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Abstract

We consider the swallowtail integral Ψ(x, y, z) :=
∫∞
−∞ ei(t5+xt3+yt2+zt) dt for large

values of |x| and bounded values of |y| and |z|. The integrand of the swallowtail
integral oscillates wildly in this region and the asymptotic analysis is subtle. The stan-
dard saddle point method is complicated and then we use the simplified saddle point
method introduced in [López et al., 2009]. The analysis is more straightforward with
this method and it is possible to derive complete asymptotic expansions of Ψ(x, y, z)
for large |x| and fixed y and z. The asymptotic analysis requires the study of three
different regions for arg x separated by three Stokes lines. The expansion is given in
terms of inverse powers of x

1
3 and x

1
2 and the coefficients are elementary functions of y

and z. The accuracy and the asymptotic character of the approximations is illustrated
with some numerical experiments.
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1 Introduction

The mathematical models of many short wavelength phenomena, specially wave propagation
and optical diffraction, contain, as a basic ingredient, oscillatory integrals with several nearly
coincident stationary phase or saddle points. The uniform approximation of those integrals
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can be expressed in terms of certain canonical integrals and their derivatives [2], [16]. The
importance of these canonical diffraction integrals is stressed in [14] by means of the following
sentence: The role played by these canonical diffraction integrals in the analysis of caustic
wave fields is analogous to that played by complex exponentials in plane wave theory.

Apart from their mathematical importance in the uniform asymptotic approximation of
oscillatory integrals [12], the canonical diffraction integrals have physical applications in the
description of surface gravity waves [11], [17], bifurcation sets, optics, quantum mechanics,
chemical physics [4] and acoustics (see [1, Sec. 36.14] and references there in). To our
knowledge, the first application of this family of integrals traces back to the description
of the disturbances on a water surface produced, for example, by a traveling ship. These
disturbances form a familiar pattern of bow and stern waves which was first explained math-
ematically by Lord Kelvin [10] using these integrals.

In [1, Chap. 36] we can find a large amount of information about these integrals. First of
all, they are classified according to the number of free independent parameters that describe
the type of singularities arising in catastrophe theory, that also corresponds to the number
of saddle points of the integral. The simplest integral with only one free parameter, that cor-
responds to the fold catastrophe, involves two coalescing stationary points: the well-known
integral representation of the Airy function [13]. The second one, the Pearcey integral,
depending on two free parameters, corresponds to the cusp catastrophe and involves three
coalescing stationary points. The third one, depending on three free parameters corresponds
to the swallowtail catastrophe and involves four coalescing stationary points. The canonical
form of the oscillatory integral describing the swallowtail diffraction catastrophe is given by
the swallowtail catastrophe integral [1, eq. 36.2.4]:

Ψ(x, y, z) :=

∫ ∞
−∞

ei(t5+xt3+yt2+zt) dt. (1)

This integral exists only for 0 < arg y < π and real x; or for real x, y and z.
Apart from the classification of this family of integrals, in [1, Chap. 36] we can find

many properties such as symmetries, illustrative pictures, bifurcation sets, scaling relations,
zeros, convergent series expansions, differential equations and leading-order asymptotic ap-
proximations among others. For example, the swallowtail integral (1) is a solution of the
differential equation [1, eq. 36.10.5],

∂4Ψ(x, y, z)

∂z4
− 3x

5

∂2Ψ(x, y, z)

∂z2
− i

2y

5

∂Ψ(x, y, z)

∂z
+
z

5
Ψ(x, y, z) = 0.

On the other hand, we could not find complete asymptotic expansions of (1) in the literature.
The three first canonical integrals: Airy function, Pearcy integral and swallowtail integral

are the most important ones in applications. The first one is well-known and has been deeply
investigated in the literature. The second one has been considered in recent works [7, 8] and
other more classical works [5, 14, 15]. In this paper we focus our attention on the third one.
A numerical method for the evaluation of this integral may be found in [3]. In [1, eq. 36.8.1]
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we can find the convergent expansion:

Ψ(x, y, z) =
2

5

∞∑
n=0

in cos

(
π(4n− 1)

10

)
Γ

(
n+ 1

5

)
an(x, y, z), (2)

where a0(x, y, z) = 1 and, for n = 0, 1, 2, . . .,

an+1(x, y, z) =
i

n+ 1

min(n,2)∑
p=0

(p+ 1)x̂p+1an−p(x, y, z), (3)

with x̂1 = z, x̂2 = y, x̂3 = x. The convergence speed of this expansion is rather slow for
moderate or large values of the variables. In [1, eq. 36.11.2] we can find the leading order
approximation of Ψ(x, y, z) in terms of elementary functions, but it is valid only when the
stationary points of the phase function are real and distinct. In [6] we can find an asymptotic
approximation of Ψ(x, y, z) in terms of Pearcey integrals, valid for large negative x with y
real, and that remains valid when x, y, z are near the cusp of the caustic. In this work we
derive complete asymptotic expansions of Ψ(x, y, z) that produce satisfactory approximations
of Ψ(x, y, z) for large |x| and moderate values of y and z, and that is valid for x, y, z complex.

In the following section, we analyze the saddle point features of the swallowtail integral
for large |x| and fixed y and z. In Section 3 we use a simplification of the saddle point
method proposed in [9] to derive a complete asymptotic expansion of Ψ(x, y, z) for large |x|.
Section 4 contains a summary of the discussion and some numerical experiments. We use
the principal argument argw ∈ (−π, π] for any complex number w and the notation w∗ for
the complex conjugate of w.

2 Preliminaries

After splitting the integral at t = 0 and rotating the integration interval (−∞, 0] an angle
− π

10
, and the integration interval [0,∞) an angle π

10
, the swallowtail integral may be written

in the form

Ψ(x, y, z) = e−i π
10S(x e−i 4π

5 , y ei 3π
10 , z e−i 3π

5 ) + ei π
10S(x ei 4π

5 , y ei 7π
10 , z ei 3π

5 ), (4)

with

S(x, y, z) :=

∫ ∞
0

e−t
5+xt3+yt2+zt dt. (5)

This last integral is absolutely convergent for all complex values of x, y and z. Therefore,
the right hand side of (4) represents the analytic continuation of the swallowtail integral
Ψ(x, y, z) to all complex values of x, y and z. Then, it is more convenient to work with the
representation (4)-(5) of the swallowtail integral.
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3 The saddle point analysis of the integral S(x, y, z)

3.1 Saddle points and steepest descent paths of S

Define θ := arg x. After the change of variable u = t
√

3|x|
5

in the integral (5) we find that

S(x, y, z) =

√
3|x|

5

∫ ∞
0

e

(
3|x|2

5

)√
3|x|
5
f(t)+

3y|x|
5

t2+z
√

3|x|
5
t
dt, (6)

where the phase function is f(t) := eiθt3− 3
5
t5. This phase function has three saddle points:

t0 := 0 and t± := ± ei θ
2 . From the steepest descent method [18, Chap. 2], or its simplified

modification [9], we know that the asymptotically relevant saddle points are those ones for
which the integration path C := [0,∞) in (6) can be deformed into a steepest descent path
(or union of steepest descent paths) that contains the relevant saddle points. The point t−
is located in the half plane <(t) < 0 and has not any influence in the analysis; then we only
must consider the saddle points t0 and t+ (see Figure 1). Among these two points, the most
relevant one is the one for which <[f(t)] is maximal at the saddle points; and this depends
on θ: <[f(0)] = 0 and <[f( ei θ

2 )] = 2
5

cos(5θ
2

). Therefore, t0 is the relevant saddle point for
|θ| > π

5
, t+ is the relevant saddle point for |θ| < π

5
and both are equally relevant for θ = π

5
.

The steepest descent paths of f(t) at the saddle points are not easy to find. On the other
hand, we know from [9] that the asymptotic analysis of the integral (6) does not require the
steepest descent paths of f(t) at the relevant saddle points t0 or t+, but the steepest descent
paths of the “main part” of f(t) at the relevant saddle points, that may be always computed
in a straightforward manner [9].

Following the notation of [9], at each saddle point T = t0 or T = t+, we denote by m
the order of the first non-vanishing derivative of f(t) at the saddle point, φ is the phase
of f (m)(T ) and fm(t) is the Taylor polynomial of degree m of f(t) at the saddle point:
fm(t) := f(T )+ 1

m!
f (m)(T )(t−T )m. The “main part” of f(t) is just fm(t) and, at each saddle

point we have that the steepest descents of fm(t) are the following half-straights whose end
point is the saddle point T [9]:

Γk =

{
T + r eiθk ; θk =

(2k + 1)π − φ
m

; r ≥ 0

}
, k = 0, 1, 2, . . . ,m− 1.

Then, the first point of the asymptotic analysis of (6) is the computation, at each relevant
saddle point t0 and t+, of the steepest descent paths of fm(t):

• At the saddle point t0 = 0 we have that m = 3, φ = θ, f3(t) = eiθt3 and its steepest
descent paths are the following three half-straights (see Figure 1):

Γ0
k :=

{
r eiθ0k ; θ0

k :=
(2k + 1)π − θ

3
; r ≥ 0

}
, k = 0, 1, 2.
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• At the saddle point t+ := ei θ
2 we have that m = 2, φ = π+ 3θ

2
, f2(t) = 2

5
ei 5θ

2 −3 ei 3θ
2 (t−

ei θ
2 )2 and its steepest descent paths are the following two half-straights (see Figure 1):

Γ+
k :=

{
ei θ

2 + r eiθ+k ; θ+
k := kπ − 3θ

4
; r ≥ 0

}
, k = 0, 1.

3.2 Deformation of the integration path

Following [9], the second part of our analysis is to show that the path of integration [0,∞)
in (6) may be deformed to a path Γ of the form Γ ≡ Γ̄ ∪ Γε:

S(x, y, z) ∼
√

3|x|
5

∫
Γ

e

(
3|x|2

5

)√
3|x|
5
f(t)+

3y|x|
5

t2+z
√

3|x|
5
t
dt. (7)

In this formula, Γ̄ is one piece or the union of several pieces of the tree half-straights Γ0
k,

k = 0, 1, 2, and/or of the two half-straights Γ+
k , k = 0, 1, that contain(s) the most relevant

saddle point t0 or t+. Γε is an “irrelevant” path that is necessary to complete the deformation
of [0,∞), but such that the integral over this path is exponentially small compared with the
integral over the path Γ̄. The analysis of the deformation depends on θ (see Figure 2) and
all the deformations mentioned below are justified by the use of Cauchy’s residue theorem:

• When 7π
10
< θ ≤ π we have that |θ0

0| =
∣∣π−θ

3

∣∣ < π
10
. We can deform the path [0,∞) to

the path Γ0
0, whose end point is the relevant saddle point t0 = 0. We have that Γ̄ = Γ0

0,
Γε is empty and Γ = Γ0

0 (see Figure 2(a)).

• When 2π
5
≤ θ < 7π

10
we can deform the path [0,∞) to the path Γ = Γ̄ ∪ Γε, where

Γ̄ is the segment 0A of Γ0
0 plus the segment AB of Γ+

0 , where A := Γ0
0 ∪ Γ+

0 and
B := Γ+

0 ∪ [0,∞). See Figure 2(b) for 2π
5
< θ < 7π

10
and Figure 2(c) for θ = 2π

5
. Γε is

the interval [B,∞).

• When 0 ≤ θ < 2π
5

we can deform the path [0,∞) to the path Γ = Γ̄ ∪ Γε, where Γ̄ is
the segment 0A of Γ0

0 plus the segment AB of Γ+
0 ∪ Γ+

1 (see Figure 2(d)). In this case
A := Γ0

0 ∪ Γ+
1 and Γε is the interval [B,∞).

• For negative θ the analysis is similar. For −π < θ < −7π
10

the analysis is identical to
the case 7π

10
< θ ≤ π. For −7π

10
< θ ≤ −2π

5
it is identical to the case 2π

5
≤ θ < 7π

10

replacing Γ0
0 by Γ0

2. For −2π
5
< θ ≤ 0 it is identical to the case 0 ≤ θ < 2π

5
replacing

Γ0
0 by Γ0

2.

3.3 Computation of the integrals over the steepest descent paths

The third point of our analysis is the computation of the right hand side of (7) when Γ is one
of the paths described in previous subsection. We only consider θ ≥ 0 as the case θ ≤ 0 is
identical replacing Γ0

0 by Γ0
2 in the discussion. The following three observations are essential

in the analysis:
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• We know from [9] that, except for exponentially small terms, the integral over the
segment OA equals the integral over the whole steepest descent path Γ0

0. Except for
exponentially small terms, the integral over the segment AB equals the integral over
the whole steepest descent path Γ+

0 when 2π
5
≤ θ < π or over Γ+

0 ∪Γ+
1 when 0 ≤ θ < 2π

5
.

• Regardless of the value of θ, the segment OA or the whole path Γ0
0 is present in Γ̄.

Besides, when 2π
5
≤ θ < π, the path Γ+

0 is also present in Γ̄ and when 0 ≤ θ < 2π
5
, then

both, Γ+
0 and Γ+

1 are also present. On the other hand, as we have discussed previously,
t0 is dominant for θ > π

5
, t+ is dominant for θ < π/5 and both are equally relevant for

θ = π
5
.

• For π
2
≤ θ < π we have that <[f(t)] is a decreasing function in [0,∞) and <[f(t)] ≤

<[f(0)] = 0 for t ∈ [0,∞). For 0 ≤ θ < π
2
we have that the maximum of <[f(t)]

is located at t =
√

cos θ and is a decreasing function in [
√

cos θ,∞). But B ≥ C :=
cos( θ

2
) ≥

√
cos θ and then, <[f(t)] is a decreasing function in Γε = [B,∞). In any

steepest descent path, <[f(t)] decreases as t runs away from the saddle point and then
<[f(t)] ≤ <[f(B)] < <[f( ei θ

2 )] for t ∈ Γε = [B,∞).

From the above first two observations we conclude that we may consider that Γ̄ = Γ0
0 for

π
5
< θ ≤ π, Γ̄ = Γ0

2 for −π < θ < −π
5
, Γ̄ = Γ0

0∪Γ+
0 ∪Γ+

1 for 0 ≤ θ ≤ π
5
and Γ̄ = Γ0

2∪Γ+
0 ∪Γ+

1

for −π
5
≤ θ ≤ 0. From the third observation we conclude that the contribution of Γε is

exponentially small compared to the contribution of Γ̄ for any θ. Also, the integral over Γ0
2

is formally identical to the integral over Γ0
0. In summary,

S(x, y, z) ∼

S0(x, y, z) if
π

5
< |θ| ≤ π,

S0(x, y, z) + S1(x, y, z) if |θ| ≤ π

5
,

(8)

where

S0(x, y, z) :=

√
3|x|

5

∫
Γ0
0

e

(
3|x|2

5

)√
3|x|
5
f3(t)

e

(
3|x|2

5

)√
3|x|
5

[f(t)−f3(t)]+
3y|x|

5
t2+z

√
3|x|
5
t
dt, θ ≥ 0,

(9)

S0(x, y, z) :=

√
3|x|

5

∫
Γ0
2

e

(
3|x|2

5

)√
3|x|
5
f3(t)

e

(
3|x|2

5

)√
3|x|
5

[f(t)−f3(t)]+
3y|x|

5
t2+z

√
3|x|
5
t
dt, θ ≤ 0,

(10)

S1(x, y, z) :=

√
3|x|

5

∫
Γ+
0 ∪Γ+

1

e

(
3|x|2

5

)√
3|x|
5
f2(t)

e

(
3|x|2

5

)√
3|x|
5

[f(t)−f2(t)]+
3y|x|

5
t2+z

√
3|x|
5
t
dt, (11)

and f2(t) and f3(t) have been defined in Section 3.1.

As it will be clear in the next section, in the open sector |θ| < π
5
, S1(x, y, z) dominates

S0(x, y, z), whereas on the lines arg(x) = ±π
5
either, S1(x, y, z) or S0(x, y, z) may be dominant
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depending on the arguments of y and z. Therefore, instead of (8), we may write the more
natural formula

S(x, y, z) ∼


S0(x, y, z) if

π

5
< |θ| ≤ π,

S0(x, y, z) + S1(x, y, z) if |θ| = π

5
,

S1(x, y, z) if |θ| < π

5
.

(12)

Figure 3(a) shows the two different asymptotic expansions of S(x, y, z) in the two sectors of
the complex x plane, according to (12).

3.4 The approximation of S0 and S1

The fourth point of the analysis is the approximation of the integrals S0(x, y, z) and S1(x, y, z).
For positive θ, we perform the change of variable t→

√
5
3

eiπ−θ
3 |x|− 5

6 t in (9). For negative θ,

we perform the change of variable t→
√

5
3

e−iπ+θ
3 |x|− 5

6 t in (10). In any case we find

S0(x, y, z) =
1

(−x)
1
3

∫ ∞
0

e−t
3

g(x, y, z, t) dt, (13)

with

g(x, y, z, t) := exp

(
− t5

(−x)
5
3

+
yt2

(−x)
2
3

+
zt

(−x)
1
3

)
. (14)

From here, the computation of the asymptotic expansion of this integral follows as in Wat-
son’s Lemma [9]. Replacing g(x, y, z, t) by its Taylor expansion at t = 0, and interchanging
sum and integral we find

S0(x, y, z) ∼ 1

3

∞∑
n=0

Γ

(
n+ 1

3

)
Bn(y, z)

(−x)
n+1
3

as |x| → ∞, (15)

with

Bn(y, z) :=
∑

5k+2j+l=n

(−1)kyjzl

k!j!l!
, (16)

where the sum runs for all k, j, l ∈ N such that 5k + 2j + l = n. The first few coefficients
Bn are

B0(y, z) = 1, B1(y, z) = z, B2(y, z) = y +
z2

2
. (17)

The coefficients Bn are independent of x. Then we have that every term in the expansion
of S(x, y, z) in (15) is of the order O(x−

n+1
3 ) as |x| → ∞ for bounded y and z.

After the change of variables t→ ei θ
2 + e−i 3θ

4

(
5
3

) 3
4

t

|x| 54
√

3
in the integral (11) we find

S1(x, y, z) =
1√
5

(
5

3x

)3/4

e
2x
5 ( 3x

5 )
3/2

+ 3xy
5

+z
√

3x
5

∫ ∞
−∞

e−t
2

g(x, y, z, t) dt, (18)
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with

g(x, y, z, t) := exp

{(
5

1
4 z

3
3
4x

3
4

+
2y

15
1
4x

1
4

)
t+

√
5yt2

3
3
2x

3
2

− 5
7
4 t3

9 · 3 1
4x

5
4

− 5
3
2 t4

3
5
2x

5
2

− 5
5
4 t5

27 · 3 3
4x

15
4

}
. (19)

Replacing the Taylor expansion of g(x, y, z, t) at t = 0, and interchanging sum and integral
in the above expression, we find that, as |x| → ∞,

S1(x, y, z) ∼ 1√
5

(
5

3

)3/4

e
2x
5 ( 3x

5 )
3/2

+ 3xy
5

+z
√

3x
5

∞∑
n=0

C2n(x, y, z)

x
2n+3

4

(
5

3

)n
2

Γ

(
n+

1

2

)
, (20)

with

Cn(x, y, z) :=
∑

5k+4j+3l+2m+s=n

(−1)k+j+l5
j+2l
2

7k3
k+3j+3l+2m

2 k!j!l!m!s!

ym

x
5k+3j+l+2m

2

(
z√
3x

+
2y√

5

)s
, (21)

where the sum runs for all k, j, l,m, s ∈ N such that 5k + 4j + 3l + 2m + s = n. The first
few relevant coefficients Cn are

C0(x, y, z) = 1, C2(x, y, z) =
2y2

5
+

2yz√
15x

+
2y + z2

6x
,

C4(x, y, z) =
2y4

75
+

2
√

15y(2y2z − 25)

225
√
x

+
6y3 − 25z + 3y2z2

45x

+

√
15(6y2z + yz3 − 15)

135x
√
x

+
12y2 + 12yz2 + z4

216x2
.

(22)

The coefficients Cn are bounded for |x| bounded from below and fixed y and z. Then we
have that, apart from an exponential factor, every term in the expansion of S(x, y, z) in
(20) is of the order O(x−

2n+3
4 ) as |x| → ∞ for bounded y and z.

4 Summary of the discussion
From (12), (15) and (20) we see that, when |x| → ∞, S(x, y, z) ∼ S0(x, y, z) is of the order

O(x−
1
3 ) if | arg x| > π

5
and S(x, y, z) ∼ S1(x, y, z) is of the order O(x−

3
4 e

2x
5 ( 3x

5 )
3
2

) if | arg x| <
π
5
. Then, S(x, y, z) has an exponential behavior in the red region of Figure 3(a) and a power

behavior in the blue and purple regions. The Stokes lines of S(x, y, z) are arg x = ±π
5
. Over

these lines, S(x, y, z) ∼ S0(x, y, z) + S1(x, y, z) = O(x−
1
3 ) +O(x−

3
4 e

2x
5 ( 3x

5 )
3/2

+ 3xy
5

+z
√

3x
5 ) and

then, the precise order of S(x, y, z) over its Stokes lines depends on the arguments of y and
z.

To determine the asymptotic behavior of the swallowtail integral we must use (4). The
function S(x, y, z) is evaluated at x e−i 4π

5 in the first term and at x ei 4π
5 in the second one.

Therefore, the Stokes lines of the swallowtail integral are arg(x) = ±3π
5
and arg(x) = π, and
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the complex plane is divided into the three regions depicted in Figure 3(b) according to the
asymptotic behavior of Ψ(x, y, z):

Ψ(x, y, z) ∼



S+
1 for −π < arg x < −3π

5
,

S+
1 + S−0 + S+

0 for arg x = −3π
5
,

S−0 + S+
0 for −3π

5
< arg x < 3π

5
,

S−1 + S−0 + S+
0 for arg x = 3π

5
,

S−1 for 3π
5
< arg x < π,

S−1 + S+
1 + S−0 + S+

0 for arg x = π,

(23)

where, in order to simplify the formula, we have used the notation

S−0 := e−i π
10S0(x e−i 4π

5 , y ei 3π
10 , z e−i 3π

5 ), S+
0 := ei π

10S0(x ei 4π
5 , y ei 7π

10 , z ei 3π
5 ),

S−1 := e−i π
10S1(x e−i 4π

5 , y ei 3π
10 , z e−i 3π

5 ), S+
1 := ei π

10S1(x ei 4π
5 , y ei 7π

10 , z ei 3π
5 ).

(24)

The function S0(x, y, z) has the asymptotic expansion given in (15) and S1(x, y, z) has the
asymptotic expansion given in (20). At the Stokes lines of Ψ(x, y, z), arg x = ±3π

5
and

arg x = π, the arguments of y and z determine which of the terms S±1 or S±0 is dominant.
Consider x < 0 and real y, z, where the approximations [1, eq. 36.11.2] and [6] are valid.

From the sixth line of (23), (24), and the first order approximation given by the first term
of the right hand side of (15) and (20), it is straightforward to check that the first order
approximations given in [1, eq. 36.11.2] and [6] are reproduced.

5 Numerical experiments
In Table 1 we can find some numerical experiments that show the accuracy of the approxi-
mations summarized above. We have used formula (4), with a numerical evaluation of (5),
to compute the “exact” value of Ψ(x, y, z). We evaluate (5) with the NIntegrate command of
Wolfram Mathematica 10.4. The approximations (15)-(16) and (20)-(21) used in (23)-(24)
have been computed by using this software. The relative errors referred in Table 1 and
Figures 4 and 5 are defined as∣∣∣∣Ψ(x, y, z)−Ψn(x, y, z)

Ψ(x, y, z)

∣∣∣∣ , n = 1, 2, 3, . . .

where Ψn(x, y, z) is the right hand side of (23), with S±0 and S±1 replaced by the first n terms
of the right hand side of (15) and (20) respectively (and taking into account (24)).
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y = 0.5 eiπ
6 , z = 0.25i y = 0.25, z = 3.1

x n = 1 n = 3 n = 5 x n = 2 n = 4 n = 6

10 0.0066 0.0035 0.0023 −5 0.3 0.08 0.029

50 1.e-3 2.7e-4 7.3e-5 −10 0.1 0.015 0.0042

100 5.e-4 9.7e-4 1.7e-5 −40 0.03 0.001 3.e-4

y = 0.25 eiπ
5 , z = 0.1 y = −0.2, z = 0.3i

x n = 1 n = 3 n = 5 x n = 2 n = 4 n = 6

5 eiπ
4 0.006 0.007 0.006 5 ei 4π

5 0.035 0.006 2.4e-4

10 eiπ
4 0.0014 0.00138 8.7e-4 10 ei 4π

5 0.0014 0.00138 8.7e-4

100 eiπ
4 8.2e-5 2.6e-5 4.3e-6 50 ei 4π

5 1.e-4 4.4e-7 2.9e-9

y = 0.5i, z = −0.5 y = 1.2 e−iπ
3 , z = 2.1 eiπ

4

x n = 2 n = 4 n = 6 x n = 2 n = 4 n = 6

4 e−i 4π
5 0.07 0.05 0.02 5 e−iπ

6 0.17 0.06 0.05

10 e−i 4π
5 0.0056 7.8e-4 7.5e-5 50 e−iπ

6 0.017 5.e-4 1.6e-4

60 e−i 4π
5 6.e-5 5.3e-7 1.2e-8 500 e−iπ

6 0.0016 4.8e-6 6.3e-7

y = 0.4e−i π
12 , z = 1.1 y = −0.02 i, z = 0.1 eiπ

6

x n = 2 n = 4 n = 6 x n = 2 n = 4 n = 6

30 e−i 3π
5 0.004 5.e-3 1.e-3 10 ei 3π

5 9.4e-4 8.6e-4 3.7e-4

70 e−i 3π
5 0.002 8.3e-5 2.5e-5 50 ei 3π

5 2.9e-5 1.7e-5 1.8e-6

150 e−i 3π
5 9.5e.4 2.e-5 3.e-6 100 ei 3π

5 1.e-5 4.15e-6 2.5e-7

Table 1: Numerical experiments about the relative errors for several approximations of the
integral Ψ(x, y, z) given in (1) and different complex values of x, y and z, in different regions
of Figure 3(b), using formulas (23) and (24).
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Figure 1: This picture corresponds to θ = π
2 . Saddle points t0 := 0 and t± := ± ei θ

2 of the phase
function in (6) and the steepest descent paths at 0 and ei θ

2 . The integration path [0,∞) in (6) can
be deformed to a steepest descent path at the point 0 or to the union of a steepest descent path at
0 and another steepest descent path at ei θ

2 . Therefore, the point − ei θ
2 has not any influence in the

asymptotic analysis of (6).
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Figure 2: (a) When 7π
10 < θ ≤ π the path [0,∞) is deformed to the path Γ = Γ0

0. When 2π
5 ≤ θ < π

the path [0,∞) is deformed to the path Γ = OA ∪ AB ∪ [B,∞) represented in Figure (b) for
2π
5 ≤ θ < π or in Figure (c) for θ = 2π

5 (when θ = 2π
5 then A = t+ = ei θ

2 ). (d) When 0 ≤ θ < 2π
5

the path [0,∞) is deformed to the path Γ = OA ∪AB ∪ [B,∞).

13



Re(x)

Im(x)

π

π

5

5-

Re(x)

Im(x)

−

−

− π
5

4

π
5

2

π
5

2

π
5

3

π
5

3

π
5

4

(a) (b)
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Figure 4: Left picture: relative errors for approximation order n = 3; five different values
of the pair (y, z): p1(1.2e−iπ/3, 2.1eiπ/4), p2(0.5,−1.2), p3(1.2, 0.15), p4(0.5eiπ/4,−0.2eiπ/4),
p5(−0.2i,−1.2) and 0 < |x| < 250, with arg(x) = −π/6. Right picture: relative errors for
five different values of the approximation degree n and 0 < |x| < 250, with arg(x) = π/6,
y = 1.2e−iπ/3 and z = 0.3eiπ/4.
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Figure 5: Left picture: relative errors for approximation order n = 5 and 0 < |y| < 8,
with arg(y) = π/4, z = 0.5, and five increasing values of |x|, with arg(x) = π/5. Right
picture: relative errors for approximation order n = 6 and 0 < |z| < 8, with arg(z) = π/6,
y = 0.2eiπ/5, and five increasing values of |x|, with arg(x) = 0.
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