKs in roots. 

 It is known that volatile emissions from some benefi cial rhizosphere microorganisms 

promote plant growth. Furthermore, volatile compounds (VCs) from a number of 

microorganisms ranging from Gram-negative and Gram-positive bacteria to different 

fungi promote accumulation of exceptionally high levels of starch in leaves of mono- 

and di-cotyledonous plants (Ezquer et al., 2010; Li et al., 2011). To obtain insights into 

the mechanisms involved in the microbial VCs-mediated promotion of growth, starch 

accumulation and fl owering, in Chapter 2 we characterized Arabidopsis plants exposed 

to the VCs emitted by a number of benefi cial and non-benefi cial, phylogenetically 

diverse microorganisms (including plant pathogens). The results showed that blends 

of VCs emitted by all microorganisms tested promote starch accumulation, growth and 

fl owering in various plant species, including crops of agronomic interest. In addition, 

we found that VCs emitted by the pathogen Alternaria alternata have positive effects 

on photosynthesis in Arabidopsis plants, which can be ascribed, at least partially, to 

very effi cient use of light as a consequence of enhanced accumulation of photosynthetic 

pigments and improved ETR. As indicated above, it is known that CKs are major 

determinants of growth, energy status and photosynthesis in mature leaves (Cortleven 

and Valcke, 2012; Kieber and Schaller, 2013; Bahaji et al., 2015). Furthermore, these 

versatile hormones play important roles in fl owering (Nishimura et al., 2004; Riefl er et 

al., 2006; D´Aloia et al., 2011), modulation of sugar-induced anthocyanin accumulation 

(Guo et al., 2005; Das et al., 2012) and interaction of the plant with both biotic and abiotic 

factors (Argueso et al., 2012). Moreover, CKs promote starch accumulation in leaves 
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Valcke, 2012; Kieber and Schaller, 2013; Bahaji et al., 2015). Furthermore, these 
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, CKs promote starch accumulation in leaves 

(Werner et al., 2008) most likely by regulating the expression of starch metabolism 

related genes (Miyazawa et al., 1999) and/or enhancing photosynthetic CO
2
 fi xation. 

Results presented in chapter 2 showing that levels of plastidic MEP derived CKs in 

leaves of plants treated with A. alternata VCs are higher than in non-treated leaves 

would indicate that enhancement of CKs is involved in the VCs-promoted changes. 

This hypothesis is corroborated by the poor responses to VCs observed in 35S:CKX1 

with CK-defi ciency and the CKs signaling ahk2/3 mutant. It should be noted that the 

fi rst suggested level of diurnal MEP regulation is related to the CBC intermediate GAP 

(Pulido et al., 2012; Pokhilko et al., 2015). In VCs-treated leaves, GAP concentration 

is 2-fold higher than that of non-treated leaves, likely as a consequence of enhanced 

photosynthesis. Thus, accumulation of high levels of active MEP derived CKs in leaves 

of VCs-treated plants might be at least partly due to enhanced photosynthetic production 

of GAP and subsequent conversion into MEP-derived CKs. 

 Transcriptomic analyses of Arabidopsis leaves exposed to A. alternata VCs revealed 

changes in the expression of light- and CK-responsive genes involved in photosynthesis, 

growth and fl owering. Taken together, these data strongly indicated that changes in 

VCs-exposed plants result from complex, transcriptionally regulated processes allowing 

the plant to acclimate to new environmental conditions in which light and CKs play 

important roles. Notably, many genes differentially expressed in plants treated with 

fungal VCs were also differentially expressed in plants exposed to VCs emitted by the 

plant growth promoting rhizobacterium Bacillus subtilis GB03, suggesting that plants 

react to microbial VCs through highly conserved regulatory mechanisms.

 To obtain insights into the mechanisms involved in the A. alternata VCs promoted 

growth, photosynthesis and accumulation of CKs and starch, and to investigate the 

extent to which pPGI is involved in these responses, in chapter 3 I explored the role of 

pPGI in the response of Arabidopsis to VCs emitted by A. alternata. The results obtained 

showed that A. alternata VCs promote growth and the accumulation of high levels of 

starch in mesophyll cells of pgi1-2 plants as a consequence of the photosynthesis-driven 

enhancement of plastidic CK production in leaves, which, in turn, further promotes 

photosynthesis. This phenomenon is accompanied by the accumulation of stress-

responsive amino acids such as alanine and GABA, which may represent a strategy for 

adaptation to the environmental conditions caused by exposure to VCs emitted by A. 

alternata. Moreover, A. alternata VCs promote changes in the expression of proteins 
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involved in photosynthesis, starch metabolism and growth that can account for the 

observed responses in pgi1-2 plants. The overall data presented in chapter 3 show that 

Arabidopsis plants can respond to VCs emitted by phytopathogenic microorganisms 

by triggering pPGI-independent mechanisms. The fi nding that leaves of pgi1-2 plants 

exposed to fungal VCs accumulate exceptionally high levels of starch when the rate 

of photosynthesis increases confl icts with the widely accepted view that the whole 

photosynthesis-driven starch biosynthetic process occurs solely in the chloroplast by 

means of the CBC–pPGI-pPGM-AGP-SS pathway, and raises important questions 

regarding the basic mechanisms of starch biosynthesis in leaves exposed to VCs. On 

the other hand, this fi nding is consistent with the idea that the starch defi ciency in pgi1-

2 leaves not exposed to VCs is partly due to the reduced CO
2
 fi xation capacity of this 

mutant, rather than only a consequence of the lack of pPGI-mediated fl ow between the 

CBC and the pPGM-AGP-SS starch biosynthetic pathways (Bahaji et al., 2015).
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CONCLUSIONES

1) pPGI es un determinante importante de la fotosíntesis, el crecimiento y la 

acumulación de almidón en células del mesófi lo, probablemente debido a su 

participación en la generación de poder reductor necesario para la fi jación de 

nitrógeno y/o  precursores para la síntesis de aminoácidos aromáticos e isoprenoides 

plastidiales tales como las CKs. 

2) El fenotipo de bajo almidón de los mutantes pPGI puede deberse no sólo a la falta 

de conexión entre el ciclo de Calvin-Benson y la ruta “PGM-AGP-SS” de síntesis 

de almidón sino también a una reducida capacidad fotosintética y una elevada 

actividad degradadora de almidón.

3) Existen importantes rutas de biosíntesis de almidón diferentes a la ruta pPGI-

pPGM-AGP-SS que implican una conexión entre el cloroplasto y el citosol en 

células del mesófi lo.

4) Mezclas de VCs emitidos por un amplio rango de bacterias y hongos 

fi logenéticamente distantes (incluyendo patógenos de plantas) fomentan el 

crecimiento, fl oración y sobreacumulación de almidón.

5) El incremento de la fotosíntesis, crecimiento y fl oración debido a VCs emitidos por 

un hongo patógeno de plantas implica una compleja red de procesos regulados tanto 

a nivel transcripcional como post-transcripcional, en los que la luz y el incremento 

de la producción de CKs juegan un papel importante.

6) Las plantas han desarrollado la capacidad de reaccionar a VCs emitidos por 

diferentes microorganismos a través de mecanismos de regulación altamente 

conservados.

7) Los VCs emitidos por el fi topatógeno A. alternata activan o estimulan importantes 

rutas de biosíntesis de almidón independientes de la ruta CBC-pPGI-pPGM-

AGP-SS, permitiendo que las células del mesófi lo acumulen niveles de almidón 

excepcionalmente altos.

8) Los VCs emitidos por A. alternata activan/estimulan mecanismos independientes 

a pPGI que aumentan la fotosíntesis y crecimiento, probablemente debido a un 

incremento de la producción de CK plastidiales en hojas.
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CONCLUSIONS

1) pPGI is an important determinant of photosynthetic CO
2
 fi xation, plant growth and 

starch accumulation in mesophyll cells likely as a consequence of its involvement 

in the generation of reducing power necesary for nitrogen fi xation and/or precursors 

for the synthesis of aromatic amino acids and plastidic MEP pathway derived 

isoprenoid compounds such as CKs.

2) The low starch content phenotype of pPGI null mutants can be ascribed, at least in 

part, to reduced photosynthetic capacity and high starch breakdown activity, and 

not only to the lack of pPGI- mediated fl ow between the Calvin-Benson cycle and 

the pPGM-AGP-SS starch biosynthetic pathway.

3) There occur important starch biosynthetic pathway(s) different to the pPGI-

pPGM-AGP-SS pathway involving a metabolic link between the cytosol and the 

chloroplast of mesophyll cells.

4) Blends of VCs emitted by a wide range of  phylogenetically distant rhizosphere 

and non-rhizosphere bacteria and fungi (including plant pathogens) promote plant 

growth, fl owering and accumulation of exceptionally high levels of starch.

5) Promotion of photosynthesis, growth and fl owering by VCs emitted by a fungal 

plant pathogen involves a complex network of transcriptionally and post-

transcriptionally regulated processes wherein enhancement of CKs production  and 

light play important roles.

6) Plants have evolved the capacity to react to VCs emitted by different microorganism 

through highly conserved regulatory mechanism.

7) VCs emitted by the phytopathogen  A. alternata activate/stimulate important CBC-

pPGI-pPGM-AGP-SS independent starch biosynthetic pathways allowing the 

mesophyll cells of leaves to accumulate exceptionally high levels of starch. 

8) A. alternata VCs activate/stimulate pPGI independent mechanisms that increase 

the photosynthesis and growth likely as a consequence of photosynthesis-driven 

enhancement of plastidic CK production in leaves.
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LIST OF ABBREVIATIONS

3PGA   3-phosphoglycerate

A/N-inv   Alkaline/neutral invertase

ABA   Abscisic acid

ADPG   ADPglucose

AGP   ADPG pyrophosphorylase

AGPP   ADPG pyrophosphatase

AMPK   AMP-activated protein kinase

An   Net photosynthetic CO2 fi  xation rates

APS1   Small AGP subunit

BT1   Brittle1

CBC   Calvin-Benson cycle

CFM   Confocal fl uorescence microscopy

Ci   Intercellular CO2 concentrations

CKs   Cytokinins

CL   Continuous light

Col-0   Columbia

cytPGI   Cytosolic phosphoglucose  isomerase

cZ   cis-zeatins

DAS   Days after sowing

DMAPP   Dimethylallyl diphosphate

DW   Dry weight

DZ   Dihydroxy zeatin

er-105   Columbia with erecta-105 mutation

ETR   Photosynthetic electron transport rate

F6P   Fructose-6-phosphate 

FW   Fresh weight

G1P   Glucose-1-phosphate

G6P   Glucose-6-phosphate

GAP   Glyceraldehyde 3-phosphate

GPT   G6P/Pi translocator

gs   Stomatal conductance

GWD   Water-dikinases
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IPTs   Isopentenyltransferases

Jmax   Maximum rate of the electron transport

LD   Long day

MCF   Mitochondrial carrier family

MEP   2-C-methyl-D-erythritol 4-phosphate

MIVOISAP  MIcrobial VOlatiles Induced Starch Accumulation Process 

MS   Murashige and Skoog

MVA   Mevalonate

NO   Nitric oxide 

NPP   Nucleotide pyrophosphatase/phosphodiesterases 

NTRC   NADP-thioredoxin reductase C

OPPP   Oxidative pentose-P pathway 

pHK   Plastidial hexokinase

PPase   Alkaline pyrophosphatase

pPGI   Plastidial phosphoglucose isomerase

pPGM   Plastidial phosphoglucomutase

PPi   Inorganic pyrophosphate

PSII   Photosystem II

pSP   Plastidial starch phosphorylase

ROS   Reactive oxygen species

RSR1   Rice Starch Regulator1

RuBP   Ribulose-1,5-bisP

SD   Short day

SNF1   Sucrose non-fermenting

SnRK1   Sucrose non-fermenting-1-related kinase-1

SPS   Sucrose-phosphate synthase

SS   Starch synthase 

SuSy   Sucrose Synthase

TEM   Transmission electron microscopy

TPU   Triose phosphate use

Trxs   Thioredoxins

tZ   trans-zeatin

UDPG   UDPglucose
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UGP   UDPG pyrophosphorylase

Vcmax    Maximum carboxylation rate

VCs   Volatile compounds

Ws-2   WT Wasilewskija

WT   Wild-type

Φ
NPQ

   Non-photochemical quenching

Φ
Po

   Maximum quantum yields of PSII in the dark-adapted     

                state

Φ
PSII

   PSII operating effi ciency
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