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Abstract 

The constant growth in the demand for data rates in wireless networks 

leads to a continuous increase in the amount of resources allocated per user. 

This is translated to a continuous demand for more bandwidth. Terahertz 

range has been gaining attention dramatically for its potential applications, 

among which high data rate communications can be found. However, one of 

the limiting drawbacks of this frequencies is the difficulty of generating power 

from efficient THz sources. One of the most recurrent approaches is 

photomixing, in which two optical signals are mixed in a photodiode to 

generate terahertzes. However, this techniques carry a series of issues that 

must be solved, such as efficient coupling of the terahertz energy and efficient 

illumination. For this reason, a novel concept for integrating a THz-

generating photomixer, based on an ellipsoidal reflector, is presented in this 

work. Although a fully operational device has not been achieved, all the main 

issues are addressed, design guidelines are provided and future lines of work 

are drawn. This has been developed in the framework of the TERALINKS 

project. 

Index Terms 

Terahertz, photomixing, packaging, ellipse, reflector. 
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Resumen 

El crecimiento en la demanda de mayores velocidades en redes 

inalámbricas lleva a incrementar los recursos asignados al usuario, lo que se 

traduce en necesidad de mayores anchos de banda. La banda de Terahercios 

resulta muy interesante por sus potenciales aplicaciones, entre las cuales se 

encuentran las comunicaciones de gran tasa binaria. Sin embargo, una de las 

limitaciones fundamentales de esta banda es la dificultad para generar 

potencia eficientemente. Una de las técnicas mas recurrentes es el 

photomixing, por la cual dos frecuencias ópticas se baten en un fotodiodo 

para generar terahercios. Sin embargo, estas técnicas acarrean una serie de 

problemas, tales como el acoplo eficiente de la radiación generada y la 

iluminación del diodo. Por ello, en este trabajo se presenta un concepto 

novedoso para la integración de photomixers, basado en un reflector 

elipsoidal. Aunque no se ha conseguido un dispositivo operativo, los 

principales problemas son tratados, una serie de reglas de diseño son 

propuestas y las futuras líneas de trabajo son detalladas. Ello ha sido 

desarrollado en el marco del Proyecto TERALINKS. 

Palabras clave 

Terahercios, photomixing, packaging, elipse, reflector. 
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1. Introduction. 

1.1 Motivation. 

The constant growth in the demand for data rates in wireless networks 

leads to a continuous increase in the amount of resources allocated per user. 

This is translated to a continuous demand for more bandwidth. However, the 

radio spectrum is significantly busy at traditional radio frequencies, while 

upper parts of the spectrum are scarcely inhabited and offer higher fractional 

bandwidths. 

Millimetre and submillimetre waves are increasingly gaining interest due 

to their potential applications, among which high data rate communications 

can be found. These millimetre (30-300 GHz) and submillimetre (300GHz - 

3THz) waves are included in the lower part of the traditionally called 

“Terahertz gap”, which ranges from 3mm (100 GHz) to 30 µm (10 THz). This 

terminology was coined due to the immaturity of the technology for 

generating and detecting waves at these frequencies, in comparison to other 

mature technologies, such as the ones used at microwave frequencies or 

infrared optical communications. Nowadays, however, this gap is shrinking 

due to the recent advances; not only in communications applications, but 

also and essentially boosted by research in radiometry and spectrometry. In 

fact, the growth of publications involving “terahertz” has been exponential for 

the last few decades, as stated in [1] and depicted in Fig. 1 in this work, with 

up-to-date data retrieved from Scopus. 

This Master Thesis has been developed in the framework of the 

TERALINKS project [2], which is dedicated to the demonstration of a real-

time THz communication system in the 200-300 GHz frequency band, in two 

different scenarios: one outdoor and another indoor. This communication 

system is thought to operate as a backhaul link, aiming to achieve at least 

40 Gbps real-time. As for this Master Thesis, it aims to contribute to the 

goal of shrinking the aforementioned gap by investigating a new technique 

for integration and packaging of THz sources that are based of the 

optoelectronic technique of photomixing. 
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Fig. 1: Terahertz-related publications per year from 1980 to 2017 

1.2 Objectives. 

As part of the TERALINKS project [2], which is dedicated to the 

demonstration of a real-time THz communication system in the 200-300 GHz 

frequency band, this Master Thesis will focus on developing a new technique 

for integrating and packaging a photodiode to be used in a photomixing 

process for THz generation.  

Due to the plethora of challenges present at the THz band, such as 

atmospheric absorption (Fig. 2), propagation losses and manufacturing 

tolerances, maximizing the efficiency at power generation seems crucial. For 

this reason, a new concept of integration block for a terahertz-generating 

photodiode will be presented in this work. Its most significant feature is the 

use of an ellipsoidal reflective surface in order to maximize the output power 

by focalizing all the generated THz power in the same point (one focus of the 

ellipse), being able to collect the radiated energy and output it into a 

waveguide (or a transmission antenna). Some of the challenges to be faced in 

this work include the integration and adaptation of a photomixer (to be 

designed and delivered by a colleague team in France), the design and 

analysis of an ellipsoidal reflective surface and the incorporation of different 

elements to enhance its performance. The optical input will also be studied, 

in order to integrate the fibre connectors properly into the final device. Due 

to the lack of specific information about the photodiode, a series of 

assumptions will be introduced and explained throughout this document. 

Therefore, this work aims to study different possibilities for designing new 

structures based on this novel concept, at the same time it presents the design 

of a specific component. Comments regarding its fabrication will also be 

made. 
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Fig. 2: Atmospheric and molecular attenuation per kilometre [3]. 

After this introduction, a brief summary of each chapter of the current 

document is presented next: 

Chapter 2 introduces the context of the TERALINKS project, with its 

partners, main challenges and goals. Chapter 3 presents a review of the state 

of the art concerning the TERALINKS Project and Terahertz in general: 

THz generation techniques and existing approaches to communication 

systems in this band. Chapter 4 provides a brief review of the traditional 

techniques for packaging and integration of photomixers. Chapter 5 

introduces the geometrical concept of the ellipse and its theory. In addition, 

it demonstrates the feasibility of this geometric element for its 

implementation in the packaging of THz sources. Chapter 6 expands this 

concept and will detail each of the different steps taken into account in the 

design of the final device. In Chapter 7, some simulation results of the final 

device will be presented and discussed. Chapter 8 comments the possible 

approaches for the fabrication of the component and the results obtained by 

3D printing. Chapter 9 presents the conclusions of this work and draws the 

future lines of work. Chapter 10 provides an overview of all the literature 

consulted in this work, properly referred. 

In addition, three appendixes have been included in this work. The first 

two provide some simulation results, illustrating the relations between the 

dimensions of some specific parts in the design. They were believed to provide 

a significantly illustrative view of the best combinations and they effectively 

summarize the results of large parametric analysis and thus it was decided to 

include them. The third appendix presents the results of the measuring 

campaign in both near- and far-field scenarios of a 3D printed and metallized 

horn designed at 240 GHz. Since this horn was measured during the 

development of this Thesis and is used in the final system, it was believed to 

be interesting to include it. 
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2. Context of the TERALINKS Project. 

The ever-increasing demand for high data rate and low latency has led to 

a continuous increase of the carrier frequency and bandwidth allocation. 

While increasing this carrier frequency allows the allocation of broader 

bandwidth, it also suffers from higher loss due to propagation and weather 

conditions. Furthermore, the network is expected to become highly densified 

[4],  with the number of connected devices expected to grow exponentially. 

For this reason, the user-resources must be allocated on an efficient manner. 

In order to face both challenges: propagation loss and resource allocation, the 

optimal solution seems to be cell splitting. This is, reducing the coverage area 

of the base stations (BS), thus increasing the number of BS in the service 

area. By these means, the number (n) of users served by each BS is reduced. 

This implies that the reutilization of resources is higher and that less 

interference is generated. Therefore a higher throughput per user (R) can be 

obtained, as stated in [4] and denoted by Shannon’ s law, adapted to cell 

communications, for an error-free situation: 

 

𝑅 < 𝐶 = 𝑚(
𝐵

𝑛
) log2 (1 +

𝑆

𝐼 + 𝑁
) Eq. 1 

Where B denotes the base station signal allocated bandwidth [Hz], m 

denotes the number of spatial streams between a base station and a user 

device, S is the power of the desired signal [W] and (I + N) are the sum of 

interference and noise power [W], respectively, measured at the receiver. 

However, such a large growth in the number of BS requires an infrastructure 

capable of forwarding hundreds of Gigabit backhaul traffic with a guaranteed 

quality of service [5]. Observing Shannon’s formula, obviating the cell-related 

parameters, it can be agreed that the capacity of a link can be enlarged by 

allocating more bandwidth and/or increasing the signal-to-noise ratio (S/N). 

In fact, there is a trade-off between these two magnitudes. A higher 

bandwidth implies a shorter transmission time and thus, a higher data rate. 

However, it also incurs in a higher level of noise in the system. On the other 

hand, there is a lowest threshold for S/N, below which error rates increase 

rapidly. This threshold varies depending on the modulation scheme employed. 

  In this context, some frequency bands, such as IEEE standard 

designations V-band (40-75 GHz) and W-band (75-110 GHz) – which have 

traditionally been used for satellite, radar and scientific research – are 

recently been proposed to develop backhaul systems. The allocated 

frequencies only include, however, part of these bands, being available only 

the following portions: 57 – 66 GHz, 71 – 76 GHz, 81 – 86 GHz. These 

portions of spectrum are not suitable for the purpose of the TERALINKS 

project, where an initial goal of 40 Gbps has been set.  
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In this project, 240 GHz has been selected as the target carrier frequency 

due to the good comprise between, first, atmospheric and propagation losses 

and second, current technology and technological challenges [6]. One of these 

challenges is the generation of power, in order to achieve an adequate S/N. 

Higher S/N allows the utilization of higher spectrum-efficient modulation 

schemes and thus higher capacities. In order to generate enough THz power, 

the combination of photonic-based sources and travelling wave tubes (TWT) 

has been chosen. 

2.1 Partners. 

The TERALINKS (TERAhertz high power LINKS using photonic 

devices, tube amplifiers and Smart antennas) Project aims to demonstrate a 

real-time THz communication system within the 200-300 GHz frequency 

range in an operational environment. For this purpose, three key enabling 

technologies are considered: photonics-based THz sources, Traveling Wave 

Tubes (TWTs) for high THz power generation and Smart Antennas. It is a 

European project1 driven by a handful of partners, mainly European 

universities, which have been lately involved in the THz field of research.  

 University Lille (IEMN). 

 University of Nice (EpOC). 

 Queen Mary University of 

London (QMUL).  

 Lancaster University (LU). 

 Universidad Pública de Navarra 

(UPNA). 

As well as two industrial partners: 

 ST-Microelectronics. 

 THALES. 

  

                                        
1 CHIST-ERA is a program for European Coordinated Research on Long-term 
Information and Communication Technologies. Every year, a transnational call for 
research proposals is launched. TERALINKS corresponds to the Call from 2015. 

Fig. 3: TERALINKS Project logo 
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2.2 Goals 

Essentially, the project aims to achieve a real-time communication link of 

at least 40 Gbps (fixing 100 Gbps as the ultimate target), at a centre 

frequency of 240 GHz. In addition, two different scenarios are considered in 

this project: 

 Outdoor point-to-point link for future cellular network backhaul 

(1 kilometre). 

 Indoor high speed networks (up to 10 to 20 metres). 

These transmission scenarios have different power link budget conditions, 

as in (a) high directivity antennas and high radiation efficiency are required 

in order to compensate the attenuation due to propagation loss, gas 

absorption and critical weather conditions such as rain or fog; while in (b) 

high directive antennas are substituted by beam-steerable advanced designs, 

propagation losses are not as critical as in a) due to the reduced distances 

and weather conditions are no longer critical. On the other hand, line of sight 

(LoS) could be compromised due to obstacles such as furniture or even people. 

In both scenarios, the targeted bandwidth of operation is 240 ± 20 GHz; 

namely, 40 GHz must be available for the link operation. In order to achieve 

the initial goal capacity, i.e. 40 Gbps, simple modulations, such as ASK, and 

direct detection could be used. The technology to achieve this has already 

been demonstrated [7], [8] by using Schottky-based receiving systems and 

photomixing techniques.  

Higher or similar bitrates to the proposed target have already been 

achieved in the recent years employing different techniques, such as multiple 

transmission channels in parallel (8 channels of 25 GHz achieving together 

160 Gbps, as reported in [9]), or higher carrier frequencies [8] (46 Gbps at 

400 GHz). Although these implementations successfully reported very 

interesting data rates, the achieved working distances were roughly less than 

a few metres, thus they are not comparable to the main goal of this project 

for the outdoor scenario (although they are not far from the indoor scenario). 

 
Fig. 4: Outdoor scenario scheme 
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Fig. 5: Wireless link architecture for both scenarios considered in TERALINKS 

Nevertheless, the technologies employed in these contributions 

successfully achieved similar or even higher data rates and it could establish 

an interesting starting point. In terms of the link budget, higher available 

output power and more directive antennas could improve the reachable 

distance. On the other hand, other type of mechanisms, such as forward error 

correction, could be implemented in order to decrease the BER of the system 

and therefore, obtain higher data rates. These error correction mechanisms 

are out of scope from this Master Thesis and will not be mentioned in the 

following sections. Nevertheless, they should be taken into consideration in 

the final implementation of the communication link. 

Focusing on the outdoor scenario (Fig. 4), where a distance over one 

kilometre is required, one remarkable, real-time implementation driven in 

2012 by NTT in Japan must be highlighted, in which a 120-GHz-band 

wireless link achieved a 10 Gbps transmission over a distance of 1 km in 

heavy rain condition with 99.999% availability and above 5km in conditions 

of fine weather [10]. Hence, the goal considered by the TERALINKS project 

for the outdoor scenario stands out as an ambitious target, entailing a four-

time increase in link capacity regarding to the state of the art design by NTT. 

Table 1: Main specifications of the wireless link to be developed in TERALINKS 

Frequency 220 – 260 GHz 

THz source power Up to 1mW 

TWT power amplifier 
Gain > 30 dB 

Power: 3-4 W 

Receiver 
Zero Bias Schottky Detector 

responsivity 1kV/W 

Rx bandwidth 
40 GHz, including baseband 

amplifier 

Modulation 
ASK (real-time) 

40 Gbps 
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As for the receiver, TERALINKS project has chosen to include a Zero 

Bias Detector (ZBD) based on Schottky diodes. This device is commercially 

available, due to the current capability of these devices to detect up to 50 

Gbps. Thus, no attention will be paid to this device and efforts will be 

concentrated on the THz emitter. The main specifications of the 

communication system are presented in Table 1. 

In the next Chapter, a review of the main technologies for THz power 

generation and communications will be presented and special interest will be 

paid in some of the aforementioned key enabling technologies: photomixing 

techniques and travelling wave tubes.   
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3. Terahertz technologies for communication 

systems. 

In the last few decades, the terahertz gap has been reduced significantly, 

pushed initially by research in radio astronomy and spectroscopy, boosted by 

sensing and imaging techniques. Other newer applications related to imaging 

include Ultra-Wide Band (UWB) high resolution radars [11] and biomedical 

imaging to replace X-rays [12]. Nowadays, high speed communication systems 

based on terahertz are on the horizon and diverse studies have already been 

successfully performed. This denomination of “gap” was coined due to the 

underdevelopment of the technologies for generating THz with respect to 

electronic techniques, operating in frequencies below this gap; and photonic 

techniques, operating right above this band. Up to date, a plethora of 

techniques for THz generation have been developed and this gap is gradually 

being filled by new research. Different classifications of these techniques can 

be found in the literature. These diReffer among each other in singular details 

but all in all, three main categories can be differentiated: electronic sources, 

photonic sources and a subtype of this photonic sources, the optoelectronic 

sources. Electronic sources comprehend mainly vacuum tubes, solid state 

oscillator devices and frequency multipliers. Recent efforts have also been 

made in research of plasmonic sources. On the other hand, photonic sources 

include gas lasers and semiconductor lasers, among others. Finally, a third 

hybrid group should be highlighted: optoelectronic sources. In fact, this last 

group will be analysed in detail, due to the enormous development that has 

experienced in the recent decade and due to the fact that an optoelectronic 

technique will be chosen for THz generation in the TERALINKS project. 

Some of the most relevant techniques of each group will be presented in 

order to comment on their advantages and drawbacks. Additionally, some 

examples of the state of the art in these techniques will be given. A brief 

review will also be made about recent approaches in developing operational, 

real time, THz communication systems.  

Since TERALINKS project does not focus on the detection technologies, 

rather chooses a commercial Zero-Bias Schottky Detector [13], no attention 

will be paid to this particular component, since it has been considered out of 

the scope of this Master Thesis. Nevertheless, a characterisation of this diodes 

can be found in [14], as well as in the referred web page. 
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3.1 Electronic sources 

3.1.1 Vacuum Tubes and Electron-beam Devices 

A vacuum tube, also called electron tube, is a device capable of controlling 

the electric current between two electrodes in a container that can be 

evacuated (vacuum) or gas-filled. Among its applications, they are used in 

generating high power at radio frequencies. Regarding the terahertz region, 

different examples can be found, such as the Free-Electron Laser (FEL), the 

Backward-Wave Oscillator (BWO) or the Travelling Wave Tube (TWT). 

Free-Electron Lasers are based on the fact that an electron, travelling 

through a stationary electric or magnetic field, radiates, being its wavelength 

dependant on the speed of the electron [15]. In FELs, a beam of electrons 

inputs an undulator – an array of N pairs of magnets with alternating poles 

– and is accelerated by this alternating field distribution due to the Lorentz 

Force, making the beam travel across the undulator with a sinusoidal 

trajectory, on a plane normal to the magnetic fields. The cavity is enclosed 

by a pair of mirrors, thus creating standing waves in the inside. The result 

of the interference between the waves generated by the electrons on each 

period of the undulator gives a constructive, coherent radiation at a frequency 

controlled by the speed of the electrons and the magnetic fields of the cavity 

[16]. FELs provide possibly the highest levels of output power. However, these 

systems require expensive and massive-sized facilities and enormous amounts 

of power consumption. One example is found in [17] and an approximated 

view of the size of these facilities is shown in Fig. 6. 

 
Fig. 6: UCSB Free-Electron Laser facility [18]. 



 24 

Backward Wave Oscillators could be considered as table-top, small 

brothers of FELs [19]. An electron beam is generated by an electron gun (such 

as a Gunn diode) and interacts with a slow-wave structure (SWS) instead of 

an undulator. The density of electrons in the beam is modulated, grouping 

electrons (microbunching) by the repulsion or attraction in areas with low or 

high bias. This modulation corresponds to the relative amplitude of the input 

RF signal. This is translated in an amplified version of the signal. The output 

signal travels opposite to the electron beam, hence the name “backward 

wave”. Nevertheless, the output frequency is controlled by the speed of the 

electrons and thus it can be changed by modifying the bias voltage [20]. 

Operation can take place also in the absence of an input signal. Therefore, 

BWO are not only THz amplifying devices [21], but also THz sources [22]. 

Some remarkable, recent works proved a peak power of 110mW at 260 GHz 

[23]. Other studies provide interesting simulation results, obtaining several 

Watts of output power at 340 GHz or 650 GHz. A conclusion that can be 

extracted from reviewing the related literature is that the design and 

manufacture of the SWS unit cells are driving tasks in the design of this 

devices. 

 
Fig. 7: Example of SWS cell unit, with dimensions, extracted from [24]. 

The principle of work for the Travelling Wave Tubes is fundamentally 

the same as that of the BWO. An electron beam is injected in a tube in 

presence of a RF signal to be amplified. The tube typically includes a slow-

wave structure (or a helix wire, but this type of structures do not support 

very high power). With this kind of structures (SWS), the electromagnetic 

waves are slowed down, so that their phase velocity is similar to the electrons’ 

speed, which is controlled by the voltage bias. With much more comparable 

speeds, it is possible for the electrons to interact with the signal, being 

modulated by it. TWTs are commonly used as amplifiers rather than THz 

sources, although some studies have dealt with this [25]. As has just been 

presented, both BWO and TWT are significantly similar, with the difference 

of the direction of the output signal and a higher tuning capability for the 

BWOs. In TWTs, phase velocity and group velocity have the same direction, 

while in BWO the group velocity has an opposite direction. For this reason, 
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it could be thought that they could share the same SWS. That is the case in  

[24], where a multiple beam BWO is presented, based on the Double 

Corrugated Waveguide TWT in [26]. In these works, an output power of 45W 

and 3W, respectively, were obtained over a 30 GHz bandwidth at 220 GHz. 

In fact, these works were driven by one of the colleagues participating in the 

TERALINKS project, and a similar device is expected to be designed for 

power amplification, to be placed right after the device that will be presented 

in this Master Thesis. 

3.1.2 Solid State Oscillators 

There are several types of solid state devices that can be used as THz 

sources, such as Gunn diodes (also known as Transferred Electron Devices, 

TED), Resonant Tunnelling Diodes (RTD), Transit Time diodes (such as 

IMPATT or TUNNETT) or transistors. These devices are characteristic for 

their negative resistance or negative conductance at some parts of their 

current/voltage curves, being suitable for working as oscillators. A review of 

these devices can be found in [27]. The main goals in the development of 

these devices are the up-scaling in frequency and obtaining higher output 

powers. However, as a rule of thumb, scaling in frequency implies a higher 

number of drawbacks in the designs due to miniaturization (which carry 

thermal and electrical constrains) and manufacturing tolerances. In fact, 

while solid state electronics are expected to enable low-cost and integrated 

THz power generation, the output powers obtained to date are still low, since 

they suffer from several fundamental issues including reactive parasites, high 

resistive losses or high-frequency roll-off [28], yet some recent results are 

promising. Some examples have reached the order of  milliwatts, as in [29], 

were almost 0.2mW were obtained with an RTD. In [30], a 3 Gbps 

transmission with a BER of 3·10-5 was achieved as well with an RTD 

oscillating at 542 GHz and an output power of 0.21mW. Recently, a 22 Gbps 

error-free transmission was achieved with a broadband RTD at 490 GHz with 

an output power of 0.06mW. 

As for solid state amplifier devices, heterojunction bipolar transistors 

(HBT) have been proved to provide more than 20 dB small-signal gain over 

a bandwidth of 40 GHz around 290 GHz, with a peak output power of 10mW 

[31]. Other technologies include High Electron Mobility Transistors (HEMT) 

– transistors made of several layers of different semiconductors and thus 

different bandgaps, where the discontinuities provide high mobility to the 

electrons – and metamorphic HEMTs (which are HEMTs grown on non-

lattice-matched substrates). These technologies are explained and a detailed 

review of their state of the art is presented in [32]. 
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3.1.3 Frequency Multipliers 

When operating at very high frequencies is required, such as THz, solid 

state oscillators start to not being able to provide power and other solid state 

alternatives must be implemented. This is the case of frequency multipliers. 

These devices take advantage of non-linear effects to generate harmonics from 

an input signal. These multipliers are essentially based on non-symmetrical 

devices such as Schottky diodes or symmetrical components such as HBVs 

(Heterostructure Barrier Varactor) [19].  

Schottky diodes made from GaAs are the most common device for 

building multipliers due to its fabrication process simplicity, low DC power 

consumption and low parasitic. However, they are generally used only for 

multiplication factors of 2 or 3, due to low conversion efficiency and chains 

of multipliers are often required to reach THz frequencies. On the other hand, 

configurations including HBV allow a more efficient realisation of higher 

multiplication factor, such as frequency quintuplers [33]. This is feasible due 

to the symmetry of the device, which allows to cancel the generation of even 

harmonics. These devices provide a handling of higher output powers in 

comparison to Schottky diodes, since they include several junctions in series, 

stacked during epitaxial growth, although they require a much more complex 

engineering process [19]. 

The current status and state of the art of frequency multipliers is analysed 

in depth by [34] and [35]. Some interesting results regarding HBV include the 

realisation of a frequency septupler (x7) at 240 GHz [36], although power 

under the milliwatt level was achieved. Other studies achieved up to 60mW 

in a frequency quintupler (175 GHz) [33] and 240 mW in triplers around 110 

GHz with a conversion efficiency of 20% [37]. It should be highlighted that 

these designs are all narrowband. As for Schottky-based multipliers, state-of-

the-art designs offer bandwidths of around 15-20% and efficiencies around 

30%. Furthermore, frequencies up to 3 THz have been achieved [38]. Some 

examples include 42.5% efficiency at 190 GHz with 90 mW output power 

doubler [39] or a 160 GHz quadrupler with 70 mW output power and 29% 

efficiency [40]. 
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3.2 Photonic Sources 

3.2.1 Semiconductor Lasers 

Quantum cascade lasers (QCL) are compact, narrow line-width, 

semiconductor THz sources. Their body is composed of hundreds of layers 

containing quantum wells and barriers, which together determine the 

wavelength of operation. In these devices, electrons undergo quantum jumps 

between conduction subbands formed within a superlattice of quantum wells 

structure [19]. These layers are very thin and its energy transitions correspond 

to the THz region. They can be designed to radiate over a wide range of 

frequencies/wavelengths, outperforming diode lasers in terms of power 

handling capability.  However, in contrast to solid state electronics, operation 

in lower frequencies is challenge-increasing. They usually require cryogenic 

temperatures to operate properly, although some recent studies suggest the 

feasibility of obtaining room-temperature QCLs [41], [42]. The output power 

levels obtained result very attractive, but they suffer from limited bandwidth 

and low tunability, and require frequency stabilization. Some examples of 

achievable powers are collected in [43], with up to 1W @ 3.4 THz at a 

temperature of 118K, and [44], with 3W at 65 THz (4.6 microns) at room 

temperature. 

Another table-top technique is the p-Ge laser. It consists of a germanium 

crystal doped with acceptors such us beryllium, zinc or gallium, among 

others. The crystal is placed in between crossed electric and magnetic fields 

and the holes are accelerated, resulting in population inversion that leads to 

stimulated emission [45]. It is often used in spectrometry and requires 

cryogenic working temperatures, reason why a cold plate is placed [46]. 

3.2.2 Gas Lasers 

Gas lasers are other candidate sources of coherent power at the upper end 

of this frequency range. They use polar molecules as the laser medium, 

obtaining THz radiation from spectral resonances of molecular rotations 

together with a specific cavity.  The gas cell is pumped with an infrared laser, 

such as CO2 laser. One fundamental limitation is that operating frequencies 

are limited to those of molecule-specific resonances [19]. 
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3.3 Optoelectronic Sources 

Up to this point, different photonic and electronic techniques for THz 

generation have been presented. As it has be shown, each technique presents 

its own advantages and drawbacks in comparison to each other. While one 

driving limitation of optical terahertz sources lies in the low photon energy 

at this frequencies, in the order of meV (and the lack of materials which such 

a small bandgap), solid-state devices based on semiconductors, such as 

amplifiers, oscillators and frequency multipliers, suffer from low conversion 

efficiencies and stability problems. Other drawbacks of high power, photonic 

sources are either the need of very low operation temperatures or the need of 

a whole room in order to host the equipment, as in the case of FEL. Nonlinear 

THz generation employing non-linear crystals has also been presented, 

reporting low power efficiency. Similarly to the idea of frequency up-

conversion by frequency multipliers, THz generation could be achieved by 

down-conversion techniques from optical sources. These are usually referred 

to as optoelectronic techniques and two main methods are generally 

differentiated: continuous wave (CW), narrow-band THz generation by 

photomixing of two photocarriers with a wavelength difference corresponding 

to the frequency of interest (THz) and broad-band generation by pulsed 

operation. This is, generating short pulses, in the order of femtoseconds, with 

an optical laser and the use of some photoconductive film. Both solutions 

require a small photoconductor connected to a pair of electrodes for bias 

feeding. This photoconductive material is irradiated by the optical beams (or 

pulses) in order to generate currents in the terahertz band that will be 

coupled to an RF antenna or circuit working at the frequency of interest. 

Pulsed operation is known as Time Domain generation (TD) while CW is 

known as Frequency Domain generation (FD). 

3.3.1 Pulsed Emission 

Terahertz pulses can been generated by irradiating a photoconductive 

(PC) antenna, quantum structures or a semiconductor surface with 

femtosecond optical pulses [47]. The use of photoconductive antennas has 

been historically the most recursive. A standard pulse generation scheme 

using a PC antenna is shown in Fig. 8. A short optical pulse, in the order of 

femtoseconds, irradiates a photoconductive material placed onto a 

semiconductor substrate with a printed THz antenna that is biased with a 

DC voltage. This optical pulses must have an energy greater than the 

bandgap of the semiconductor, in order to be absorbed. This absorption 

generates electron-hole pairs that are generated in the conduction and valence 

bands, respectively. The bias voltage generates an electric field that 

accelerates the carriers, which have a specific carrier lifetime until they are 

relegated back to the valence band. Therefore, a THz photocurrent is induced 
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in the structure, and the emitted THz field is proportional to the first 

derivative of this photocurrent [19]. 

 
Fig. 8: Scheme of THz pulsed radiation by means of photoconductive antenna [48]. 

When calculating the frequency spectrum of the emitted signal, one could 

expect a broadband response. This is according to the Fourier theorem, which 

states that the spectral width is inversely proportional to the temporal width. 

In fact, as explained in [47], the spectrum of the photocurrent is ideally 

proportional to the spectrum of the optical pulse. Thus, it can be agreed that 

the optical pulse duration must be much shorter than the period of the 

maximum THz frequency whose generation is desired. 

 
𝐸𝑇𝐻𝑧(𝑡) ∝

𝑑𝐼𝑝ℎ(𝑡)

𝑑𝑡
 Eq. 2 

 
𝐸𝑇𝐻𝑧(𝜔) ∝ 𝐹𝑇 [

𝑑𝐼𝑝ℎ(𝑡)

𝑑𝑡
] = 𝑖 · 𝜔 · 𝐼𝑝ℎ(𝜔) Eq. 3 

Nevertheless, when a photon is absorbed, it generates an electron-hole 

pair that is at rest and must be accelerated by the bias electric field. This 

will subsequently take an amount of time that will make the THz pulse 

temporally broader than the incident optical pulse. As for the 

photoconductive materials, the most commonly used are RD-SOS (Radiation-

Damaged Silicon on Sapphire) and more recently LTG-GaAs (Low-

Temperature grown), due to their short carrier life time (under picoseconds), 

their relatively high carrier mobility and high breakdown voltage. 

In addition to photoconductive antennas, the generation of THz pulses 

can be achieved by other means such as semiconductor quantum structures, 

optical rectification in non-linear media, excitation of optical phonons and 
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other techniques, presented in [47]. Pulsed emission techniques are often used 

in time-domain spectroscopy and thus they won’t be analysed any further in 

the current work because they are not considered in the frame of the 

TERALINKs project. 

Moreover, two major drawbacks concern TD generation: limited 

frequency resolution and limited available power per frequency, since the 

generated pulse may have a significant power, but this power must be divided 

among all the frequency components. 

3.3.2 Continuous-wave Generation 

When referring to continuous-wave THz generation by optoelectronic 

means, the idea that must come to our mind is photomixing. Photomixing is 

a technique consisting of exciting a semiconductor or photoconductive 

material with a pair of lasers, whose optical frequencies (𝜈1, 𝜈2) differ in 

frequency by the desired THz frequency to be generated. The following 

mathematical explanation is extracted from Chapter 2.2 in [19]. 

𝜈1,2 = 𝑣̅ ± 𝑓𝑇𝐻𝑧/2 Eq. 4 

Each of the irradiating lasers can be expressed as an electric field strength 

𝐸1
⃗⃗⃗⃗ ~√𝑃1 and 𝐸1

⃗⃗⃗⃗ ~√𝑃1 . These lasers are heterodyned - in fact, photomixing 

has also been referred to as “optical heterodyning” for many years - in the 

photomixer, resulting in a total optical field strength of: 

 
𝐸⃗ (𝑡) = 𝐸⃗ 1(𝑡) + 𝐸⃗ 2(𝑡)

=  𝐸⃗ 1 · 𝑒𝑖(𝜔̅+
𝜔𝑇𝐻𝑧

2
)𝑡 + 𝐸⃗ 2 · 𝑒

𝑖(𝜔̅−
𝜔𝑇𝐻𝑧

2
)𝑡−𝑖𝜑

 
Eq. 5 

Where 𝜔 represents the angular frequencies and 𝜑 is the relative phase 

between both waves. The optical intensity is proportional to the square of 

this optical field strength and shows the heterodyning process and the 

generation of an individual THz component: 

 
𝐼𝐿(𝑡) ∝ |𝐸⃗ (𝑡)|

2
= 𝐸1

2 + 𝐸2
2 +  

2 · |𝐸⃗ 1 ∘ 𝐸⃗ 2| · (cos(𝜔𝑇𝐻𝑧𝑡 + 𝜑) + cos(2𝜔̅𝑡 − 𝜑) ) 
Eq. 6 

The high frequency component, sum of the frequencies of both lasers can 

be neglected because it varies on a time basis much shorter than the carriers’ 

lifetime and thus its effect on the modulation is not significant. For instance, 

if the central wavelength of the lasers would be 1500 nm (which corresponds 

roughly to 200 THz), twice this frequency would have a wave period of 2.5 

fs. Photoconductive materials often employed in this techniques have carrier 



 31 

lifetimes of picoseconds or several hundreds of femtoseconds and thus the 

signal with such a small period can be neglected. In the end, the 

photoconductor/photodiode acts as a square law detector, filtering out the 

high frequency. 

Eq. 6 can be expressed in terms of optical power. Developing the dot 

product of the incident laser beats, the angle between the polarizations of the 

lasers, 𝛽, appears. The optical power is maximized for the case where both 

lasers have identical power and polarization. In addition, it can be observed 

that there are no phase matching problems. 

 
𝑃𝐿(𝑡) = 𝑃1 + 𝑃2 + 2 · √𝑃1𝑃2 · cos(𝛽) · cos(𝜔𝑇𝐻𝑧𝑡 + 𝜑) Eq. 7 

This optical power modulates the photoconductance of the semiconductor, 

generating a photocurrent. In this process there will be losses due to the non-

ideality of the process. The photocurrent generated in an ideal semiconductor 

is presented in Eq. 8, were h is the constant of Planck and e the charge of 

the electron: 

 
𝐼𝑃ℎ
𝑖𝑑 (𝑡) =

𝑒𝑃𝐿

ℎ𝑣̅
 Eq. 8 

Sakai [47] proposes an equivalent circuit of a photomixer connected to an 

antenna. It is shown in Fig. 9. From this circuit, one can extract the dynamic 

current equation and, as solved in Eq. 9, the output THz radiated power: 

 

𝑃𝑇𝐻𝑧(𝜔) =
𝐼𝑃ℎ
2 · 𝑅𝐴

2[1 + (𝜔𝑇𝐻𝑧𝜏)
2][1 + (𝜔𝑇𝐻𝑧𝑅𝐴𝐶)2]

 Eq. 9 

From this expression, it can be agreed that output power decreases with 

higher frequencies. On the other hand, it increases in proportion to the square 

of the photocurrent induced and thus, in proportion to the incident optical 

power. 

 

Fig. 9: Equivalent circuit of CW photomixing device. 
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Compared to TD techniques (pulsed operation), photomixing offers a 

series of advantages. The most evident is that it generates a single frequency, 

concentrating all its energy on that single mode, and thus offering a higher 

SNR. Moreover, this technique offers the highest range of tunability in THz 

generation. This is due to the fact that it uses two laser beams that can be 

tuned by several to tens of nanometres. For example, the frequency of interest 

for the TERALINKS project, 240 GHz, corresponds to a wavelength 

difference of 1.8 nm at 1,550 nm. On the other hand, when using two 

independent laser sources and combining them, uncorrelated noise can impact 

negatively, producing poor frequency stability and large phase noise. 

Nevertheless, different techniques have been proposed to overcome this issues. 

These include the use of an external modulator MZM (Mach-Zender) together 

with a RF signal half of the frequency of interest. At a specific biasing point, 

the non-linear transfer function of the MZM generates an optical dual 

sideband signal with suppressed carrier. These sidebands are separated by a 

frequency that is twice the frequency of the RF signal. Therefore, it is possible 

to generate two optical modes with coherent phases. This approach is 

presented in [49]. 

Another solution is to achieve phase locking of two individual lasers by a 

double arm OPLL (optical phase-locked loop) as the one shown in Fig. 10, 

where “Laser Filter” stands for an OPLL circuit with narrow bandwidth. This 

was presented in [50], and it allows to reduce phase noise as well as increase 

stability. For this, an optical reference is extracted from an optical comb 

generator (OCG)2, locking each of the lasers to a pair of wavelengths of the 

OCG. 

 

Fig. 10: Scheme of the photonic oscillator based on the dual optical filter [50]. 

  

                                        
2 An Optical Comb Generator is a source of multiple optical wavelengths separated 
equidistantly from each other. Ideally, all of them are phase-locked to each other. 
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3.3.3 Types of Photomixers 

There are essentially two differentiated types of photomixers: p-i-n diode 

based mixers and photoconductive mixers, both made from semiconductors. 

A brief explanation of both will be provided in this section. Special attention 

will be paid in p-i-n diodes and the different methods to overcome its 

drawbacks, among which UTC-PD are included. The book [19], provides a 

detailed insight on this semiconductor devices and it is referred for further 

study of this matter. 

3.3.3.1. Photoconductive Mixers 

A photoconductive mixer consists of a highly resistive semiconductor, 

covered with metallic contacts working as electrodes. This semiconductor 

receives photons with an energy higher than its band gap and generates 

electron-hole pairs. Since there is no built-in field, applying an external DC 

bias is required to create an electric field capable of separating the carriers 

and thus generate a photocurrent. 

The materials used for this devices require a low carrier lifetime, so that 

they are recombined on their way to the electrode, improving the transit time 

roll-off. The higher the DC bias voltage, the stronger the electric field 

generated and thus the faster the carriers move across the device. Thus, the 

field breakdown of this materials must be high, in order to support high bias 

voltages, which can range from a few volts to 100 V [19]. 

Photoconductors have been developed for both 800 nm and 1550 nm (first 

and third windows in optical communications). Gallium arsenide, GaAs, is 

one of the work horses for photoconductive devices. It has a very high dark 

resistance, so that there are practically no thermally generated carriers. 

However, due to its large band gap, 1.42eV, it can only be used with 

wavelengths shorter than 870nm (namely, it is only used at 800nm). 

Nevertheless, GaAs is the basis of a plethora of materials, such as Low 

Temperature Grown GaAs, which features a carrier lifetime lower than a few 

hundreds of femtoseconds and a breakdown field twice higher as GaAs. Other 

materials include InAlAs[51], ErAs:GaAs [52] and InGaAs[53], for operation 

in both 800 nm and 1550 nm. 
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3.3.3.2. p-i-n diodes 

A p-i-n diode consists of a p-doped semiconductor, followed by an 

undoped semiconductor part (intrinsic), also called the absorption layer, and 

an n-doped semiconductor. The bandgaps of the doped regions are increased 

by adding other materials, such as aluminium, exceeding the photon energy, 

so that the absorption can only take place in the intrinsic layer. An electric 

field is formed in the intrinsic region, of length di, due to the p- and n- 

concentrations surrounding it, with a field strength of Ei = EG/di, being EG 

the bandgap of the intrinsic semiconductor. Each absorbed photon generates 

an electron-hole pair that contributes to the photocurrent. However, there 

are some mechanisms that limit its efficiency. 

First of all, some of the laser power will be reflected by the semiconductor 

surface, with a reflection coefficient R. Nevertheless, this can be minimised 

by applying an anti-reflection coating. 

Secondly, the device has a finite absorption length and an absorption 

coefficient 𝛼. This limits the total photocurrent that can be generated by the 

device and thus, the output power. This reduction is summarized in the 

external THz quantum efficiency, Eq. 10, where the square dependency comes 

from the same relation between THz power and photocurrent, shown in Eq. 

9 in the previous section. 

 
𝜂𝑒𝑥𝑡 = (1 − 𝑅)2 · [1 − exp(−𝛼𝑑𝑖)]

2 Eq. 10 

Furthermore, every electronic device has a capacitance, which becomes 

problematic at higher frequencies. This capacitance is parallel to the 

antenna’s radiation resistance and at high frequencies can be problematic. 

This capacitance corresponds to that of a plate capacitor with a spacing of di 

(the length of the intrinsic region) between plates. The capacitance shorts 

the antenna, reducing the power delivered. This is called the RC roll-off. 

 
𝜂𝑅𝐶 =

1

1 + (2𝜋𝑅𝐴𝐶𝑝𝑖𝑛𝑓𝑇𝐻𝑧)
   ;   𝐶𝑝𝑖𝑛 = 𝜀

𝐴

𝑑𝑖
 Eq. 11 

Finally, there is another roll-off, caused by the transport of carriers inside 

the diode. Carriers generated at different times cause currents that interfere 

with each other. This is called the transit-time roll-off and the envelope of its 

roll-off function can be estimated by Eq. 12, where 𝜏𝑡𝑟 is the transport time 

of the carriers and 𝑣𝑠𝑎𝑡, the electrons saturation velocity. 

 
𝜂𝑡𝑟 ≈

1

1 + (2𝜏𝑡𝑟𝑓𝑇𝐻𝑧)
2
   ;   𝜏𝑡𝑟 =

𝑑𝑖

𝑣𝑠𝑎𝑡
 Eq. 12 
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One way to overcome this transit-time roll-off could be reducing the 

transport length, 𝑑𝑖, however, this would increase the capacitance and thus 

the RC roll off presented in Eq. 11. Reducing the cross-section of the device, 

the capacitance would be reduced. However, this would increase the optical 

power density and the maximum photocurrent would be limited due to 

thermal and electrical constraints. Therefore, THz power would be 

significantly reduced, given the square-proportional relation with 

photocurrent. Another option for easing this roll-off could be increasing the 

speed of the carriers over the velocity of saturation, what is called “velocity 

overshoot”. This would decrease the transport time of the carriers without 

affecting the RC roll-off. Unfortunately, whereas this is possible for the case 

of electrons under high fields, holes are significantly slower. Nevertheless, 

there are techniques that compensate this by generating holes very close to 

the p-contact, in order to keep the transport length minimised and thus 

preventing them from affecting the roll-off. This is the case of Uni-Travelling-

Carrier photodiodes (UTC-PD). In these devices, a doped semiconductor 

layer with a bandgap lower than the energy of the photon (absorption layer) 

followed by a layer of intrinsic semiconductor with a band gap higher than 

this energy are placed next to the p-contact. With this layers, electron-hole 

pairs are generated in the vicinity of the p-contact, allowing holes to drift 

almost immediately and thus making the electrons the only carriers that are 

transported. The diffusion block layer stops electrons from travelling to the 

p-contact, being accelerated towards the n-contact through an n-type 

collection layer. 

 
Fig. 11: Schematic band diagrams of (a) p-i-n photodiode and (b) uni-traveling carrier 

photodiode [54]. 

The original design of the UTC-PD was presented in 2005 by NTT, 

working at 1.04 THz and featuring an output power of 2.6 μW with a 

broadband antenna and 10.9 μW with a resonant antenna [55]. From there, 
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a plethora of designs have been proposed, modifying the layer structure and 

doping strategies, as well as including different antenna designs, in order to 

optimise bandwidth an responsivity, such as in [56], [57]. This is the type of 

device that will be employed in the TERALINKS project and whose 

integration will be studied in this work. Its design, however, will be carried 

out by the team at IEMN, in Lille. This team has a broad experience in the 

design of UTC-PD. Some examples can be found in [58]–[60].  

Most of the diodes are backside illuminated, this is, through the substrate. 

Others use a refracting facet or waveguide illumination. These ways of 

illuminating are inconvenient due to measurement and integration issues and 

a front-side illumination shall be preferable in order to overcome this 

problems. This is achieved in [59], where a semi-transparent metallic contact 

(with subwavelength periodic apertures) is placed on top of the device, 

allowing direct irradiation while offering a low contact resistance. This 

contact, together with a resonant cavity, demonstrates record values of 

efficiency and provides up to 0.75W at 300 GHz. Furthermore, it has been 

recently used to demonstrate a 100 Gbps transmission for future IEEE 

standard 802.15.3d [61]. 

3.4 THz Communication Systems 

The potential of THz communications for ultra-high bit rates is pushing 

the research of the field of terahertz communication systems. However, due 

to atmospheric gas absorption and inclement weather, as well as lack of high 

available, output power sources, the realisation of long range communications 

remains difficult. To date, only a few examples using terahertz (0.1 – 10 THz) 

in long-range communications have been reported. Currently, the longest 

real-time wireless communication demonstrated achieved a 5 Gbps rate over 

21km wireless link with ha BER of 10-12 [62]. Here, a 16-QAM modulation 

scheme was used at a frequency of 140 GHz. A Ku-band mixer and terahertz 

harmonic mixer together with two local oscillator were employed for IF to 

RF conversion. MMIC power amplifier is cascaded together with a TWT in 

order to amplify the power from -24dBm to 26.3 dBm. A scheme of the system 

is shown in Fig. 12. 

As briefly commented in Chapter 2, one of the most remarkable works 

with regards to TERALINKs project was presented by NTT in 2010 [10], 

where a 120-GHz-band wireless link was demonstrated with a 10 Gbps bit 

rate over a distance of 1 km in heavy rain condition with 99.999% availability 

and above 5km in conditions of fine weather. Three years later, a 10 Gbps 

non-real time communication was achieved over a 1.5 km link using 16-QAM 

modulation in 140 GHz band. However, the fact that communication was not 

real time makes the work of Hirata [10] more remarkable. 
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Fig. 12: Schematic of 140-GHz band communication system presented in [62]. 

In that work, Hirata et al developed two technologies for the generation 

of wireless signals in 120 GHz band: UTC-PD and InP HEMT MMIC. In one 

of the approaches (Fig. 13), a single-mode laser was modulated at a frequency 

of 62.5 GHz with an optical intensity modulator and fed into a planar 

lightwave circuit containing an arrayed waveguide grating (AWG) with a 

channel spacing of 60 GHz. Two output channels with an interval of 120 GHz 

were chosen and later amplified with an erbium-doped fibre amplifier 

(EDFA). The optical signal was then modulated by data signal and once 

again amplified by a second EDFA. Next, the modulated optical signal was 

irradiated into an UTC-PD in order to O/E-convert the signal. Finally, the 

signal was amplified up to 10 dBm by an InP HEMT MMIC amplifier and 

transmitted from a high-gain, Cassegrain antenna. 

In the second approach (Fig. 14), the optical data signals are O/E 

converted previously to the modulation of a CW 125 GHz signal obtained by 

frequency multiplication (x8) from a 15.625-GHz tone. Finally, two power 

amplifiers, previous to the antenna, increased the output power up to 16 

dBm. As for the receiver, it was based on a MMIC chipset [63] in both cases. 
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Fig. 13: Schematic of 120-GHz band transmitter using a UTC-PD [10] 

 

 
Fig. 14: Schematic of 120-GHz band transmitter using HEMT MMICs [10] 

The work of Hirata compared both solutions, highlighting the main 

advantages of each approach. Regarding the optoelectronic solution, the head 

of the transmitter (the module which effectively adequate the signal before 

transmitting it) is smaller, since it only includes the O/E conversion and 
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electrical amplification. In addition, one could change the modulation scheme 

in the controller without having to change the head. The controller block is, 

however, significantly heavier than the HEMT MMIC solution, as the first 

approach includes all the equipment involved in signal generation and 

modulation, while the last one includes these functionalities in the head of 

the transmitter, instead of the controller. Nevertheless, the most important 

advantage of the optoelectronic technology is that the radio signal generator 

could be shared by several radio transmitters, being able to allow even multi-

band wireless systems by using wavelength division multiplexing (WDM) 

techniques. This results in a fundamental advantage in order to reduce the 

overall cost per wireless link. On the other hand, the electronic solution 

stands out for its small and simple structure, low cost and consumption. 

However, it does not offer the possibility to change the modulation scheme 

and/or operation frequency, reason why it does not seem suitable for the next 

generation of mobile wireless communications. Nevertheless, the authors 

claim that this technology could be suitable for live TV relay and temporary 

wireless links, such as large-scale events or disaster recovery. 

3.5 Conclusions 

As aforementioned, three key enabling technologies are considered within 

the TERALINKS Project: photonic-based THz sources, Traveling Wave 

Tubes (TWTs) and Smart Antennas. In this chapter, a brief review of the 

available techniques for terahertz generation have been presented. The basic 

concepts behind the uni-travelling-carrier photodiodes and travelling wave 

tubes were explained and their state of the art presented. The explanation 

and design of antennas will be left for the complementary work that 

accompanies this Master Thesis. 

After presenting the different techniques for THz generation and the 

different approaches up to date to developing communication links at these 

frequencies, it seems more feasible to adopt a solution similar to the 

optoelectronic approach in [10]. UTC-PD photonic solution provides 

broadband, significant output power. Moreover, this solution takes advantage 

of the 1550nm optic solutions, commercially available and widely deployed. 

The optical signals to be mixed could be transported to the head transmitter 

from long distances without significant losses. This would allow reducing the 

overall cost per link in a mature scenario with several stations deployed across 

a territory, being the signals broadcasted from a head centre, where all the 

optical equipment could be hosted, and transported by fibre cables. 
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4. THz Packaging Techniques 

Photonic techniques for THz generation enable the integration of wired 

optic and wireless communication networks, regardless of the modulation 

scheme or data rates. In order to obtain THz, a photoconductive antenna is 

typically used to transform the electric currents generated by the photomixer 

into electromagnetic waves. One of the main materials for monolithic 

integration of the photonic components in integrated circuits is Indium 

Phosphide , since it has a direct band gap and thus generates light efficiently 

[64]. However, it has a high dielectric constant (around 12.4) and this 

deteriorates the radiation efficiency of the antenna, as well as its directivity, 

because waves tend more to propagate along the substrate the higher the 

dielectric constant is. 

Traditionally, a solution to this issue consists on a quasi-optical approach, 

employing Silicon or other dielectric material lenses in order to collimate the 

radiation of the photoconductive antenna. This lenses can be designed with 

gradient index in order to optimise the collimation of the beam [65]. These 

lenses are typically made of the so-called float-zone single crystal silicon, 

which is one of the most transparent dielectric materials at the THz region 

[66]. It offers a quasi-constant index of refraction across this band and thus 

incurs in small dispersion, which make it useful for broadband, TDS 

applications. The performance of these lenses can be increased by applying 

antireflection coatings or designing antireflection structures, such as in [67], 

where an antireflection structure silicon lens that increases the amplitude of 

a time-domain pulse up to 10%, increasing some the spectral amplitude of 

some frequencies up to 50%.  

Another trend is to couple this radiation to the corresponding WR 

waveguide, so that the energy will rearrange as the fundamental mode of the 

waveguide. Both approaches are schematically illustrated in Fig. 15. Some 

examples of each can be found in [68] and [69], respectively. The first 

introduces a hyper-hemispherical Silicon lens and presents an equivalent 

circuit model of the photomixer together with the lens. The second article 

presents a transition from coplanar to a WR12 rectangular waveguide with 

an insertion loss of 3 dB. Another example of waveguide coupling is found in 

[70], where coupling to a WR-10 standard waveguide is achieved. The output 

power is measured within the whole band, obtaining a peak power at 100 

GHz of about  -10 dBm.  
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Fig. 15: Schematic representation of a) silicon/dielectric lenses for collimation and b) 

coupling the radiated energy into a waveguide [64]. 

As it has been seen, integration and packaging of these components is a 

challenging task. Two main techniques have been traditionally adopted for 

this purpose: the use of silicon lens and coupling the radiation to a waveguide. 

The next chapters will focus on the proposal and design of a new integration 

technique based on an ellipsoidal reflector. 
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5. Fundamental theory of the ellipse 

An ellipse can be defined geometrically as a locus of points (namely, set 

of points) such that for any point P of the set, the sum of the distances 

|F1P|,|F2P| to two fixed points F1, F2 (the foci) is constant and equal to the 

major axis. The midpoint of the line segment joining the foci is called the 

centre of the ellipse, C. The line through the foci is called the major axis, 

2*a, and the line perpendicular to it through the centre is called the minor 

axis, 2*b, being ‘a’ and ‘b’ the lengths of the major and minor semi-axis, 

respectively. The distance from the centre to each of the foci is called the 

focal distance, fd. The ellipse is defined by the following equation and an 

example can be found in Fig. 16: 

 𝑥2

𝑎2
+

𝑦2

𝑏2
= 1 Eq. 13 

 
Fig. 16: Elements of an ellipse. 

Additionally, the focal distance can be easily determined by Pythagoras 

theorem. Given that the distance from a point P to both foci equals 2*a, 

which is the length of the mayor axis, if P corresponds to a point located on 

a vertex of the minor axis, an isosceles triangle 𝐹1𝑃𝐹2̂  is formed. Given that 

the distance 𝑃𝐹1̅̅ ̅̅ ̅̅  equals 𝑃𝐹2̅̅ ̅̅ ̅̅ , a rectangular triangle 𝑃𝐶𝐹2̂ can be extracted 

where ‘a ‘is the hypotenuse of the triangle. The geometric representation is 

given in Fig. 17. Finally, value of the focal distance can be computed: 

 
𝑓𝑑 =  √𝑎2 – 𝑏2 Eq. 14 
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The eccentricity parameter, e, defined as the ratio between the focal 

distance and the major semi-axis, 𝑒 = 𝑓𝑑/𝑎, unequivocally identifies the type 

of conic section and could be thought of as how much a conic section deviates 

from being circular. In the particular case of an ellipse, this parameter ranges 

from 0 < e < 1 (e=0 corresponds to a circle and e=1 corresponds to a 

parabola, while e>1 would correspond to a hyperbola). 

When applying a revolution symmetry to an ellipse, an ellipsoid is 

obtained. Considering a change of the coordinate axis and assuming that the 

major axis is oriented along the z axis (in Fig. 7 the mayor axis would 

correspond to the X axis), the resulting ellipsoid is described by: 

 𝑧2

𝑎2
+

𝑥2 +  𝑦2

𝑏2
= 1 Eq. 15 

One interesting consequence of the total travel length being the same 

along any path taken between the two foci bouncing on the surface is that, 

if a light source is placed at one focus of an ellipsoidal reflector – this is, as 

previously mentioned, sweeping an elliptic curve along its major axis in order 

to obtain a revolution surface – all rays coming out from the source will be 

reflected by the mirror and focalized into the second focus. This is a 

fundamental property of the ellipse which could be used in order to collect in 

one focus, F2, all the energy radiated by any source (punctual, horn, dipole…) 

located at the other focus, F1, and radiating towards the reflector surface. 

 
Fig. 17: Pythagoras theorem 

Authors in [71] benefit from this property in order to design on-chip 

crossings and 90º turns in photonic integrated circuits. For this purpose, a 

metal-free reflector is designed, in which the angle of incidence and the 

difference in the refractive index between the waveguide and the reflector 

enables total internal reflection (TIR) at the reflector’ s surface without the 
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need of metal coating. In this work, the authors achieve to design and 

manufacture turning devices with reduced optical loss and crossing devices 

with reduced loss and crosstalk. However, it should be highlighted that the 

input and output points for the 90° turning device do not correspond to the 

location of the geometrical focal points of the ellipse. They are located at the 

beam waist locations (M), which are determined by physical optics and 

located at a distance d from the focal point F, as shown in Fig. 18. 

 
Fig. 18: Elliptical Reflector Turn geometry and EM simulation [71] 

In order to check the phenomenon described by the authors, a full-wave 

simulation was set up in ANSYS Electronics Desktop 18 High Frequency 

Structure Simulator (HFSS). Here, an ellipsoidal cavity was simulated. The 

simulated structure is presented in Fig. 19. It consists of an ellipsoidal 

reflector contained in a radiation box for calculating the radiated fields and 

provide an air/quartz boundary. A small lumped port was placed at one of 

the focus of the ellipse in order to emulate a punctual source, such as an 

UTC-PD, and a flat, rectangular dipole was placed in order to provide an 

omnidirectional radiation pattern. The structure was simulated in the range 

from 200 to 300 GHz. The XZ plane was set as an E-Symmetry plane in order 

to alleviate the computational requirements of the simulation. 

 
Fig. 19: Simulated ellipsoidal reflector contained in a radiation box. 
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The cavity was filled up with quartz glass, with dielectric constant εr = 

3.78 and thus refractive index  𝑛 = √𝜖𝑟𝜇𝑟 = √3.78 · 1 =  1.94. Following the 

TIR principle, the critical angle within the boundary between quartz and air 

can be calculated: 

 𝜃𝑐 = arcsin (
𝑛2

𝑛1
) , 𝑛2 ≅ 1 (𝑎𝑖𝑟) 

𝜃𝑐 = 30.95º 
Eq. 16 

 

 
Fig. 20: Simulated electric field propagating through the quartz-filled ellipsoidal cavity 

The propagated fields are shown in Fig. 20. It can be observed how the 

energy propagates across the cavity and part of it is gathered in the second 

focus. There is, however, a substantial leak of these fields in the nearest part 

of the reflector, due to an insufficient incidence angle. This effect could be 

improved by employing a dielectric with a higher refractive index. This would 

reduce the critical angle and therefore increase the amount of field focalized 

in the second focus. Nevertheless, it should be taken into account that the 

use of dielectric would imply a great amount of losses. Moreover, 

characterization of dielectric materials at these frequencies must be done 

beforehand and no data regarding this characterization was available before 

the development of this study. Therefore, this solution was discarded. 

Another solution is employing a metallic surface in order to achieve the 

reflection. In this case, there is no essential condition for achieving TIR. A 

full-wave simulation of an ellipsoidal cavity in HFSS. The simulated structure 

is similar to the one presented in Fig. 19, defining the internal part of the 

reflector as vacuum, instead of quartz. The structure was simulated in the 

range from 200 to 300 GHz. The XZ plane was set as an E-Symmetry plane 

in order to alleviate the computational requirements of the simulation. The 

propagated fields are shown in Fig. 21. It can be observed that the energy 
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propagates across the cavity and is majorly gathered in the second focus. It 

should be taken into account that, since an omnidirectional source has been 

placed, part of the energy is radiated upwards, not being reflected to the 

second focus by the ellipsoidal mirror. For this reason, the amount of energy 

collected at the second focus is lower than the radiated energy. In order to 

improve this performance, some structure must be designed in order to 

prevent this energy leak. 

 
Fig. 21: Simulated electric field propagating through the ellipsoidal cavity. 

Following this proof of concept, this Master Thesis will focus on the design 

of an integration block with an elliptical reflector. This structure is proposed 

for integrating and adapting a photodiode for efficiently generating power in 

the frequency band from 220 to 260 GHz, in order to fulfil the requirements 

of power generation for the TERALINKS project. 
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6. Design 

In the previous Chapter, the basic properties of the ellipse have been 

presented and a conceptual demonstration has been proven through a 

simulation with HFSS. However, there are several aspects that should be 

taken into consideration for the design of an actual component. These include 

how to illuminate the photomixer, how to support the photomixer inside the 

ellipsoidal cavity, how to maximize the power directed to the ellipsoidal 

reflector or how to collect and output the generated power. In this Chapter, 

each of this aspects will be dealt with and the different stages of design will 

be explained. First, the dimensions of the elliptical reflector will be discussed. 

Then, each of the focus and the components to be placed at both of them 

will be analysed. Finally, an assembly of every part will be presented and 

conclusions will be drawn. 

6.1 Ellipsoidal reflective cavity 

As has been demonstrated in the previous Chapter, it could be feasible to 

employ an elliptical reflector to collect at its second focus a significant amount 

of the energy radiated from the first focus. In principle, the dimensions of 

this reflector should not be a restricting factor if the waves were perfectly 

spherical. This means, if far-field condition would be achieved. However, this 

condition might not be achieved if the dimensions are too small. On the other 

hand, current packaging alternatives for THz sources are not essentially bulky 

and thus the proposed, novel technique should not be significantly bulky. For 

this reason, a trade-off must be solved with regard to these dimensions. These 

are, essentially, the length of the mayor axis and the eccentricity of the 

ellipse. These two parameters govern the geometry of the ellipse and are the 

ones that must be determined in order to assure the propagation of spherical 

waves. Moreover, the ellipsoidal reflector does not recover the phase front 

properly and incurs in a phase error [72] and the consequent distortion. It is 

believed that a shaping of the surface could be introduced in order to 

compensate this distortion. However, due to time-constraints this could not 

be performed.  

It would have been desirable to develop a study concerning this trade-off 

in order to offer an optimised solution. However, due to time constraints this 

was not possible, and a semi-mayor axis of 20 mm and a ratio between the 

mayor and minor axis of 0.5 (thus, a minor axis of 10 mm) were chosen. Fig. 

21, in the previous chapter, presents the magnitude of the electric field 

propagating across an ellipsoidal cavity with the aforementioned dimensions 

and shows how the energy actually propagates and gathers around the second 

focus. For this reason, it is believed that the generation of quasi-spherical 

waves was achieved. A study concerning the optimal dimensions of the 
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ellipsoid, as well as a possible shaping of the surface, are left as some of the 

future lines of work of this Master Thesis.  

6.2 Focus 1: Bridge and photogeneration 

As stated before, a metallic bridge was chosen in order to satisfy the need 

of successfully integrating and supporting the photomixer. It consists of a 

several-mm-thick layer of metal that supports a 150 µm-thick substrate of 

quartz. A horn-shaped via was designed to be etched in the layer of metal. 

This horn was meant to increase the amount of power to be delivered 

downwards, since the bridge is meant to be placed on top of the reflective 

surface. Therefore, maximizing the power in this direction will be one of the 

fundamental design goals. On the substrate, an antenna will be designed in 

order to couple and radiate the THz signal generated by the photomixer, 

following the idea of a photoconductive antenna. This antenna will also be 

used to provide DC bias for the UTC-PD photomixer. With this 

configuration, simulation results provided a significant amount of power 

being radiated downwards, into the ellipsoidal cavity. Different approaches, 

which will be presented in the current section, have been studied in order to 

maximize the directivity in this direction.  

6.2.1 UTC-PD Photomixer 

The design of the UTC-PD photomixer was not concerned in this work, 

since it will be delivered by the team from IEMN in Lille, France. The lack 

of information regarding this device has fundamentally conditioned this work, 

since it is the key component of the proposed system and therefore some 

assumptions have been made in order to have some dimension parameters as 

a starting point for the design. This way, it has been assumed that the 

delivered photomixer will be integrated in a small block that shall be 

connected to the DC bias of our system. It was modelled as silicon block with 

dimensions 50µm x 100µm x 50µm, although some other materials are 

traditionally used in the literature. This block aims to model a possible 

absorption of loss of power due to the presence of a substrate on top of the 

antenna. In order to model the actual source of power, a lumped port was 

used. As it has been reported in the literature, photoconductive mixers 

usually have several kΩ of input impedance. As for UTC-PD, a wide range 

of impedances are usually given, ranging from a few Ohms, such as the (18 - 

j57) Ω presented in [73], to several kΩ as well. In this case, the maxima of 

power is achieved by complex-conjugate matching. However, due to the 

unavailability of this parameter, it was decided to design a standard model 

and thus an input port impedance of 50Ω was assumed. Moreover, it is 

unknown whether the photomixer block will include some kind of impedance 
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matching network. This model would contribute to draw a series of 

conclusions which could be applied in a more specific, future model with more 

information regarding the photomixer. 

6.2.2 Design of the photoconductive antenna 

The design of the photoconductive antenna was studied in the first place. 

When selecting the type of antenna, a plethora of alternatives arise. One 

could chose a broadband antenna, such as a bow-tie or log-periodic antenna, 

or a resonant antenna, such as a dipole. The main advantage of the last type 

is that it provides a higher output power than the broadband, due to the 

resonant condition. On the other hand, their bandwidth is reduced in 

comparison with broadband designs. Nevertheless, requiring a 40 GHz 

bandwidth at centre frequency of 240 GHz implies only a 16.6% fractional 

bandwidth. Traditionally, the literature refers to a “broadband antenna” 

when the ratio between the highest and lowest frequencies is higher than an 

octave. This is fh/fl=2. In this case: 

𝑓ℎ
𝑓𝑙

=
260

220
= 1.18 

Given this result, the bandwidth required for our antenna could be 

considered relatively narrow and it was believed to be achievable with a 

resonant antenna. Moreover, it was desired to maximize the output THz 

power. Therefore, a resonant design was chosen at first instance. 

Nevertheless, as will be discussed later in this section, some considerations 

will be made with regards to this resonant condition, since there will be a 

trade-off to be solved between the resonance and the bandwidth of operation. 

Different antennas have been simulated and conclusions will be drawn at the 

end of this section. Before presenting these models, some general assumptions 

and considerations are presented next. 

 As for the substrate, a transparent material must be chosen, since optical 

radiation is to propagate through it. Moreover, material with a relatively low 

permittivity shall be chosen, in order to minimise loss. For this reason, quartz 

was selected. It is a transparent material and its dielectric constant is around 

3.78 (although dielectric characterization at sub-THz frequencies still needs 

further study).  The thickness of the substrate was determined by dealing 

with a compromise between availability/feasibility of a layer with that 

thickness and the fact that a higher thickness of substrate would incur in 

higher loss, while incurring in more energy propagating through it (which 

would be beneficial, since radiation in that direction is aimed). For this 

reason, a thickness of 150 µm was chosen. It is important to note that 

including a substrate changes the effective wavelength of propagation. Since 

the dielectric constant is higher on the substrate, the effective wavelength is 
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reduced. This implies that, for example, a half-wave dipole designed for 

resonance at one specific frequency would be effectively bigger when adding 

the substrate and thus its resonance would be shifted to smaller frequencies. 

The designed antennas hereby presented have been designed taken this into 

consideration. 

On the other hand, the thickness of the metallic paths and patches was 

also determined. When determining these parameters, fabrication limitations 

as well as skin-depth effect had to be taken into account. The skin-depth 

effect is a phenomenon that consists of the current density being higher in 

the surface of a conductor material where an alternate current (AC) is 

travelling. This makes the effective AC resistance higher than the one for DC 

operation as well as frequency dependant. It is defined as the depth in which 

the current density has decreased in a 1/e factor. Considering copper as the 

conductive material, the value of this parameter is 0.133µm at the frequency 

of work. It is often recommended to use a metal thickness at least 10 times 

bigger than the value of skin-depth. For this reason, 1.5µm was chosen. Once 

this considerations have been highlighted, the different designs of the 

photoconductive antenna are presented next. 

6.2.2.1. Resonant dipole 

The design of the dipole antenna consists of 2 thin patches or stripes, fed 

at one of their ends by the lumped port that models the photodiode. Both 

stripes are equal and their dimensions have been optimised to achieve a 

resonant operation at 240 GHz. As a first approach, a thin dipole was 

designed through an optimization process. This process resulted in a dipole 

formed by 2 metal stripes of dimensions 170µm x 30µm, represented in Fig. 

22 and whose S11 parameter is shown in Fig. 23. The green box represents 

the photodiode integrated block. The dipole has been designed together with 

the quartz substrate, in order to take into account its effects on the overall 

performance. As for adaptation, it can be observed that the band of interest 

maintains a return loss below 11.8 dB. Moreover, a very good impedance 

match is achieved at centre frequency (Fig. 24). 

 
Fig. 22. Layout of the microstrip “thin” dipole for THz generation. 
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The effect of the substrate is constatable when comparing the radiation 

patterns of the dipole with and without substrate (Fig. 27). In the case of a 

dipole without substrate, an omnidirectional pattern is obtained. However, 

when adding the substrate, this omnidirectional feature vanishes and greater 

side lobes appear. As a consequence, as shown in Fig. 25, the maximum 

directivity is given pararell to the substrate, at θ=90º, with a 2.9 dBi 

directivity at boresight. 

 
Fig. 23. Adaptation (S11) of the microstrip “thin” dipole for THz generation with Zo=50Ω .  

 
Fig. 24: Adaptation (Zin) of the microstrip “thin" dipole for THz generation with Zo=50Ω. 
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Fig. 25. Directivity of the microstrip “thin” dipole for THz generation at 240 GHz. 

However, this directivity is not constant and a difference of 3.5 dB is 

found between the lowest and highest frequencies of the band of interest (220 

and 260 GHz, respectively). This is not desirable for a broadband application 

such as the one aimed by TERALINKS and this difference should be 

minimised. 

 
Fig. 26. Directivity at boresight of the thin rectangular dipole. 
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Fig. 27. Comparison of radiation patterns a) with and b) without substrate of the microstrip 
dipole at 240 GHz. 

6.2.2.2. Broadband dipole 

In order to study the trade-off between bandwidth and resonance, a wider 

approach of the dipole was explored. It is generally known that maintaining 

the same length of a dipole, it can be made more broadband by widen it. 

However, increasing its width also reduces the frequency of resonance. All in 

all, after a second, more restricted optimization analysis (the total length was 

restricted to values more similar to the corresponding to a half-wave dipole), 

the final dimensions of each patch of the dipole were 350µm x 250µm. Some 

inserts have been included in order to optimise the feeding point in the 

patches, assuming that the impedance match is achieved at 50Ω. The dipole 

has been designed together with the quartz substrate, in order to take into 

account its effects on the overall performance.  

 
Fig. 28. Layout of the microstrip “wide” dipole for THz generation. 
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The total length is 750µm (taking into account the 50µm of the lumped 

port), which is near half of the wavelength at 240 GHz in free space. The 

boundary between the air and the quartz substrate modifies the effective 

wavelength of the system and thus the resulting antenna could be 

approximated to a half-wave dipole. The geometry of the dipole can be 

observed in Fig. 28. It provides a directivity of almost 5dBi in the direction 

of interest, as can be seen in Fig. 29. It can also be observed that there is a 

strong propagation of waves across the substrate. This will be taken into 

consideration for the next stages of design and alternatives will be proposed 

in order to reduce the propagation of surface waves. Fig. 30 represents the 

directivity at boresight for the whole band. It can be seen that the difference 

between the lowest and highest frequencies of interest is less than 1.5 dB. 

Finally, Fig. 31 represents the adaptation of the antenna in terms of S11. 

Here, it can be observed that the return loss is at least 17dB in the band of 

interest, corresponding to a VSWR of 1.32:1. 

   
Fig. 29. Directivity of the microstrip “wide” dipole for THz generation at 240 GHz. 

In comparison to the thin dipole, it can be observed that the resonance 

at 240 GHz is not as strong. However, the bandwidth of operation is broader 

and the adaptation is more uniform over the whole band. In addition, 

significant, although not complete, impedance match has been achieved (Fig. 

32), due to the inclusion of some insets at the feeding point, as shown in Fig. 

28. This inserts are placed at 50 µm of the longitudinal axis of the dipole 

(feed_w/2), have a width of 16 µm (delta) and a length of 70 µm (feed_r). 
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Fig. 30. Directivity at boresight of the wide rectangular dipole. 

 
Fig. 31. Adaptation (S11) of the microstrip “wide” dipole for THz generation with Zo=50Ω. 
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Fig. 32. Adaptation (Zin) of the microstrip “wide” dipole for THz generation with Zo=50Ω. 

6.2.2.3. Bow-tie antenna 

Bow-tie antennas are well-known as UWB antennas [74]–[76] and thus 

could be suitable for our application. A bow-tie antenna was designed and 

simulated with HFSS to be matched at 240 GHz. It consists of two isosceles-

triangle-shaped patches. It has been designed to achieve impedance matching 

of an input port with 50Ω impedance. To the design it, 3 dimensions have to 

be taken into consideration: the base and height of the triangles 

(alternatively, the base and the common angle of the isosceles triangle) and 

the offset from the centre, at which the triangles are truncated (resulting in 

a trapezoidal-shaped patch). 

 
Fig. 33. Layout of the bow-tie antenna. 
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Fig. 34. S11 of the bow-tie antenna. 

As it can be seen in the corresponding graphs, the adaptation is not as 

good as in the broadband rectangular dipole (Fig. 34). The directivity at 

boresight is scarcely 3 dBi (Fig. 35) and a difference of directivity of 2.5 dB 

is found between the limits of the band (Fig. 36). 

 
Fig. 35. Directivity of the bow-tie antenna for THz generation at 240 GHz. 
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Fig. 36. Directivity at boresight of the bow-tie antenna. 

6.2.2.4. Diamond dipole antenna 

After some literature research, diamond dipoles were found to be an 

interesting antenna which combine an UWB response with a matched input 

impedance [77]. A diamond dipole was designed and simulated with HFSS to 

be matched at 240 GHz. It consists of two isosceles-triangle-shaped patches, 

as in a bow-tie antenna, but inverted with respect to it. The two dimensions 

to control their design are the height and the base of the triangles. Fig. 38 

shows the adaptation of the diamond dipole for an input port impedance of 

50Ω in terms of S11. As for the radiation pattern, shown in Fig. 39, it can be 

observed how the energy tends to propagate across the substrate. A 

maximum directivity of 3.5 dBi is found at boresight (180°). Finally, it can 

be observed in Fig. 40 that this directivity is not constant in the band of 

interest, with a difference of 3 dB between the lowest and the highest 

frequencies. 
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Fig. 37. Layout of the diamond dipole. 

 
Fig. 38. S11 of the diamond dipole. 
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Fig. 39. Directivity of the diamond dipole for THz generation at 240 GHz. 

 
Fig. 40. Directivity at boresight of the diamond dipole. 

Up to this point, different antenna designs have been presented. These 

designs feature either a resonant behaviour (thin dipole), a broadband 

behaviour (bow-tie) or a mixture of both (diamond dipole and wide dipole). 

A summary of all the designs presented is found in Table 2. It includes basic 

data regarding all the designs. As for the dimensions shown, they are referred 

to a single patch. In addition, it shall be remarked that height/length refer 

to the X axis and correspond to the height of the triangles in the case of the 

bow-tie (without truncation) and diamond antennas, while length correspond 
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to the rectangular dipoles. Similar reasoning applies to the parameter 

base/width.  

Considering the four designs presented, the wide rectangular dipole has 

been chosen, as it offers the highest directivity in the direction of interest and 

shows a good degree of adaptation. The study of the combination of the other 

designs with the metallic bridge is left as a future line of work. For the rest 

of this work, an S11 of at least -10 dB will be required in order to consider 

that the system is adapted. 

Table 2: Dimensions of the proposed antennas 

 Thin dipole Wide dipole Bow-tie Diamond 

Height / Length 

(mm) 
0.17 0.35 0.206 0.27 

Base / Width 

(mm) 
0.03 0.25 0.15 0.25 

S11 @ 240 GHz 

(dB) 
-47 -17 -12 -18 

BW -10dB  

S11 (GHz) 
50 80 70 80 

Dmax  

(dB) 2.9 4.78 3 3.53 

∆Dmax within 

band (dB)  
3.5 1.4 2.4 2.8 
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6.2.3 Bridge dimensions and horn-shaped via 

Once the antenna has been chosen, the dimensions of the bridge and the 

horn-shaped via are taken into consideration, aiming to improve the 

directivity in the direction of interest - downwards from the point of view of 

the antenna - this is, through the substrate of quartz. For this purpose, the 

creation of a horn-shaped via in the metallic bridge is proposed. This horn 

will allow, on the one hand, to increase the directivity in the direction of 

interest as well as allow a direct illumination of the photomixer by the optical 

signal. This last will be discussed further in the next section. 

The proposed horn is a simple conical horn to be etched in the middle of 

the bridge, right below the photomixer, which will be placed in the centre of 

the input of horn (separated by the substrate of quartz). It has 3 main 

parameters to be discussed: the length of the horn and its input and output 

radius. Different parametric analysis have been performed and their results 

are shown in Appendix 1 – Parametric analysis of the dimensions of the 

bridge. After comparing the results, a length of 6mm, input radius of 0.5mm 

and output radius of 2.5mm were chosen. This combination offers the highest 

directivity in the direction of interest while maintaining a relatively low 

backward directivity. Fig. 41 illustrates the final design of the bridge. 

However, this design was observed to deteriorate the adaptation of the 

system. As shown in Fig. 42, the S11 parameter has been shifted and a 

resonance is found at higher frequencies, while it is maintained under -9dB 

across the band of interest. 

 
Fig. 41. Overview of the bridge structure 



 63 

 
Fig. 42. Adaptation (S11) of the bridge structure with Zo=50Ω 

It must be taken into account that adding the bridge structure to the 

analysis is more or less similar to placing a ground plane in the bottom face 

of the substrate for the area surrounding the photodiode and antenna. The 

remarkable fact is that this bridge is placed at 150 microns, in the near field 

of the antenna, and its exact effect cannot be determined analytically. This 

can, first of all, increase the propagation across the substrate. On the other 

hand, due to the horn-shaped via, propagation is increased in the boresight. 

In this case, the simulation results show a deterioration in the adaptation. 

Efforts have been made in order to improve it. From all the parametric 

analysis exposed in Appendix 1, none of the values provided a significant 

improvement of the S11 parameter. It is important to solve this mismatch, 

since it is translated into loss of radiated power. This can be seen in Fig. 43, 

where the directivity at boresight is compared with the realised gain (the 

gain of the system taking into account the mismatch loss). As highlighted by 

the markers in the graph, this mismatch can incur in up to 0.5 dB losses. 
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Fig. 43. Comparison between Directivity and Realized Gain for the bridge structure. 

For this purpose, two alternatives were taken into consideration. On the 

one hand, modifying the insets in the patches could allow to fix a better 

feeding point of the patches and thus improve the impedance matching. On 

the other hand, all the dimensions of the patches shall be modified. After an 

optimisation process, it was observed that modifying only the insets slightly 

improved the adaptation of the system and the S11 coefficient was set below 

-10 dB. However, a second optimization process including the dimensions of 

the dipole delivered a remarkably better solution. 

 
Fig. 44. Adaptation (S11) of the bridge structure with Zo=50Ω after modifying the dipole 
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Fig. 45. Comparison between Directivity and Realized Gain for the bridge structure after 

readapting the dipole. 

As seen in Fig. 44, the S11 coefficient was lowered up to -15 dB in the 

whole band and at some points even -20 dB. As a result, the matching of the 

antenna together with the bridge is enhanced and the calculated realized gain 

is higher than the directivity, as presented in Fig. 45. The new dimensions of 

the dipole are given in the table below. 

Table 3: Comparison between the dimensions of the original and modified dipole 

Dimension Original Modified 

Length (mm) 0.35 0.38 

Width (mm) 0.25 0.27 

Feed_r (mm) 0.07 0.02 

Feed_w (mm) 0.1 0.09 

Delta (mm) 0.02 0.03 

At this point, the design of the bridge and the horn have been presented. 

It has been demonstrated that the directivity in the direction of interest has 

been improved, while the back-radiation has been decreased slightly. In 

addition to this, it is believed that extra elements could improve the 

performance of the system. These elements are: director elements and 

corrugations/rings. The first ones aim to increase the directivity of the system 

by achieving an effective coupling with the dipole. These elements might 

remind the reader of the director elements of a Yagi-Uda antenna. The second 
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type of extra elements are corrugations, to be etched in the upper part of the 

bridge, within its boundary with the bridge; and rings, to be printed in the 

upper face of the substrate, within the boundary between air and quartz.  

The purpose is to design these corrugations and rings as a periodic 

structure, creating a stop-band for the waves to propagate across the 

substrate. With this technique, it is expected to prevent this leakage across 

the substrate from taking place and instead, redirecting this power in the 

direction of interest. This leakage can be observed in Fig. 46, were the 3 main 

cuts of the radiation pattern of the structure are represented. It is observed 

that the value of this radiation pattern in the direction pararell to the 

substrate (θ=90º) is between -2dB and -8dB, being the maximum value 

located at plane φ=45º. 

 
Fig. 46. Cuts of the radiation pattern of the bridge structure at 240 GHz 

Nevertheless, these additional elements will have a bandwidth of 

operation as well and might compromise the broad-band performance of the 

system. Therefore, it will be studied whether or not including them results 

beneficial overall. 
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6.2.4 Director elements 

In order to increase the directivity in the direction of interest, the 

inclusion of some director elements is proposed. Following the philosophy of 

the Yagi-Uda antennas, one could add passive elements to a dipole antenna 

in order to increase its directivity. Traditionally, two types of passive 

elements have been used: reflectors and directors. Reflectors are elements 

slightly larger than the driven element (dipole) that are placed at its rear, in 

the opposite direction to the one of desired radiation. Placed at a specific 

distance, it reflects the back-radiation and makes it interfere constructively 

with the forward radiation. As for directors, these are elements slightly 

smaller than the driven element that couple its radiation by induced currents, 

allowing the waves to “travel” forward. Some designs have been implemented 

in microstrip technology, where the different elements are printed on the 

dielectric substrate. One recent example is a 10dB Yagi antenna with 2 rows 

of directors, designed for next generation communications at 60GHz [78]. In 

the traditional microstrip designs, the passive elements are positioned 

together with the driven element in the XY plane. However, in the current 

design there is a fundamental limitation, given by the fact that the desired 

direction of radiation is downwards, through the substrate. In straight 

relation to this, it is not feasible to include several director elements, given 

the horn-shaped via right under the substrate. For this reason, a pair of 

director elements have been designed to be printed on the bottom face of the 

substrate. These elements could adopt several shapes: circular, rectangular, 

rings, etc. The selected shape was a rectangular ring, hollow in the middle, 

in order not to block the incident optical signal coming through the horn. 

Different parametric analysis were performed in order to obtain the optimal 

dimensions of these elements. Results of these analysis are presented in detail 

in Appendix 2 – Parametric analysis of the dimensions of the director 

elements.  

These analysis show that the best coupling is achieved when the director 

elements are placed with the same offset than the patches of the dipole with 

respect to the centre, this is 25µm. Several combinations can be observed 

that improve the directivity in the direction of interest. The most remarkable 

results are compared in Table 4, where the obtained directivities are shown 

together with the return loss (RL) at central frequency and a 10dB RL 

bandwidth. A row with the value of the realized gain has been included to 

provide a more graphical view of the trade-off between increase in directivity 

and mismatch. The homogeneity of this realized gain within the band has 

been included as well.  
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Table 4: Comparison of different directors’ geometries and performances. 

 1 2 3 4 5 6 7 8 9 

Length (µm) 152 114 114 190 152 114 114 152 190 

Width (µm) 135 162 189 108 162 216 243 162 81 

Frame width 

(µm) 
10 10 10 20 20 20 30 30 30 

Dmax (dB) 

@ 240 GHz 
16.7 16.5 16.6 16.7 16.65 16.8 16.7 16.7 16.6 

Dback (dB) 1.8 2.3 1.9 1.5 1.3 1.7 1.4 1.5 2.35 

RL (dB) 

@ 240 GHz 
10.3 11 9.5 10 9.4 8.7 7.9 10.1 11.4 

BW 

10dB RL 

(GHz) 

80 80 15 80 30 25 0 80 80 

Realized 

Gain (dB) 
16.5 16.45 16.3 16.4 16.3 16.4 16.2 16.5 16.55 

∆RG within 

band (dB) 
0.4 0.6 0.34 0.6 0.6 0.4 1.2 0.5 0.54 

After considering all the alternatives, the directors with dimensions 

190x81 (µm) have been chosen because they offer the highest value of realized 

gain (RG). There are other combinations that offer a higher directivity 

showed lower return losses and thus the realized gain of these combinations 

are inferior. Nevertheless, the differences between them are of tenths of 

decibel and manufacturing tolerances would probably turn these differences 

neglectable. However, since this work is based on simulation results, the 

solution with the best performance has been chosen. 

The radiation pattern is plotted in Fig. 47. In this figure, it can be 

compared to the original radiation pattern, without director elements, shown 

previously in Fig. 46. It can be observed how the radiation is increased in 

practically 1 dB in the direction of interest, while the back radiation is 

lowered from 4 to around 1dB. This implies a reduction with a factor of 2 in 

the back radiation. Moreover, it can be observed that its maximum has been 

shifted from 14º to 52º and remains around 2.3 dB, a similar value to the 

one existing without directors. The propagation across the substrate is still 

denoted, ranging from 0 to -8 dB. As for the matching of the system, it is 
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shown in Fig. 48. Finally, the layout of the bridge including the director 

elements is presented in Fig. 49. 

 
Fig. 47. Cuts of the radiation pattern of the bridge structure with directors at 240 GHz 

 

 
Fig. 48. Adaptation (S11) of the bridge structure with directors and  Zo=50Ω 
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Fig. 49. Zoom into the rectangular dipole with the director elements a), and layout of the 
bridge including dipole, substrate, directors, horn and radiation box. 

 
  

a) 

b) 
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6.2.5 Corrugations and rings 

As stated in section 6.2.3, a combination of corrugations and rings could 

be designed in order to prevent substrate modes to propagate. Some 

parametric analysis have been performed but any straightforward 

relationship has been found. It is believed that a more exhaustive analysis 

could be able to draw some conclusions in this regard. However, special 

attention shall be paid to the frequency response of these elements, since they 

usually offer a narrow-band response. Nevertheless, it could be explored 

whether combinations of rings and corrugations with different pitches could 

offer a broader-band operation. Moreover, the use of rings might interfere 

with the metallic paths for DC bias and the effect of splitting this rings might 

be interesting to be studied. 

Due to limited time availability and computational costs, this analysis 

could not be performed and is left as one of the lines of future work. 

6.2.6 Conclusions 

All in all, the proposed bridge structure provides a handful of 

functionalities. First of all, the bridge supports the substrate on which the 

photomixer is placed, thus allowing the THz generation. Secondly, it allows 

to directly illuminate the photomixer through the horn-shaped via etched in 

the middle of the bridge. And finally, it enhances the radiation of THz in the 

direction of interest. Different trade-offs were dealt with within the design of 

the structure: such as the thickness of the substrate and the dimensions of 

the different elements, such as the dipole, the bridge or the directors. The 

different analysis taken into consideration could be broaden to different 

geometries, such as the shape director elements or higher sampled ranges of 

values for the parametric sweeps. Nevertheless, the final results are satisfying 

and sufficient for the next stages of design. 
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6.3 Focus 2: Energy collection 

Provided that the ellipsoidal reflector redirects and gathers the energy in 

its second focus, some type of structure must be included in order to collect 

and output the energy. Horn antennas are believed to successfully achieve 

this purpose. As in a reflector configuration where a horn feeds a reflective 

dish, a horn antenna could be placed in the focus of the ellipsoidal reflector. 

In principle, it is suggested that the phase centre of this horn shall be placed 

at the very precise location of the focus, since the phase centre is the origin 

of the spherical waves emitted by the horn. However, it shall be argued 

whether the proposed ellipsoidal configuration allows the formation or 

spherical waves or not, since far-field condition might not be achieved. 

Therefore, a spatial offset between the phase centre and the focus of the 

ellipse might be considered. 

A theoretical study of this wave formation was considered to be out of 

the scope of this Master Thesis and further efforts shall be made regarding 

this topic. As for what this work is concerned, the position of the antenna 

will be estimated via simulation. 

In principle, in could be believed that any horn antenna specifically 

designed for the 240 GHz band could be suitable for this purpose. 

Nevertheless, highly directive horns shall not be suitable, since the main lobe 

might be too narrow. Since the waves arriving to the second focus might 

come from a wide range of angles, a relatively wide main lobe is desired. A 

240 GHz horn antenna had been recently designed and was measured at 

UPNA Labs during the course of this project and was considered to be 

suitable for this purpose. The 3D model of the horn is shown in Fig. 50. Its 

phase centre at the central frequency is located at approximately 1.6 mm 

from the aperture into the horn. 

The antenna includes a 2-step circular to WR4.3 rectangular waveguide 

transition and was designed to have around 12 dBi gain at boresight. 

Appendix 3 – Far-Field and Near-Field measuring , details the measuring 

process and compares the simulation results with the measured ones. The 

directivity of this horn is relatively low and has around 52 degree HPBW 

(Half-power beam width), as shown in Fig. 51. 



 73 

 
Fig. 50. 3D Model of the choke horn antenna. 

 
Fig. 51. Simulated radiation pattern and HPBW of the choke antenna. 

6.4 Optical illumination 

The fibre collimators selected for this purpose include a GRIN (Graded 

Index) lens for beam collimation, available at [79]. They provide a beam 

diameter of 0.5mm with a beam divergence of 0.25°. The maximal optical 

power in continuous wave operation supported by the device is 300 mW and 

the collimator bandwidth is ±30 nm around the central wavelength, 1550nm. 

This linewidth corresponds to a 3.74 THz frequency bandwidth at 1550nm, 

as it can be calculated using Eq. 17. Therefore, the collimator supports the 
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transmission of 2 optical signals separated 240 GHz and is suitable for the 

aim of this work. 

 
∆𝜐 =

𝑐

𝜆2
· Δ𝜆 Eq. 17 

The geometry of the connector is shown in Fig. 52. They are usually 

employed in pairs, with a working distance of 15±5 mm. This working 

distance has been defined by the company in terms of power transmission 

percentage and insertion losses measured between both elements of the pair. 

The output optical beam is considered Gaussian. At a distance of 15mm, the 

minimum insertion loss of 0.3 dB is achieved. For this reason, a distance of 

15mm would initially be fixed between the connectors (half distance between 

each connector and the photomixer) since maximum, incident, optical power 

should be achieved. These collimators have been characterised by the 

manufacturer and the typical values of insertion loss and transmission 

coefficient, extracted from [79], are shown in Table 5. One of the connectors 

will be placed with some inclination angle with respect to the vertical axis 

while the second element of the pair is placed specular to the vertical axis in 

order to try to collect any possible reflection of the optical beam after 

irradiating the photomixer.  However, at it will be explained further in this 

section, the optimal distance could not be achieved due to geometrical 

limitations. 

 
Fig. 52. Geometry of the selected GRIN Collimator [79] 

Given the geometry of the collimators, it was possible to determine their 

position in the final device. As a first consideration, it could be stated that 

maximizing the angle of inclination of the collimators with respect to the 

vertical axis is aimed. This is due to the fact that the maximum of radiation 

from the photomixer remains in this axis, thanks to the horn etched in the 

metallic bridge. Therefore, it should be avoided to place the connectors near 

this axis, since a hole must be made in the surface of the reflector in order to 
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irradiate the photomixer. On the other hand, there is a fundamental 

limitation in the angle of inclination given by the horn in the bridge. 

Table 5: Characterization of the selected collimators 

Working 

Distance (mm) 

Insertion Loss 

(dB) 

Transmission 

(%) 

1 -0,6 87,10 

5 -0,52 88,72 

10 -0,47 89,74 

15 -0,3 93,33 

20 -0,33 92,68 

25 -0,39 91,41 

30 -0,57 87,70 

35 -0,51 88,92 

40 -0,66 85,90 

45 -0,82 82,79 

50 -0,98 79,80 

75 -1,92 64,27 

95 -2,32 58,61 

125 -4,08 39,08 

140 -5,1 30,90 

153 -5,4 28,84 

 

As shown earlier in this Chapter, the horn that has been designed to be 

etched in the metallic bridge consists of a conical aperture with a length of 

6mm, an input radius of 0.5mm and an output radius of 2.5mm. Since direct 

irradiation of the photomixer is required (relying on multiple paths is not 

trustworthy and could incur in additional loss of power), the optical beam 

cannot exceed the flare angle of the horn (is this case, the beam would travel 

quasi-parallel to the walls of the horn). Additionally, a 150 µm-thick layer of 

quartz is placed in order to support the photoconductive antenna and it 

should be taken into account in the calculation, in order to precisely focus 

the optical beam. This maximum angle can be easily calculated by means of 

trigonometry, as shown in the following formula and illustrated in Fig. 53: 

 
tan(𝛼) =

𝑦

𝑧
= (

𝑟𝑜𝑢𝑡 − 𝑟𝑖𝑛
𝑙ℎ𝑜𝑟𝑛 + ℎ𝑞𝑢𝑎𝑟𝑡𝑧

) =
2

6.15
 Eq. 18 

𝛼 ≅ 18°  
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Once this angle was fixed, the position of the connectors was determined. 

First of all, due to the fundamental limitations of the working distance and 

the maximum angle of inclination, the connectors were placed right under 

the photomixer, so that the optical beam would travel quasi-parallel to the 

wall of the horn and also in order to minimize the distance to the photomixer. 

However, the design of the reflector, presented earlier in this section, incurred 

in some geometrical restrictions: The chosen eccentricity of the ellipsoid and 

the position of the bridge result in a minimum feasible distance greater than 

the optimal working distance. As an example, only the length of the bridge 

is 6mm and the optimal working distance would be 7.5mm from the lens of 

the collimator to the photomixer. In case of adopting this configuration, the 

connectors would intersect the surface of the reflector and the focalisation on 

the second focus would be lost. For these reasons, a distance of 20mm between 

each collimator and the photomixer was chosen. This allows to place the 

connectors slightly under the reflector so that the size of the hole made in 

the reflector is reduced, thus decreasing the aberration in the reflective 

process. The designed geometry results in a total working distance of 40mm, 

instead of the optimal 15mm. As can be extracted from Table 5, this value 

involves a 0.3dB extra insertion loss. This was assumed acceptable, since it 

Fig. 53: Calculation of the angle of inclination 
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does not incur in a great loss of power. Moreover, the values shown in this 

table correspond to a scenario where the two collimators are placed in from 

of each other without any obstacle or body in between. Therefore, whereas 

they provide an approximate idea of the performance of the system, this 

values might not be directly applicable to the current scenario. It is believed 

that the performance of the collimators will be satisfactory and the actual 

performance shall be checked through an actual measuring process once the 

photomixer is available. The final geometry of the connectors is shown in Fig. 

54. The blue layer represents the metallic bridge, in which the horn (dark 

blue) is etched. The thin, orange layer on top of if corresponds to the quartz 

substrate. Connectors are shown in grey. The yellow lines represent the 

optical beams, with a collimated diameter of 0.5mm. Finally, a lighter 

cylinder is observed starting at the end of the connectors. That corresponds 

to the hole that is made in the reflector. Its radius correspond to the radius 

of the lens (0.9mm) and it has been chosen in order to provide enough space 

for the optical beam to propagate without colliding with the walls while 

reducing the size of the holes to be machined in the reflective, elliptical 

surface, since this holes incur in an aberration of the focalisation. 

 
 

Fig. 54: Final geometry of the optical connectors 
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7. Proposed assembled model and simulation results 

Once every fundamental piece of the component was designed, the 

challenging task of assembly and integration arose. Different approaches have 

been proposed and simulated. The fibre collimators were excluded from 

simulation at the beginning of this process and would be included later, in 

order to check the effect of introducing holes in the reflective surface.  

7.1 Rotated ellipse 

As a first approach, an ellipsoidal cavity rotated 45 degrees with respect 

to the XY plane was simulated. The piece can be observed in Fig. 55. The 

red dots correspond to the foci of the ellipse. At first, it was believed that 

locating the antenna at the position of the focus would be more accurate than 

placing the aperture, since the photodiode is the source of the radiation. 

However, the horn rearranges this radiation and therefore its phase centre 

could be considered as the actual source of the waves. However, it was decided 

to place the aperture at the focus instead of the diode because the bridge has 

a significant size in comparison to the cavity and placing it with respect to 

the diode would incur in a deterioration of the performance due to the 

proximity of the edges of the bridge to the reflective surface. In this scenario, 

the choke horn presented in the previous chapter has been included and 

placed at the second focus. 

 
Fig. 55: Ellipsoidal cavity rotated 45 degrees with choke horn.  

The horn antenna has been inserted into a metallic wall. This horn would 

be attached to the integration block through some alignment pins and screws 

in a real implementation. Two full wave simulations were performed with 

HFSS: first, with a radiation boundary after the choke horn, in order to 
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obtain a representation of the fields in the cavity, which can be observed in 

Fig. 56. Secondly, this radiation boundary was substituted by a wave port, 

in order to obtain the S21 parameter of the system. These two simulations 

were required because after adding at the second port, the plotted fields were 

the sum of two excitations. It was not possible to find a way of plotting the 

individual contribution of only one excitation.  

Looking at Fig. 56 it can be observed how the maxima of the E-field 

follow a curved trajectory that could be approximated to the curvature of 

the ellipse. Moreover, it can be observed how the field enters the waveguide 

placed after the horn. As a consequence, the simulation yielded a very good 

matching, as shown in Fig. 57. 

 

Fig. 56: E-Field in ellipsoidal cavity rotated 45 degrees with choke horn.  

  

Fig. 57: S11 [dB] parameter in ellipsoidal cavity rotated 45 degrees with choke horn.  
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However, the simulation with two ports yielded a low transmission 

coefficient. Two perpendicular modes were defined in the output port, in 

order to check if the polarization was maintained. It this scenario3, horizontal 

polarization was defined as the copolar polarization, since the diode and 

microstrip antenna were placed parallel to the XY plane. It was observed 

that the S22 for the crosspolar mode resulted below -90 dB and thus it was 

concluded that the polarization was not being modified. However, the S22 for 

the copolar mode was very low, as seen in Fig. 58.  Therefore, it can be agreed 

that there is a significant loss of power. These loss could be due to the open 

boundary on the upper part of the cavity as well as due to the poor matching 

of the second port. In addition, the phase centre of both horns might not be 

properly positioned with respect to the foci and that would incur in spherical 

waves not being generated. Moreover, the proximity of the ellipsoidal surface 

and the sharp edges of the piece could be compromising the far-field 

operation. 

 
Fig. 58: Sij [dB] parameters in ellipsoidal cavity rotated 45 degrees with choke horn.  

At this point, it is important to remark that in this scenario only a “face” 

of the ellipsoidal cavity is used. It was believed that closing the piece on the 

upper side by the symmetrical ellipsoidal face would increase the 

performance. Thus, it was decided to analyse the case with the complete 

ellipsoid. However, it was unexpectedly observed that the performance was 

deteriorated. As shown in Fig. 59, several incoherent reflections take place in 

the inside, and the energy is spread along the cavity, not being focalized at 

the second focus. This could be due to the existence of sharp edges due to 

                                        
3 In this scenario, the frequency sweep was performed via an interpolation method in 
order to ease the computational requirements. This method is not as accurate as the 
discrete method that had been used it all the previous simulations that have been 
presented, but it was the only cost-reasonable way to perform the simulation. 
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the bridge and the piece that supports the choke horn. Moreover a 

misalignment of the phase centre of the horn with respect to the focus shall 

be taking place. 

 

Fig. 59: E-Field in enclosed ellipsoidal cavity rotated 45 degrees with choke horn.  

Since results were not as good as expected, a new structure was proposed 

consisting on a horizontal cavity.  

7.2 Horizontal ellipse 

In order to avoid some of these sharp edges presented in the rotated 

model, an ellipsoidal cavity was simulated in horizontal position. The bridge 

structure was placed at one of the foci, perpendicular to the major axis of the 

ellipse, with the microstrip dipole placed exactly at the focus. As well as in 

the previous case, there were doubts whether to match the position of the 

focus with the position of the diode or with the aperture of the horn in the 

bridge. It was believed that locating the antenna at the position of the focus 

would be more accurate than placing the aperture, since the photodiode is 

the source of the radiation. However, the horn rearranges this radiation and 

therefore its phase centre could be considered as the actual source of the 

waves. Both scenarios, shown in Fig. 60, were simulated in order to check 

their performance. The blue colour stands for PEC, while red represents 

vacuum. The thin, orange layer corresponds to the quartz substrate. A full 

ellipse was simulated with the corresponding E- and H- symmetry planes, in 

order to alleviate computational requirements. In fact, these planes allowed 

to effectively simulate the structure, since more than half million tetraedra 
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were meshed in only a quarter of the structure. The ellipsoidal surface was 

defined as a perfect E boundary. The cavity was truncated at the second 

focus in order to check whether the energy concentrates around this point 

and the intersected surface was defined as “radiation”, in order to avoid 

infinite reflections of the fields. The part of the ellipse that was left behind 

the diode was also defined as radiation boundary in order to avoid the back 

radiation to affect the simulation. 

  
Fig. 60: Horizontal cavity with bridge at one focus. a) Diode placed at focus. b) Aperture 

placed at focus. Red dots represent the foci. 

  

After simulating both scenarios, it was observed that a) provided much 

better matching than b), as can observed comparing Fig. 62 and Fig. 64. The 

frequency sweep in this case was limited to 5 discrete points between 200 and 

280 GHz due to the computational requirements of the simulation and the 

desired of accuracy. Nevertheless, it can be seen that the S11 parameter 

remains below -10dB in scenario a). Of course, some peaks could be found in 

between these points, but all in all, in seems to reproduce similar results to 

a) 

b) 
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the matching of the bridge, shown in Fig. 44. In addition, it can be seen in 

Fig. 61 and Fig. 63 that the gathering effect is taking place in both, but the 

E-field is stronger in scenario a). 

Scenario a): Diode placed at focus. 

 
Fig. 61: Strength of the E field in scenario a) Diode placed at focus. 

 
Fig. 62: S11 [dB] parameter in scenario a) Diode placed at focus. 
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Scenario b): Aperture placed at focus. 

 
Fig. 63: Strength of the E field in scenario b) Aperture placed at focus.  

 
Fig. 64: S11 [dB] parameter in scenario b) Aperture placed at focus.  
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In this configuration, the bridge was placed perpendicular to the major 

axis and as a consequence there was a straight Line of Sight (LoS) between 

the input and output along the major axis. The idea behind this configuration 

was to take advantage of this LoS in order to maximize the output power, 

and use the elliptical surfaces to redirect any radiation that deviates of this 

direct path. The fact why scenario a) concentrates more energy at the second 

focus could be due to a more proper formation of spherical waves. After this 

first approach with the horizontal configuration, the choke horn was added. 

It was placed at the second focus, being the aperture slightly shifted from 

that position, into the cavity. With this shift, a better approximation to 

aligning the phase centre together with the focus was aimed. 

An interpolation method was chosen for sweeping in frequency, in order 

to alleviate computational requirements. As in the rotated case, two 

simulations were set up: one with a radiation boundary and one with the 

wave port. As shown in Fig. 65, the energy is coupled into the choke horn 

and its input waveguide. When observing the S-parameters of the system, in 

Fig. 66, it can be observed how the S21 parameter is better in comparison to 

the rotated configuration. 

 
Fig. 65: Strength of the E field in the a) scenario including choke horn.  
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Fig. 66: Sij [dB] parameters in ellipsoidal cavity rotated 45 degrees with choke horn.  

7.3  Conclusions 

In this Chapter, a series of approaches to assemble the different parts 

presented in previous sections have been presented. It has been observed that 

the ellipsoidal cavity effectively reflects the waves and focalize them into the 

second focus. While good matching has been obtained, however, it has been 

observed that adding the different parts to the system affects the propagation 

of this waves and thus the performance is deteriorated. This could be due to 

several reasons. One of them is that the operation could be falling into the 

near-field region, where the waves have not adopted a spherical phase front. 

Moreover, it had been stated previously that the ellipsoidal reflector includes 

a phase error in the system. On the other hand, the horizontal configuration 

enhances the power transmission, although still remains low. One of the 

drawbacks of this configuration would be the need of rearrangement of the 

fibre collimators and the need of some waveguide bends in order to integrate 

the component with the rest of components in the generation system. 

Nevertheless, it is believed that this approaches establish an interesting 

starting point for future studies and designs, at it can be agreed that some 

benchmarks have been validated. Future research on this topic is foreseen in 

the near future and it is expected to obtain better results. With these results, 

conclusions will be drawn on the configuration to be used: the horizontal or 

the rotated cavity.  
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8. Manufacturing 

The final device could not be manufactured in metal due to time 

constrains. However, some prototyping had been done with 3D printing 

techniques. The model chosen for this fabrications was the rotated one. 

Although it seems to offer a worse performance, it was the first model to be 

designed and thus first attempts to manufacture the device were made with 

this model. At first, it was desired to fabricate a 3D model and metallize it 

to check its performance but the constant changes of the piece made it 

impossible to find time for it. Nevertheless, these techniques allowed us to 

have a visual impression of the piece itself. Moreover, it could be possible to 

detect the most critical parts for the manufacturing process, as well as design 

errors.  

A first attempt was made trying to fabricate the packaging as a whole 

piece – excluding the substrate. This attempt was significantly illustrative, 

since several mistakes were found. In addition, after this attempt it was 

decided that the best solution would be manufacturing the piece in different 

parts and assemble them together. In order to assemble them together, 

alignment pins and in some cases, screws, were added to the model. This 

attempt consisted of 3 different approaches, orientating the piece in different 

directions. One of them was orientated horizontally. The second was built 

vertically and the third was rotated 45 degrees and supported with some 

pillars.  

These pieces were fabricated with the 3D printer BQ Witbox 2 [80], which 

works under the FFF (Fused Filament Fabrication) process that uses a 

filament of thermoplastic material. This filament is melted and extruded in 

order to conform the final piece. The provider assures that an accuracy of up 

to 20 microns could be achieved. However, our approach reported errors in 

the order of millimetres. 

Fig. 67 to Fig. 70 show the different pieces. It can be observed how 

different orientations reported better or worse accuracy in the different axis 

of the piece. For example, the horizontally-grown piece offered a significantly 

deteriorated elliptical surface, at the same time the alignment pins and the 

horn in the bridge were the most accurate out of the three versions (although 

they were not accurate enough). On the other hand, the vertically-grown 

piece reported the best flange. However, the hole in the bridge and the 

alignment pins were barely non-existent. The rotated piece reported the worst 

accuracy. This could be due to the addition of slim columns in the 3D model 

in order to support the piece and the later removal of these columns. 

However, the ellipsoidal cavity was too rough in order to be used as a 

reflector, and thus this printer has been proven to be unsuitable for our 
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purpose. Nevertheless, this first approach made us consider the fabrication of 

the bridge as a separated part from the rest of the piece. 

 
Fig. 67: Growth position of the pieces made with FFF (Vertical / Rotated / Horizontal). 

 
Fig. 68: Top view of the pieces made with FFF (Vertical / Rotated / Horizontal). 

 
Fig. 69: Front view of the pieces made with FFF (Vertical / Rotated / Horizontal). 
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Fig. 70: Bottom view of the pieces made with FFF (Vertical / Rotated / Horizontal). 

A second attempt in 3D printing fabrication was made, this time, 

applying SLA (Stereolithography) techniques. This process consists on 

selectively illuminating a photopolymerizing liquid resin that interacts with 

the light, creating bonds and linking its molecules and thus solidifying. The 

3D printer employed is the DW 020X from DWS Systems [81]. This machine 

offers an accuracy higher than the one offered by BW with FFF process, up 

to 10 microns, as announced on their webpage. However, the printer was not 

properly calibrated and an accuracy of a few hundreds of microns was 

achieved. The material used, from the same provider, was THERMA DM220, 

a nano-filled ceramic material whose main features are presented in [82]. Two 

approaches were made with this printer, as can be seen in Fig. 71 and Fig. 

72. Both pieces were grown upside down, from the lower part of the base up 

to the bridge. The first approach was fabricated as a whole piece. Some pillars 

were needed in order to support the bridge, as well as the flange. The shape 

of these columns was that of a truncated cone, with a diameter of 0.4mm at 

the base, becoming thinner as they were grown. The lattice of this columns 

was set to 2 mm, the minimum value admitted. A smooth surface was 

achieved for the ellipsoidal cavity. However, the pillars under the bridge could 
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not be removed successfully and, as a consequence, the part of the ellipsoidal 

reflector situated right under the bridge was seriously damaged. On the other 

hand, the second approach did not include the bridge. It was left to be printed 

separately and assembled together with two pairs of alignment pins. In this 

case, it was observed that the ellipsoidal surface was reproduced accurately.  

 
Fig. 71: Front view of the pieces made with SLA. 

 
Fig. 72: Back view of the pieces made with SLA. 

However, some minor problems were found in the area of the flange, due 

to some pillars that could not be removed. This fact motivated the idea of 

separating this part in the manufacturing process. The piece would be then 

fabricated in 3 parts: the bridge, the flange to support the horn, and the 

ellipsoidal cavity. This division allows a much easier fabrication process, 

which is believed to decrease the manufacturing errors. Moreover, it increases 

the versatility of the design, since the bridge and the flange can be designed 

individually, in case some modifications were needed. However, due to time 

constraints, no attempts have been made to fabricate the three parts 
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individually and assemble them. It could also be considered, if the accuracy 

of the SLA 3D printer is improved and the resulting piece is accurate enough, 

to metallize the 3D-printed piece. This would stand as a cost-saving process 

that could replace more expensive techniques such as direct machining. 

Nevertheless, direct machining is the proposed method for fabricating the 

final piece. The fabrication shall be made as proposed in this section: dividing 

the piece into different parts: bridge, flange support and ellipsoidal cavity. 

Figure sketches the model to be fabricated, colouring the different parts and 

including screws and alignment pins in order to assemble them properly. This 

alignment would be critical, since a misalignment could incur in a loss of 

efficiency due to the optical power not irradiating the photodiode completely 

or the horn not being placed properly at the second focus. 

 
Fig. 73: Sketch of the machined model with coloured parts. 

As for the substrate, no attempt has been made to fabricate it, since the 

photodiode was not available. Nevertheless, it is remarkable to note that it 

could be fabricated in the laboratory by means of photolithograpy and 

electron beam evaporation. This will be left as a future line of work. 
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9. Conclusions and future work 

In this Master Thesis, a new integration and packaging technique for THz 

generation photomixers is presented. 

This work has been developed in the framework of TERALINKS project, 

that has been presented and whose state of the art has been summarized. A 

review on the different techniques for generating THz radiation and the state 

of the art of the communication systems deployed at this frequency range 

have been presented in order to introduce the topic properly. Then, the basic 

theory concerning the ellipse has been explained, focusing on its fundamental 

property, which is that any beam coming out from one focus and intersecting 

the ellipse is redirected into the second focus. 

This property has been corroborated using a full-wave simulation and, 

based on this concept, an ellipsoidal cavity has been designed, where the 

source of THz power, the photomixer, is placed in one of these foci and a 

horn antenna is placed at the second focus in order to collect this energy. For 

coupling the currents induced by the photomixer and thus generate THz 

radiation, different flat antennas have been designed. 

A bridge structure has been designed to support the photomixer. This 

bridge contains a horn-shaped via that provides two main functionalities: 

allows direct irradiation of the photodiode and increases the amount of power 

that is directed to the ellipsoidal cavity.  

In order to minimise the loss of power propagated across the substrate, 

some additional elements such as metallic rings and corrugations have been 

proposed, although they have not been studied.  

In addition, an increase in this radiation has been observed by the 

inclusion of director elements and their performance have been evaluated.  

As for the second focus, a choke horn antenna designed and measured at 

UPNA and manufactured by 3D printing techniques is proposed to collect 

the focalised energy. The results of the measurement campaign have been 

provided as well. 

Front-side optical illumination of the photomixer is achieved by inserting 

the fibre collimators inside the cavity and incident directly through the horn-

shaped via etched in the bridge. Commercial fibre collimators have been 

chosen for this purpose. 

Some comments have been included regarding the manufacturing process. 

First attempts were made with 3D printing techniques, which illustrated how 

the piece could look like and allowed the detection of critical points, as well 

as to improve manufacturability of the design by separating the piece into 

different parts easier to fabricate individually. It was observed that SLA 
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printing provided significantly more accurate results than FFF 3D printing 

techniques. 

When simulating the whole system, it was observed that the performance 

was not as good as expected. Nevertheless, it is believed that these approaches 

establish an interesting starting point for future studies and designs, and it 

can be agreed that some benchmarks have been validated. Future research 

on this topic is foreseen in the near future and is expected to obtain better 

results. 

This work was strongly determined by the lack of information concerning 

the photomixer. For this reason, some adaptations of the model shall be made 

once this information is available. All in all, simulation results corroborate 

the feasibility of the proposed technique, demonstrate the proof of concept 

and establish some benchmarks for future designs. Once this information is 

known – such as the actual size of the photomixer, its impedance or the 

required spot size for optical illumination – and the model is redesigned, the 

manufacturing of the integration block will be feasible. This manufacturing 

could be realized by 3D printing and metallization techniques, if enough 

accuracy is provided by this first method. Otherwise, direct machining is 

proposed as the fabrication technique. 

To the best knowledge of the author, this Master Thesis presents a novel 

concept for packaging and integration of THz-generating photomixers. 

Nevertheless, further work would be required in order to establish some 

benchmarks in the design of this kind of structures and several future lines 

of work could be drawn: 

 The study of the dimensions of the ellipse and its eccentricity in 
order to obtain some benchmarks for an optimal design of the cavity. 

 The study of different configurations including “shaping” on the 
surface of the reflector in order to compensate the phase distortion 
introduced. Other configurations could include two elliptical 
reflectors sharing a common focus in order to compensate the errors 
introduced. 

 Further study of the position of the output antenna and the relation 
between the position of its phase centre and the focus. The same 
study shall be done to the position of the bridge and the phase centre 
of the horn etched in it. 

Other minor lines of work to be investigated once the major limitations 

of the proposed structure are solved could involve: 

 The study of the performance of different materials for the substrate, 
such as Topaz. 

 Further study of the director elements, rings and corrugations. 

 Manufacturing and measuring of the device. 
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Appendix 1 – Parametric analysis of the dimensions 

of the bridge 

Three different parameters are swept in this analysis: the so-called 

internal or input radius of the horn-shaped via, its output radius and the 

length of the via (which is the thickness of the metallic bridge as well). 

Discrete values have been swept:  

 Internal/Input radius was swept between 0.4mm and 1.5mm, with 
an interval of 0.1mm. Lower values were excluded because they 
were considered too small in comparison to the dipole. 
Analogously, higher values were excluded because they were 
considered too big. 

 Output radius was swept between 1mm and 3mm, with an interval 
of 0.5mm. 

 Thickness of the bridge was swept between 2mm and 6mm, with 
an interval of 1mm. It was believed that lower values would not 
offer remarkable directivities and higher values were considered 
too bulky. 

Different colour maps are displayed next. For each value of the output 

radius, the relationship between the 2 other variables is shown in terms of 

 Directivity in the direction of interest 

 Backward directivity 

 Difference of forward/backward directivities (front to back-lobe 
ratio). 

Within each figure, the most remarkable combination of dimensions are 

highlighted by writing the values over their cells. 
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Output radius: 1mm 

 
Fig. 74: Bridge with 1mm output radius 
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Output radius: 1.5mm 

 
Fig. 75: Bridge with 1.5mm output radius 
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Output radius: 2mm 

 
Fig. 76: Bridge with 2mm output radius 

  



 104 

Output radius: 2.5mm 

 
Fig. 77: Bridge with 2.5mm output radius 

  



 105 

Output radius: 3mm 

 
Fig. 78: Bridge with 3mm output radius 
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Appendix 2 – Parametric analysis of the dimensions 

of the director elements 

Three different parameters are swept in this analysis: the so-called 

director-offset, which refers to the distance, in the XY plane, from the inner 

edge of the director element to the vertical axis; frame width, which is the 

width of the metallic path that conforms the director element; and the width 

and length of the elements. Discrete values have been swept:  

 Length and width of the directors: from 20% to 90% of the dipole 

size, 380µm x 270µm respectively.  

 Directors’ offset: from 25µm to 75µm, with an interval of 10 µm. 

The offset of 25µm corresponds to the offset of the elements of the 
dipole due to the input port. 

 Directors’ frame width, from 10µm to 30µm, with an interval of 

10 µm. Lower frame widths have been excluded due to 
unavailability or high difficulty in a practical manufacturing 
process. 

Different colour maps are displayed next. For each combination of the 

directors’ offset and the frame width, the relationship between the 2 other 

variables is shown in terms of: 

 Directivity in the direction of interest (θ = 180º) 

 Backwards directivity (Since the maximum is not always located 

at θ =0, the maximum value of directivity in the range from 0 to 
60º has been considered) 

 Difference of forward/backward directivities. 

Within each figure, the most remarkable combination of dimensions are 

highlighted by writing the values over their cells. The values represented in 

these figures illustrate the difference of the obtained directivities with respect 

to the configuration without director elements (15.7 dB of directivity and 4.1 

dB of back-directivity). 
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Frame width = 10 µm & Directors’ offset = 25 µm 

 
Fig. 79: Contribution to difference of directivities with 25 µm offset and 10 µm frame width 
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Frame width = 10 µm & Directors’ offset = 35 µm 

 
Fig. 80: Contribution to difference of directivities with 35 µm offset and 10 µm frame width 
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Frame width = 10 µm & Directors’ offset = 45 µm 

 
Fig. 81: Contribution of the director elements with 45 µm offset and 10 µm frame width 
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Frame width = 10 µm & Directors’ offset = 55 µm 

 
Fig. 82: Contribution of the director elements with 55 µm offset and 10 µm frame width 
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Frame width = 10 µm & Directors’ offset = 65 µm 

 

Fig. 83: Contribution of the director elements with 65 µm offset and 10 µm frame width 
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Frame width = 10 µm & Directors’ offset = 75 µm 

 

Fig. 84: Contribution of the director elements with 75 µm offset and 10 µm frame width 
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Frame width = 20 µm & Directors’ offset = 25 µm 

 
Fig. 85: Contribution of the director elements with 25 µm offset and 20 µm frame width 
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Frame width = 20 µm & Directors’ offset = 35 µm 

 
Fig. 86: Contribution of the director elements with 35 µm offset and 20 µm frame width 
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Frame width = 20 µm & Directors’ offset = 45 µm 

 
Fig. 87: Contribution of the director elements with 45 µm offset and 20 µm frame width 
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Frame width = 20 µm & Directors’ offset = 55 µm 

 
Fig. 88: Contribution of the director elements with 55 µm offset and 20 µm frame width 
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Frame width = 20 µm & Directors’ offset = 65 µm 

 
Fig. 89: Contribution of the director elements with 65 µm offset and 20 µm frame width 
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Frame width = 20 µm & Directors’ offset = 75 µm 

 
Fig. 90: Contribution of the director elements with 75 µm offset and 20 µm frame width 
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Frame width = 30 µm & Directors’ offset = 25 µm 

 

Fig. 91: Contribution of the director elements with 25 µm offset and 30 µm frame width 
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Frame width = 30 µm & Directors’ offset = 35 µm 

 
Fig. 92: Contribution of the director elements with 35 µm offset and 30 µm frame width 
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Frame width = 30 µm & Directors’ offset = 45 µm 

 
Fig. 93: Contribution of the director elements with 45 µm offset and 30 µm frame width 
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Frame width = 30 µm & Directors’ offset = 55 µm 

 
Fig. 94: Contribution of the director elements with 55 µm offset and 30 µm frame width 
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Frame width = 30 µm & Directors’ offset = 65 µm 

 
Fig. 95: Contribution of the director elements with 65 µm offset and 30 µm frame width 
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Frame width = 30 µm & Directors’ offset = 75 µm 

 
Fig. 96: Contribution of the director elements with 75 µm offset and 30 µm frame width 
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Appendix 3 – Far-Field and Near-Field measuring 

campaign of the choke horn 

The measurement of the choke horn antenna was performed at the 

Terahertz Laboratory, in Jeronimo de Ayanz Building, at UPNA. For the 

measurements an Agilent PNA-X N5242A Vector Analyser measuring system 

(26.5 GHz) and VDI external mixers, for the 220-330 GHz frequency band in 

WR3.4 standard waveguide, have been used. 

Antenna measurements have been performed in both Far-Field and 

Planar Near-Field procedures. Both measurements were realised using the 

same set-up, shown in Fig. 97, consisting of a planar X-Y table, two 

polarization rotors, 1 and 2, and one azimuthal rotor, 1. The far field 

pattern was obtained for a fixed X-Y position, measuring different cuts 

combining the three rotors. The planar near field measurement was 

performed by moving the measuring probe within the X-Y table, fixing the 

position of the rotors. All the measuring process is controlled with a 

LabVIEW script that was available at the laboratory. 

 
Fig. 97: Measuring set-up 

For the planar Near-Field antenna measurement, an 8x8cm plane at a 

distance of 4 cm was chosen in order to guarantee at least -30 dB difference 

between the central point of the plane and its edges. The Near-Field to Far-

Field transformation (NF2FF) [83] was performed offline. For this purpose, 

magnitude and phase of the electric field were previously measured and 

stored. The measuring probe effect [84] was also corrected through an offline 

processing. The measured points preserved a sampling span of λ/2 between 
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each other in order to prevent from creating aliasing after applying the 

transformation. As to reduce the effect of parasitic reflections in the 

measurement process, a dynamic time-domain gating has been included in 

the LabVIEW script, in order to modify TD gating in the Vector Analyser, 

fixing its width and adjusting its position for every measuring point contained 

in the plane, so that any feasible reflection would not affect the measuring 

process. This implemented feature resulted of great importance in the 

measuring process, since the swept plane was considerably big in terms of 

wavelengths (64λ x 64λ for the central frequency of interest) and therefore it 

allowed to exclude undesired reflections.  

 
Fig. 98. Comparison of simulation and measurement results of the choke horn. 

Fig. 98 shows the simulated and measured (in both far- and near-field 

techniques) radiation pattern of the antenna at 240 GHz for both E- and H-

Plane. Doted lines correspond to the simulation results, while solid lines 

represent the measured ones. The measured results show reasonable 

agreement to the simulation results. Some ripples at the NF2FF radiation 

pattern can be observed. These are thought to be caused by two main reasons. 

First of all, the parasitic reflection from elements included in the time-domain 

gating, such as the screws that hold the antenna, whose size was comparable 

to the size of the antenna and whose position was not far enough to be 

excluded by the time-domain gating. Secondly, the measuring process itself, 

which limits the measuring area to a defined plane, creates a spatial window 

effect aliasing after applying the transformation and thus results not 

contained in the approximated interval   [-55º, 55º] are not reliable. 

All in all, this appendix aims to demonstrate a successful method for both 

Near and Far-Field measurements. In addition, 3D printing is validated as a 

suitable manufacturing method for horn antennas at sub-THz frequencies. 


