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1. Introduction

In fuzzy set theory it is typical to aggregate several fuzzy sets of a universe
into a new fuzzy set, following some suitable criteria. Even when we are only
dealing with one fuzzy set, it is also typical to modify it somewhere, accord-
ing to some pre-established rules. When the fuzzy sets are framed on a finite
universe with n elements, those fuzzy sets can be considered as vectors in the
n-dimensional unit cube [0, 1]n ⊂ Rn. Therefore, any operation with those vec-
tors can actually be understood as an aggregation operator of fuzzy sets of finite
support. Among possible operations with vectors we may think of algebraic ones
(e.g.: means), analytical ones (defined by means of suitable functions from the
unit cube into the unit interval) and geometrical ones (as, for example, look-
ing for the Fermat point of a triangle). Classical concepts in fuzzy set theory,
as for instance triangular norms and conorms ([31]), copulas ([29]) and OWA
operators ([53]) would also correspond to this general setting.

In the present paper we focus on geometrical methods.
Among possible applications we may think of different kinds of photo re-

touches in Image Processing, as well as aggregating individual opinions into a
social one in natural mathematical contexts encountered in Decision Making,
Social Choice and Mathematics of Finance (see e.g. [35]).

2. Previous concepts

First we introduce the classical concept of a fuzzy set of a universe.

2.1. Fuzzy sets of a universe

Throughout the paper, a set in the standard sense is said to be crisp, in
opposition to the term “fuzzy” introduced below in Definition 1.

The standard definition of a fuzzy set goes as follows.

Definition 1. ([54, 7]) Let U be a nonempty set, usually called a universe. A
fuzzy set X of U is defined by means of a map µX : U → [0, 1]. The map µX is
said to be the membership function (or the indicator degree) of X.

The support of X is the crisp subset Supp(X) = {t ∈ U : µX(t) 6= 0} ⊆ U ,
whereas the kernel of X is the crisp subset Ker(X) = {t ∈ U : µX(t) = 1} ⊆ U .
The fuzzy subset X is said to be normal provided that it has nonempty kernel.

Given α ∈ [0, 1], the crisp subset of U defined by Uα = {t ∈ U : µX(t) ≥ α}
is said to be the α-cut of the fuzzy subset X.

Remark 1. Some authors use the nomenclature “fuzzy subset of a universe”,
instead of “fuzzy set”. Observe in addition that through this Definition 1, the
fuzzy set X is indeed identified to its indicator function µX . It is customary to
use both notations, namely X and µX , interchangeably.

2



Suppose that U = {u1, . . . , un} is a finite universe1. We may identify a
membership function µX : U → [0, 1] of a fuzzy set X of U , with the vector
(x1, . . . , xn) in the unit cube [0, 1]n. Here xi = µX(ui) i = 1, . . . , n).

In this setting, any operation with vectors in [0, 1]n can immediately be
interpreted as an operator that aggregates, into a new one, fuzzy sets of the
given universe U .

2.2. Aggregation and modification

Let us discuss now a theoretical setting to understand well concepts as “ag-
gregation” of fuzzy sets and “modification” of a fuzzy set.

Definition 2. In order to fuse k fuzzy sets {X1, . . . , Xk} on the same universe
U = {u1, . . . , un} we define an aggregation operator as a map F : Fk → F ,
where F stands for the family of fuzzy sets of U . Thus, given k membership
functions {µX1

, . . . , µXk
} of fuzzy sets of U , F (µX1

, . . . , µXk
) will be the mem-

bership function of another fuzzy set, say XF , of the universe U .
We may identify each membership function µXi (i = 1, . . . , k) to the

n-dimensional vector x̄i = (xi1, . . . , xin) in the unit cube [0, 1]n, such that
µXi

(uj) = xij (j = 1, . . . , n). In the same way, µXF
will be identified to

the vector x̄F = (xF1, . . . , xFn), with µXF
(uj) = xFj (j = 1, . . . , n).

Under this identification, we may write F (x̄1, . . . x̄k) = x̄F .

In some typical questions related to fuzzy sets we just consider one fuzzy
set, and we modify it someway. This generates the following definition.

Definition 3. Let U = {u1, . . . , un} denote a finite universe. Let F stand for
the family of fuzzy sets of U . A map F : F → F is said to be a modifier .
Notice that the definition of a modifier is a particular case of the definition
of aggregation operator, for the case in which k = 1. However, the nuance is
different here: if we only have one fuzzy set, we do not “aggregate”. Instead,
we modify. Observe also that after identifying F to [0, 1]n a modifier becomes
a function from the unit cube into itself. (For further information, see e.g. [36],
pp. 110-117).

Example 1. A black and white digital picture can be understood as a function
from a finite set of pixels (obviously, this will be the universe U) into the unit
interval [0, 1]. Each pixel x ∈ U is assigned a number u(x) ∈ [0, 1] that measures
the proportion of black ink on that pixel, so that u(x) = 0 means that the pixel
will appear as totally white, whereas u(x) = 1 means that it will appear totally
black, and any other number between 0 and 1 for u(x) would correspond to
an intensity of gray in the pixel x. In other words, a black and white picture

1Despite of considering a finite universe U all along this paper (unless otherwise stated),
in fact we could be working in a slightly more general context, namely we might assume that
U is any universe (finite or not) but the fuzzy sets considered on U will always be of finite
support.
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is a fuzzy set of the universe of pixels. Thus, in order to take a “negative”
of a black and white picture, it is enough to revert the amounts of black and
white at each pixel. And it is clear that the function v : U → [0, 1] given by
v(x) = 1− u(x) (x ∈ U) corresponds to the picture in negative.

2.3. Suitable properties that could be satisfied by aggregation operators

In the search for aggregation operators it is usual to ask the operators we
are interested in to accomplish some additional suitable properties that perhaps
we could interpret as “common sense”. By this reason we introduce now several
definitions in that direction.

Definition 4. Following the notation of Definition 2, we say that the aggrega-
tion operator F is fair provided that it satisfies the following conditions:

• i) (Unanimity) If x̄i = x̄ for every i ∈ {1, . . . , k} then F (x̄1, . . . x̄k) = x̄.

• ii) (Anonimity) If σ denotes any permutation of the set {1, . . . , k}, then
F (x̄1, . . . x̄k) = F (x̄σ1

, . . . x̄σk
).

• iii) (Continuity) F is a continuous map from ([0, 1]n)k into [0, 1]n, where
on [0, 1] we consider the usual Euclidean topology and on [0, 1]n as well
as on ([0, 1]n)k we consider the corresponding product topologies.

Remark 2. This kind of aggregators, namely those that satisfy the aforemen-
tioned properties of unanimity, anonimity and continuity are typical in Math-
ematical Social Choice, in the study of the so-called Chichilnisky’s topological
rules of aggregation of preferences, see e.g. [18] for further details. As a matter
of fact, this sort of aggregation operators had already appeared much earlier in
theoretical studies of Geometry and Topology, see e.g. [4].

From a computational point of view, having in mind the possibility of ag-
gregating fuzzy sets by means of some computer program, it is clear that in
order to aggregate k fuzzy sets, we may use some suitable algorithm. Hence, it
seems more practical to have at hand algorithms that act on two sets and can
be iterated rather than other ones that need to consider a priori all the k fuzzy
sets to be fused. This inspires the next definition.

Definition 5. Consider a natural number k > 2. An aggregation operator
F : Fk → F is said to be reducible if there exists a bivariate operator G :
F2 → F such that for every (X1, . . . , Xk) ∈ Fk it holds that F (X1, . . . , Xk) =
G(G(. . . (G(X1, X2), . . .), Xk−1), Xk).2

Even in case of iterating someway a given bivariate aggregation operator F :
F2 → F , the resulting fuzzy set may depend on the way we proceed. In general,
given X,Y, Z ∈ F , it may happen that F (F (X,Y ), Z) 6= F (X,F (Y,Z)). By
this reason, we introduce the next definition.

2That is, if k = 3 then F (X1, X2, X3) = G(G(X1, X2), X3). If k = 4, then
F (X1, X2, X3, X4) = G(G(G(X1, X2), X3), X4), and so on.
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Definition 6. A bivariate aggregation operator F : F2 → F is said to be
associative if F (F (X,Y ), Z) = F (X,F (Y,Z)) holds for every X,Y, Z ∈ F .

Remark 3. Notice that by systematically iterating an associative bivariate ag-
gregation operator F , we may indeed fuse k fuzzy sets of the universe U , for
any k ≥ 2.

Among aggregation operators on fuzzy sets on a finite universe, and taking
into account the identification to those fuzzy sets and vectors in the unit cube
[0, 1]n we may consider those operators that “act coordinatewise”, in the sense
of the next definition.

Definition 7. A map F : ([0, 1]n)k → [0, 1]n is said to be coordinatewise realiz-
able if there exists a function f : [0, 1]k → [0, 1] such that if x̄i = (xi1, . . . , xin)(i =
1, . . . , k) and x̄F = F (x̄1, . . . x̄k) = (xF1, . . . , xFn), then it holds true that
xFj = f(x1j , . . . , xkj) (j = 1, . . . , n).

Remark 4. The search for aggregation operators that satisfy some of the def-
initions introduced above (namely, fairness, reducibility, associativity and/or
coordinatewise realizability) is clearly related to the solution of functional equa-
tions on several variables. (See e.g. [14, 13, 22, 16]).

2.4. A variety of methods to aggregate finite fuzzy sets

Any method to aggregate fuzzy sets on a finite universe U = {u1, . . . , un}
tries to build and describe maps from ([0, 1]n)k into [0, 1]n. However, to do so,
many different approaches may appear. Among them, a first classification could
be: i) algebraic methods, ii) analytical methods, iii) geometrical methods.

Needless to say, this first attempt to classify the different methods is by
no means exclusive. That is, some methods share different sort of techniques,
being, for instance, analytical in some aspects and algebraic or geometrical in
other features.

Let us briefly discuss here what can be encountered in this setting:
First we may consider typical operations with vectors in [0, 1]n seen as a

subset of the real vector space Rn. Thus, given k vectors x̄1, . . . , x̄k ∈ [0, 1]n,
its arithmetic mean x̄1+...+x̄k

k is well defined and actually takes values in [0, 1]n.
Moreover, it is coordinatewise realizable. When k = 2, the mean M given by
M(x̄1, x̄2) = x̄1+x̄2

2 is not associative. Notice also that 1
k · (x̄1 + . . . + x̄k) =

2
k−1 · (

∑
i<j,1≤i,j≤k M(x̄i, x̄j)), so the arithmetic mean for k vectors can still be

expressed someway in terms of several arithmetic means that only involve two
vectors each. (Compare this fact to the, more restrictive, Definition 5).

Of course, many other different means can be considered in this setting. For
instance, taking into account that t ∈ [0, 1] =⇒ t

1
k ∈ [0, 1] holds true for every

t in the unit interval, we may consider the function f : [0, 1]k → [0, 1] given

by f(t1, . . . tk) = (t1 · . . . · tk)
1
k , usually known as the geometrical mean. Then,

through f and acting coordinatewise we can build an aggregation operator from
([0, 1]n)k into [0, 1]n, that will be obviously coordinatewise realizable in the sense
of Definition 7. For further details, see e.g. [15].
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The search for analytical expressions that give rise to suitable aggregators
is typical in this literature. For instance, well-behaved associative copulas and
their generalizations (see e.g. [44]), as well as triangular norms and conorms
have been widely analyzed in these contexts from many points of view. (See
e.g. [3]). Natural questions that appear here are related to the solution of some
functional equations. (See e.g., [12, 13, 14, 21, 33]).

In addition, other analytical, combinatorial or algebraic methods can also
be applied to compare two different fuzzy sets. To put an easy example, given
two vectors x̄, ȳ in the unit cube [0, 1]n we could pay attention to the number
of coordinates that differ, in order to give a naive idea about how disparate are
those vectors (or fuzzy sets of a finite universe). Another easy idea is to measure
someway (e.g., through an adequate norm in Rn) the vector x̄− ȳ.

3. Geometrical methods to aggregate finite fuzzy sets

Geometrical methods can also be considered at this stage. In this Section
3 we focus on this approach, namely the construction of aggregation operators
by means of some suitable geometrical idea. As far as we know, these methods
are not so common (nor well-known, either) in the fuzzy set theory literature.

3.1. Some triangle centers

To put a motivating example, suppose that U = {u1, u2} is the universe.
Since n = 2, the family of fuzzy sets of U can be identified to the unit square
[0, 1]2. Now suppose that we have at hand three fuzzy sets of U to be aggregated
some way. Identifying the corresponding fuzzy sets to points in the unit square,
we will have three points in [0, 1]2, say A = (x1, x2), B = (y1, y2) and C =
(z1, z2). Obviously, these points define a triangle in the unit square. Given those
three points we may use geometrical ideas to find another one that aggregates
them. To do so, first we may think of various typical triangle centers (see e.g.
[11]).

Suppose that the points A,B and C are not collinear, so that they are the
vertices of a non degenerated triangle.

i) The circumcenter of the triangle can be considered a good aggregation,
because it is equally distant from A, B and C.

ii) The barycenter (or center of gravity, or centroid) is also a suitable aggre-
gation. Its coordinates (a, b) are obtained through the arithmetic mean,
that is (a, b) = (x1+y1+z1

3 , x2+y2+z2
3 ). Notice, in addition, that this kind of

aggregation is fair and coordinatewise realizable in the sense of Definitions
4 and 7.

iii) The Fermat point (also known as the Fermat-Torricelli point) F is defined
as the point F such that the sum of the distances of F to the vertices A,
B and C is kept to a minimum, see e.g. [19, 30, 32, 39, 34].
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Remark 5. Among these aforementioned three triangle centers, the circum-
center only makes sense if A,B and C do not lie in the same straight line.
Instead, the barycenter, understood as the point (x1+x2+x3

3 , y1+y2+y3
3 ) is always

well-defined. Also, it is straightforward to see that the given three collinear
points A, B, C, its median F minimizes the sum of distances to A, B, C. Thus,
in the case of collinear points we may define the Fermat point as the median
(see [6] for a further account). Perhaps by this reason, Fermat-Torricelli points
and their generalizations are also called geometric medians in this literature.

Definition 8. The geometric median or Fermat point of a set of k sample points
in the Euclidean space Rn is the point that minimizes the sum of distances to
those given points.

Proposition 1. Consider a set of k ≥ 3 sample points in Rn. If those points
are not collinear, then its Fermat point is unique.

Proof: See [47].

Remark 6. It is clear that the Fermat point of a set of k sample points in Rn
only depends on the set as a whole, and not on the order in which those points
appear in it. That is, the aggregation operator that assigns the Fermat point to a
set is anonymous (see Definition 4). Moreover, it is also unanimous. Concerning
its continuity, a good study appears in [39] for the particular case k = 3, since it
can be seen there how the coordinates of the Fermat point continuously depend
on the coordinates of the three given sample points. The analytical expression
of those coordinates, even lengthy and tedious to be obtained, has explicitly
been got and discussed in that paper [39]. Therefore, for k = 3, the aggregation
operator that assigns the geometric median to a given set of three points is fair
in the sense of Definition 4. However, when k > 3 a trouble can appear because
the Fermat point could fail to be unique in certain cases that involve collinear
sample points.

With respect to the circumcenter of a triangle of vertices A, B and C, the
aggregation operator that assigns the circumcenter to that set of three sample
points (namely, the vertices) is anonymous. It is also unanimous if we under-
stand that when the three vertices of a triangle tend to a point, the circumcenter
of such triangle also tends to that point. As regards the continuity, a trouble
appears because when the three points A, B, C are collinear, so that the corre-
sponding triangle that they would define degenerates to a segment, no circum-
center can be defined. Moreover, if A = (x1, x2); B = (y1, y2); C = (z1, z2) are
the vertices of a triangle, we know that the circumcenter is a point P = (a, b)
that is equidistant from A, B and C. This fact can not be interpreted coordi-
natewise, for a is not, in general, a number such that |a−x1| = |a−y1| = |a−z1|.
Neither b satisfies, in general, that |b−x2| = |b−y2| = |b−z2|. In other words, the
aggregation operator that assigns the circumcenter to the vertices of a triangle
fails to be coordinatewise realizable, in the sense of Definition 7.

At this stage, we may notice that things are really different whenever we
have more than three points in the unit square. Concerning an analogue to the
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circumcenter, the insurmountable trouble is that four or more points can fail to
be cocyclic, so that there is no point that is equally distant to them all. The
analogue to the barycenter, however, continues being an excellent aggregation,
since the arithmetic mean is always well defined in the unit cube, disregarding
its dimension. In particular, it is well defined in the unit square. Finally, for
more than three points the analogous of the Fermat-Torricelli point is always
well-defined, too. Since the sum of distances constitutes a continuous function
on the unit square, by Weierstrass’s theorem that function attains its minimum
on [0, 1]2 (see e.g. [34]).

3.2. Fermat and Weber points

It is clear that the Fermat point of a triangle is a particular case of a triangle
center. The problem of finding the Fermat point can be generalized in several
ways: we may consider ab initio a number of points different from three, and
then look for points that minimize the sume of distances to those given points.
Also, we can add weight to each of the points and look for points that mini-
mize weighted distances, usually called Weber points (see e.g. [50, 52, 51, 17]).
Moreover, we can work in more than two dimensions (see e.g. [1]).

Definition 9. Let {P1, . . . , Pk} be a set of k sample points in the Euclidean
space Rn. Let W = {ω1, . . . , ωk} denote a set of non-negative real numbers,
called weights. We say that a point P in Rn is the Weber point as regards W ,
if it minimizes the expression

∑k
i=1 ωi.d(Pi, P ), where d(Pi, P ) stands for the

Euclidean distance between the points Pi and P (i = 1, . . . , k).

Remark 7. It is straightforward to see that if all the weights {ω1, . . . , ωk} are
non-negative rational numbers, so that wi = pi

qi
(1 ≤ i ≤ k), then the Weber

point as regards W can be understood as the Fermat point of a new set of
sample points where each Pi is repeated M · piqi times, with M = q1 · . . . · qk.

Since distances are continuous functions with respect to the usual Euclidean
topology in the real space, Fermat points as well as Weber points (or its analo-
gous in other dimensions) always exist by the well-known Weierstrass’s theorem
in Calculus, because the unit square (as well as any unit cube) is compact with
respect to the usual topology. However, a difficulty may still appear, since
Weierstrass’s theorem does not guarantee the uniqueness of a minimum point
of a continuous function on a compact set. To put an evident example, consider
the unit square and just two points (x1, x2) and (y1, y2) there. Then notice that
any point (a, b) that lies in the segment joining (x1, x2) and (y1, y2) is a Fermat
point in the sense that it minimizes the sum of distances to those two points.
Indeed, that sum of distances is the same for every point in that segment.

Remark 8. The Fermat point of a triangle does not coincide, in general, with
the barycenter. Indeed, if the triangle of vertices A, B, C has an angle bigger
than or equal to 2

3π radians (120 sexagesimal degrees), the vertex corresponding
to that angle is the Fermat point. Otherwise, when each of the three angles is
smaller that 2

3π radians, the Fermat point is obtained by constructing outer

8



equilateral triangles on each side of the triangle of vertices A, B, C. Construct-
ing these equilateral triangles introduces three new vertices, say P , Q and R.
Draw a line from each of these new vertices to the vertex (of the main triangle
of vertices A, B, C) that lies directly opposite to them, for example: from A
to R. It is well-known then that these three lines meet in a point F , that is
actually the Fermat point of the given triangle. (The result is clearly related to
Napoleon’s theorem in Classical Geometry, see e.g. [20]).

A B

C

Q

P

R
F

By the way, the computation of Fermat points is not a coordinatewise real-
izable aggregation operator (see Definition 7). To put an example, consider the
points A = (0, 0); B = (1, 0); C = (1, 1) in the unit plane. The median of their
first coordinates is 1, whereas the median of the second ones is 0. However,
(1, 0) is not the geometric median (or Fermat point) of that triangle. Here it
is straightforward to see that the Fermat point lies inside the triangle and does
not coincide with any vertex.

Also, it is well known that given four coplanar points, if one of those points
lies inside the triangle formed by the other three points, then the Fermat point
(or geometric median) is that point. Otherwise, the four points form a convex
quadrilateral and the Fermat point is the intersection point of the diagonals of
such quadrilateral (see [40]).

In addition, if we try to compute the Fermat-Torricelli point of a triangle just
by using analytical methods, the process is lengthy, difficult and discouraging,
as analyzed in depth in [39]. Thus, given three points A = (x1, x2), B = (y1, y2)
and C = (z1, z2) in the unit square, we want to find another point F = (a, b)
such that√

(x1 − a)2 + (x2 − b)2 +
√

(y1 − a)2 + (y2 − b)2 +
√

(z1 − a)2 + (z2 − b)2

9



is a minimum. Here, unlike the case of minimization of square distances, that
is very easy to handle and typically arises in Statistics (and in this case would
correspond to finding the minimum value3 of [(x1−a)2 + (x2− b)2 + (y1−a)2 +
(y2 − b)2 + (z1 − a)2 + (z2 − b)2], the analytical study of the existence of the
Fermat point becomes crazy. This is because the square roots complicate the
operations beyond reasonable limits.

In this line, unfortunately, when more than three points are involved no gen-
eral direct geometrical method is known to find a Fermat point. And, needless
to say, the analytical study becomes even crazier.

Nevertheless, there is a recursive algorithm that calculates approximations
to the Fermat point. To describe it, we introduce the next Definition 10.

Definition 10. Let X = {x̄i : 1 ≤ i ≤ k} be a set of not collinear k vectors (or
sample points) in the Euclidean space Rn. Given a vector ȳ ∈ Rn, we say that
ȳ generates a Weiszfeld sequence if taking ȳ0 = ȳ and, recurrently,

ȳj+1 =

∑k
i=1

x̄i

||x̄i−ȳj ||∑k
i=1

1
||x̄i−ȳj ||

,

it happens that ȳj does not belong to X for any j ∈ N.
(Here, given a vector z̄ = (z1, . . . , zn) ∈ Rn, we denote by ||z̄|| its Euclidean

norm. That is: ||z̄|| =
√
z2

1 + . . .+ z2
n).

The procedure of obtaining the sequence (ȳj)j∈N this way is known as the
Weiszfeld’s algorithm (see [51]).

Proposition 2. The Weiszfeld’s algorithm converges for almost all vectors4

ȳ ∈ Rn. In addition, the algorithm can be modified in a suitable way that allows
us to handle all possible initial points, giving rise to a sequence that converges
to the Fermat point.

Proof: See [47] for a proof and further details.

This geometrical approach can also be used to give an idea of dispersion
among a family of different fuzzy sets of a universe. Thus, we may compute the
Fermat point corresponding to that family, and the corresponding minimum of
the sum of distances to the Fermat point of each given fuzzy set (understood as
a vector in the unit cube).

3.3. Ordered weighted aggregations and other geometrical coordinatewise realiz-
able operators

As commented before, the aggregation operator that computes a Fermat
point is not coordinatewise realizable, in general. Some other typical operators,

3It is straightforward to see that such minimum appears at the barycenter
(x1+y1+z1

3
, x2+y2+z2

3
) of the triangle of vertices A, B, C.

4Obviously, the algorithm does not work when when one of its estimates falls on one of the
given points in the set V of sample points.
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frequently used in fuzzy set theory, are built so that they are coordinatewise
realizable in the sense of Definition 7. That is, they are constructed in a way
such that the j-th coordinate of the vector that appears as the final result of
the aggregation made only depends from the j-th coordinates of the vectors to
be aggregated.

Unfortunately, some of them do not correspond to a clear geometrical in-
tuition. That is, they are constructed by means of some analytical expression,
that sometimes is hard to be geometrically visualized. Anyway, some of them
(e.g.: centroids, barycenters and arithmetic means again) still correspond to
geometrical ideas. Moreover, other ones as the OWA operators ([53]), admit
some geometrical interpretation, and are of capital importance in applications
(e.g. in fuzzy set theory).

To introduce here a short list of aggregation operators that share this feature
(see [5, 53]), first we introduce a few definitions.

Definition 11. Given a vector ū = (u1, . . . , uk) ∈ [0, 1]k, its non-increasingly
rearranged vector is R(ū) = (u(1), . . . , u(k)), where the coordinates of ū have
now been rearranged in non-increasing order, that is u(1) ≥ . . . ≥ u(k).

Definition 12. Given a set W = {ω1, . . . , ωk} of non-negative real numbers
such that, in addition, ω1 + . . . + ωk = 1, (also known as weights), the ordered
weighting averaging function (OWA function) relative to W (see [53]) is the
function ΦW : [0, 1]k → [0,+∞) given by

ΦW (ū) =

k∑
j=1

ωj ū(j).

Now we introduce a few coordinatewise realizable operators:

Let X = {x̄i = (xi1, xi2, . . . , xin) : 1 ≤ i ≤ k} be a cloud of k vectors in
the unit cube [0, 1]n. If we pay attention only to the j-component (1 ≤ j ≤ n)
of the vectors x̄i (1 ≤ i ≤ k), once j has been fixed we get a column vector,
namely:

vj =


x1j

x2j

. . .
xkj

.

Let R(vj) stand for the non-increasingly rearranged vector associated to vj ,

that is: R(vj) =


x(1)j

x(2)j

. . .
x(k)j

, so that now x(1)j ≥ x(2)j ≥ . . . ≥ x(k)j .

i) The arithmetic mean looks for a vector ȳ = (y1, . . . , yn) such that for every
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1 ≤ j ≤ n, the coordinate yj minimizes the sum

k∑
i=1

(xij − yj)2.

Notice that this happens if and only if ȳ minimizes the sum of the squares
of the distances to the ponits in the cloud X, that is

k∑
i=1

[d(x̄i, ȳ)]2 =

n∑
j=1

k∑
i=1

(xij − yj)2.

(Here d stands for the Euclidean distance in the plane R2).

It is well-known that in this case the solution is the analogous to the
barycenter or centroid of a triangle. That is yj =

x1j+...+xkj

k holds true
for every 1 ≤ j ≤ n.

ii) The weighted arithmetic mean looks for a vector ȳ = (y1, . . . , yn) such
that for every 1 ≤ j ≤ n, the coordinate yj minimizes the sum

k∑
i=1

ωi(xij − yj)2.

iii) The ordered weighting averaging aggregation operator (OWA operator)
([53]) looks for a vector ȳ = (y1, . . . , yn) such that for every 1 ≤ j ≤ n,
the coordinate yj minimizes the sum

k∑
i=1

ωi(x(i)j − yj)2.

iv) The weighted median looks for a vector ȳ = (y1, . . . , yn) such that for
every 1 ≤ j ≤ n, the coordinate yj minimizes the sum

k∑
i=1

ωi|xij − yj |.

v) The ordered weighted median looks for a vector ȳ = (y1, . . . , yn) such that
for every 1 ≤ j ≤ n, the coordinate yj minimizes the sum

k∑
i=1

ωi|x(i)j − yj |.

(Here {ω1, . . . , ωk} is a set of non-negative real numbers with ω1 + . . .+ωk = 1.
These ωi (1 ≤ i ≤ k) are said to be the weights. And x(i)j is the i-th coordinate
of R(vj), the non-increasing rearranged vector associated to vj ; 1 ≤ j ≤ n).

12



Remark 9. The OWA coordinatewise procedure aggregates the k original vec-
tors in the cloud X = {x̄i = (xi1, xi2, . . . , xin) : 1 ≤ i ≤ k} so that the resulting
aggregated point is the vector (ΦW (x11, x21, . . . , xk1), . . . ,ΦW (x1n, x2n, . . . , xkn)).

Geometrically, the rearrangement through ΦW of each column vector vj =
x1j

x2j

. . .
xkj

 (1 ≤ j ≤ n) has the effect of replacing the original “row” vectors in

the cloud, namely X = {x̄i = (xi1, xi2, . . . , xin) : 1 ≤ i ≤ k}, by a new set X ′

of k vectors in [0, 1]n, defined as follows:

X ′ = {x̄′1 = (x(1)1, x(1)2, . . . , x(1)n), . . . , x̄′k = (x(k)1, x(k)2, . . . , x(k)n)},

and now satisfying that:
x(1)1 ≥ . . . ≥ x(k)1; . . . ;x(1)n ≥ . . . ≥ x(k)n.
These new points lie on an ascending curve in the unit cube [0, 1]n. Notice

that if we aggregate now the points in X ′ by means of a weighted arithmetic
mean with the weights given by W , we obtain again the vector

(ΦW (x11, x21, . . . , xk1), . . . ,ΦW (x1n, x2n, . . . , xkn))

as the resulting point of the aggregation. Observe also that if the weights are
{1, 0, . . . , 0} we obtain the vector corresponding to a “maximum” among the
vectors in X ′, so that each of its coordinates, say the j-th, takes the maximum
value max1≤i≤n xij . Similarly, if the weights are {0, . . . , 0, 1} we obtain the
vector corresponding to a “minimum” among the vectors in X ′.

x̄1

x̄2

x̄3

x̄4

x̄5

X

x̄′1

x̄′2
x̄′3

x̄′4
x̄′5

X ′

(See e.g. [37] for a further account).

3.4. Voronoi diagrams and regions

Suppose that a finite number of points {x̄1, . . . , x̄k} are located in a bounded
region R of the plane. Now, make a partition of the region R in non-overlapping
subregions R1, . . .Rk, such that xi lies in Ri (1 ≤ i ≤ k and, in a sense, Ri
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represents the subregion of R that is controlled or dominated by xi. How could
we understand this idea with mathematical rigor?

Let us introduce some definition to settle better this problem.

Definition 13. Let d stand for the Euclidean distance in the plane R2. Given a
region R in R2, and k points x̄1, . . . , x̄k ∈ R we call Voronoi polygon or Voronoi
cell (see [48, 49]) Ri associated to the point x̄i (1 ≤ i ≤ k) to the region

Ri = {x̄ ∈ R : d(x̄, x̄i) = min
1≤j≤k

d(x̄, x̄j)}.

If i 6= j, then Ri ∩ Rj = {x ∈ R : d(x̄, x̄i) = d(x̄, x̄j) = min1≤l≤k d(x̄, x̄l)}.
Moreover, the regions Ri and Rj share no interior point.

Furthermore, ⋃
1≤i≤k

Ri = R.

Remark 10. Voronoi polygons provide a partition of the region R. Such par-
tition, also known today as the Voronoi diagram, had already been implicitly
considered by R. Descartes much earlier, in 1644 (see [24]). It was also used
by P.G.L Dirichlet in 1850 (see [25]). These diagrams were extended to more
dimensions by Voronoi in 1907-1908 (see [48, 49]). Since then, the regions Ri
are given the name of Voronoi cells. These diagrams can be found in nature:
giraffe fur, turtle shells or fields of drying mud follow this pattern.

Independently from, and almost contemporarily to Voronoi’s work, A.H.
Thiessen introduced in 1911 the same idea (see [46]) in studies concerning
weather (e.g.: regions where rain is more probable). By this reason, in some
texts Voronoi’s cells are named Thiessen’s cells or Voronoi-Thiessen cells. (See
also [28, 38, 9] for a further account).

Observe that given x̄i 6= x̄j ∈ X, if we build the bisector of the segment that
joins x̄i to x̄j , and denote H(x̄i, x̄j) the resulting half-plane in R2 to which x̄i
belongs, then Ri = R∩ [

⋂
j 6=iH(x̄i, x̄j)]. Thus we see that the Voronoi diagram

of a set of k points in a region R is got by intersecting the Voronoi diagram of
the same set of points in the whole plane R2 with the given region R.

x̄1

x̄2x̄3

x̄4

Henceforward in this subsection 3.4, unless otherwise stated, we will only
consider here Voronoi diagrams of sets of points in the whole plane R2.
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Proposition 3. Let P = {x̄1, . . . , x̄k} denote a set of k points in the real plane
R2. Let VP = {Ri; 1 ≤ i ≤ n} denote the Voronoi diagram associated to P in
the whole plane R2. The following properties hold true:

i) Every Voronoi cell Ri is convex.

ii) A Voronoi cell Ri is unbounded if and only if x̄i belongs to the boundary
of the convex hull of P .

iii) All the boundaries of the regions Ri are whole straight lines (indeed parallel
one another) if and only if the set P is collinear.

iv) If i 6= j, the boundary of Ri ∩ Rj is a half-line if and only if P is not
collinear and x̄i, x̄j are consecutive points in the boundary of the convex
hull of P .

v) If i 6= j, The boundary of Ri ∩ Rj is a segment if and only if P is not
collinear and x̄i or x̄j belongs to the interior of the convex hull of P .

Proof: Just notice that given 1 ≤ i ≤ n the region Ri appears as Ri =
∩j 6=iH(x̄i, x̄j), an intersection of half-planes. Hence, the Voronoi cells are con-
vex, and a region Ri unbounded only if x̄i is in the boundary of the convex hull
of P . This proves i) and ii). (See also [41, 38, 9] for further details).

In order to prove iii), first we consider that the set P only consist of two
points, that is: P = {x1, x2}. Then clearly the Voronoi diagram has only two
cells, any of them is a half-plane, and the only boundary in VP is the bisector
to the segment that joins x̄1 to x̄2. If P has more than two points, then if P
is collinear, given three consecutive points x̄i−1, x̄i, x̄i+1, the bisectors of the
segments that join x̄i−1 to x̄i and x̄i to x̄i+1 are parallel (whole) straight lines
and they constitute the boundaries between the cells of those consecutive points.
If three points x̄i−1, x̄i, x̄i+1 in P are not collinear then the bisectors of the
segments that join x̄i−1 to x̄i and x̄i to x̄i+1 are no longer parallel. Therefore
the boundaries cannot be whole straight lines. One of these boundaries is a
half-line if the cells are unbounded, which happens only if the points are in the
boundary of the convex hull of P . Otherwise the boundary between two cells is
a segment. (See also Theorem 7.2 in [9]).

Definition 14. Let P = {x̄1, . . . , x̄k} denote a set of points in R2, and VP =
{Ri; 1 ≤ i ≤ n} its Voronoi diagram in the plane. We call maximal empty
circle centered in a point p̄ to D(p̄, rp̄) = {x̄ ∈ R2 : d(x̄, p̄) ≤ rp̄} where rp̄ =
min{d(p̄, x̄i); x̄i ∈ P, x̄i 6= p̄}.

Proposition 4. Let P = {x̄1, . . . , x̄k} ⊂ R2, and VP = {Ri; 1 ≤ i ≤ n} its
Voronoi diagram in the plane. The following properties hold true:

i) A point q̄ ∈ R2 is a vertex of the Voronoi diagram VP if and only if
|D(q̄, rq̄) ∩ P | ≥ 3 .
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ii) Given 1 ≤ i 6= j ≤ k, the bisector of the segment that joins x̄i to x̄j is a
boundary of VP if and only there exist a point q̄ in that bisector such that
|D(q̄, rq̄) ∩ P | = 2.

Proof: This directly follows from the fact Ri ∩ Rj ⊂ {x̄ ∈ R2 : d(x̄, x̄i) =
d(x̄, x̄j)}. (See also Theorem 7.4 in [9] for further results in this direction).

Remark 11. About how to compute the Voronoi diagram of a set of points
P = {x̄1, . . . , x̄k} in the plane R2, it is relevant to know that there are many
algorithms that calculate it (see e.g., the so-called “Fortune algorithm”, intro-
duced in [28]). There is also a recursive algorithm that calculates VP∪{x̄n+1}
from VP with a complexity of O(n2). This is important because, in a sense, this
follows the spirit of Definition 5 about reducible operators. Furthermore, there
are more efficient algorithms that compute VP with a complexity O(n log n), as
proved in Section 7.2 in [9] (see also [38]).

The Voronoi diagram VP of a set of points P = {x̄1, . . . , x̄k} in the plane
R2 is dual to the Delaunay triangulation that the set P induces in the lane (see
Definition 16 below). Any of them can be got from the other one by means of
a suitable O(n) time algorithm (see [38, 9]).

Definition 15. Let P = {x̄1, . . . , x̄k} be a non collinear set of points in the
plane. A triangulation is a partition of the convex hull of P into triangles in a
way such that the following conditions hold:

i) Each point in P is a vertex of some triangle in the partition.

ii) Each vertex of a triangle in the partition is a point of the set P .

iii) No edge connecting two vertices in the partition can be added to the
partition without intersecting one of already existing edges.

Definition 16. We will say that a triangulation satisfies the Delaunay condi-
tion (or, equivalently, we say that it is a Delaunay triangulation) if the circum-
circle of every triangle in the corresponding partition that defines that triangu-
lation does not contain any other different vertex of a triangle in such partition
(see [23]).

x̄1

x̄2x̄3

x̄4

Proposition 5. Given three non collinear points A = (a1, a2), B = (b1, b2),
C = (c1, c2) in the real plane, a point D = (d1, d2) ∈ R2 lies inside the circum-
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circle of the triangle of vertices A,B and C if and only if∣∣∣∣∣∣∣∣
a1 a2 a2

1 + a2
2 1

b1 b2 b21 + b22 1
c1 c2 c21 + c22 1
d1 d2 d2

1 + d2
2 1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
a1 − d1 a2 − d2 (a1 − d1)2 + (a2 − d2)2

b1 − d1 b2 − d2 (b1 − d1)2 + (b2 − d2)2

c1 − d1 c2 − d2 (c1 − d1)2 + (c2 − d2)2

∣∣∣∣∣∣ > 0.

Proof: See for instance [43].

Definition 17. Consider a triangulation of a set of points P = {x̄1, . . . , x̄k} in
the plane R2. Suppose that it has m triangles. We pay attention to the 3m
angles that come from all those triangles in the partition, sorting those angles
by increasing value, say α1 ≤ . . . ≤ α3m. The vector (α1, . . . , α3m) is said to
be the angle-vector of the given partition of P . Among all the partitions of
P we consider all their corresponding angle-vectors. We endow the resulting
set of angle-vectors with the lexicographic order. A triangulation that gives
rise to the maximal angle-vector in that lexicographic linear order is said to be
angle-optimal .

Proposition 6. Any angle-optimal triangulation of P is a Delaunay triangula-
tion of P . Moreover, any Delaunay triangulation of P maximizes the minimum
angle over all triangulations of P .

Proof: See Theorem 9.9. in [9]. See also [27] for further details.

Finally we include a few words about the use of Voronoi diagrams in ag-
gregation of finite fuzzy sets. In fact, in this case they are more used to do
selections, that is aggregations in which the resulting vector of the aggregation
is one of the points in the original cloud. Depending on the contexts analyzed,
sometimes this result will be the point whose corresponding Voronoi cell has the
smallest area. But also, in other different approaches, the selected point will be
the one with the biggest Voronoi cell.

3.5. Distances to a cloud. A geometrical approach to avoid outliers

Assume that we are given a finite set of points (vectors) in an Euclidean
space. That set of points is usually called a cloud . Each vector in the cloud
represents different measurements or data of a single natural phenomenon or
distinct “objective” opinions. Since there is only one phenomenon, we may
expect a priori that the points are close one another.

It is usual that an error is associated to each measurement (due to noise,
biases, etc.). This error can be represented by a ball around the corresponding
point, so that the “actual value” of the phenomenon should be inside that
interval or ball, not exceeding a margin represented by the radius of the ball.

Furthermore, some of those measurements could appear distorted by punc-
tual and unpredictable phenomena outside the experimental frame. This will
give rise to strange points (usually known as the outliers). In general, the re-
searchers that are analyzing the phenomenon know well, even at first sight,
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that those outliers must be discarded. They are not significant in the problem
studied. And, what is even worse, they jeopardize the exact measurements and
data.

The outliers problem is a recurrent problem in scientific research (see e.g.
[2]), and various statistical methods have been implemented to avoid their dam-
aging effect in data treatment (see e.g. [8, 42]).

Bearing in mind these previous ideas coming from empirical research, aggre-
gation points in a cloud should have as more data points as possible in their
neighboring balls, even when the diameter of them is as small as we please.

Inspired in this intuition, we introduce a new aggregation procedure.

Let X = {x̄1, . . . , x̄k} ⊂ [0, 1]n denote a cloud (set of points in the n-
dimensional unit cube). Given p̄ ∈ [0, 1]n and r > 0, the ball of center p̄ and
radius r is denoted by B(p̄, r) = {x̄ ∈ [0, 1]n : ||p̄ − x̄|| < r}. Let |B(p̄, r) ∩X|
stand for the cardinality of the subset of points of the cloud X that belong to
the ball B(p̄, r).

Let us also consider a continuous function f : (0,+∞)→ (0,+∞) satisfying
the following conditions:

i) limt→0 f(t) = +∞ = limt→+∞ f(t).

ii) There exists t0 > 0 such that f is decreasing in (0, t0) and increasing in
(t0,+∞).

Now, let us define a function φX : [0, 1]n → R representing how distant
is a point p to the cloud X by setting the smallest radius r such maximizes
|B(p,r)∩X|

f(r) , as follows: Fixed p, first we compute

M(p) = max
r>0

{
|B(p, r) ∩X|

f(r)

}
.

It may happen that this maximum M is attained for more than one radius
r. Therefore, we take then the infimum of all the radius r such that M(p) =
|B(p,r)∩X|

f(r) . Denote that infimum by r(p). Thus we finally declare that: φX(p) =

r(p).

Remark 12. The function f will be chosen according to the specific problem
we are dealing with. Restrictions over f are necessary in order to punish vectors
that lie far from almost every point of X (here r would be too big), as well as
the ones that are quite close to a single point of X, but far from all the oth-
ers (here r would be too small). The number t0 is a threshold to measure the
aforementioned “closedness”. Thus, φX captures interesting ideas not usually
contemplated in traditional aggregation functions. Here, we try to pay attention
to an intuition in which the best candidates p ∈ [0, 1]n to be selected as aggre-
gation points are the ones which have more points in a small neighborhood, i.e.
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the ones with the smallest φX(p) = r(p). However, it may still happen that the
minimum is not unique. Anyway, this gives us an idea about how to quantify
the closedness to the point p of points in the cloud X, trying to measure how
the point p is “surrounded” by the points in X.

Notice that:

a) φX ignores points of X which are far from the the majority of the elements
in X. We can considerate those bad points as outliers. In comparison to
other aggregation procedures, we may observe that OWA operators only
diminish the contribution of outliers (assigning them low weights), but
they do not rule out them unless their assigned weights are zero.

b) Unfortunately, a new trouble can appear with this new aggregation pro-
cedure if X has more than just one single tendency (e.g. X consist of
two separated clouds of points, one cloud located quite far from the other
one). In that situation, the candidates proposed by φX may fail to be
“intermediate points” located between those independent clouds.

Example 2. Consider the cloud of five points X = {(0.1, 0.1), (0.18, 0.2), (0.19,
0.14), (0.15, 0.12), (0.4, 0.1)}in the unit plane [0, 1]2. Let Y = X r {(0.4, 0.1)}.

x̄1

x̄2

x̄3

x̄4

x̄5

Take the function f : (0,+∞)→ (0,+∞), defined as follows:

f(r) = − ln(r
1
10 )− 10 · r · ln(1− r√

2
).

It is plain that (0.4, 0.1) in X is quite far from all the other ones (that belong to
Y ). Hence, we understand Y as a cloud and x̄5 = (0.4, 0.1) as an outlier. A few
computations prove that (0.4, 0.1) has no effect on the final aggregation made by
this new procedure. The aggregation procedure leads to the point (0.14, 0.15)
no matter if we work with the original cloud X or we ignore the point x5 and
work with Y . Moreover, some intermediate calculation of φX and φY yield the
same result in some selected points. For instance: φX(0.1, 0, 1) = φY (0.1, 0.1) =
0.251, whereas φX(0.4, 0, 1) = φY (0.4, 0.1) = 0.064. Furthermore, if we compute
first the arithmetic mean of the points in X (respectively, in Y ), and we denote
it by x̄ (respectively, by ȳ), we also have here that φX(x̄) = φY (x̄) = 0.108, and
φX(ȳ) = φY (ȳ) = 0.068.
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3.6. A new aggregation method inspired on an asset allocation model

We could consider another geometrical method inspired in the non-parametric
asset allocation model denoted Entropy Pooling (EP) introduced by A. Meucci
in 2008 (see [35]). This method combines an arbitrary market model with com-
pletely general views on this market, in order to produce a posterior distribution
(see also [10] for previous studies on similar items). To do so, in EP the views
are interpreted as statements that deform the prior distribution so that the min-
imum of unnecessary structure is imposed, measuring this discrepancy through
an entropy function. If there are two or more investors expressing views, with
different levels of confidence, we can aggregate all of them using the opinion
pooling technique.

Based on this idea, we could reinterpret it from a geometrical point of view.
This will give rise to another aggregation method for fuzzy sets on a finite
universe. As mentioned in the Introduction, fuzzy sets of these kind can be
considered as vectors in the n-dimensional unit cube, and so they can play the
role of vectors of probabilities representing the market model. Considering the
investors views, which can be easily translated into geometrical conditions in
the unit cube, we could combine them through the entropy pooling technique
in order to obtain a new vector in the n-dimensional unit cube, that can conse-
quently be interpreted as a new finite fuzzy set.

Bearing this idea in mind, we could reinterpret it from a geometrical point
of view giving us an aggregation method for fuzzy sets on a finite universe.

To introduce and describe the method, we are going to consider first the
case inspired in one investor expressing views. Then we will analyze the case in
which two or more investors are involved.

Base case: Only one investor
Let U = {u1, . . . , un} be a finite universe. Let F stand for the family of

fuzzy sets of U . Each fuzzy set X ∈ F can be interpreted as a vector in the
n-dimensional unit cube [0, 1]n. Thus, it can also play the role of a vector of
probabilities p ∈ [0, 1]

n
. Those probabilities would correspond to joint scenarios

representing the market model.
In the EP technique, in order to represent the posterior distribution of the

market that includes the views, instead of generating new simulations, the same
scenarios are used, but with a different vector of probabilities p̃. The general
views can be written as a set of linear constraints on the new, yet to be deter-
mined, probabilities:

a ≤∗ p̃A ≤∗ a

where a and a are constant vectors in Rn, and A is a constant n × n matrix
of real numbers. (Here “≤∗” stands for the partial order in Rn so that given
x̄ = (x1, . . . xn), ȳ = (y1, . . . , yn) ∈ Rn we declare that x̄≤∗ȳ provided that
xi ≤ yi holds true for every 1 ≤ i ≤ n.)

Inspired in this idea, from a geometrical point of view, we could consider
not only this kind of views, but also we could generalize it through a subset
C ⊆ [0, 1]

n
, so that p̃ ∈ C.
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The relative entropy, in its discrete version, between p and p̃ can be mea-
sured as:

E(p, p̃) ≡
n∑
j=1

p̃j [ln(p̃j)− ln(pj)].

We can define now the following modifier F : F → F as F (p) = p′ such
that

E(p,p′) = min {E(p, p̃)|p̃ ∈ C} .

There is a last step which allows as to define a new modifier G : F → F
considering the pooling parameter c ∈ [0, 1] which represents the confidence
level in the views:

G(p) ≡ (1− c) p + c F (p).

General case: Multi investor context
Inspired in the case in which Entropy Pooling is used in a multi-manager

context, to aggregate their separate views considering their confidence-weighted
average, we are going to translate it into our model.

Let Ci ⊆ [0, 1]
n

(i = 1, . . . , k). We define the following family of modifiers
Fi : F → F (i = 1, . . . , k) as Fi(p) = p′i such that

E(p,p′i) = min {E(p, p̃)|p̃ ∈ Ci} .

We can define now the aggregation operator

G(p) =

k∑
i=1

ciFi(p) (ci ∈ [0, 1] ,

k∑
i=1

ci = 1).

Remark 13. We could consider a generalization in which the role of entropy
could be played by any distance function.

4. Multidisciplinary applications

All the previous ideas and aggregation methods have a wide scope in miscel-
laneous applications. For instance, in [26] we find references to eighteen different
applications of Voronoi diagrams and Delaunay triangulations. Here are some
of them:

1) Anthropology and Archaeology : Identify the parts of a region under the
influence of different neolithic clans, chiefdoms, ceremonial centers, or hill
forts.

2) Astronomy : Identify clusters of stars and clusters of galaxies.

3) Biology, Ecology, Forestry : Model and analyze plant competition through
the “area potentially available to a tree”.

4) Cartography : Place together satellite photographs into large “mosaic maps”.
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5) Crystallography and Chemistry : Study chemical properties of metallic
sodium by means of the so-called “Wigner-Seitz regions”.

. . .

17) Statistics and Data Analysis: Analyze statistical clustering through “nat-
ural neighbors interpolation”.

18) Zoology : Model and analyze the territories of animals.

In the present section we comment some other possible applications of several
aggregations methods previously considered in the manuscript.

4.1. Image Processing

Perhaps a framework in which the applications of aggregation operators as
well as modifiers is more evident is that of Image Processing. As commented
before, a black and white picture can be understood as a function from a finite
universe of pixels into the unit interval [0, 1]. In addition, a full colors picture
can be interpreted through three functions from that finite university of pixels
into [0, 1], namely one function for each primary color (a RGB system). Any
kind of photo retouch can then be framed through suitable operators or modi-
fiers on those functions. At this stage, it is relevant to bear in mind the classical
modifiers introduced by V. Novák as linguistic modifiers in contexts of fuzzy
logic (see [36], Ch.3, pp. 104-117). The effect of the so called “concentration”,
“dilation” or “intensification” modifiers (among others) correspond to photo
retouches in which a color is blurred or highlighted at convenience. These mod-
ifiers directly depend on suitable functions from [0, 1] into itself whose effect is,
say, to increase or decrease a given number in [0, 1]. For instance, the function
f : [0, 1]→ [0, 1] given by f(t) = t2, known as concentration in Novák’s setting
([36]) provokes that a color is blurred because x2 < x if x ∈ (0, 1). In fact,
any function g : [0, 1] → [0, 1] such that g(t) < t if t ∈ (0, 1) would have an
effect of blurring colors. Also, any function h : [0, 1]→ [0, 1] such that h(t) > t
if t ∈ (0, 1) would have the opposite effect, that is, it would highlight colors.
Other more sophisticated functions with double effect of blurring some pixels
whereas highlighting others can also be used here, built in terms of suitable
analytical functions from the unit interval into itself.

Another common task in image processing is the reduction of an image by
transforming it in another one with a lower number of rows and columns in its
spatial resolution as faithfully as possible. The technique consists in dividing
the original image in blocks of pixels. Then, an aggregation operator is applied
to the sets of pixels in each block in order to get a single pixel which preserves
the properties of the original block as much as possible. If a weighted averaging
is used for this aggregation, the weight assigned to each pixel depends only on
its position. However, if we choose an OWA operator for each aggregation, then
the weight assigned to each pixel will depend only on its value, i. e., on the place
that each value gets when all of the values of the same block are non-increasingly
rearranged in a descending chain. Working this way, we can decide, for instance,
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to assign the highest weights to the highest values in order to darken the image.
Contrariwise, we could give the highest weights to the lowest values in order to
lighten the image.

4.2. Networks

Fermat points constitute an important device in the study of networks and
systems of communication (e.g.: transmitters and receptors). Suppose for in-
stance that n points in the plane represent n different cities, so that we want
to find a point F in order to locate there a transmitter (e.g. radio). If the n
points were cocyclic, quite probably we would select the center of the circle to
which those points belong, because the distances between the center and each
point is the same, and consequently the signal reaches each of the points at the
same time. But, when the points do not lie in a circle, it is natural to choose
the Fermat point, because the total energy, understood as the sum of distances
or routes operated by the signal is kept to a minimum. This is also a typical
problem in facility location, when working with models that try to locate a
facility to minimize costs of transportation.

4.3. Bets

Assume that you want to bet money on the result of a football match.
In any betting house you will find the amount that they will pay you, per
unit of money invested, depending on the final result. For instance (1.6, 2.8, 7)
means that the betting house will pay you, per dollar invested, 1.6 dollars if
the local team wins, 2.8 dollars if the match ends in a tie, and 7 dollars if the
visitor team is the winner. Perhaps, in order to better invest your money, you
visit not only one, but several different betting houses. Each of them has an
estimation of the money they will pay you, but the corresponding payments
may vary from one betting house to another one, because their estimations
may fail to coincide. Thus, if you have at hand the vectors of payments (say,
for instance: (1.6, 2.8, 7); (1, 61, 2.75, 8); (1.4, 3, 8.5)) you could try to find some
distribution of your money assigning weights to the different betting houses in
the way you like (e.g.: you may decide to invest 60% of your money in the
former house, 30% in the second one and 10% in the third one). This leads
to an average vector of payments that, in this case, comes from a weighted
arithmetic mean. More sophisticated systems would try to find a distribution
of money such that the resulting average vector of payments coincides, say, with
the Fermat point. In addition, from a vector of payments one could compute
the vector of probabilities5 that the house assigns to each result of the match
(see e.g. [45]). of These vectors of probabilities lie in the unit cube [0, 1]3 so
that they can also be considered as fuzzy sets on a universe of three elements.

5This should be the vector of inverses of payments, but sometimes the sum of these inverses
is not 1. This is due to the taxes, the money that the betting house gains, and sometimes,
some bonus to attract the gamblers. For instance, in the vector of payments (1.6, 2.8, 7), the
sum 1

1.6
+ 1

2.8
+ 1

7
= 1.125 > 1.

23



Thus, they can be aggregated in a suitable way, so that you can also have an
idea about which is the estimated probability of each result of the match, as an
average of the estimated probabilities assigned a priori by the betting houses.

4.4. Sports

Voronoi diagrams have applications in sports, in a wide sense (see [45]). For
instance, in a collective game as, say, handball, it is interesting to look for the
players who dominate a wide part of the playground. To this extent we may
think that the player whose corresponding Voronoi cell has the biggest area is
the best. Or maybe we may think differently, so that the most clever players
are those that force more people to be around and close to them. In that
interpretation, we would pay attention to the player whose Voronoi cell is the
smallest one. A wide analysis of situations of this sort, explained in a didactical
and funny manner, may be seen in [45].

5. Conclusion

Aggregation procedures based on some geometrical idea could also be an
interesting tool to handle fuzzy sets defined on a finite universe, so interpreting
the fuzzy sets as points in a unit cube. The possibilities that these alternative
methods suggest for application in multidisciplinary fields tell us that they de-
serve attention and should never be put apart from other typical aggregation
methods based on, say, algebraic or analytical settings. Among the geometrical
procedures, some of them are related to classical problems in Computational
Geometry, as, e.g., the computation of Fermat and Weber points. Moreover,
some classical aggregation operators, not usually considered as “geometrical”,
can also be given some enlightening geometrical interpretation, as it is the case
of the OWA operators.
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