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1. RESEARCH SITES USED FOR MODEL CALIBRATION 

Research plots are located in the higher Ebro Basin, in northern-central Spain, in the southwestern 

Pyrenees. Nine research plots are placed at two different sites with distinct geo-climatic features, 

providing a climatic gradient representative of most Mediterranean mountains. The first site (near the 

village of Aspurz) has cool Mediterranean climate, 680 m altitude, 10% average slope, average annual 

temperature (Tm) of 12.0 ºC and annual precipitation (P) of 900 mm. The second site (near the village of 

Garde) is a cool continental site at 1380 m altitude, 45% slope, Tm 8.2ºC and P 1300 mm (Figure 1 in 

main text). At both sites, Scots pine is the dominant species, with a presence of beech trees in the lower 

canopy and understory layers (Table S1).  

Table S1. Site features both sites (mean ± standard error). 

Variable Cold wet Mediterranean site1 Cold wet continental site1 

Name of nearest town Aspurz Garde 

Latitude N 42º42’31’’ 42º48’50’’ 

Longitude W 1º08’40’’ 0º52’30’’ 

Altitude a.s.l. (m) 625 1,335 

Mean slope (%) 7 40 

Aspect N NE 

Mean annual precipitation (mm)2 895 1802 

Mean temperature (ºC) 2 11.9 9.3 

Soil type (FAO) Haplic Alisol Dystric Cambisol 

Texture (FAO) Sandy loam Clay loam 

Maximum root depth 45 cm 35 cm 

Saturated water content 42.6% 51.3% 

Organic C (mg g-1)3 53.12 ± 2.75 52.62 ± 2.36 

Organic N (mg g-1)3 2.62 ± 0.12 2.39 ± 0.08 

Available P (mg g-1)3 0.018 ± 0.001 0.025 ± 0.002 

C/N 20.68 ± 0.51 22.43 ± 1.13 

N/P 196.9 ± 13.9 139.3 ± 22.4 
1 According to Papadakis classification. 
2 Variables calculated for the period 1985-2014. 

3 Surface mineral horizon: organic C (Walkley-Black method, USDA, 1972), organic N (Kjeldahl), available P (Olsen, 

Kuo, 1996). 

 

2. MODELLING APPROACH 

2.1. FORECAST Climate development 

FORECAST Climate was developed from FORECAST (Kimmins et al., 1999) which is a managed-

oriented, deterministic, non-spatial, stand-level forest growth and ecosystem dynamics simulator. 

FORECAST was designed to accommodate a wide variety of harvesting and silvicultural systems in 

order to compare and contrast their effect upon forest productivity, stand dynamics and a series of 

biophysical indicators of non- timber stand values. The model has been used in a wide variety of 

applications and has been evaluated against field data for growth, yield, ecophysiological and soil 

variables (e.g. Bi et al., 2007; Blanco et al., 2007; Seely et al., 2008). The model uses a hybrid approach 
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to vegetation growth modelling, as it merges the use of empirical data modified by the simulation of the 

most important ecological processes (Kimmins et al., 1999; Landsberg, 2003). Projection of stand growth 

and ecosystem dynamics is based on a representation of the rates of key ecological processes regulating 

the availability of, and competition for, light and nutrient resources (Fig. S1A). FORECAST assumes that 

climate for the simulated site quality is similar to the climate during the time when empirical data were 

recorded. However, the rising trends in greenhouse gas emissions and their associated impacts on future 

temperature and precipitation patterns (IPCC, 2013) triggered the development of an explicit 

representation in the model of moisture and temperature on ecosystem processes.  

Hydrological processes are simulated by the forest hydrology model ForWaDy, in which water flows 

through a layered forest ecosystem (Fig. S1B). ForWaDy´s general data requirements are shown in Table 

S2. FORECAST and ForWaDy are dynamically linked to create FORECAST Climate, as the respective 

functions from each model are continuously updated in response to the iterative sharing of information 

encoded within a series of feedback loops. 

2.2. Climate impacts on productivity, decomposition and mortality 

Climate impact (temperature and moisture) on plant growth and decomposition processes is represented 

with species-specific curvilinear response functions simulated on a daily time step (Fig. S2). A net daily 

growth response index of species i and day d (GRIDay i,d) and a daily decomposition response index of soil 

layer l and day d (DRIDay l,d) are derived as the product of temperature and water stress components. Daily 

response indexes are then summed to calculate annual response indexes for growth (GRIYear i,y) and 

decomposition (DRIYear l,y). A calibration run is conducted with the reference climate data set from which 

t GRIYear i,y and DRIYear l,y are calculated. By averaging the annual values for the length of the reference 

climate period, a normalized growth and decomposition response indexes are derived for each species or 

soil layer that reflects ‘normal’ conditions in an average historical climate year. Annual climate response 

indexes are compared against normalized response indexes to obtain climate factors, which modify base 

growth and decomposition rates to achieve a climate- limited growth and decomposition (Eq. S1 and S2). 

CRF i,y = (GRIYear i,y - NGRIi) / NGRIi and CDF x,y = (DRIYear l,y – NDRIl) / NDRIl            (S1) 

CGR i,y = BRG i,y * CRF i,y and CDR x,y = BRD x,y * CDF x,y                             (S2) 

where, CRF i,y is the climate response factor for species i in year y; CDF x,y is the climate decomposition 

factor for litter type x in year y; NGRIi and NDRIl are normalized growth and decomposition rates, 

respectively, derived from the reference climate; CGR i,y is the climate-limited growth rate for species i in 

year y (Mg ha-1); CDR x,y is the expected climate decomposition rate for litter type x and year y (Mg ha-1); 

BRG i,y is base growth rate determined in FORECAST as the light and nutrient-limited growth rate ; and 

BRD x,y is the base decomposition rate for each litter type determined as a function of litter quality. 
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Drought-related mortality is also included in FORECAST Climate since long dry periods can cause plant 

individual loss, either directly or by increasing vulnerability to biotic disturbance agents (Allen et al., 

2010). Water stress mortality is simulated through a user-defined graphical function of species-specific, 

two-year running average TDI (Fig. S3). For further details on impacts of increasing CO2 on forest 

growth, linkage between FORECAST and ForWaDy and climate response factors of growth and soil 

related processes calculation see Seely et al. (2015). 

Table S2. General data requirements for the ForWaDy model. 

Climate data (daily) Vegetation data Forest floor and soil data 

Mean, max and min air 

temperature (ºC) 

Seasonal tree Leaf Area Index 

(LAI) 

Fine litter mass (kg.ha-1) 

Solar radiation (MJ. m2). Seasonal understory cover (%). Humus layer depth (cm) and bulk 

density (g.cm3) 

Total precipitation (mm). Rooting depth for trees (cm) Depth of mineral soil layers 

(rooting depth) (cm) 

Snow fraction. Rooting depth for understory (cm) Soil texture class of each soil 

layer 

Atmospheric [CO2]. Canopy resistance and albedo (by 

species) 

Coarse fragment content (> 2 

mm) in each soil layer 

 

2.3. Model calibration and initialization 

Published yield tables and biomass equations were used to build historical P. sylvestris growth patterns 

(age-biomass curves) (García and Tella, 1986; Puertas, 2003). Data on tree light and nitrogen 

requirements were derived from field data (Blanco et al., 2009; Primicia et al., 2014) and literature 

(Oliver and Larson, 1996; Terradas, 2001; Santa Regina and Tarazona, 2001; Dufrene et al., 2005; 

Balandier et al., 2010). Literature data were also used to calibrate shading (Pretzsch et al., 2015) and 

turnover rates (Mäkelä and Vanninen, 2000; Mainiero and Kazda, 2006; Finér et al., 2007). Litter 

production was derived from field data (Kimmins, 2004; Blanco et al., 2006a). Decomposition rates and 

soil data were derived from field data (Blanco et al., 2011; Fernández, 2013; Martínez, 2015) and 

literature (Blanco et al., 2006b). Empirical data showed the absence of N fixation in P. sylvestris stands 

(Blanco et al., 2016). Atmospheric deposition rates are based on García-Gómez et al. (2014) predictions, 

and mineral weathering rates are from literature (Kimmins, 2004; Fisher and Binkley, 2000). Understory 

growth patterns (limited in the simulation to Rubus spp., the main dominant understory species by 

biomass at both sites; Arias, 2014), nutrient concentration and litterfall decomposition rates were derived 

from literature (Mitchell et al., 2000; Imbert et al., 2008; García Del Barrio, 2000) and field data (Arias, 

2014). Values of soil and tree-related parameters can be found in Table S3 and Table S4, respectively. 

Seasonal changes in leaf area index (LAI) needed for ForWaDy model calibration were estimated with 

data from PEP725 Pan European Phenology Data (http://www.zamg.ac.at/pep725/) and literature (Gill et 

al., 1998; Vitasse et al., 2009), whereas seasonal understory cover was derived from field data. Literature 
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data were used for rooting depth of trees and understory vegetation (Fotelli et al., 2001; Bonnemann, 

1939 in Pretzsch et al., 2015), and canopy resistance and albedo (Otto et al., 2014). The climate response 

functions within FORECAST Climate were calibrated using historical daily climate data. Solar radiation 

was estimated from maximum and minimum air temperature, elevation, latitude, slope and aspect of 

study sites using published radiation models (Seely et al., 2015). 

To establish initial site conditions we carried-out a modified version of the typical spin-up process used 

to let the model reach a stable state (Hashimoto et al., 2011; Shi et al., 2013). Initial conditions were 

created by running the model for ten 150-year cycles ending with a clear-cutting and harvest of 90% of 

logs and allowed for a new cohort of trees to grow (Blanco et al., 2007, Blanco and González, 2010). 

Simulated stands were pine-beech mixtures. These runs allowed the model to accumulate soil organic 

matter (SOM) until reaching a stable value (378.1 and 506.3 Mg ha-1 for the high and low elevations 

sites, respectively). The final products of these runs were used as the starting conditions for the 

simulations.  

 

Table S3. Values used to calibrate FORECAST parameters related to soil and geochemical cycles. 

 

Parameter Mediterranean site Continental site 

N concentration in slow / fast humus (%) 2.50 / 1.20 2.50 / 1.20 

Decomposition rate slow / fast humus (% year-1) 0.25 / 1.30 0.25 / 1.20 

CEC soil (CEC humus) / AEC a (kg N.ha-1 · year-1) 85.0 (0.1) / 2.0 50.0 (0.1) / 1.0 

Atmospheric deposition / seepage (kg N · ha-1 ·year-1) 10.5 / 0.35 6.5 / 0.0 

Initial SOM b (humus + litter) (Mg  · year-1) 506.27 378.08 
a CEC: cation exchange capacity; AEC: anion exchange capacity 
b SOM: soil organic matter 

 

 

Table S4. Values used to calibrate FORECAST parameters related to Pinus sylvestris. 

 

Tree parameter Mediterranean site Subalpine site 

Nitrogen concentration in leaves young/old/dead Nitrogen (%) 1.40/1.35/0.64 1.10/1.06/0.68 

Nitrogen concentration in stem sapwood/heartwood (%) 0.11 / 0.09 0.10 / 0.04 

Nitrogen concentration in bark live/dead (%) 0.38 / 0.33 0.25 / 0.19 

Nitrogen concentration in branches live/dead (%) 0.53 / 0.31 0.36 / 0.11 

Nitrogen concentration in root sapwood/heartwood (%) 0.53 / 0.31 0.25 / 0.23 

Nitrogen concentration in fine roots live/dead (%) 0.96 / 0.62 0.86 / 0.57 

Shading by maximum foliage biomass (% of full light) 0.15 0.25 

Soil volume occupied at maximum fine root biomass (%) 0.97 0.97 

Efficiency of N root capture (%) 1 1 

Retention time for young/old foliage/dead branches (years) 1 / 3 / 10 1 / 4 / 22 

Fine roots turnover (years-1) 0.65 0.95 

Maximum foliage biomass (kg · tree-1) 30 17 
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Figure S1. Schematic representation of: (A) key ecosystem processes and interactions (black dotted lines), and mass flows between ecosystem pools (black 

solid lines) represented in FORECAST model (after Blanco, 2012); and (B) the forest hydrology model ForWaDy indicating water flow pathways and storage 

compartments in the model (after Seely et al., 1997), used to estimate the available soil moisture in FORECAST.

A. FORECAST B.     ForWaDy 
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Figure S2. Climate response function showing the effect of temperature and water stress on growth 

(A, B) and decomposition (C, D). Relationships between mean daily temperature and a temperature 

growth modifier for both tree species (A), and daily water stress and moisture growth modifier (B). 

Daily decomposition index in relation to daily air temperature (C), based upon a Q10 function where 

Q10 = 2, and relative daily moisture content shown for litter, humus and mineral soil (D). 

 

Figure S3. The drought-related mortality rate as a function of the 2-year running average water stress 

index 
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3. CLIMATE CHANGE SCENARIOS 

Six different well-established general circulation models (GCMs) included as part of the 

Intergovernmental Panel on Climate Change AR5 analysis (IPCC 2013; Table S5) were used to 

generate climate change scenarios. Two emissions pathways based on a representative CO2 

concentration pathways that generates radiative forcing of 4.5 Wm-2 (RCP 4.5) and 8.5 Wm-2 (RCP 

8.5) (Meinshausen et al., 2011) were selected (Fig. S4).While the latter presents a high radiative 

forcing and greenhouses gases concentration, the former is an intermediate pathway that predicts 

stabilization in 2100-2150 and it is reflected in a large number of publications. GCMs were regional 

downscaled using the Statistical Downscaling Method (SDSM), a regression-based downscaling 

method that has been broadly applied to produce high-resolution climate change scenarios around the 

world (Wilby and Dawson, 2013). Empirical relationships were established between data from 

weather stations for the period 1961-1990 and GCMs predictions interpolated into a 2.5º re-analysis 

grid NCEP/NCAR (Serrano et al., 2014). Maximum and minimum temperatures were predicted using 

unconditional models and minimum sum of absolute errors regression for parameter estimation: the 

variance of the series is increased by adding a random-residual factor to the deterministic component. 

Precipitation projections were made with conditional models by following the procedure specified by 

Kilsby et al. (1998) and the least square method. In this case, an additional stochastic process is 

included to determine whether a particular day precipitation occurred or not by comparing the 

probability obtained from the regression model and a pseudo-random number extracted from a 

uniform distribution with values between 0 and 1. Models were validated with observed data from the 

period 1991-2000 (Serrano et al., 2014). The projections from five near to study sites weather stations 

were averaged and subtracted or divided by temperature and precipitation, respectively, from climate 

series for the reference period 1975-2004 from each study site. The resulting data set spanned a 100-

year period (2015–2114). Changes in growing season mean temperature and total precipitation are 

shown in Fig. S5. 

 

Figure S4. Atmospheric CO2 concentration ([CO2]) for the historical period 1975-2004 (black line) 

and projected increase for the RCP 4.5 (blue line) and RCP 8.5 emissions scenarios (red line). 
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Table S5. General Circulation Models (GCMs) used for climate change scenarios projections. 

 

Name Institution (Country) References 

BNU-ESM Beijing Normal University (China) Merrifield et al. (2013) , 

von Salzen et al. (2013) 

CanESM2 Canadian Center for Climate Modelling and 

Analysis (Canada) 

Arora et al. (2011), 

von Salzen et al. (2013) 

CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti 

Climatici (Italy) 

Fogli et al. (2009), 

Scoccimarro et al. (2011), 

IPSL-CM5B-LR Institut Pierre Simon Laplace (France) Dufresne et al. (2012), 

MIROC-ESM University of Tokyo, National Institute for 

Environmental Studies, and Japan Agency for 

Marine-Earth Science and Technology (Japan) 

Watanabe et al. (2011) 

MPI-ESM-MR Max Planck Institute for Meteorology 

(Germany) 

Stevens et al. (2012), 

Reick et al. (2013) 
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