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Abstract

We consider the incomplete beta function Bz(a, b) in the maximum domain of an-
alyticity of its three variables: a, b, z ∈ C, −a /∈ N, z /∈ [1,∞). For <b ≤ 1 we derive
a convergent expansion of z−aBz(a, b) in terms of the function (1 − z)b and of ratio-
nal functions of z that is uniformly valid for z in any compact in C \ [1,∞). When
−b ∈ N ∪ {0}, the expansion also contains a logarithmic term of the form log(1 − z).
For <b ≥ 1 we derive a convergent expansion of z−a(1 − z)bBz(a, b) in terms of the
function (1 − z)b and of rational functions of z that is uniformly valid for z in any
compact in the exterior of the circle |z− 1| = r for arbitrary r > 0. The expansions are
accompanied by realistic error bounds. Some numerical experiments show the accuracy
of the approximations.
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1 Introduction

We may find in the literature a large variety of convergent or asymptotic expansions of
the special functions of the mathematical physics that have the important property of being
given in terms of elementary functions: direct or inverse powers of a certain complex variable
z and, sometimes, other elementary functions of z. However, quite often, these expansions

1



are not simultaneously valid for small and large values of |z|. Thus, it would be interesting
to derive new convergent expansions of these functions in terms of elementary functions that
hold uniformly in z in a large region of the complex plane that include small and large values
of |z|.

In [1] and [6], the authors derived new uniform convergent expansions of the incomplete
gamma function γ(a, z) and the Bessel functions Jν(z) and Yν(z) in terms of elementary
functions of z that hold uniformly in unbounded regions of C that contain the point z = 0.
The starting point of the technique used in [1] and [6] is an appropriate integral representation
of these functions. The key point is the use of the Taylor expansion, at an appropriate point
of the integration interval, of a certain factor of the integrand that is independent of the
variable z. This fact, the independence of this factor with respect to z, translates into a
convergent uniform expansion in a large region of the complex z−plane. The expansions
given in [1] and [6] are accompanied by error bounds and numerical experiments showing
the accuracy of the approximations.

In this work, we continue that line of investigation considering the incomplete beta func-
tion Bz(a, b). This function is used extensively in statistics as the probability integrals of
the beta distribution and as special cases of the (negative) binomial distribution, Student’s
distribution, and the F (variance-ratio) distribution [3]. Among its physical applications,
we mention its use in Monte Carlo simulations in statistical mechanics [4] and in cosmology
[2]. We consider Bz(a, b) as a function of the complex variable z, and derive new convergent
expansions uniformly valid in an unbounded region of the complex z−plane that contains
the point z = 0. The starting point is the integral definition of the incomplete beta function
[9, Sec. 8, Eq. 8.17.1],

z−aBz(a, b) :=

∫ 1

0

ta−1(1− zt)b−1dt, (1)

valid for <a > 0 and z ∈ C \ [1,∞). The incomplete beta function Bz(a, b) reduces to the
ordinary beta function B(a, b) when z = 1 and, except for positive integer values of b, has
a branch cut discontinuity in the complex z−plane running from 1 to ∞. When a or b are
positive integers, the incomplete beta function is an elementary function of z.

For reasons that will become clear later, it is convenient to consider the integral (1) only
for <b ≤ 1. When <b ≥ 1, we consider instead the following integral representation of
Bz(a, b) that may be obtained from (1) after the change of variable t→ 1− t:

z−aBz(a, b) = (1− z)b−1
∫ 1

0

(1− t)a−1
(

1 +
z

1− z
t

)b−1
dt, (2)

valid for <a > 0 and z ∈ C \ [1,∞).
By using the recurrence relation [9, Sec. 8, Sec. 8.17.20],

Bz(a, b) =
a+ b

a
Bz(a+ 1, b) +

za(1− z)b

a
,

we find that the function Bz(a, b) may be analytically continued in the complex variable a
to the negative half-plane <a ≤ 0 with poles at the negative integers a = −1,−2,−3, . . ..
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And reciprocally, by using repeatedly this formula we have that Bz(a, b), with <a ≤ 0,
may be written as a linear combination of elementary functions of its three variables and
an incomplete beta function with <a > 0. Therefore, without loss of generality, in the
remaining of the paper we restrict ourselves to <a > 0.

The power series expansion of the incomplete Beta function is given by [10]

z−aBz(a, b) =
∞∑
n=0

(1− b)n
n!(a+ n)

zn. (3)

This expansion may be derived from the integral representation (1) by replacing the
factor (1 − zt)b−1 by its Taylor series at the origin and interchanging series and integral.
This Taylor series expansion converges for t ∈ [0, 1], but the convergence is not uniform in
|z|. Therefore, expansion (3) is convergent, but not uniformly in |z| as the remainder is
unbounded when |z| → ∞.

From the hypergeometric function representation of Bz(a, b) [9, Sec. 8.17, Eq. (8.17.7)],

Bz(a, b) =
za

a
2F1 (a, 1− b; a+ 1; z) ,

and combining the formulas [8, Sec. 15.2, Eq. (15.2.2)] and [8, Sec. 15.8, Eqs. (15.8.2) and
(15.8.8)], we obtain, for 1− a− b /∈ N ∪ {0} and |ph(−z)| < π, the asymptotic expansion

z−aBz(a, b) ∼
πΓ(a)

Γ(a+ b) sin[π(1− a− b)]

×

[
(−z)−a

Γ(1− b)
− (−z)b−1

Γ(a)Γ(1− a− b)

∞∑
k=0

(1− b)k
(1− a− b− k)k!zk

]
.

(4)

On the other hand, if 1− a− b ∈ N ∪ {0}, |z| > 1 and |ph(−z)| < π, we have

z−aBz(a, b) ∼
Γ(a)(−z)−a

Γ(1− b)

−a−b∑
k=0

(a)k(−a− b− k)!

k! Γ(1− k) zk

+ (−z)−a
∞∑
k=0

(−1)k(1− b)k
k!(k + 1− a− b)! Γ(a+ b− k) zk+1−a−b

× [log(−z) + ψ(k + 1) + ψ(k + 2− a− b)− ψ(1− b+ k)− ψ(a+ b− k)] ,

(5)

where ψ denotes the digamma function. Expansions (4) and (5) are asymptotic expansions
of the incomplete beta function for large |z|, but the remainders are unbounded when |z| → 0
and then, these expansions are not uniform in |z| either. Other large parameter asymptotic
approximations with certain uniformity properties with respect to the parameters can be
found in [7, 11].

Expansions (3), (4) and (5) have the good property of being given in terms of elementary
functions of z, but they have the inconvenience of not being uniform in |z| in unbounded
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regions of the complex plane that include the point z = 0. In this paper we show that it
is possible to derive convergent expansions of Bz(a, b) in terms of elementary functions that
hold uniformly for z in an unbounded region of C that includes the point z = 0. As an
illustration of the approximations that we are going to obtain (see Theorem 1 below), we
derive, for example, the following one,

1

z5/2
Bz

(
5

2
,
1

2

)
=

(32 + 40z − 5z2)− (27z2 + 56z + 32)
√

1− z
40
√

2 z3
+ ε(z), (6)

with |ε(z)| < 0.0089 in the negative half plane <z ≤ 0. When z = 0, the right hand side of
(6) must be understood in the limit sense.

In order to derive these kinds of approximations, we use in this paper the technique
proposed in [1] and [6]: we consider a Taylor expansion of the factor ta−1 in (1) and of the
factor (1 − t)a−1 in (2). The factor ta−1 in (1) is not analytic at the origin unless a ∈ N
(equivalently, the factor (1− t)a−1 in (2) is not analytic at t = 1). Following the arguments
given in [6], we must consider the expansion of the factors ta−1 and (1− t)a−1 at the middle
point t = 1/2 of the integration interval (0, 1) in the respective integrals (1) and (2), in such
a way that we assure that the integration interval is contained into the disk of convergence
of the Taylor series. This Taylor expansion is convergent for any t in the integration interval
of (1) or (2) and, obviously, it is independent of z. After the interchange of the series
and the integral, the independence with respect to z, translates into a remainder that may
be bounded independently of z in a large unbounded region of the complex z−plane that
contains the point z = 0 and that we specify in Theorems 1 and 2 below. In the following
section we consider the integral representation (1) for <b ≤ 1. In Section 3 we consider the
integral representation (2) for <b ≥ 1. Throughout the paper we use the principal argument
arg z ∈ (−π, π].

2 A uniform convergent expansion of Bz(a, b) for <b ≤ 1

In this section we consider the integral representation (1). We define the extended sector
(see Figure 1):

Sθ := {θ ≤ | arg(z)| ≤ π} ∪
{
z ∈ C;

∣∣∣∣z − 1

2

∣∣∣∣ ≤ 1

2
and |z − 1| ≥ sin θ

}
, (7)

with arbitrary 0 < θ ≤ π/2. We have the following theorem.

Theorem 1. For <a > 0, <b ≤ 1, z ∈ Sθ, with 0 < θ ≤ π/2, and n = 1, 2, 3, . . .,

z−aBz(a, b) = 21−a
n−1∑
k=0

(1− a)k
k!

βk(z, b) +Rn(z, a, b), (8)
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where βk(z, b) are the elementary functions

βk(z, b) :=
1

zk+1

k∑
j=0

(
k
j

)
2j (z − 2)k−j

[
1− (1− z)j+b

j + b
(1− δj,−b)− δj,−b log(1− z)

]
. (9)

For k = 1, 2, 3, . . . and b 6= 0, they satisfy the recurrence relation

βk(z, b) =
1

zb

[
1− (−1)k(1− z)b

]
− 2k

zb
βk−1(z, b+ 1), β0(z, b) =

1

zb

[
1− (1− z)b

]
. (10)

On the other hand, for k = 1, 2, 3, . . . and b = 0,

βk(z, 0) =
1− (−1)k

kz
+

(
1− 2

z

)
βk−1(z, 0), β0(z, 0) = −1

z
log(1− z). (11)

When z = 0, the above expressions must be understood in the limit sense. In the extended
sector Sθ the remainder is bounded in the form

|Rn(z, a, b)| ≤ [sin(θ)]<b−1
eπ|=b||(1− a)n|
n! 2<a−1<a

max{2<a−n−1, 1}. (12)

For n ≥ <a− 1 > 0, the remainder term may also be bounded in the form

|Rn(z, a, b)| ≤ [sin(θ)]<b−1
eπ|=b| 21−<an|(1− a)n|

(n+ 1)! (<a− 1)
. (13)

The remainder term behaves as Rn(z, a, b) ∼ n−<a as n→∞ uniformly in |z| in the extended
sector Sθ.

Proof. Consider the truncated series Taylor expansion of the factor ta−1 in the integrand of
the integral definition (1) of Bz(a, b) at the middle point t = 1/2 of the integration interval,

ta−1 =
1

2a−1

n−1∑
k=0

(1− a)k
k!

(1− 2t)k + rn(t, a), t ∈ (0, 1], (14)

where rn(t, a) is the Taylor remainder

rn(t, a) :=
1

2a−1

∞∑
k=n

(1− a)k
k!

(1− 2t)k, t ∈ (0, 1]. (15)

After suitable manipulations we can write

rn(t, a) =
(1− a)n
2a−1n!

(1− 2t)n2F1 (n+ 1− a;n+ 1; 1− 2t) , t ∈ (0, 1]. (16)
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Figure 1: The blue and green regions comprise the extended sector Sθ defined in (7), with r := sin θ,
0 < θ ≤ π/2. In particular, Sπ/2 is just the half plane <z ≤ 0 and limθ→0 Sθ = C \ [1,∞). In the
region Sθ, the remainder Rn(z, a, b) is bounded independently of |z| by the right hand side of (12).

Replacing (14) into the integral representation of Bz(a, b) given in (1) and interchanging sum
and integral we obtain (8) with

Rn(z, a, b) :=

∫ 1

0

rn(t, a)(1− zt)b−1 dt (17)

and

βk(z, b) :=

∫ 1

0

(1− 2t)k(1− zt)b−1dt =
1

z

∫ 1

1−z

(
1− 2

z
+ 2

u

z

)k
ub−1du. (18)

Expanding the first factor of the integrand in the second integral in powers of u and inte-
grating term-wise we obtain (9).

Integrating by parts in any of the integrals in (18), it is straightforward to see that, for
k = 1, 2, 3, . . ., the functions βk(z, b) satisfy the recurrence relations (10) and (11).

In order to derive the bound (12), we need a bound for the factor (1− zt)b−1 uniformly
valid for t ∈ [0, 1]. It is straightforward to check that, for t ∈ [0, 1] we have that |(1−zt)b−1| ≤
eπ|=b|M(z, b), with

M(z, b) :=


1, if <(z) ≤ 0,

|1− z|<b−1, if <(1/z) ≥ 1,

|sin(arg(z))|<b−1 , if 0 < <(1/z) < 1.

(19)

The regions of the complex z−plane considered in this formula are depicted in Figure 2.
For z ∈ Sθ, with 0 < θ ≤ π/2, we have that M(z, b) ≤ [sin(θ)]<b−1. This inequality
may be proved by using the following geometrical arguments: (i) at the points of the circle
|z − 1/2| = 1/2 we have that |1 − z| = |sin(arg(z))|; (ii) the closest points of the sector
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Re(z)

Im(z)

1/2

Re(1/z)>1

0<Re(1/z)<1

Re(z)<0

1

Figure 2: Different regions considered in formula (19). The green region <(1/z) > 1 is the open
disk of radius 1/2 with center at z = 1/2. The red region 0 < <(1/z) < 1 is the intersection of the
half plane <z > 0 with the exterior to this disk.

θ ≤ | arg(z)| < π/2 to the point z = 1 are just the two points obtained from the intersection
of the rays arg z = ±θ with the circle |z − 1/2| = 1/2; (iii) the closest points of the region{
z ∈ C;

∣∣z − 1
2

∣∣ ≤ 1
2
and |z − 1| ≥ sin θ

}
to the point z = 1 are those of the portion of circle

|z − 1| = sin θ contained inside this region.
Now we use that rn(t, a) is integrable in (0, 1), the bound |(1−zt)b−1| ≤ eπ|=b|[sin(θ)]<b−1

for t ∈ [0, 1] and introduce (16) in (17). We obtain

|Rn(z, a, b)| ≤ eπ|=b|[sin(θ)]<b−1
|(1− a)n|
n! 2<a−1

∫ 1

0

|1− 2t|n |2F1 (n+ 1− a, 1;n+ 1; 1− 2t)| dt.

From the integral representation of the hypergeometric function [8, Sec. 15.6, Eq.
(15.6.1)] we find that, for t ∈ (0, 1),

|2F1 (n+ 1− a, 1;n+ 1; 1− 2t)| ≤ 2F1 (n+ 1−<a, 1;n+ 1; 1− 2t) .

Then,

|Rn(a, z, b)| ≤ eπ|=b|[sin(θ)]<b−1
|(1− a)n|
n! 2<a−1

∫ 1

0

|1− 2t|n 2F1 (n+ 1−<a, 1;n+ 1; 1− 2t) dt

= eπ|=b|[sin(θ)]<b−1
|(1− a)n|
n! 2<a

[
1

<a
+

1

n+ 1
2F1 (n+ 1−<a, 1;n+ 2;−1)

]
.

(20)

Using now the contiguous function [8, Sec. 15.5, Eq. (15.5.14)] with a = 1, b = n+1−<a,
c = n+ 1 and z = −1 we find that

1

n+ 1
2F1 (n+ 1−<a, 1;n+ 2;−1) =

<a+ 1

n<a 2F1 (n+ 1−<a, 1;n+ 1;−1)

− 2

n<a2F1 (n+ 1−<a, 2;n+ 1;−1) ,
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and applying [8, Sec. 15.5, Eq. (15.5.11)] in the second hypergeometric function, we can
write

2 2F1 (n+ 1−<a, 2;n+ 1;−1) = n+ (<a+ 1− 2n)2F1 (n+ 1−<a, 1;n+ 1;−1) .

Thus, introducing these formulas into (20), we get

|Rn(z, a, b)| ≤ eπ|=b|[sin(θ)]<b−1
|(1− a)n|
n! 2<a−1<a 2F1 (n+ 1−<a, 1;n+ 1;−1) . (21)

From the integral representation of the hypergeometric function [8, Sec. 6, eq. (15.6.1)] we
have that

2F1 (n+ 1−<a, 1;n+ 1;−1) = n

∫ 1

0

(1− t)n−1(1 + t)<a−n−1dt ≤ max{2<a−n−1, 1}.

Bound (12) follows from (21) and this last inequality.
When n ≥ <a− 1 > 0, we consider again the integral representation of the hypergeometric
function [8, Sec. 15.6, Eq. (15.6.1)]:

|2F1 (n+ 1− a, 1;n+ 1; 1− 2t)| ≤ n

∫ 1

0

(1− s)n−1[1− (1− 2t)s]<a−n−1ds.

When t ∈ (0, 1), [1− (1− 2t)s]<a−n−1 ≤ (1− s)<a−n−1 and then

|2F1 (n+ 1− a, 1;n+ 1; 1− 2t)| ≤ n

<a− 1
.

Therefore, from (16) we have that

|rn (t, a)| ≤ |(1− a)n| |1− 2t|n

2<a−1(n− 1)!(<a− 1)
.

Formula (13) follows straightforward introducing this bound in (17).
Finally, using the Stirling formula and [5, Eq. (30)] in (12) or (13) we obtain that

Rn(a, z) ∼ n−<a as n → ∞. Then, any of the bounds (12) or (13) show the uniform
character of the expansion (8) in the extended sector Sθ.

Formula (6) follows from Theorem 1 with a = 5/2, b = 1/2 and n = 3.

An error bound simpler than the bounds given in (12) and (13) can be found when a is
real. It is given in the following proposition.

Proposition 1. For a > 0, <b ≤ 1, z ∈ Sθ and n = 1, 2, 3, . . ., the error term Rn(z, a, b) in
Theorem 1 may be bounded in the form

|Rn(z, a, b)| ≤ [sin(θ)]<b−1
eπ|=b||(1− a)n|

2a−1 a n!
. (22)
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Proof. Take p := bac and define α := a− p. Then we have that, for k ≥ p,

(1− a)k = (−1)p(α)p(1− α)k−p. (23)

Using this equality in (15) we find that

|rn (t, a)| ≤ (α)p
2a−1

∞∑
k=n

(1− α)k−p
k!

|1− 2t|k.

We introduce this bound in (17) and, using that |(1− zt)b−1| ≤ eπ|=b|[sin(θ)]<b−1 for t ∈ [0, 1]
and (23), we find (22).

Table 1 shows the first few terms of the approximation of z−aBz(a, b) given by the ex-
pansion (8) for <b ≤ 1 and −b /∈ N ∪ {0}. These terms are rational functions of z and
functions of (1 − z)b. When −b ∈ N ∪ {0}, the terms of the expansion (8) also contain the
term log(1− z).

n (1− a)nβn(z, b)/n!

0
(
1− (1− z)b

)
bz

1
(
(a− 2)(1 + b) + (a− 2− ab)(1− z)b

)
b(b+ 1)z

+
2(a− 1)

(
1− (1− z)b

)
b(b+ 1)z2

2

(
(−3 + a)(−2 + a)(1 + b)(2 + b) +

(
a(10 + (−5 + b)b) + a2

(
−2 + b− b2

)
− 2

(
6 + b+ b2

))
(1− z)b

)
2b(b+ 1)(b+ 2)z

+
2(−1 + a)

(
−(−3 + a)(2 + b) + (−6− a(−2 + b) + b)(1− z)b

)
b(b+ 1)(b+ 2)z2

+
4(−2 + a)(−1 + a)

(
1− (1− z)b

)
b(b+ 1)(b+ 2)z3

Table 1: First few terms in the expansion (8) of z−aBz(a, b) when −b /∈ N ∪ {0}.

In Figure 3 we plot z−1.5Bz(1.5, 0.5) and the approximations given in Theorem 1 for
n = 1, 2, 3, 4, 5. This is a numerical experiment about the rate of convergence provided by
(8). We also observe the uniform character of the approximation in the region Sθ.

3 A uniform convergent expansion of Bz(a, b) for <b ≥ 1

In this section we consider the integral representation (2). For any 0 < r ≤ 1, consider the
punctured complex plane at z = 1 with the interval [1,∞) removed:

Cr := {z ∈ C; |z − 1| ≥ r, | arg(1− z)| < π}. (24)

We have the following theorem.

9



-10 -8 -6 -4 -2

0.2

0.4

0.6

0.8

1.0

-10 -5 0 5 10

0.2

0.4

0.6

0.8

1.0

-10 -5 0 5 10

0.2

0.4

0.6

0.8

1.0

-10 -5 0 5 10

0.2

0.4

0.6

0.8

1.0

Figure 3: Plots of the absolute value of z−1.5Bz(1.5, 0.5) (dashed) and the approximations given
in Theorem 1 for n = 1 (red), n = 2 (green), n = 3 (blue), n = 4 (black) and n = 5 (orange) in
several intervals: [−10, 1] (top left), [−10eiπ/4, 10eiπ/4] (top right), [−10eiπ/2, 10eiπ/2] (bottom left)
and [−10e−iπ/3, 10e−iπ/3] (bottom right).

Theorem 2. For <a > 0, <b ≥ 1, z ∈ Cr with 0 < r ≤ 1, and n = 1, 2, 3, . . .,

z−a(1− z)1−bBz(a, b) = 21−a
n−1∑
k=0

(−1)k(1− a)k
k!

βk(z, b) +Rn(z, a, b), (25)

where the functions βk(z, b) are the elementary functions

βk(z, b) :=
1

zk+1

k∑
j=0

(
k
j

)
(−2)j(2− z)k−j

(1− z)1−b − (1− z)j+1

j + b
. (26)

For k = 1, 2, 3, . . ., they satisfy the recurrence relation

βk(z, b) =
1− z
zb

[
(−1)k

(1− z)b
− 1

]
+

2k(1− z)

zb
βk−1(z, b+1), β0(z, b) =

1− z
zb

[
1

(1− z)b
− 1

]
.

When z = 0, the above expressions must be understood in the limit sense. The remainder is
bounded in the form

|Rn(z, a, b)| ≤ eπ|=b||(1− a)n|
n! 2<a−1<a r<b−1

max{2<a−n−1, 1}. (27)
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For n ≥ <a− 1 > 0, the remainder term may also be bounded in the form

|Rn(z, a, b)| ≤ eπ|=b|21−<a|(1− a)n|
(n− 1)!(n+ 1) (<a− 1)r<b−1

. (28)

The remainder term behaves as Rn(z, a, b) ∼ n−<a as n→∞ uniformly for z ∈ Cr.

Proof. It is similar to the proof of Theorem 1 but considering the integral representation (2)
instead of (1). That is, we must consider the Taylor expansion of the factor (1 − t)a−1 at
t = 1/2 instead of the expansion of the factor ta−1. And we must replace z by z/(z − 1) in
the factor (1− zt)b−1. Then, we only give here a few significant details.

Replacing the truncated Taylor series expansion of (1 − t)a−1 at t = 1/2 on the right
hand side of (2) we obtain (25) with

Rn(z, a, b) :=

∫ 1

0

rn(t, a)

(
1 +

z

1− z
t

)b−1
dt (29)

and

βk(z, b) :=

∫ 1

0

(1− 2t)k
(

1 +
z

1− z
t

)b−1
dt =

1− z
z

∫ (1−z)−1

1

(
2− z
z
− 2(1− z)

z
u

)k
ub−1du.

Expanding the first factor of the integrand in the second integral in powers of u and inte-
grating term-wise we obtain (26). Then, we obtain (25) with Rn(z, a, b) given in (29). Now,
in order to derive the bounds (27) and (28), instead of a bound for the factor (1 − zt)b−1
valid for every t ∈ [0, 1], we need a bound for the factor (1− z(z − 1)−1t)b−1 valid for every
t ∈ [0, 1]. It is given by |(1− z(z − 1)−1t)b−1| ≤ eπ|=b|M(z, b), with

M(z, b) := max{1, |1− z|1−<b}.

It is clear that M(z, b) ≤ r1−<b for z ∈ Cr and then, instead of (12) and (13) we obtain (27)
and (28).

A simpler error bound than the bounds (27) and (28) can be found when a is real. The
proof is similar to the proof of Proposition 1 and we omit it.

Proposition 2. For a > 0, <b ≥ 1, z ∈ Cr, with Cr defined in (24) for 0 < r ≤ 1, and
n = 1, 2, 3, . . ., the error term Rn(z, a, b) defined by (29) in Theorem 2 may be bounded in
the form

|Rn(z, a, b)| ≤ eπ|=b||(1− a)n|
a r<b−1 2a−1 n!

.

Table 2 shows the first few terms of the approximation of z−a(1− z)1−bBz(a, b) given by
the expansion (25). These terms are rational functions of z and functions of (1− z)b.

In Figure 4 we plot z−1.5(1− z)−2Bz(1.5, 3) and the approximations given in Theorem 2
for n = 1, 2 and 3. This is a numerical experiment about the rate of convergence provided
by (25). We also observe the uniform character of the approximation in the region Cr.
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n (−1)n(1− a)nβn(z, b)/n!

0
(
−1 + (1− z)−b

)
(1− z)

bz

1
(1− z)−b(−1 + z)

(
2− 2(1− z)1+b − 2(1 + b)z + a

(
−2 + z + bz + (1− z)b(2 + (−1 + b)z)

))
b(b+ 1)z2

2

(−1+(1−z)−b)(1−z)

bz − (−1+a)(1−z)1−b(2(−1+(1−z)b)+(1+b−(1−z)b+b(1−z)b)z)
b(b+1)z2

+
((−2+a)(−1+a)(1−z)−b(−1+z)(8(−1+(1−z)b)+4(2+b−2(1−z)b+b(1−z)b)z+(2(−1+(1−z)b)+b2(−1+(1−z)b)−b(3+(1−z)b))z2))

2b(b+1)(b+2)z3

Table 2: First few terms in the expansion (25) of z−a(1− z)1−bBz(a, b).
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Figure 4: Plots of the absolute value of z−1.5(1− z)−2Bz(1.5, 3) (dashed) and the approximations
given in Theorem 2 for n = 1 (red), n = 2 (green) and n = 3 (blue) in several intervals: [−10, 1]
(top left), [−10eiπ/4, 10eiπ/4] (top right), [−10eiπ/2, 10eiπ/2] (bottom left) and [−10e−iπ/3, 10e−iπ/3]
(bottom right).
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