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Abstract

In this paper we investigate the extension of the multiple Erdélyi-Kober
fractional integral operator of Kiryakova to arbitrary complex values of pa-
rameters by the way of regularization. The regularization involves deriva-
tives of the function in question and the integration with respect to a kernel
expressed in terms of special case of Meijer’s G function. An action of the
regularized multiple Erdélyi-Kober operator on some simple kernels leads
to decomposition formulas for the generalized hypergeometric functions. In
the ultimate section, we define an alternative regularization better suited
for representing the Bessel type generalized hypergeometric function p−1Fp.
A particular case of this regularization is then used to identify some new
facts about the positivity and reality of zeros of this function.
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1. Introduction: generalized fractional calculus

Throughout the paper we will use the standard notation pFq for the
generalized hypergeometric function (see [2, Section 2.1], [24, Section 5.1],
[26, Sections 16.2-16.12] or [4, Chapter 12]) and Gm,np,q for the Meijer’s G
function (see [24, section 5.2], [26, 16.17], [27, 8.2] or [4, Chapter 12]).

In [20, Definition 1.1.1] V. Kiryakova introduced the generalized frac-
tional calculus that emerged from the study of the hyper-Bessel integral
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and differential operators of Dimovski [23] and is based on the multiple
Erdélyi-Kober operator defined for β > 0 by

[Ia,dβ,p f ](x) =

∫ 1

0
G0(t)f(xt1/β)dt, where G0(t) := Gp,0p,p

(
t

∣∣∣∣b− 1
a− 1

)
(1.1)

and d = b− a ≥ 0 in the space Cα, α ≥ −min(a), of continuous functions
on [0,∞) satisfying the asymptotic relation f(x) = O(xα+ε) as x → 0 for
any ε > 0 (note a slight change of notation from [23]). See also more
recent surveys [22] and [23]. One of the key results is the commutative
factorization formula [20, Theorem 1.2.10]

Ia,dβ,p = I
ap,dp
β · · · Ia2,d2β Ia1,d1β

in terms of Erdélyi-Kober operators [20, (1.1.17)]

[Iα,δβ f ](x) =
x−β(α+δ−1)

Γ(δ)

∫ x

0
(xβ − tβ)δ−1tβ(α−1)f(t)d(tβ).

A further generalization with a kernel expressed in terms of Fox’s H func-
tion was considered in [22, (16)]. It was then shown in [20, Chapter 4]
and [21] that all generalized hypergeometric functions can be expressed as

the images of the operator Ia,dβ,p acting on a few basic kernels, like expo-

nentials, powers and (generalized) cosines. In our recent paper [11] as well
in a series of papers [9, 10, 13, 15, 17, 18] by the first author jointly with
Kalmykov, Prilepkina and Sitnik we demonstrated surprising effectiveness
of such representations for discovering both new and known facts about the
generalized hypergeometric functions. Furthermore, in [11] we suggested a
simple method for regularizing the β = 1 case of the integral (1.1) when
it diverges (in particular, if α < −min(a)). Writing φx(t) :→ f(xt) in our
formula [11, (39)] we obtain:

[Ia,d1,p f ](x) =

n−1∑
k=0

(a)kx
k

(b)kk!
f (k)(0) +

xnΓ(b)

Γ(a)

∫ 1

0
G̃n(t)f (n)(xt)dt, (1.2)

where b = a + d and

G̃n(t) := Gp+1,0
p+1,p+1

(
t

∣∣∣∣b− 1 + n, n
a− 1 + n, 0

)
, n = 0, 1, . . . (1.3)

This allows to extend the definition of Ia,d1,p to arbitrary complex parame-
ters, but the price we pay is that f has to be infinitely differentiable. As the
kernels we act on in order to get the generalized hypergeometric functions
satisfy a differentiability requirement, in [11] we obtained some represen-
tations of these functions that extend those from [20, Chapter 4] and [21].
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In this paper, we continue this line of research and suggest a different reg-
ularization of the integral (1.1), which leads to another representation of

the multiple Erdélyi-Kober operator Ia,dβ,p involving derivatives of f at the

point x, see (2.10) and (3.19) below. This regularization can be applied
for general β > 0. More specifically, for certain values of the parameter
vectors a = (a1, . . . , ap) and b = (b1, . . . , bp) the function G0(t) from (1.1)
has non-integrable power singularities at t = 0 and/or t = 1. The regu-
larization from [11, Section 5.2] uses the Taylor coefficients of the function
ϕx(t) = f(xt) at the point t = 0 to overcome this divergence. The main
emphasis in this work will be made on the regularization of (1.1) based
on the expansion of ϕx(t) in the neighborhood of t = 1. This required

a detailed investigation of the properties of the function Gp,1p+1,p+1 which

are less known than those of the Meijer-Nørlund function Gp,0p,p and might
be of independent interest. We conduct such investigation in Section 2.
In particular, we derive an identity relating Gp,1p+1,p+1 with Gp+1,0

p+1,p+1 (un-

der a certain restriction on the parameters), a regularization formula for

Gp,1p+1,p+1 when the poles of the integrand of different types superimpose, an

expression for the moments of the function Gp,1p+1,p+1 and a formula for its
hypergeometric transform which incorporates generalized Stieltjes, Laplace
and Hankel transforms. Furthermore, we prove a proposition on sign sta-
bilization for Gp,1p+1,p+1 when all but one of the parameters grow infinitely.
In Section 3 we utilize the new properties from Section 2 to define and
study a regularization of the integral (1.1) that uses Taylor coefficients of
ϕx(t) = f(xt) at the point t = 1. Applying this regularization method to
generalized Stieltjes, Laplace and cosine Fourier kernels we obtain new in-
tegral representations of the generalized hypergeometric functions. Finally,
in the ultimate Section 4 we define an alternative regularization of (1.1)
tailored for β = 2 and better suited to serve the generalized hypergeomet-
ric function of the Bessel type. This approach leads to new information
about positivity and real zeros of this function also presented in the same
section.

2. Regularization of the multiple Erdélyi-Kober operator

Let us fix some notation and terminology first. The standard symbols
N, Z, R and C will be used to denote the natural, integer, real and complex
numbers, respectively; N0 = N ∪ {0}. In what follows we will use the
shorthand notation for the products and sums:

Γ(a) := Γ(a1)Γ(a2) · · ·Γ(ap), (a)n := (a1)n(a2)n · · · (ap)n,

a + µ := (a1 + µ, a2 + µ, . . . , ap + µ);
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inequalities like <(a) > 0 and properties like −a /∈ N0 will be understood
element-wise (i.e. −a /∈ N0 means that no element of a is a non-positive
integer). The key role in our construction will be played by the function

Gp,1p+1,p+1

(
t

∣∣∣∣n,b + n− 1
a + n− 1, 0

)
=

1

2πi

∫
L

Γ(a + n− 1 + s)Γ(1− n−s)
Γ(b + n− 1 + s)Γ(1− s)

t−sds,

(2.4)

which we denote Ĝn(t), where a := (a1, . . . , ap), b := (b1, . . . , bp) are (gen-
erally complex) parameter vectors. For |t| < 1 the contour L is a left loop
that separates the poles of the integrand of the form ajl = 1 − aj − n − l,
l ∈ N0, leaving them on the left from the poles of the form 1−n+k, k ∈ N0,
leaving them on the right. By definition the two types of poles must not
superimpose, which translates into the condition −aj /∈ N0. If they do,
the definition can still be repaired by the regularization recently elaborated
by us in [12, Proposition 2]. Further details regarding the choice of the
contour and convergence of the integral can be found, for instance, in [19,
section 1.1] or in [11, section 2].

Define CB∞[0, 1] to be the class of functions on [0, 1] that have deriva-
tives of all orders which are all bounded on [0, 1]. If ϕ ∈ CB∞[0, 1], then

the integral (1.1) with ϕ(t) = f
(
xt1/β

)
takes the form:∫ 1

0
G0(t)ϕ(t)dt, where G0(t) = Gp,0p,p

(
t

∣∣∣∣b− 1
a− 1

)
. (2.5)

This integral converges (i.e. exists as an improper integral) if the next two
conditions are satisfied:

a := min(<a1,<a2, . . . ,<ap) > 0 and <(ψ) := <
[∑p

k=1
(bk − ak)

]
> 0.

(2.6)
It also converges if the second condition is replaced by ψ = 0,−1,−2, . . .
These claims are immediate from the properties of G0(t) elaborated in [11,

section 2]. Note that, for <(a) > 0, the function Ĝn(t) defined in (2.4) can

be computed as the n−th primitive of G0(x) that satisfies Ĝ
(k)
n (0) = 0 for

k = 1, 2, . . . , n

Ĝn(t) =
1

(n− 1)!

∫ t

0
G0(x)(t− x)n−1dx. (2.7)

To convert the set CB∞[0, 1] into a test function space, define the con-
vergence in CB∞[0, 1] as follows: a sequence {ϕj} ⊂ CB∞[0, 1] converges to
an element ϕ ∈ CB∞[0, 1] if

max
x∈[0,1]

|ϕ(k)
j (x)− ϕ(k)(x)| → 0 as j →∞
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for each nonnegative integer k. This space can be viewed as a space of
restrictions of smooth periodic functions (say with period 2) considered in
[3, Chapter 3, paragraph 2] to the interval [0, 1]. Then it follows from [3,
Theorem 2.1] that this space is complete. In this section we will define
a regularization of the integral (2.5) assigning a finite value to it for ar-
bitrary values of a and ψ. Our regularization coincides with the analytic
continuation in parameters a and b, so that its application to the general-
ized Stieltjes, exponential or cosine Fourier kernel leads expectedly to the
generalized hypergeometric functions.

Definition 2.1. For arbitrary complex a and b, −b /∈ N0, choose a
nonnegative integer n > −min(a,<(ψ)), where a and ψ are given in (2.6).
Define a regularization of the integral (2.5) as the distribution G1 = G1(a,b)
acting on a test function ϕ ∈ CB∞[0, 1] according to the formula

〈G1, ϕ〉=
n−1∑
k=0

(−1)kϕ(k)(1)

k!
p+1Fp

(
a,−k

b

∣∣∣∣ 1)+
(−1)nΓ(b)

Γ(a)

∫ 1

0
Ĝn(t)ϕ(n)(t)dt,

(2.8)

where Ĝn(t) is given in (2.4). If n = 0 the finite sum in (2.8) is understood
to be empty, so that (2.8) reduces to a multiple of (2.5).

The asymptotic properties of Ĝn(t) (at t → 0 and t → 1) contained
in [12, Propositions 3 and 4] show the correctness of the above definition:
the integral in (2.8) exists as a finite number for all ϕ ∈ CB∞[0, 1] under
the conditions stated in the definition. When n > 0 the above definition is
motivated by the following argument. Replace ϕ(t) in (2.5) by its Taylor
expansion at t = 1:

ϕ(t) =
n−1∑
k=0

ϕ(k)(1)

k!
(t− 1)k + ϕn(t),

where ϕn(t) is the Taylor remainder. Applying [11, (19)], we obtain the
right hand side of (2.8), but with the second term replaced by

Γ(b)

Γ(a)

∫ 1

0
G0(t)ϕn(t)dt.

Integrating by parts n times and using (2.7) and ϕ
(n)
n (t) = ϕ(n)(t), ϕ

(k)
n (1) =

Ĝk+1(0) = 0 for k = 0, 1, . . . , n − 1, we obtain (2.8). Therefore, for any
n ∈ N the integral (2.5) equals the right hand side of (2.8) when a > 0 and
<(ψ) > 0. Moreover, the right hand side of (2.8) is an analytic function
of the parameters a and meromorphic function of the parameters b with
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simple poles at −bi ∈ N0; hence, the right hand side of (2.8) gives an
expression for the analytic continuation of (2.5) in a to the domain <(a) >
−n and its meromorphic continuation in b to the domain <(ψ) > −n. We
conclude that the family of distributions G1 = G1(a,b) is analytic in the
parameters a and meromorphic in b with simple poles at −bi ∈ N0 in the
above domain.

Remark. The regularization defined in (2.8) can be easily seen to
equal the Hadamard finite part of the divergent integral (2.5). See [7, 8]
for details. However, we observe a new phenomenon here. In general, the
Hadamard finite part constructed to overcome divergence at unity does
not alter the situation at other points, while formula (2.8) regularizes the
integral (2.5) at both points, 0 and 1, simultaneously.

Theorem 2.1. G1 is a continuous linear functional on CB∞[0, 1] and
its definition is independent of n.

P r o o f. Linearity is obvious. For continuity, assume that ϕj → ϕ in

CB∞[0, 1] and define fk := (k!)−1p+1Fp

(
−k,a

b

∣∣∣∣ 1). Then

|〈G1, ϕj〉 − 〈G1, ϕ〉| = |〈G1, ϕj − ϕ〉| ≤
n−1∑
k=0

|fk||ϕ
(k)
j (1)− ϕ(k)(1)|

+ max
x∈[0,1]

|ϕ(k)
j (x)− ϕ(k)(x)|

∣∣∣∣Γ(b)

Γ(a)

∣∣∣∣ ∫ 1

0
|Ĝn(t)|dt→ 0 as j →∞

by the definition of convergence in CB∞[0, 1] and because the last integral

in finite by the asymptotic relations for Ĝn(t) around t = 0 and t = 1 given
in [12, Propositions 3 and 4]. Finally, write G1,n for the distribution G1
with n terms in the sum (2.8) and G1,m for m 6= n terms. By definition we
must choose n,m > −<(ψ). Assume without loss of generality that n > m
and let ϕ be an arbitrary test function. Integration by parts yields

〈G1,n, ϕ〉 − 〈G1,m, ϕ〉 =

n−1∑
k=m

(−1)kfkϕ
(k)(1)

+
(−1)nΓ(b)

Γ(a)

∫ 1

0
Ĝn(t)ϕ(n)(t)dt− (−1)mΓ(b)

Γ(a)

∫ 1

0
Ĝm(t)ϕ(m)(t)dt
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=
n−1∑
k=m

(−1)kfkϕ
(k)(1)

+
Γ(b)

Γ(a)

{
(−1)n

∫ 1

0
Ĝn(t)ϕ(n)(t)dt− (−1)m Ĝm+1(t)ϕ

(m)(t)
∣∣∣1
0

+ (−1)m
∫ 1

0
Ĝm+1(t)ϕ

(m+1)(t)dt

}
=

n−1∑
k=m+1

(−1)kfkϕ
(k)(1) +

(−1)nΓ(b)

Γ(a)

∫ 1

0
Ĝn(t)ϕ(n)(t)dt

− (−1)m+1Γ(b)

Γ(a)

∫ 1

0
Ĝm+1(t)ϕ

(m+1)(t)dt,

where we used Ĝm+1(0) = 0, Ĝm+1(1) = Γ(a)fm/Γ(b) (see [12, Proposi-
tion 6] for the proof of the last formula). Repeating integration by parts
(n −m) times and using the above calculation clearly leads to 〈G1,n, ϕ〉 −
〈G1,m, ϕ〉 = 0. 2

We can now apply regularization (2.8) to extend the definition of the
multiple Erdélyi-Kober operator (1.1). Taking

φx(t) = f
(
xt1/β

)
we can calculate, using [6, Exercise 7, p.157],

dk

dtk
φx(t) =

k∑
j=1

f (j)
(
xt1/β

)
xjtj/β−kZk,j

(
1/β

)
,

with coefficients Zk,j(α) generated by(
(1 + y)α − 1

)j
j!

=
∑
k≥j

Zk,j(α)
yk

k!
. (2.9)

Substituting these formulas into (2.8) we obtain

[Ia,dβ,p f ](x) =
n−1∑
k=0

(−1)k

k!
p+1Fp

(
a,−k

b

∣∣∣∣ 1) k∑
j=1

f (j)
(
x
)
xjZk,j

(
1/β

)
+

(−1)nΓ(b)

Γ(a)

n∑
j=1

xjZn,j
(
1/β

) ∫ 1

0
Ĝn(t)f (j)

(
xt1/β

)
tj/β−ndt. (2.10)
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As, clearly, Zk,j
(
1
)

= 0 for j = 1, . . . , k − 1 and Zk,k
(
1
)

= 1, the above
formula simplifies for β = 1 to

[Ia,dβ,p f ](x) =

n−1∑
k=0

(−x)k

k!
p+1Fp

(
a,−k

b

∣∣∣∣ 1) f (k)(x)
+

(−x)nΓ(b)

Γ(a)

∫ 1

0
Ĝn(t)f (n)

(
xt
)
dt.

Note that the coefficients Zk,j(α) can be computed explicitly for α = 1/2
and α = 2 by [6, Exercise 7, p.157]:

Zk,j(1/2) = (−1)k−j
(k − 1)!

(j − 1)!

(
2k − j − 1

k − 1

)
1

22k−j
,

Zk,j(2) =
k!

j!

(
j

k − j

)
1

22j−k
.

Theorem 2.2. For arbitrary a ∈ Cp, b ∈ Cp, −b /∈ N0, and c ∈ Cu,
d ∈ Cs,−d /∈ N0, choose a nonnegative integer n > −min(a,<(ψ)), where
a and ψ are defined in (2.6). Then

〈G1(a,b), uFs(c; d;−zt)〉 = u+pFs+p

(
a, c
b,d

∣∣∣∣−z) (2.11)

for all z ∈ C if u ≤ s and for all z ∈ C\(−∞,−1] if u = s+ 1.

P r o o f. Indeed, for <(ψ) > 0 and <(a) > 0 the action of G1 reduces to
the integral (2.5), so that formula (2.11) coincides with [10, (4)]. For general
a and ψ the claim then follows by analytic continuation in parameters, as
both sides of (2.11) are analytic in a and meromorphic in b. 2

Remark. By definition of G1 the expression on the left hand side of
(2.11) is the sum

n−1∑
k=0

(c)kz
k

(d)kk!
uFs(c + k; d + k;−z) p+1Fp

(
a,−k

b

∣∣∣∣ 1)
+
zn(c)nΓ(b)

(d)nΓ(a)

∫ 1

0
Ĝn(t)uFs(c + n; d + n;−zt) dt

The fact that this sum is equal to the generalized hypergeometric function
of the right hand side of (2.11) can also be established directly by a combi-
nation of [12, Proposition 7] and [12, Corollary 3]. This gives an alternative
direct proof of the above theorem.
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The most important particular cases of Theorem 2.2 are given in the
next corollary.

Corollary 2.1. Under conditions of Theorem 2.2 we have:

〈G1(a,b), (1 + zt)−σ〉 = p+1Fp

(
σ,a
b

∣∣∣∣− z) (2.12)

for all z ∈ C\(−∞,−1], σ ∈ C,

〈G1(a,b), e−zt〉 = pFp

(
a
b

∣∣∣∣− z) (2.13)

and

〈G1(a,b), cos(2
√
zt)〉 = p−1Fp

(
â
b

∣∣∣∣− z) (2.14)

for all z ∈ C, where a = (â, 1/2) in the last formula.

P r o o f. Indeed, (2.12) and (2.13) are obviously particular cases of
(2.11). The last formula (2.14) is also a particular case of (2.11) in view of
a = (â, 1/2) and cos

(
2
√
zt
)

= 0F1(−; 1/2;−zt). 2

The next elementary lemma on sign stabilization of the Riemann-Liouville
fractional integral may be of independent interest. The proof is given in
[12, Lemma 1].

Lemma 2.1. Suppose f : (0, 1] → R is continuous and integrable
(possibly in improper sense). If f > 0 in some neighborhood of zero, then
there exists α > 0 such that the Riemann-Liouville fractional integral

[Iα+f ](x) =
1

Γ(α)

∫ x

0
f(t)(x− t)α−1dt

is positive for all x ∈ (0, 1].

The above lemma leads to the following statement regarding the sign

stabilization of Ĝn/Γ(a) as n grows to infinity.

Corollary 2.2. For arbitrary real vectors a, b there exists N ∈ N0

such that
(−1)η

Γ(a)
Gp,1p+1,p+1

(
t

∣∣∣∣n,b + n− 1
a + n− 1, 0

)
> 0

for all n ≥ N , t ∈ (0, 1], where η ∈ {0, 1} is chosen so that this expression
is positive in arbitrarily small right neighborhood of t = 0.
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Remark. If b − a does not contain non-positive integers, where a is
defined in (2.6), then

(−1)η = sgn

[
1

Γ(a)(a)n
∏p
i=1 Γ(bi − a)

]
.

Further details on determination of η are given in [12, (22)].
The combination of Corollary 2.1 with Corollary 2.2 leads to the de-

composition formulas presented in the following theorem.

Theorem 2.3. Suppose that a, b are arbitrary real vectors of size p
such that −b /∈ N0 and σ is any real number. Then there exists N ∈ N0,
such that for all n ≥ N ,

1

Γ(b)
p+1Fp

(
σ,a
b

∣∣∣∣− z) =
1

Γ(b)

n−1∑
k=0

zk(σ)k
(z + 1)σ+kk!

p+1Fp

(
a,−k

b

∣∣∣∣ 1)
+ (−1)η(σ)nz

n

∫ 1

0

µn(dt)

(1 + zt)σ+n
,

1

Γ(b)
pFp

(
a
b

∣∣∣∣− z)=
e−z

Γ(b)

n−1∑
k=0

zk

k!
p+1Fp

(
a,−k

b

∣∣∣∣ 1)+(−1)ηzn
∫ 1

0
e−ztµn(dt)

and, with a = (â, 1/2),

1

Γ(b)
p−1Fp

(
â
b

∣∣∣∣− z) =
1

Γ(b)

n−1∑
k=0

zk0F1(−; k + 1/2;−z)
(1/2)kk!

p+1Fp

(
−k,a

b

∣∣∣∣ 1)
+ (−1)η

zn

(1/2)n

∫ 1

0
0F1(−;n+ 1/2;−zt)µn(dt),

where

µn(dt) :=
(−1)η

Γ(a)
Gp,1p+1,p+1

(
t

∣∣∣∣n,b + n− 1
a + n− 1, 0

)
dt

is a positive measure. The meaning of η is explained in Corollary 2.2.

3. Alternative regularization for β = 2

The regularized expression (2.10) is rather complicated even for β = 2
when the coefficients Zk,j(1/2) are given explicitly. In this section we sug-
gest an alternative regularization for β = 2 which corresponds to a com-
position of the classical Kober-Erdélyi operators. This new regularization
does not involve the coefficients Zk,j and avoids double sums. Furthermore,

the decomposition corresponding to 〈G1(a,b), cos(
√
zt)〉 given by the last

formula of Theorem 2.3 contains a non-elementary Bessel function 0F1. Our
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alternative regularization developed in this section contains only the ele-
mentary cosine function, which is useful in particular, when studying zeros
of the Bessel type hypergeometric function. It is natural to start with [11,
(5)]:

p−1Fp

(
â
b

∣∣∣∣− z) =
Γ(b)√
πΓ(â)

∫ 1

0
cos(2

√
zt)Gp,0p,p

(
t

∣∣∣∣b− 1
â− 1,−1/2

)
dt.

Setting t = u2 and changing z → z2/4 we get

p−1Fp

(
â
b

∣∣∣∣− z2

4

)
=

2Γ(b)√
πΓ(â)

∫ 1

0
cos(zu)Gp,0p,p

(
u2
∣∣∣∣b− 1/2
â− 1/2, 0

)
du. (3.15)

Hence, we need to regularize integrals of the form∫ 1

0
Gp,0p,p

(
u2
∣∣∣∣b− 1/2
a− 1/2

)
φ(u)du =

1

2

∫ 1

0
Gp,0p,p

(
t

∣∣∣∣b− 1
a− 1

)
φ
(√
t
)
dt (3.16)

which corresponds to the regularization of the multiple Erdélyi-Kober op-
erator (1.1) with β = 2 once we write φx(

√
t
)

= f(x
√
t
)
. Assuming

φ ∈ CB∞[0, 1], we apply Taylor’s theorem with integral remainder to φ
in the neighborhood of u = 1 to obtain∫ 1

0
Gp,0p,p

(
u2
∣∣∣∣b− 1/2
a− 1/2

)
φ(u)du =

∫ 1

0
Gp,0p,p

(
u2
∣∣∣∣b− 1/2
a− 1/2

)

×

n−1∑
k=0

φ(k)(1)

k!
(u− 1)k +

1

(n− 1)!

u∫
1

(u− t)n−1φ(n)(t)dt

du
=
n−1∑
k=0

φ(k)(1)

(−1)kk!

1∫
0

Gp,0p,p

(
u2
∣∣∣∣b− 1/2
a− 1/2

)
(1− u)kdu

+
(−1)n

Γ(n)

1∫
0

Gp,0p,p

(
u2
∣∣∣∣b− 1/2
a− 1/2

)
du

1∫
u

(t− u)n−1φ(n)(t)dt. (3.17)

By substitution t = u2 and separation of odd and even terms, the leftmost
integral in the last expression is elaborated as follows:∫ 1

0
Gp,0p,p

(
u2
∣∣∣∣b− 1/2
a− 1/2

)
(1−u)kdu=

k∑
j=0

(−1)j
(
k

j

)∫ 1

0
Gp,0p,p

(
u2
∣∣∣∣b− 1/2
a− 1/2

)
ujdu

=
1

2

k∑
j=0

(−1)j
(
k

j

)∫ 1

0
Gp,0p,p

(
t

∣∣∣∣b− 1/2
a− 1/2

)
tj/2−1/2dt =

k∑
j=0

(−k)jΓ(a + j/2)

2Γ(b + j/2)j!
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=

k∑
j=0
j=2m

(−k)jΓ(a + j/2)

2Γ(b + j/2)j!
+

k∑
j=0

j=2m+1

(−k)jΓ(a + j/2)

2Γ(b + j/2)j!

=

k/2∑
m=0

(−k/2)m(−k/2 + 1/2)mΓ(a +m)

2(1/2)mΓ(b +m)m!

+

(k−1)/2∑
m=0

(−k)(−k/2 + 1)m(−k/2 + 1/2)mΓ(a + 1/2 +m)

2Γ(b + 1/2 +m)(3/2)mm!

=
Γ(a)

2Γ(b)
p+2Fp+1

(
−k/2,−k/2 + 1/2,a

1/2,b

)
− kΓ(a + 1/2)

2Γ(b + 1/2)
p+2Fp+1

(
−k/2 + 1,−k/2 + 1/2,a + 1/2

3/2,b + 1/2

)
,

where we utilized the shorthand notation pFq(a; b) = pFq(a; b; 1) and the
easily verifiable identities

(2m)! = 4m(1/2)mm!, (2m+ 1)! = 4m(3/2)mm!,

(−k)2m = 4m(−k/2)m(−k/2 + 1/2)m,

(−k)2m+1 = (−k)4m(−k/2 + 1)m(−k/2 + 1/2)m.

Further, using [27, formula 2.24.2.2] for the second term in the last line of
(3.17), we get

1∫
0

Gp,0p,p

(
u2
∣∣∣∣b− 1/2
a− 1/2

)
du

1∫
u

(t− u)n−1φ(n)(t)dt

=

1∫
0

φ(n)(t)dt

t∫
0

Gp,0p,p

(
u2
∣∣∣∣b− 1/2
a− 1/2

)
(t− u)n−1du

=
(n− 1)!

2n

∫ 1

0
Gp,2p+2,p+2

(
t2
∣∣∣∣n/2, (n+ 1)/2,b + (n− 1)/2
a + (n− 1)/2, 0, 1/2

)
φ(n)(t)dt.

Combining these formulas we can define the regularization of the integral
(3.16) as follows.

Definition 3.1. For arbitrary complex a and b, −b /∈ N0, choose
a nonnegative integer n > −min(a,<(ψ)), where a and ψ are given in
(2.6). Define a regularization of the integral (3.16) as the distribution
G1b = G1b (a,b) acting on a test function φ ∈ CB∞[0, 1] according to the



MULTIPLE ERDÉLYI-KOBER OPERATOR 13

formula

〈G1b , φ〉 =

n−1∑
k=0

φ(k)(1)

(−1)kk!

{
Γ(a)

2Γ(b)
p+2Fp+1

(
−k/2,−k/2 + 1/2,a

1/2,b

)
− kΓ(a + 1/2)

2Γ(b + 1/2)
p+2Fp+1

(
−k/2 + 1,−k/2 + 1/2,a + 1/2

3/2,b + 1/2

)}
+

(−1)n

2n

∫ 1

0
Gp,2p+2,p+2

(
t2
∣∣∣∣n/2, (n+ 1)/2,b + (n− 1)/2
a + (n− 1)/2, 0, 1/2

)
φ(n)(t)dt.

(3.18)

If n = 0 the finite sum in (3.18) is understood to be empty, so that (3.18)
reduces to a multiple of (3.16).

An argument similar to that given in the previous section shows that
G1b is a continuous linear functional on CB∞[0, 1], whose definition is in-
dependent of n. Furthermore, 〈G1b , φ〉 coincides with the analytic contin-
uation of (3.16) in the parameters a and b. In view of (3.16) choosing
φx(u) = f(xu) = f(x

√
t
)

we obtain a regularization of the multiple Erdélyi-
Kober operator (1.1) with β = 2 as follows:

[Ia,d2,p f ](x) = 2

n−1∑
k=0

xkf (k)(x)

(−1)kk!

{
Γ(a)

2Γ(b)
p+2Fp+1

(
−k/2,−k/2 + 1/2,a

1/2,b

)
− kΓ(a + 1/2)

2Γ(b + 1/2)
p+2Fp+1

(
−k/2 + 1,−k/2 + 1/2,a + 1/2

3/2,b + 1/2

)}
+

(−x)n

2n−1

∫ 1

0
Gp,2p+2,p+2

(
t2
∣∣∣∣n/2, (n+ 1)/2,b + (n− 1)/2
a + (n− 1)/2, 0, 1/2

)
f (n)(xt)dt.

(3.19)

Using

∂k

∂uk
cos(zu) = zk cos(zu+ πk/2)
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and setting a = (â, 1/2), we then obtain

p−1Fp

(
â
b

∣∣∣∣− z24
)

=
n−1∑
k=0

zk cos(z + πk/2)

(−1)kk!

{
p+2Fp+1

(
−k/2,−k/2 + 1/2,a

1/2,b

)
− kΓ(b)Γ(a + 1/2)

Γ(a)Γ(b + 1/2)
p+2Fp+1

(
−k/2 + 1,−k/2 + 1/2,a + 1/2

3/2,b + 1/2

)}
+

(−z)nΓ(b)

2n−1Γ(a)

∫ 1

0
Gp,2p+2,p+2

(
t2
∣∣∣∣n/2, (n+ 1)/2,b + (n− 1)/2
a + (n− 1)/2, 0, 1/2

)
cos(zt+πn/2)dt.

(3.20)

We will use a particular case of (3.20) to extract some information about
the zeros of the function on the left hand side. In order to do his, we need
to recall some facts regarding the positivity of the Meijer-Nørlund function
Gp,0p,p. We follow [11, Property 9]. The inequality

Gp,0p,p

(
x

b
a

)
≥ 0 for 0 < x < 1

holds if va,b(t) :=
∑p

j=1(t
aj − tbj ) ≥ 0 for t ∈ [0, 1]. See [10, Theorem 2]

for a proof of this fact and [14, Section 2] for further details. Note also
that va,b(t) ≥ 0 implies that ψ =

∑p
j=1(bj − aj) ≥ 0. For given a, b the

inequality va,b(t) ≥ 0 is not easy to verify other than numerically. However,
several sufficient conditions for va,b(t) ≥ 0 expressed directly in terms of
a, b are known. In particular, according to [1, Theorem 10] va,b(t) ≥ 0 on
[0, 1] if

0 < a1 ≤ a2 ≤ · · · ≤ ap, 0 < b1 ≤ b2 ≤ · · · ≤ bp,
k∑
i=1

ai ≤
k∑
i=1

bi for k = 1, 2 . . . , p.
(3.21)

These inequalities are known as the weak supermajorization and are ab-
breviated as b ≺W a. Further sufficient conditions can be found in [11,
Property 9] and [14, Section 2].

Lemma 3.1. Suppose α ≥ 0, β − α ≥ 1, a > β − 1 and va,b(t) ≥ 0 on

[0, 1] (in particular, b−β+1 ≺W a−β+1 is sufficient). Then the function

x→ Gp,1p+1,p+1

(
x

∣∣∣∣β,ba, α

)
is positive and increasing on (0, 1).
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P r o o f. Set γ := β − α ≥ 1, b′ := b− β, a′ := a− β. We have

Gp,1p+1,p+1

(
x

∣∣∣∣β,ba, α

)
= xαGp,1p+1,p+1

(
x

∣∣∣∣γ,b′ + γ
a′ + γ, 0

)
=

xα

Γ(γ)

∫ x

0
(x− t)γ−1Gp,0p,p

(
t

∣∣∣∣b′a′

)
dt

according to [27, 2.24.2.2]. The nonnegativity of the G function in the
integrand combined with γ − 1 ≥ 0 completes the proof. 2

Theorem 3.1. Let â, b be positive vectors. Set a = (â, 1/2) and
assume that va,b(t) ≥ 0 on [0, 1] (in particular, b ≺W a is sufficient). Then
all zeros of

f(z) = p−1Fp

(
â
b

∣∣∣∣− z2

4

)
− cos(z)

are real and simple. Each interval (π, 2π), (2π, 3π) contains exactly one
zero of f and there are no other zeros except the trivial one at z = 0.

P r o o f. Using (3.20) for n = 1 we obtain

p−1Fp

(
â
b

∣∣∣∣− z2

4

)
= cos(z) +

zΓ(b)

Γ(a)

∫ 1

0
Gp,1p+1,p+1

(
t2
∣∣∣∣1,ba, 0

)
sin(zt)dt,

where a = (â, 1/2). According to Lemma 3.1 the G function in the inte-
grand is positive and increasing and is obviously not a step function. The
claim now follows by [28, Theorem 2.2.2]. 2

In a nice recent paper [5] the authors found the exact range of positive
parameters α, β1, β2 that ensure the inequality 1F2(α;β1, β2;x) ≥ 0 for all
real x. This range can be described as follows: for α > 0 let Pα denote
the convex hull of the points (αm,∞), (αm, αM ), (αM , αm), (∞, αm) in
the plane (β1, β2), where αm = min(2α, α + 1/2), αM = max(2α, α +
1/2). Then 1F2(α;β1, β2;x) ≥ 0 for α, β1, β2 > 0 iff (β1, β2) ∈ Pα. In the
final section the authors extend their results to the Bessel type generalized
hypergeometric function p−1Fp. Their extension theorem can be strengthen
as follows.

Theorem 3.2. Suppose that α > 0, (β1, β2) ∈ Pα, a,b ∈ Rp−1 with
a > 0 and va,b(t) ≥ 0 on [0, 1] (in particular, b ≺W a is sufficient). Then

pFp+1

(
α,a

β1, β2,b

∣∣∣∣x) ≥ 0

for all x ∈ R.
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P r o o f. Indeed, according to [10, Theorem 1]

pFp+1

(
α,a

β1, β2,b

∣∣∣∣x) =
Γ(b)

Γ(a)

∫ 1

0
1F2

(
α

β1, β2

∣∣∣∣xt)Gp−1,0p−1,p−1

(
t

∣∣∣∣ b
a

)
dt

t

for a > 0 and ψ =
∑

k(bk − ak) > 0, and

pFp+1

(
α,a

β1, β2,b

∣∣∣∣x) =
Γ(b)

Γ(a)

[
1F2

(
α

β1, β2

∣∣∣∣x)
+

∫ 1

0
1F2

(
α

β1, β2

∣∣∣∣xt)Gp−1,0p−1,p−1

(
t

∣∣∣∣ b
a

)
dt

t

]
for a > 0 and ψ = 0. Hence, the claim follows [5, Theorem 6.1] in view
of nonnegativity of the G function in the integrand valid according to [10,
Theorem 2] or [11, Property 9]. 2
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