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Abstract

We consider the second-order linear difference equation y(n+ 2)− 2ay(n+ 1)− Λ2y(n) =
g(n)y(n)+f(n)y(n+1), where Λ is a large complex parameter, a ≥ 0 and g and f are sequences
of complex numbers. Two methods are proposed to find the asymptotic behavior for large |Λ|
of the solutions of this equation: (i) an iterative method based on a fixed point method and
(ii) a discrete version of Olver’s method for second-order linear differential equations. Both
methods provide an asymptotic expansion of every solution of this equation. The expansion
given by the first method is also convergent and may be applied to nonlinear problems. Bounds
for the remainders are also given. We illustrate the accuracy of both methods for the modified
Bessel functions and the associated Legendre functions of the first kind.
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1 Introduction

Second-order difference equations are an important branch of mathematics with an active research
and development. A comprehensive study of second-order difference equations and generalizations
to higher order equations and partial difference equations may be found in classical references,
like for example [13], [15] and [26], or in more modern references like [7] and [20]. In these
references and in other related ones, we can find definitions, general properties, techniques of
resolution in particular situations, stability properties, systems of difference equations, boundary
value problems, eigenvalue problems and many other aspects of the theory of difference equations.

On the other hand, difference equations are an essential ingredient in mathematical models for
discrete evolution problems that arise in different applied sciences such as biology, biochemistry,
economy, etc., where the time variable is considered a discrete variable. Simple economical models
that involve difference equations may be used to determine the evolution of the national income of
a certain economy [13, Sec. 3.6, example 1], [25, Sec. 5.2]; to study inventory analysis [13, Sec. 3.6,
example 3]; to analyze market price’s behavior or Keynesian models with naive expectations [17,
Chap. 1], multiplier-accelerator models for business cycles [17, Chap. 2], [10, Sec. 8.4], [25, Sec.
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5.1] or output, inflation and inflationary expectations [17, Chap. 3]; and to study interest and
loan repayment [10, Sec. 8.2], models of supply and demand [10, Sec. 8.3], and chaos and
competition in models of consumer behavior [25, Sec. 5.3]. There are also several biological
systems analyzed by means of difference or systems of difference equations, like for example models
of restricted or unrestricted population growth (discrete logistic equation, measles epidemic) [10,
Chap. 9]; models for population genetics (random mating, selection and mutation) [10, Chap. 10].
Other models of the economy and biological sciences may be found in [25] and references therein.
Difference equations are also used to describe discrete dynamics in physical systems [26] and
discrete hamiltonian systems (including discrete symplectic systems and discrete Jacobi equations)
[1]. Certain particular discrete dynamical models like population models, neural networks and
replicator equations can be found in [2]. The use of difference equations to approximate the
solutions of differential problems in field theory may be found in [27].

Difference equations are also important in several branches of mathematics: many sequences
that occur in enumerative combinatorics satisfy a second-order linear difference equation [30]; a
great number of special functions of mathematical physics and, in particular, orthogonal poly-
nomials, satisfy a three-term recurrence relation, which is a second-order linear difference equa-
tion [16, Sec 18.9]; the discretization of a second-order differential equation yields a second-order
difference equation [14, Chaps. 3 and 4]; the coefficients of the Taylor expansion of the solutions
of a differential equation obtained by the method of Frobenius are the solution of a difference
equation. The behavior of the solutions of linear recurrence equations for large values of the
discrete independent variable n is important for combinatorics and computer science, numerical
analysis, orthogonal polynomials, continued fractions and many other areas of pure and applied
mathematics. It is also important in the applications mentioned in the previous paragraphs, as it
is important to approximate the solution of the difference equations modeling the above mentioned
problems for large n (large time). A classical result in this topic are the theorems of Poincaré and
Perron [12, Chap. 4].

On the other hand, in general, the difference equations of the economic, biological or physical
models contain parameters and then, it is interesting to analyze the solutions of the equations
for certain asymptotic values of one or several of their parameters. In particular, and as we
show in Section 5, many special functions are solutions of difference equations with parameters,
and it is interesting to approximate these functions in terms of simpler functions for certain
asymptotic limits of those parameters. As we have mentioned in the previous paragraph, most
of the investigations about the asymptotics of the solutions of linear difference equations are
concerned with the behavior for large n and fixed values of the parameters (see for example
[3,4,11,12,21,22,28,29,31] and references therein). But, as far as we know, the literature concerned
with the behavior of the solutions for large values of the parameters is very limited. We can just
mention the asymptotic technique proposed in [18] to approximate orthogonal polynomials in
terms of simpler orthogonal polynomials in certain asymptotic limits of some of their parameters
for fixed degree n; although the method is restricted to orthogonal polynomials of the Askey
tableau and is not directly based on the difference equation satisfied by the polynomials. Then,
in this paper we are interested in the asymptotic theory of difference equations for large values of
the parameters and fixed n. More precisely, we study the asymptotic behavior of the solutions of
linear second-order difference equations when one parameter is large and n is fixed; we consider
difference equations of the form

y(n+ 2)− 2ay(n+ 1)− Λ2y(n) = g(n)y(n) + f(n)y(n+ 1), n = 0, 1, 2, . . . , (1)

where Λ is a large complex parameter and a ≥ 0. In this equation, g and f are sequences of
complex numbers and of the order O(Λ) and O(1), respectively, as |Λ| → ∞. Equation (1) is a
particular case of the Sturn-Liouville difference equation considered in [15, Chap. 7], where Λ2

represents the eigenvalue parameter. Therefore, the asymptotic methods introduced in this paper
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may be used to study the large eigenvalues of the Sturn-Liouville problem considered in [15, Chap.
7].

The parameter a could be absorbed in the definition of f(n) but, for convenience in the
analysis, we consider equation (1) as it stands. For example, the case a = 1 and f(n) = 0
leads to the natural discretization of the second-order linear differential equation containing a
large parameter considered by F. W. J. Olver in his asymptotic method for second-order linear
differential equations without singular or turning points [23, Chap. 10]:

y′′ =
[
Λ2 + g(x)

]
y, x ∈ [0,+∞), (2)

where g is an analytic function.

Motivated by the analogy of (1) with its continuous counterpart (2), we propose in this paper
two methods to approximate the solutions of (1) for large |Λ| and fixed n. In the following section
we consider the iterative method designed in [19] for an initial value problem related to the
differential equation (2) and generalized in [8,9]; we adapt this method to the difference equation
(1), obtaining an asymptotic and convergent expansion of the unique solution of an initial value
problem involving equation (1). In Section 3 we show that this iterative method may also be
applied to nonlinear problems. In Section 4 we consider a different technique, the asymptotic
method designed in [23, Chap. 10] for equation (2) when |Λ| is large and x is fixed; we adapt
the method to its corresponding discrete formulation (1), obtaining the Poincaré-type asymptotic
expansion of two independent solutions of (1). Finally, Section 5 contains two examples, the
modified Bessel functions and the associated Legendre functions of the first kind, with numerical
experiments confirming the validity of the two methods designed, and some concluding remarks.

2 An iterative method

In this section we are interested in the following initial value problem that selects one of the
solutions of (1): {

y(n+ 2)− 2ay(n+ 1)− Λ2y(n) = g(n)y(n) + f(n)y(n+ 1),

y(0) = α, y(1) = β,
(3)

with α, β ∈ C and α = O(1), β = O(Λ) as Λ → ∞, n ∈ M := {0, 1, 2, . . . , N}, N ∈ N fixed and
a2 + Λ2 6= 0.

For later convenience, we define, for n ∈M and k = 0, 1, 2, ..., n− 1, the sequences,

G(n, k) :=
1

2
√
a2 + Λ2

[(
a+

√
a2 + Λ2

)n−k−1
−
(
a−

√
a2 + Λ2

)n−k−1]
(4)

and
H(n) :=

(
a+

√
a2 + Λ2

)n
. (5)

We use the symbol ‖·‖∞ as the usual supremum norm for bounded sequences u(n):

‖u‖∞ = sup
n∈M
|u(n)|. (6)

We have the following theorem.

Theorem 1. Let g and f be two sequences of complex numbers. Then, for m = 0, 1, 2, . . . and
fixed n ∈M , the sequence y(m)(n) obtained with the recursiony

(m+1)(n) = φ(n) +
n−2∑
k=0

G(n, k)[g(k)y(m)(k) + f(k)y(m)(k + 1)],

y(0)(n) = φ(n),

(7)
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with

φ(n) :=
α(
√
a2 + Λ2 − a) + β

2
√
a2 + Λ2

(
a+

√
a2 + Λ2

)n
+
α(
√
a2 + Λ2 + a)− β
2
√
a2 + Λ2

(
a−

√
a2 + Λ2

)n
, (8)

converges to the unique solution y(n) of problem (3). Moreover, it converges after a finite number
of steps m = n− 1.

Proof. The function φ(n) defined in (8) is the unique solution of the auxiliary initial value problem{
φ(n+ 2)− 2aφ(n+ 1)− Λ2φ(n) = 0,

φ(0) = α, φ(1) = β.

Then, after the change of unknown y(n)→ u(n) := y(n)− φ(n), problem (3) reads{
u(n+ 2)− 2au(n+ 1)− Λ2u(n) = F (n, u) := g(n)[u(n) + φ(n)] + f(n)[u(n+ 1) + φ(n+ 1)],

u(0) = 0, u(1) = 0.

(9)
We seek solutions of the equation L[u] := u(n + 2) − 2au(n + 1) − Λ2u(n) − F (n, u) = 0 in the
Banach space of bounded finite sequences B0 = {u(n) , n ∈ M ; ‖u‖∞ < ∞, u(0) = u(1) = 0},
equipped with the norm (6).

We write the equation L[u] = 0 as L[u] = M[u] − F (n, u), with M[u] := u(n + 2) − 2au(n +
1) − Λ2u(n). Then we solve the equation L[u] = 0 for u in the form u = M−1[F (n, u)], where
M−1 is the inverse of the operator M in the space B0. For any v ∈ B0, that inverse is given by
M−1(v) =

∑∞
k=0 Ḡ(n, k)v(k), where Ḡ(n, k) is the corresponding Green’s function of the problem

M[u] = v with homogeneous conditions [15, Sec. 6.3]. That is, Ḡ(n, k) is the unique solution of
the problem {

Ḡ(n+ 2, k)− 2aḠ(n+ 1, k)− Λ2Ḡ(n, k) = δn,k,

Ḡ(0, k) = Ḡ(1, k) = 0,

where δn,k = 1 if n = k and δn,k = 0 if n 6= k. After a straightforward computation we obtain

Ḡ(n, k) =

{
G(n, k) if n > k + 1,

0 if n ≤ k + 1,

with G(n, k) defined in (4). Then, the solution u(n) of (9) is the solution of

u(n) = M−1[F [n, u]] =
n−2∑
k=0

G(n, k) {g(k)[u(k) + φ(k)] + f(k)[u(k + 1) + φ(k + 1)]} . (10)

Or equivalently, the exact solution of problem (3) satisfies the equation

y(n) = φ(n) +

n−2∑
k=0

G(n, k) [g(k)y(k) + f(k)y(k + 1)] . (11)

To prove the convergence of the recurrence (7) for a given n ∈M after a finite number of steps
m = n − 1, that is, y(m)(n) = y(n) for n = 0, 1, 2, . . . ,m + 1, and m = 0, 1, 2, 3, . . ., we will use
formula (11) and induction over m:

- For m = 0, we have that y(0)(n) = φ(n) and then y(0)(0) = φ(0) = y(0) and y(0)(1) = φ(1) =
y(1). Then the hypothesis is true for m = 0.
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- Suppose now that it is true for a given m > 0. We know that y(m)(n) = y(n) for n =
0, 1, 2, 3, . . . ,m+ 1. Consider any n ≤ m+ 2 and subtract (7) and (11):

y(m+1)(n)− y(n) =
n−2∑
k=0

G(n, k){g(k)[y(m)(k)− y(k)] + f(k)[y(m)(k + 1)− y(k + 1)]}.

Using the induction hypothesis we have that, inside the brackets we find y(m)(k)− y(k) = 0
for any k as k runs from k = 0 to k = n− 2 ≤ m and y(m)(k + 1)− y(k + 1) = 0 for any k
as k + 1 runs from k + 1 = 1 to k + 1 = n− 1 ≤ m+ 1. Therefore,

y(m+1)(n)− y(n) = 0

for n = 0, 1, 2, 3, . . . ,m+ 2 and the thesis follows.

In the remaining of this section we show that the recursion (7) may be arranged in the form of an
asymptotic expansion of y(n) for large |Λ|. To this end we define a bounding constant U and the
remainder R(m)(n) in the form:

U :=
‖g‖∞

|a+
√
a2 + Λ2|

+ ‖f‖∞ , R(m)(n) := H−1(n)[y(n)− y(m)(n)], (12)

where y(n) is the solution of (3) and y(m)(n) is obtained from (7) after m steps.

Theorem 2. Under the same hypothesis of Theorem 1, the remainder term (12) is bounded by

|R(m)(n)| ≤
(n− 1)mU

m
∥∥H−1 · (y − φ)

∥∥
∞

|a2 + Λ2|m/2m!
. (13)

Proof. In the proof of Theorem 1, we have shown that any solution of (9) can be written in the
form (10). Equivalently, defining

ũ(n) := H−1(n)u(n) and φ̃(n) := H−1(n)φ(n),

with H(n) and φ(n) given by (5) and (8) respectively, we have that for any solution u(n) =
H(n)ũ(n) of (9), ũ(n) is a solution of the equation

ũ(n) = [Tũ](n), (14)

where we have defined the operator T : B0 → B0:

[Tũ](n) :=
1

2
√
a2 + Λ2

n−2∑
k=0

1−

(
a−
√
a2 + Λ2

a+
√
a2 + Λ2

)n−k−1
×

{
[ũ(k) + φ̃(k)]g(k)

a+
√
a2 + Λ2

+ [ũ(k + 1) + φ̃(k + 1)]f(k)

}
.

(15)

It is clear that if we define

ũ(k)(n) = H−1(n)[y(k)(n)− φ(n)], k = 0, 1, 2, . . . , (16)
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with y(k) given by (7), then ũ(m+1)(n) = [Tũ(m)](n). Then, for any couple z(n), w(n) ∈ B0:

|[Tz](n)− [Tw](n)|

≤ 1

2
√
|a2 + Λ2|

n−2∑
k=0

∣∣∣∣∣∣1−
(
a−
√
a2 + Λ2

a+
√
a2 + Λ2

)n−k−1∣∣∣∣∣∣
×
[
|z(k)− w(k)||g(k)|
|a+

√
a2 + Λ2|

+ |z(k + 1)− w(k + 1)||f(k)|
]

≤ U

2
√
|a2 + Λ2|

‖z − w‖∞
n−2∑
k=0

∣∣∣∣∣∣1−
(
a−
√
a2 + Λ2

a+
√
a2 + Λ2

)n−k−1∣∣∣∣∣∣
≤ U

2
√
|a2 + Λ2|

‖z − w‖∞
n−1∑
k=1

1 +

∣∣∣∣∣a−
√
a2 + Λ2

a+
√
a2 + Λ2

∣∣∣∣∣
k
 ≤ U(n− 1)√

|a2 + Λ2|
‖z − w‖∞ .

We also have

|[T2z](n)− [T2w](n)|

≤ 1

2
√
|a2 + Λ2|

n−2∑
k=0

∣∣∣∣∣∣1−
(
a−
√
a2 + Λ2

a+
√
a2 + Λ2

)n−k−1∣∣∣∣∣∣
×
[
|[Tz](k)− [Tw](k)||g(k)|

|a+
√
a2 + Λ2|

+ |[Tz](k + 1)− [Tw](k + 1)||f(k)|
]

≤ U2

2|a2 + Λ2|
‖z − w‖∞

n−1∑
k=1

1 +

∣∣∣∣∣a−
√
a2 + Λ2

a+
√
a2 + Λ2

∣∣∣∣∣
k
 k ≤ U2(n− 1)n

2|a2 + Λ2|
‖z − w‖∞ .

It is straightforward to prove, by means of induction over m, that for m = 1, 2, 3, . . .

|[Tmz](n)− [Tmw](n)| ≤ (n− 1)n(n+ 1)(n+ 2) . . . (n+m− 2)

|a2 + Λ2|m/2m!
Um ‖z − w‖∞ , (17)

and then

‖Tmz −Tmw‖∞ ≤
Um(n− 1)m

|a2 + Λ2|m/2m!
‖z − w‖∞ , (18)

where (n)m denotes the Pochhammer symbol: (n)m := n(n+ 1)(n+ 2) . . . (n+m− 1).

To prove bound (13), we set z = ũ and w = ũ(0) = 0 in (17). Using that Tmũ = ũ and
Tmũ(0) = ũ(m) we find

|ũ(n)− ũ(m)| ≤ Um(n− 1)m

|a2 + Λ2|m/2m!
‖ũ‖∞ .

We have seen in Theorem 1 that the unique solution y(n) of problem (3) may be obtained
from the limit y(n) = limm→∞ y

(m)(n), where y(m)(n) is the recurrence relation defined in (7) and
(8). (Indeed we have that y(m)(n) = y(n) for m ≥ n− 1.) In other words, y(n) admits the series
expansion

y(n) = φ(n) +
n−2∑
k=0

[y(k+1)(n)− y(k)(n)] = φ(n) +H(n)
n−2∑
k=0

[ũ(k+1)(n)− ũ(k)(n)], (19)
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with ũ(k)(n) defined in (16). Using the definition (12) for the remainder R(m)(n) we find that, for
m < n− 11, we may write (19) in the form

y(n) =φ(n) +

m−1∑
k=0

[y(k+1)(n)− y(k)(n)] +H(n)R(m)(n)

=φ(n) +H(n)

[
m−1∑
k=0

[ũ(k+1)(n)− ũ(k)(n)] +R(m)(n)

]
.

(20)

In the next theorem we analyze the asymptotic properties of this expansion.

Theorem 3. Let the functions y(m)(n) be defined by the recurrence relation (7) and (8) with
g = O(Λ) and f of the order O(1) when |Λ| → ∞. Then, for n ∈ M , the expansion (20) is
an asymptotic expansion for large |Λ| of the unique solution of (3). More precisely, for m =
0, 1, 2, 3, . . .,

ũ(m)(n)− ũ(m−1)(n) = O(Λ−m) and R(m)(n) = O(Λ−m−1). (21)

Proof. From definition (15) we have

ũ(m)(n) = [Tũ(m−1)](n)

=
1

2
√
a2 + Λ2

n−2∑
k=0

1−

(
a−
√
a2 + Λ2

a+
√
a2 + Λ2

)n−k−1
×

{
[ũ(m−1)(k) + φ̃(k)]g(k)

a+
√
a2 + Λ2

+ [ũ(m−1)(k + 1) + φ̃(k + 1)]f(k)

} (22)

and

ũ(m+1)(n) = [Tũ(m)](n)

=
1

2
√
a2 + Λ2

n−2∑
k=0

1−

(
a−
√
a2 + Λ2

a+
√
a2 + Λ2

)n−k−1
×

{
[ũ(m)(k) + φ̃(k)]g(k)

a+
√
a2 + Λ2

+ [ũ(m)(k + 1) + φ̃(k + 1)]f(k)

}
.

(23)

Subtracting (22) and (23) we get∥∥∥ũ(m+1) − ũ(m)
∥∥∥
∞
≤ U(n− 1)√

|a2 + Λ2|

∥∥∥ũ(m) − ũ(m−1)
∥∥∥
∞
. (24)

We have ũ(0)(n) = 0 and ũ(1)(n) = [T ũ(0)](n) = O(Λ−1) for n ∈M . Using this and (24), the first
thesis in (21) follows by induction over m.

Setting z = ũ and w = ũ(0) = 0 in the inequality (18) (as we did in the proof of Theorem 2),
we find ∥∥∥ũ− ũ(m)

∥∥∥
∞
≤ Um(n− 1)m

|a2 + Λ2|m/2m!
‖ũ‖∞ . (25)

But ũ = limm→∞ ũ
(m) =

∑n−2
k=0 [ũ(k+1) − ũ(k)] =

∑n−2
k=0 O(Λ−k−1) = O(Λ−1) for n ∈ M . This and

inequality (25) prove the second thesis in (21).

1Indeed, this expression is also valid for m ≥ n− 1, although trivial, as R(m)(n) = 0 for m ≥ n− 1.
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3 The nonlinear case

The iterative method introduced in Section 2 can be generalized to approximate the solution of
nonlinear second-order difference problems of the form{

y(n+ 2)− 2ay(n+ 1)− Λ2y(n) = h(n, y(n), y(n+ 1)),

y(0) = α, y(1) = β,
(26)

where h is continuous in its three variables, a ≥ 0, Λ is a large complex parameter and α = O(1),
β = O(Λ). We also require for the forthcoming analysis that the function h satisfy a Lipchitz
condition in its second and third variables:

|h(n, u, v)− h(n, z, w)| ≤ ΛK1|u− z|+K2|v − w|, (27)

fo any u, v, z, w ∈ C, n ∈M and K1 and K2 positive constants independent of n, u, v, z, w,Λ. As
in the linear case, we assume that Λ2 + a2 6= 0. Now, in this nonlinear case, we assume the extra
condition2:

Ū :=
K1Λ

|a+
√
a2 + Λ2|

+K2 <
√
|a2 + Λ2|. (28)

We have the following theorem.

Theorem 4. Let h be a continuous function that satisfies (27) and assume that (28) holds and
n ∈M is fixed. Then,

1. For m = 0, 1, 2, . . ., the sequence y(m)(n) obtained with the recursiony
(m+1)(n) = φ(n) +

n−2∑
k=0

G(n, k)h(k, y(m)(k), y(m)(k + 1)),

y(0)(n) = φ(n),

(29)

with G(n, k) given in (4) and φ(n) given by (8), converges to the unique solution y(n) of
(26): limm→∞ y

(m)(n) = y(n).

2. The remainder R(m)(n) defined, as in the linear case, by formula (12), is bounded by

|R(m)(n)| ≤ (n− 1)mŪ
m

|a2 + Λ2|m/2m!

∥∥H−1(y − φ)
∥∥
∞ . (30)

Proof. We cannot prove the convergence y(m)(n) → y(n) as in Theorem 1, as the first line in
(29) is nonlinear. But we can repeat step by step the proof of Theorem 2, replacing ||f ||∞ and
||g||∞ by K1Λ and K2 respectively and the constant U by the constant Ū , to derive formula (30).
From this formula it is clear that, under assumption (28), recursion (29) converges to the unique
solution of (26): limm→∞ y

(m)(n) = y(n).

Observe that now, we cannot assure that the convergence of the sequence y(m)(n) → y(n)
occurs after a finite number of steps, as it happens in the linear case. But, as well as in the linear
case, the sequence y(m)(n) may be rearranged in the form of an asymptotic sequence of y(n) for
large |Λ|, as we show below. As in the linear case, the unique solution of (26) admits the series
expansion (20) with y(m)(n), ũ(m)(n) and R(m)(n) given by (29), (16) and (12) respectively. Then,
we have the following theorem.

2This condition is not very restrictive whenever we are considering that the parameter |Λ| is large.
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Theorem 5. Let the functions y(m)(n) be defined by the recurrence relation (29) and (8) with
h a continuous function in its three variables that satisfies (27) and (28). Then, for n ∈ M ,
the expansion (20) is an asymptotic expansion for large |Λ| of the unique solution of (26). More
precisely, for m = 1, 2, 3, . . .,

ũ(m)(n)− ũ(m−1)(n) = O(Λ−m) and R(m)(n) = O(Λ−m−1). (31)

Proof. Similar to the proof of Theorem 3 replacing ||f ||∞ and ||g||∞ by K1Λ and K2 respectively
and U by Ū .

4 Olver’s method for problem (1)

In Section 2 we have proposed a convergent and asymptotic iterative technique to approximate the
solution of the initial value problem (3) for a linear difference equation. The method is based on its
continuous counterpart [19] designed for differential equations. In Section 3 we have generalized
the technique to the initial value problem (26) for a nonlinear difference equation. In this section
we propose a different technique to approximate the solution of (3), an asymptotic technique
based on its continuous counterpart designed by Olver [23, Chap. 10] for differential equations.
This method is not convergent in general.

We can summarize the discussion in the following theorem.

Theorem 6. Let g and f be two sequences of complex numbers. Then, for m = 0, 1, 2, . . ., fixed
n ∈M and |Λ| → ∞, the unique solution y(n) of problem (3) admits the asymptotic expansion

y(n) =
β(
√
a2 + Λ2 + a) + αΛ2

2
√
a2 + Λ2

(
a+

√
a2 + Λ2

)n m−1∑
k=0

A(n, k)(
a+
√
a2 + Λ2

)k
+
β(
√
a2 + Λ2 − a)− αΛ2

2
√
a2 + Λ2

(
a−

√
a2 + Λ2

)n m−1∑
k=0

A(n, k)(
a−
√
a2 + Λ2

)k +O(Λn−m),

(32)

with A(n, 0) = 0, A(n, 1) = 1 and the remaining coefficients A(n, k) are obtained from the recur-
sion

A(n, k + 2) =

bn/2c∑
j=1

[g(n− 2j)A(n− 2j, k) + f(n− 2j)A(n+ 1− 2j, k + 1)

+ 2aA(n+ 1− 2j, k + 1)− 2aA(n− 2j, k + 1)].

(33)

Proof. Reproducing Olver’s idea for differential equations, we consider two (at this moment un-
known) independent solutions y+(n) and y−(n) of (1) and propose the following representations
in the form of formal asymptotic expansions for large |Λ|:

y+(n) = y
(m)
+ (n) +R

(m)
+ (n), y−(n) = y

(m)
− (n) +R

(m)
− (n), (34)

with

y
(m)
± (n) :=

(
a±

√
a2 + Λ2

)n m−1∑
k=0

A(n, k)(
a±
√
a2 + Λ2

)k , (35)

and at this moment unknown coefficients A(n, k) and remainders R
(m)
± (n). When we introduce

(34) and (35) in the equation (1) we find that both, y+(n) and y−(n), formally satisfy this equation,

9



term-wise in (a+
√
a2 + Λ2)k and (a−

√
a2 + Λ2)k respectively if, for k = 0, 1, 2, . . ., the following

identities hold true:
A(n, 0) = 0, A(n, 1) = 1,

A(n+ 2, k + 2)− 2aA(n+ 1, k + 1)−A(n, k + 2) + 2aA(n, k + 1)

= g(n)A(n, k) + f(n)A(n+ 1, k + 1).

It is straightforward to show that we can solve this recursion in the variable k in the form (33).

Now, using that y+(n) and y−(n) satisfy equation (1), we find that the remainder terms R
(m)
+ (n)

and R
(m)
− (n) in (34) must be the solutions of the respective problems:

R
(m)
± (n+ 2)− 2aR

(m)
± (n+ 1)− Λ2R

(m)
± (n) =g(n)

(
R

(m)
± (n) +

A(n,m− 1)

(a±
√
a2 + Λ2)m−n−1

)
+ f(n)R

(m)
± (n+ 1) +

A(n+ 2,m)−A(n,m)

(a±
√
a2 + Λ2)m−n−2

,

R
(m)
± (0) = 0, R

(m)
± (1) = 0,

These problems for R
(m)
± (n) are identical to problem (9) for u(n) replacing g(n)φ(n)+f(n)φ(n+1)

by

g(n)
A(n,m− 1)

(a±
√
a2 + Λ2)m−n−1

+
A(n+ 2,m)−A(n,m)

(a±
√
a2 + Λ2)m−n−2

.

Therefore, proceeding as in the proof of Theorem 1, we find that R
(m)
+ (n) and R

(m)
− (n) satisfy an

equation similar to (10):

R
(m)
± (n) =

n−2∑
k=0

G(n, k)
[
g(k)R

(m)
± (k) + f(k)R

(m)
± (k + 1)

]
+

n−2∑
k=0

G(n, k)

[
g(k)

A(k,m− 1)

(a±
√
a2 + Λ2)m−k−1

+
A(k + 2,m)−A(k,m)

(a±
√
a2 + Λ2)m−k−2

]
.

We define now the normalized remainder:

R̃
(m)
± (n) :=

(
a±

√
a2 + Λ2

)−n
R

(m)
± (n).

Then, we have that

R̃
(m)
+ (n) =

1

2
√
a2 + Λ2

n−2∑
k=0

1−

(
a−
√
a2 + Λ2

a+
√
a2 + Λ2

)n−k−1[ g(k)R̃
(m)
+ (k)

a+
√
a2 + Λ2

+ f(k)R̃
(m)
+ (k + 1)

]

+
1

2
√
a2 + Λ2

n−2∑
k=0

1−

(
a−
√
a2 + Λ2

a+
√
a2 + Λ2

)n−k−1
×
[
g(k)

A(k,m− 1)

(a+
√
a2 + Λ2)m

+
A(k + 2,m)−A(k,m)

(a+
√
a2 + Λ2)m−1

]
.
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Taking bounds we find

|R̃(m)
+ (n)| ≤ 1

2
√
|a2 + Λ2|

n−2∑
k=0

∣∣∣∣∣∣1−
(
a−
√
a2 + Λ2

a+
√
a2 + Λ2

)n−k−1∣∣∣∣∣∣
[
|g(k)||R̃(m)

+ (k)|
|a+

√
a2 + Λ2|

+ |f(k)||R̃(m)
+ (k + 1)|

]

+
1

2
√
|a2 + Λ2|

n−2∑
k=0

∣∣∣∣∣∣1−
(
a−
√
a2 + Λ2

a+
√
a2 + Λ2

)n−k−1∣∣∣∣∣∣
[
|g(k)| |A(k,m− 1)|

|a+
√
a2 + Λ2|m

+
|A(k + 2,m)−A(k,m)|
|a+

√
a2 + Λ2|m−1

]
and

|R̃(m)
+ (n)| ≤ 1√

|a2 + Λ2|

n−2∑
k=0

[
|g(k)||R̃(m)

+ (k)|
|a+

√
a2 + Λ2|

+ |f(k)||R̃(m)
+ (k + 1)|

]

+
1√

|a2 + Λ2|

n−2∑
k=0

[
|g(k)||A(k,m− 1)|
|a+

√
a2 + Λ2|m

+
|A(k + 2,m)−A(k,m)|
|a+

√
a2 + Λ2|m−1

]
.

(36)

Defining now

h1(k) :=
1√

|a2 + Λ2|



|g(0)|
|a+

√
a2 + Λ2|

, if k = 0,

|g(k)|
|a+

√
a2 + Λ2|

+ |f(k − 1)|, if 1 ≤ k ≤ n− 2,

|f(n− 2)|, if k = n− 1,

and

h2(n) :=
‖g‖∞√

|a2 + Λ2||a+
√
a2 + Λ2|m

n−2∑
k=0

|A(k,m− 1)|

+
1√

|a2 + Λ2||a+
√
a2 + Λ2|m−1

n−2∑
k=0

|A(k + 2,m)−A(k,m)|,

we can rewrite bound (36) as

|R̃(m)
+ (n)| ≤ h2(n) +

n−1∑
k=0

h1(k)|R̃(m)
+ (k)|.

Applying discrete Gronwall’s Lemma [5], we find

|R̃(m)
+ (n)| ≤ h2(n) +

n−1∑
k=0

h2(k)h1(k)e
∑n−1

j=k+1 h1(j).

Thus, R̃
(m)
+ (n) = O(Λ−m), and then R

(m)
+ (n) =

(
a+
√
a2 + Λ2

)n
R̃

(m)
+ (n) = O(Λn−m). Simi-

larly, we obtain that R
(m)
− (n) = O(Λn−m). These bounds show the asymptotic character of the

expansions y±(n) ∼ y(m)
± (n) given in (34)-(35).

The unique solution y(n) of problem (3) is a certain linear combination of the two independent
solutions y+(n) and y−(n): y(n) = Ay+(n) + By−(n), for certain constants A and B. Therefore,
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the unique solution y(n) of problem (3) may be approximated, up to order O(Λn−m), by that linear

combination replacing y±(n) by their respective asymptotic approximations y
(m)
± (n). That is, we

have that y(n) = y(m)(n) + O(Λn−m), with y(m)(n) := Ay
(m)
+ (n) + By

(m)
− (n). We compute the

approximate value (up to order O(Λn−m)) of the constants A and B, by imposing the conditions
y(m)(0) = α and y(m)(1) = β, obtaining

A =
β(
√
a2 + Λ2 + a) + αΛ2

2
√
a2 + Λ2

, B =
β(
√
a2 + Λ2 − a)− αΛ2

2
√
a2 + Λ2

, (37)

from where (32) follows.

5 Examples

In this section we apply the two techniques proposed in the respective sections 2 and 4 for the
approximation of the solution of the second-order difference problem (3) to the particular examples
of the modified Bessel functions and the associated Legendre functions of the first kind.

Example 1. Consider the second-order difference equationy(n+ 2) +
2(n+ 1)

z
y(n+ 1)− y(n) = 0, n = 0, 1, 2, . . . ,

y(0) = 1, y(1) = I1(z)/I0(z),
(38)

where z ∈ C and I0(z) and I1(z) are modified Bessel functions and whose solution is y(n) =
In(z)/I0(z) (see [24, Formula 10.6.1]). After the change of dependent variable y(n) = u(n)/zn,
(38) can be written in the form{

u(n+ 2)− z2u(n) = −2(n+ 1)u(n+ 1),

u(0) = 1, u(1) = zI1(z)/I0(z).
(39)

This problem is of the form of equation (1) with a = 0, Λ2 = z2, g(n) = 0, f(n) = −2(n + 1),
α = 1 and β = zI1(z)/I0(z). The exact solution of (39) is given by u(n) = znIn(z)/I0(z).

Then, the iterative method introduced in Section 2 provides a convergent as well as an asymp-
totic expansion of In(z) for large |z| and fixed n given by the recurrence relation (7):

u(0)(n) = φ(n) =

{
zn, if n is even,

znI1(z)/I0(z), if n is odd.

and, for m = 0, 1, 2, ...,

u(m+1)(n) = φ(n)−
n−2∑
k=0

[
1− (−1)n−k−1

]
(k + 1)zn−k−2u(m)(k + 1). (40)

On the other hand, using Olver’s method given in Section 4, we find that In(z) admits, for large
z and fixed n, the asymptotic expansion (32), u(n) = u(m)(n) +O(Λn−m), with

u(m)(n) =
I1(z) + I0(z)

2I0(z)

m−1∑
k=0

A(n, k)

zk−n−1
+
I1(z)− I0(z)

2I0(z)

m−1∑
k=0

A(n, k)

(−z)k−n−1
(41)

where A(n, 0) = 0, A(n, 1) = 1 and

A(n, k + 2) = −2

bn/2c∑
j=1

(n+ 1− 2j)A(n+ 1− 2j, k + 1), k ≥ 0.
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Table 1 shows the asymptotic character of both methods, (40) and (41), in the approximation
of the terms u(8) and u(10) of the solution of problem (39) for different values of Λ and using the
approximation given by m = 5 and m = 6 respectively.

z Method (40) Method (41)

-9+100 i 0.00001388 0.00001388

-9+1000 i 1.38e−10 1.38e−10

-9+10000 i 1.38e−15 1.38e−15

z Method (40) Method (41)

100 0.00001425 0.00001425

1000 9.45e−12 9.45e−12

10000 9.10e−18 9.10e−18

Table 1: Relative errors in the approximation of the terms u(8) and u(10) in problem (39) using the
iterative method (40) and Olver’s method (41) for different values of Λ and form = 5 andm = 6 respectively.
The table shows the asymptotic character of both methods.

�

Example 2. Consider the second-order difference equationy(n+ 2) +
2(n+ 1)z√
z2 − 1

y(n+ 1) +

[(
n+

1

2

)2

− τ2
]
y(n) = 0, n = 0, 1, 2, ...,

y(0) = 1, y(1) = P 1
τ−1/2(z)/P

0
τ−1/2(z),

(42)

where z, τ ∈ C and P 0
τ−1/2(z) and P 1

τ−1/2(z) are associated Legendre functions of the first kind.

The unique solution of this problem is y(n) = Pnτ−1/2(z)/P
0
τ−1/2(z) (see [6, Formula 14.10.6]).

This problem is of the type (1) with a = 0, Λ = τ , g(n) = −
(
n+ 1

2

)2
, f(n) = −2(n+1)z√

z2−1 , α = 1

and β = P 1
τ−1/2(z)/P

0
τ−1/2(z). The exact solution of (42) is y(n) = Pnτ−1/2(z)/P

0
τ−1/2(z).

Then, the iterative method introduced in Section 2 provides a convergent as well as an asymp-
totic expansion of Pnτ−1/2(z) for large |τ | and fixed n given by the recurrence relation (7):

y(0)(n) = φ(n) =
P 0
τ−1/2(z)τ + P 1

τ−1/2(z)

2τP 0
τ−1/2(z)

τn +
P 0
τ−1/2(z)τ − P

1
τ−1/2(z)

2τP 0
τ−1/2(z)

(−τ)n.

and, for m = 0, 1, 2, . . .,

y(m+1)(n) = φ(n)− 1

2τ

n−2∑
k=0

[
τn−k−1 − (−τ)n−k−1

] [(
k +

1

2

)2

y(m)(k) +
2(k + 1)z√
z2 − 1

y(m)(k + 1)

]
.

(43)
On the other hand, using Olver’s method given in Section 4, we have that Pnτ−1/2(z) can be

approximated, for large τ and fixed n, by the expansion (32): y(n) = y(m)(n) +O(Λn−m), with

y(m)(n) =
P 1
τ−1/2(z) + P 0

τ−1/2(z)τ

2P 0
τ−1/2(z)

τn
m−1∑
k=0

A(n, k)

τk
+
P 1
τ−1/2(z)− P

0
τ−1/2(z)τ

2P 0
τ−1/2(z)

(−τ)n
m−1∑
k=0

A(n, k)

(−τ)k
,

(44)
where A(n, 0) = 0, A(n, 1) = 1 and

A(n, k+ 2) = −
bn/2c∑
j=1

[(
n− 2j +

1

2

)2

A(n− 2j, k) +
2(n+ 1− 2j)z√

z2 − 1
A(n+ 1− 2j, k + 1)

]
, k ≥ 0.
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Table 2 shows the asymptotic character of the two methods, (43) and (44), in the approximation
of the term y(5) for z = 2 of the solution of problem (42) for different values of τ and using the
approximation given by m = 4.

τ Method (43) Method (44)

5 0.31558587 0.13986491

50 0.00011022 0.00004879

500 1.09e−8 4.83e−9

τ Method (43) Method (44)

5 eiπ/4 0.23446498 0.10377073

50 eiπ/4 0.00009004 0.00003290

500 eiπ/4 1.07e−8 3.12e−9

Table 2: Relative errors in the approximation of the term y(5) of problem (42) using the iterative method
(43) and Olver’s method (44) for different values of τ , z = 2 and m = 4. The table shows the asymptotic
character of both methods.

�

6 Final remarks

From the first example of the previous section we may suspect that the approximations given by
both, the iterative method and Olver’s method, are exactly the same ones (at any order m). In
fact, this is true and is not genuine of this example, but a general property for any difference
equation with a = 0 and g(n) = 0: under these circumstances, the iterative method (7) reads

y(m+1)(n) = φ(n) +

bn/2c∑
k=1

Λ2k−2f(n− 2k)y(m)(n+ 1− 2k), y(0)(0) = 0, (45)

with

φ(n) =
αΛ + β

2Λ
Λn +

αΛ− β
2Λ

(−Λ)n. (46)

On the other hand, Olver’s approximation (32) reads

y(m)(n) =
m−1∑
k=0

[
αΛ + β

2Λ
Λn−k+1 +

αΛ− β
2Λ

(−Λ)n−k+1

]
A(n, k) =

m−1∑
k=0

φ(n− k + 1)A(n, k), (47)

with

A(n, k + 2) =

bn/2c∑
j=1

f(n− 2j)A(n+ 1− 2j, k + 1), (48)

and A(n, 0) = 0, A(n, 1) = 1. It can be checked that, Olver’s approximation (47) satisfies the
recurrence relation (45) and (46) if and only if the coefficients A(n, k) in (47) verify the equation
(48). Thus, for a = 0 and g(n) = 0, the iterative method and Olver’s method provide the same
expansion and we can deduce that, in this case, Olver’s method is not only asymptotic but also
convergent.

In the continuous case (Olver’s theory [23, Chap. 10] for linear second order differential equa-
tions), the two coefficients A and B of the linear combination of the two approximate independent
solutions must be computed at every step of the approximation an then, they depend on the order
m of the approximation. The situation is very different in the discrete case because, as we see in
(37), the coefficients A and B of the linear combination that gives the approximate solution of

problem (3): y(m)(n) = Ay
(m)
+ (n) +By

(m)
− (n), are independent of the degree m of the approxima-

tion. Once they are computed for a certain order m of the approximation, they are computed for
any order.
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