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Abstract: In this work, an interferometric sensor has been interrogated 290 km away from the 

monitoring station, reaching the longest distance in fiber optic sensing up to date. This has been 

attained by employing a double-pumped random distributed feedback fiber laser as the light 

source for a fiber optic low-coherence interferometry scheme. Additionally, the capability of 

the system to achieve coherence multiplexing for ultra-long range measurements (up to 270 

km) has been proved, without presenting crosstalk between the sensors. The use of coherence 

multiplexing together with a random distributed feedback fiber laser addresses two of the main 

limitations of long-range sensing setups: their limited multiplexing capability and the need to 

reach the maximum monitoring distance. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Optical fiber systems for remote sensing have attracted a lot of interest during the last years 

due to their ability to monitor a large range of parameters at long distances, without requiring 

power supply at the sensor location. Some of these applications include the detection and 

propagation of tsunamis, which is of vital importance for the protection of natural environment, 

coastal population and structures [1]. Monitoring strain changes at volcanic areas can predict 

the possible evolution towards critical situations [2]. In addition, health monitoring of offshore 

platforms allows reducing costs, improving safety and increasing their operational lifetime [3]. 

Remote systems must face different challenges, but two of them are especially significant: to 

enlarge the distance between the sensor and the monitoring station and to multiplex several 

sensors on a single network. 

Lately, several schemes for remote sensing have been proposed [4] using different types of 

amplification. In [5], a sensor located 230 km away from the monitoring station was 

interrogated using a high-speed sweep-wavelength light source amplified by an Erbium-doped 

fiber amplifier. Raman amplification was employed in [6] to achieve a maximum distance of 

250 km multiplexing four fiber Bragg grating (FBG) sensors. Finally, an optical time domain 

reflectometer monitored a long-period grating displacement sensor at 253 km, reaching the 

maximum distance up to date [7]. 

The main purpose of multiplexing fiber optic sensors is to reduce the total cost of the system 

by sharing a number of devices of the network. Several multiplexing techniques have been 

investigated, offering specific benefits for each particular application [8,9]. In the same manner, 

hybrid methods of modulation formats within the same network have been considered [10,11]. 

Among all the multiplexing approaches, coherence multiplexing (CM) uses light sources with 

low coherence length on interferometric setups to multiplex several sensors into a single optical 

signal [12]. CM avoids the relatively complex requirements of time [13] or wavelength-division 

multiplexing [14], such as synchronization and frequency ramping of the optical source, 

respectively. However, in CM the geometry of each sensor must be carefully designed so the 

optical path differences (OPD) of each sensing interferometer are in different ranges. Then 

every sensing signal can be de-multiplexed by selecting its OPD in the local receiving 
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interferometer. Coherence-multiplexed systems have been widely used in fiber-optic sensing, 

multiplexing up to 10 sensors in [15] and measuring physical parameters such as temperature, 

displacement and strain [16–18]. 

Commonly, CM is employed in sensor systems based on fiber optic low-coherence 

interferometry (FOLCI) [19,20]. Temperature [21], pressure [22], strain [23] and refractive 

index [24] are some parameters that can be measured with high accuracy using this approach. 

Although FOLCI technique is intensity-based, the measurement accuracy is ideally insensitive 

to optical power fluctuations between the monitoring and the sensor location. Accordingly, 

higher resolutions are provided if compared to conventional intensity-based sensors. Moreover, 

FOLCI systems allow to measure absolute displacements, without the requirement of a previous 

characterization of the sensors. Due to the intrinsic need of short-coherence length in FOLCI, 

broad-band light sources are generally employed. However, the low output power of broad-

band sources (compared to laser sources) causes that low-coherence based systems are 

generally not well suited for long-range applications. 

During the last years, random distributed feedback fiber lasers (RDFB-FL) have been 

investigated extensively owing to their particularities as light sources when compared to 

conventional laser systems [25]. Their high power, mode-less behavior, stability and long 

cavities make them especially convenient for ultra-long range applications [26]. Besides, 

RDFB-FL can be internally modulated without frequency restrictions, which was used in [10] 

to monitor ten FBGs at 200 km. In that work, it was employed a hybrid technique which 

combined wavelength-division with time-domain multiplexing. This approach considerably 

improved the multiplexing capability of ultra/long networks compared to other remote 

structures previously proposed. In the present study, the natural coherence length of RDFB-

FLs is particularly important since it is short enough to make them suitable for FOLCI. 

The feasibility of using RDFB-FL in low-coherence interferometry and coherence-

multiplexing is demonstrated. In order to show its potential, two experiments have been carried 

out. The remote interrogation of an interferometric sensor has been achieved 290 km away from 

the header. This is, as far as the authors are aware, the longest distance for a remote fiber optic 

sensing system. In addition, the capability of the technique to achieve coherence multiplexing 

has been validated by interrogating two sensors at a distance of 270 km. Only one local 

receiving interferometer has been required to scan the displacement applied to both sensors, 

without crosstalk. This has been achieved by exploiting the particular properties of RDFB-RL, 

such as their high power and relatively short coherence length, in combination with a low-

coherence interferometry approach. These results show the great potential of FOLCI schemes 

in remote sensing applications when using RDFB-FL as the light source. 

2. Experimental set-up and principle of operation

2.1. Displacement sensor at 290 km 

The initial setup (Fig. 1) is formed by three differentiated parts: the laser source, the 

transmission channel and the sensing interferometer. 

A fiber laser requires an optical cavity to confine the light, which is then amplified until 

reaching the lasing threshold. In this setup, a single-arm distributed cavity is used, where a loop 

mirror recirculates the backscattered light in the laser cavity. The loop mirror redirects the light 

through port 2 of a 3-port optical circulator. The distributed mirror if formed by the 50 km + 

290 km of standard single mode fiber (Sterlite OH-Lite-E, with an attenuation of 0.19 dB/km), 

which provides a weak feedback along the fiber because of the Rayleigh scattering effect. This 

distributed feedback is the principle of generation in RDFB-FL. Two wavelength division 

multiplexers (WDM) are employed to inject two pump lasers (RLD-5K-1360 and RLD-5K-

1445) into the distributed cavity. Then, the fiber acts as the medium for the amplification due 

to the stimulated Raman scattering effect. Both WDMs are connected in series separated by a 

50 km SMF fiber spool. This fiber allows the generation of a secondary pump close to 1445 

nm and initiates the generation of a 2nd Stokes line close to 1550 nm. This is latter assisted by 
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the 1445 nm pump laser. In this manner, the pump laser at 1445 nm combine with the first 

Stokes wave generated by the pump at 1360 nm. The resulting emission generates and amplifies 

along the cavity an emission line at 1550 nm. At the end of the cavity, right before the sensing 

interferometer, an optical isolator is employed to prevent any feedback that could influence the 

laser performance. 

The transmission channel is composed by two identical 290 km optical paths. The first one 

forms part of the single-arm forward-pumped RDFB-FL, which illuminates the interferometric 

sensor. The second path guides the signal modulated by the sensor back to the detection system. 

Both the illuminating signal and the response of the sensors cannot share the same transmission 

channel because the counter-propagating noise in the arm of the laser is higher than the sensor 

response. In this manner, two different paths are used in the experiment, doubling the fiber 

needed in the system. However, a cable of two fibers can be used instead of a single-fiber cable, 

which does not present a significant increment in the final costs of the installation. 

Finally, two Mach Zehnder interferometers (MZI) compose the FOLCI sensing scheme: a 

sensing interferometer (SI) located 290 km away from the monitoring station and a local 

receiving interferometer (LRI). Two 50:50 optical couplers (C1, C2 and C3, C4) connected by 

two SMF arms (L1, L2 and L1', L2') compose each interferometer, respectively. The lengths of 

each arm in the SI and LRI are: L1L1' = 2.16 m, L2 = 9.04 m and L2' = 9.03 m. Two separate 

displacement stages, equally formed by a fixed platform and a mobile micro-positioner 

(Newport M423), apply displacement in L2 and L2' arms. The detected interference depends 

on the polarization of the two interfering signals that arrive at the LRI. Therefore, a polarization 

controller is connected in the LRI arm L1' so the fringe visibility of the interference signal is 

maximized. Finally, the optical power reaching the monitoring station is measured by an optical 

multimeter (ANDO AQ-2140) connected at the output of the LRI. 

Fig. 1. Set-up 1.Schematic set-up with one sensor. 

2.2. Coherence multiplexing of two displacement sensors at 270 km 

To evaluate the capability of the system to achieve coherence multiplexing, a second setup is 

proposed (Fig. 2). This is composed by three MZI: two coherence multiplexed sensing 

interferometers (SI1 and SI2) located 270 km away from the monitoring station and a LRI. The 

SIs are arrayed in parallel between the input and output buses by two optical couplers 50:50, 

CA and CB, following an intrinsic-reference ladder configuration [12]. The arms of CA and 
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CB present a length of LaLa’LbLb’ = 1.08 m. The detection of the sensors is done by the 

LRI connected in series, which interrogates both SIs in a single displacement sweep. SI1 and 

the LRI are the same as in set-up 1. The second SI (SI2) is formed by two 50:50 optical couplers 

(C5 and C6) connected by two SMF arms (L3 and L4), with a length of 2.16 m and 9.05 m, 

respectively. A polarization controller is used in the LRI arm L1’ to maximize the fringe 

visibility of the interference signal detected. 

The light source used in this scheme is the same as in 2.1., where a single sensor is 

interrogated. However, the transmission channel of the fiber laser is reduced to 270 km due to 

the larger number of couplers used in this experiment. However, power losses can be modest if 

the coupling ratios of the couplers used are properly chosen, even if several sensors are 

multiplexed [27]. 

Fig. 2. Set-up 2. Schematic set-up with two sensors. 

2.3. Principle of operation 

A FOLCI system requires at least two illuminated interferometers sharing optical paths. The 

OPDs of both interferometers must differ a length several times larger than the coherence length 

of the light source, Lc. Providing this, no coherent interference will be generated by each 

interferometer individually. In the case of using MZ interferometers, if the difference between 

the OPDs of the SI (OPD1 = |L1-L2|) and the LRI (OPDr = |L1'-L2'|) is tailored to be shorter 

than Lc, |OPDr-OPD1|< Lc, interference will result and the optical intensity detected at the 

output of the LRI (I) will be given by: 
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c
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L
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(1) 

where ∆L = OPDr-OPD1, k is the wavenumber, I0 the total optical power arriving at the detector 

and K1,K2,K3 and K4 are the power split ratios of the couplers used in the SI and the LRI 

respectively [20]. 

In FOLCI structures, low-coherence broadband sources such as light-emitting diodes (LED) 

are widely employed. As their spectral width varies from 30 to 60 nm, they offer short 

coherence lengths (compared to laser sources); therefore, narrower interferograms are obtained. 
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In this work, a RDFB-FL serves as the broadband source needed for a FOLCI system. Although 

the inherent line-width of RDFB-FL is much narrower than the spectral width of LED sources 

(several nanometers), it is considerably wider than in traditional laser sources and also presents 

a high output power (hundreds of milliwatts [25]). This high power combined with a coherence 

length under the millimeter make RDFB-FLs perfect candidates to allow the use of FOLCI in 

long-range schemes. In Fig. 3(a), an example of the normalized measured interferogram at the 

output of the FOLCI system for a single sensor is presented. In order to verify the experimental 

results, simulations have been performed and presented in Fig. 3(b), showing a good agreement. 

The simulated interferogram has been obtained through Eq. (1), calculating the values of I for 

∆L from 1.2 mm to 1.2 mm, considering a coherence length of 0.808 mm, k = 2π/1550 nm 

and K1 = K2 = K3 = K4 = 0.5. 

Fig. 3. Normalized a) experimental and b) simulated traces detected at the output of the FOLCI 

scheme. 

According to theory, both traces present a Gaussian profile with a total width 2Lc. If any 

variation is caused in the OPD of the SI (OPD1), the value of ∆L will be modified. As a result, 

the fringe visibility and the phase of the signal detected at the output of the FOLCI system I 

will be shifted, altering the position of the central fringe. Thus, absolute changes in OPD1 can 

be determined by measuring the displacement of the central fringe. To interrogate the sensors, 

the OPD in the local receiving interferometer (OPDr) is modified using a translation stage and 

a displacement sweep. In this manner, the power received at the power-meter is detected every 

step to reconstruct the interferogram. Consequently, the position of the central fringe (i.e. 

OPD1) can be inferred for every complete sweep. 

To avoid signal overlapping when interrogating more than one SI, the OPD of each MZ 

sensing interferometer must differ by at least two times the coherence length of the source, 

OPD1-OPD2 >2Lc. Increasing the difference between the OPDs of each SI reduces the 

crosstalk in the detected signal. Moreover, it enlarges the displacement range that can be 

measured without overlapping. 
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3. Experimental results

3.1. Displacement sensor at 290 km 

The aim of the experiment was to evaluate the feasibility of monitoring an optical fiber 

interferometer at 290 km as a displacement sensor. For this purpose, we employed an ultra-long 

random distributed feedback laser in combination with FOLCI. Using the RDFB-FL structure 

previously presented, a sensor placed at a maximum distance of 250 km can be monitored by 

only injecting 3 W by one 1445 nm pump laser. However, in previous works it has been 

experimentally demonstrated that double pumping schemes are more efficient than pumping at 

a single wavelength [27–29]. Moreover, Raman assisted second-order amplification systems 

[30] can be employed to reach longer distances. As explained in Section 2, two pump lasers

have been employed in the RDFB-FL scheme. An experimental study has been carried out to

determine the optimum pump powers. Both values have been chosen so that the optical power

reaching the sensing interferometer is maximized. The measured results show that the output

power after 270 km present an upper limit, which is not surpassed despite increasing the

injected pump powers. The optimum values are 3W in both pump lasers. In Fig. 4, the optical

spectrum measured after 290 km (between the optical isolator and C1) is represented, showing

a central wavelength set at 1555 nm and a peak power of 30.18 dBm.

Fig. 4. Optical spectrum of the random DFB fiber laser measured after 290 km. 

Fig. 5. Experimental traces detected at the output of the FOLCI scheme for three different sensor 

states. 
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To carry out this experiment, length variations have been induced and tracked in OPD1. 

The arm L2 of the SI has been fixed to a micro-positioner, with a resolution of 10 µm, to apply 

a displacement from 0 to 1 mm with 0.1 mm steps. Equivalently, the arm L2' in the LRI was 

attached to a separate micro-positioner (with a resolution of 20 nm) to perform the 

interrogation. In this manner, a displacement sweep was performed for 2.5 mm every 3.4 µm. 

After each complete sweep, it has been determined the central fringe position of the detected 

interferogram which represents the displacement of the SI. 

The evolution of the interferogram detected is presented in Fig. 5. The measured signals for 

0, 4 and 8 mm displacements are displayed, showing a clear shift of the central fringe. In order 

to ease the process of locating the central fringe, simple post-processing was applied by 

calculating the moving average of the absolute value of the data (Fig. 6). From the previous 

figures it can be inferred that the displacement of the central fringe position is clearly 

discernible and measurable. 

Fig. 6. Experimental traces detected at the output of the FOLCI scheme after post-processing. 

The relative distance measurements that correspond to the peak of each trace are displayed 

in Fig. 7. In this graph, the displacement applied to the sensor versus the displacement measured 

shows a linear tendency with a slope of 1.03, R2 = 0.99 and a resolution of 0.02mm. Some 

deviations in the experimental data are observed from the desired unity slope line. The intrinsic 

error of the micro-positioners and vibrations during the measuring process might be the cause. 

Thus, a RDFB-FL in combination with a FOLCI scheme allowed to reach the longest 

distance in remote fiber optic sensing as far as the authors know, performing measurements at 

290 km. This surpasses the 250 km distance limit already established in preceding remote 

monitoring publications. 
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Fig. 7. Experimental displacement measurements for one sensor. 

3.2. Coherence multiplexing of two displacement sensors at 270 km 

In a second test, a set of measurements have been performed to validate the proposed system 

as a coherence multiplexing scheme. Using the setup depicted in Fig. 2, two MZI have been 

interrogated by the same displacement sweep at 270 km. Again this time, the pump powers of 

the laser source have been chosen to maximize the optical power arriving at the sensing 

interferometers. That is 3 W in both pump lasers. The optical spectrum measured after 270 km 

is represented in Fig. 8. The spectrum is centered at 1555 nm and shows a peak power of 25.21 

dBm. 

Fig. 8. Optical spectrum of the random DFB fiber laser measured after 270 km. 

In order to evaluate the proper interrogation of the sensors, length variations were induced 

in SI1 using a micro-positioner with a resolution of 10µm. In this manner, a displacement from 

0 to 1 mm with 0.1 mm steps was applied to L2. The OPD in the SI2 was not modified during 

the experiment to prove the absence of crosstalk between the sensing interferometers. As in the 

first experiment, a displacement sweep was performed modifying the OPD of the LRI located 

at the header of the set-up (OPDr). Measurements were collected every 8.5 μm using a micro-

positioner with a resolution of 20 nm. Figure 9 shows the observed signals at the LRI output 

for 0 mm and 2 mm displacements. The same detected signals are presented in Fig. 10 after 

applying post-processing (as in 3.1). It can be seen in the figures that the displacement of the 

central fringe position of both SI1 and SI2 can be evidently determined. 
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Fig. 9. Experimental traces detected at the output of the FOLCI scheme for three different sensor 

states. 

It is also evidenced in the figure the lack of cross-talk since the interferogram of SI2 remains 

in a fixed position in all the displacement sweeps while SI1 shifts as we modify its OPD. It 

should be noted that the total displacement range is limited by the difference between the OPDs 

of the sensing interferometers. In this experiment, the band-gap between the OPDs of the 

sensors is 4 mm. As a result, the displacement range that can be measured without overlapping 

is 4 mm. However, if the OPD difference between sensing interferometers is adjusted, the 

displacement range can be increased depending on the application and its requirements. 

Another aspect to be considered, common in every FOLCI system, is the total interrogation 

range, which is limited by the maximum displacement generated in the OPD of the receiving 

interferometer. In this experiment, simple elongation has been applied for the verification, but 

other solutions allow a wider range, such as the based on moving mirrors [15]. 

As discussed earlier in this work, the amplitude of the detected interferograms depends also 

on the instantaneous polarization state of the signals interfering. Accordingly, polarization has 

been controlled by means of a polarization controller in the LRI. A variation in the range of 

both SI2 and SI2' interferograms is appreciated due to these polarization changes. However, 

this issue could be addressed by including some polarization selective devices in the receiving 

interferometer, such as a polarization scrambler. Finally, the relationship between the 

displacement applied to the sensor and the measured one is represented in Fig. 11. As expected, 

the results show a linear tendency with a slope of 1.04, R2 = 0.98 and a resolution of 0.02 mm. 

Vol. 26, No. 21 | 15 Oct 2018 | OPTICS EXPRESS 27197 



Fig. 10. Experimental traces detected at the output of the FOLCI scheme after post-processing. 

Fig. 11. Experimental displacement measurements for two sensors. 

4. Conclusions

In this work, a proof of concept of a new application of RDFB-FL is presented. Its particular 

short coherence length has allowed its use as the light source in a remote FOLCI system for the 

first time. Furthermore, it has been demonstrated the feasibility of using this scheme for 

coherence-multiplexing. In order to perform the validation, a set of measurements has been 

carried out, exploiting the properties of this technique for remote sensing at long distances. In 

this manner, it has been reached the longest distance for a remote fiber optic sensing system, as 

far as the authors know. 

An interferometric sensor has been monitored at a distance of 290 km and two 

interferometric sensors at 270 km, surpassing in both cases the 253 km distance milestone 

previously established in [7]. To achieve this, a double-pumped random DFB fiber laser has 

been combined with a low-coherence interferometry approach. This combination presents 

excellent properties for long distance applications. RDFB-FLs have been previously used in 

remote sensors monitoring due to their high output power, long cavities and high stability. 

In previous proposals, the compatibility of TDM and WDM techniques with random DFB 

fiber lasers was demonstrated [10]. The experiments carried out and presented in this paper 

have also proved the feasibility of exploiting this type of lasers for coherence multiplexing of 

interferometric sensors. Taking into consideration power constrains, it has been estimated that 

a maximum of 8 sensors could be remotely multiplexed at 258 km and up to 16 at 248 km. New 
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hybrid approaches can be proposed, employing several multiplexing techniques simultaneously 

to increase the total number of sensors interrogated. 

In the two experiments presented in this work, absolute displacements have been obtained 

for one and two sensors (coherence-multiplexed). The relationship between the displacement 

measured and the displacement applied show a linear trend with a slope of 1.03 and 1.04 

respectively. Moreover, the results show the absence of crosstalk between the multiplexed 

sensors. These tests serve as a proof of concept, but the accuracy of the measurements could be 

enhanced by modifying the receiving interferometer setup (improve noise isolation or 

polarization control) and improving the accuracy of the mechanical sweep. 

Funding 

Spanish Comision Interministerial de Ciencia y Tecnología within project TEC2016-76021-

C2-1-R as well as the FEDER funds, and by the Institute of Smart Cities by means of a 

postdoctoral fellowship. 

References 

1. A. G. Prasad, S. Asokan, and R. Tatavarti, “Detection of tsunami wave generation and propagation using fiber 

bragg grating sensors,” Sensors (Basel) 2009, 1278–1281 (2009). 

2. N. Beverini, M. Calamai, D. Carbone, G. Carelli, N. Fotino, S. Gambino, R. Grassi, E. Maccioni, A. Messina, M. 
Morganti, and F. Sorrentino, “Strain sensors based on Fiber Bragg Gratings for volcano monitoring,” Fotonica 

AEIT Italian Conference on Photonics Technologies, Turin, pp. 1–4 (2015).

3. L. Ren, H. Li, J. Zhou, D. S. Li, and L. Sun, “Health monitoring system for offshore platform with fiber Bragg 
grating sensors,” Opt. Eng. 45(8), 084401 (2006). 

4. M. Fernandez-Vallejo and M. Lopez-Amo, “Optical fiber networks for remote fiber optic sensors,” Sensors
(Basel) 12(4), 3929–3951 (2012). 

5. T. Saitoh, K. Nakamura, Y. Takahashi, H. Iida, Y. Iki, and K. Miyagi, “Ultra-long-distance (230 km) FBG 

sensor system,” in 19th International Conference on Optical Fibre Sensors (International Society for Optics and 
Photonics, 2008) 7004, p. 70046C, (2008). 

6. M. Fernandez-Vallejo, S. Rota-Rodrigo, and M. Lopez-Amo, “Remote (250 km) fiber Bragg grating 

multiplexing system,” Sensors (Basel) 11(9), 8711–8720 (2011). 
7. M. Bravo, J. M. Baptista, J. L. Santos, M. Lopez-Amo, and O. Frazão, “Ultralong 250 km remote sensor system

based on a fiber loop mirror interrogated by an optical time-domain reflectometer,” Opt. Lett. 36(20), 4059–4061 

(2011). 
8. A. D. Kersey, A. Dandridge, and A. B. Tveten, Overview of multiplexing techniques for interferometric fiber 

sensors,” In Fiber optic and laser sensors V (Vol. 838, pp. 184–194). International Society for Optics and

Photonics, (1988). 
9. J. S. S. M. S. Cusworth, “Multiplexing techniques for noninterferometric optical point-sensor networks: a

review,” Fiber Integr. Opt. 17(1), 3–20 (1998). 

10. D. Leandro, V. deMiguel Soto, R. A. Perez-Herrera, M. B. Acha, and M. López-Amo, “Random DFB fiber laser 
for remote (200 km) sensor monitoring using hybrid WDM/TDM,” J. Lightwave Technol. 34(19), 4430–4436

(2016). 

11. M. J. L. Cahill, G. J. Pendock, and D. D. Sampson, “Hybrid coherence multiplexing/coarse wavelength-division 
multiplexing passive optical network for customer access,” IEEE Photonics Technol. Lett. 9(7), 1032–1034 

(1997). 

12. J. Brooks, R. Wentworth, R. Youngquist, M. O. S. H. E. Tur, B. Kim, and H. Shaw, “Coherence multiplexing of 
fiber-optic interferometric sensors,” J. Lightwave Technol. 3(5), 1062–1072 (1985). 

13. D. M. Spirit, A. D. Ellis, and P. E. Barnsley, “Optical time division multiplexing: Systems and networks,” IEEE

Commun. Mag. 32(12), 56–62 (1994).
14. B. Mukherjee, “WDM optical communication networks: progress and challenges,” IEEE J. Sel. Areas Comm.

18(10), 1810–1824 (2000). 

15. D. Inaudi, S. Vurpillot, and S. L. Loret, “In-line coherence multiplexing of displacement sensors: a fiber optic
extensometer,” in Smart Structures and Materials 1996: Smart Sensing, Processing, and Instrumentation (Vol.

2718, pp. 251–258). International Society for Optics and Photonics, (1996). 

16. Z. G. Guan, D. Chen, and S. He, “Coherence multiplexing of distributed sensors based on pairs of fiber Bragg 
gratings of low reflectivity,” J. Lightwave Technol. 25(8), 2143–2148 (2007). 

17. D. Inaudi, “Coherence multiplexing of in-line displacement and temperature sensors,” Opt. Eng. 34(7), 1912–

1916 (1995). 
18. M. E. Jones, J. L. Grace, J. A. Greene, T. A. Tran, V. Bhatia, K. A. Murphy, and R. O. Claus, “Multiplexed

absolute strain measurements using extrinsic Fabry-Perot interferometers,” In Smart Structures and Materials

1995: Smart Sensing, Processing, and Instrumentation (Vol. 2444, pp. 267–276). International Society for Optics
and Photonics, (1995). 

Vol. 26, No. 21 | 15 Oct 2018 | OPTICS EXPRESS 27199 



19. S. A. Al-Chalabi, B. Culshaw, and D. E. N. Davies, “Partially coherent sources in interferometric sensors,” in
First International Conference on Optical Fibre Sensors (pp. 26–28), (1983). 

20. Y. J. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol.

7(7), 981–999 (1996). 
21. H. S. Choi, H. F. Taylor, and C. E. Lee, “High-performance fiber-optic temperature sensor using low-coherence 

interferometry,” Opt. Lett. 22(23), 1814–1816 (1997). 

22. K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,”
J. Micromech. Microeng. 15(1), 71–75 (2005). 

23. C. Belleville and G. Duplain, “White-light interferometric multimode fiber-optic strain sensor,” Opt. Lett. 18(1),

78–80 (1993). 
24. M. Jedrzejewska-Szczerska, M. Gnyba, and B. B. Kosmowski, “Low-coherence fibre-optic interferometric

sensors,” Acta Phys. Pol. A 120(4), 621–624 (2011). 

25. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañon, V.

Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010). 

26. Y. J. Rao and W. L. Zhang, “Recent progress in random fiber lasers,” In Optical Communications and Networks

(ICOCN), 2013 12th International Conference on (pp. 1–4). IEEE (2013). 
27. X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Y. Jiang, J. M. Zhu, and Z. X. Yang, “Towards fully distributed 

amplification and high-performance long-range distributed sensing based on random fiber laser,” In OFS2012

22nd International Conference on Optical Fiber Sensors (Vol. 8421, p. 842127). International Society for Optics 
and Photonics, (2012). 

28. A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-

wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010). 
29. J. Ania-Castañón, “Quasi-lossless transmission using second-order Raman amplification and fibre Bragg 

gratings,” Opt. Express 12(19), 4372–4377 (2004). 

30. S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M.
Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. 

Express 18(18), 18769–18778 (2010). 

Vol. 26, No. 21 | 15 Oct 2018 | OPTICS EXPRESS 27200 




