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Abstract. The approach of designing blades as a multi-disciplinary, holistic optimisation 

implies significant challenges owing to the high complexity of the involved factors such as 

aerodynamics, elasticity, controller and loads. Moreover, the large number of design variables 

complicates the intuitive analysis of the relationship between the design variables and 

responses. This paper presents the design variable exploration prior to blade optimisation, 

which reveals certain design variable combinations that lead to undesirable dynamic load 

amplification. Statistical tools, such as multiple logistic regression and fast and frugal decision 

trees, are applied to identify the conditions causing the phenomenon and predict the possible 

appearance under new design variable combinations

1.  Introduction 

The significant increase in wind turbine sizes over the past several years makes efficient blade design 

fundamental. The traditional methodology of dividing the blade design into separate problems—

aerofoil geometry, spanwise distributions, structural layout design and load calculations—is evolving 

into a multi-disciplinary design optimisation that interconnects different disciplines [1][2][3][4]. The 

challenge of dimensionality [5] applied in optimisation problems refers to the complexity and high 

computational cost that arises when increasing the number of design variables.  

Prior to optimisation, design exploration comprises several statistical techniques to investigate the 

design space, with the intent of obtaining knowledge to understand the relationships between design 

variables and outputs. Furthermore, this aids in detecting outliers and anomalies in the performance 

under determinate variable combinations [6].  

Statistical methods have been used extensively for wind turbine load assessment in recent research, 

to overcome the complexity and high computational costs. For example, Monte Carlo techniques are 

frequently applied to deal with computationally expensive offshore fatigue assessment [7]. Long-term 

ultimate load assessment requires statistical support to estimate loads within a 50-year recurrence 

period [8][9][10]. In the research of Murcia et al. [11], polynomial surrogate models based on global 

sensitivity analysis were employed to characterise the energy production and fatigue loads as a 

function of inflow wind conditions. 

In this study, statistical tools are applied to scan the design space, and identify and predict 

anomalous loading responses. Firstly, Latin hypercube sampling (LHS) [12] is applied to generate sets 

of design variables belonging to blade geometry, structural layout and wind turbine control efficiently. 

For each observation, the blade geometry and structure are constructed, and relevant blade properties 

http://creativecommons.org/licenses/by/3.0
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are calculated and introduced in an aeroelastic wind turbine model subjected to steady and dynamic 

load calculations following wind turbine design standards [13]. For these aero-elastic calculations, the 

ultimate and fatigue damage equivalent loads [14] are obtained from the main forces/moments in the 

wind turbine. Visual inspection with violin plots [15] reveals severe dynamic load amplification when 

complex design variable combinations take place. Statistical methods such as multiple logistic 

regression [16] and fast and frugal trees (FFTrees) [17] are applied to create a surrogate model and 

identify the design space that should be avoided to prevent undesirable responses in future blade 

optimisation problems. 

2.  Methods 

2.1.  Design variables 

Blade geometry is conceived as a lofted B-spline [18] surface generated from aerofoil curves that are 

transformed according to longitudinal laws in the form of a B-spline: stacking, chord, twist, thickness, 

and pre-bending. The control points of the B-splines are set as design variables. Moreover, the 

thickness distribution of the main spar cap along the span is defined by three design variables. Finally, 

the torque-speed gain and gearbox ratio [19] are also established as design variables.  

2.2.  Latin hypercube sampling 

LHS is a stratified sampling method that covers the design space efficiently with a reduced number of 

observations [12]. The statistical software R [20] is used for the LHS calculation, prior to which data 

scaling and centring are performed. 

2.3.  Calculation of loads 

B-spline longitudinal laws are constructed for each observation provided by LHS, and the subsequent 

blade lofted surface is generated. In conjunction with the blade geometry, a new spar cap thickness 

distribution is introduced with a classic laminate theory method [21] in order to obtain the structural 

properties of the blade. The aeroelastic wind turbine model in Bladed [22]  is updated according to the 

new blade geometry, structural properties, torque-speed gain and gearbox ratio. The model used in this 

research is a three-blade, horizontal-axis, upwind, variable speed and active pitch-regulated wind 

turbine.  

Following the completion of the aeroelastic model, the Eigen-frequencies and modes are calculated 

and time domain simulations are run according to wind turbine design standards. The simulations are 

power production DLC1.2 load cases with a normal turbulent wind model [13]. Start-up, idling, 

normal shut-down and fault simulations are excluded from the present research. The simulations cover 

the wind turbine operation range and different wind inflow misalignments. The resultant loads in the 

main wind turbine locations, tower base, tower top, hub centre, blade root and several blade span 

stations are post-processed to obtain a set of ultimate loads. Moreover, load signals are processed in 

terms of constant amplitude fatigue cycles using the rainflow counting method. The damage 

equivalent load (DEL) is calculated on the basis of the Palmgren-Miner method, as the range of a 

sinusoidal load of constant frequency that would produce the same fatigue damage as the original 

signal [14]. Finally, steady calculations are completed for the wind speed range and loads of interest.  

2.4.  Violin plots 

The ultimate loads and DELs are inspected by means of violin plots [15]. A violin plot is a 

combination of a box plot and a rotated kernel density plot. The bottom and top of the box represent 

the first and third quartiles, respectively, while the horizontal line inside the box represents the 

median. The ends of the whiskers represent the minimum and maximum of all data. The kernel density 

non-parametric function estimates the variable probability density function.  

The violin plot of the DEL of the Mx moment (edgewise) in the blade root, presented in Figure 

1(a), reveals a high number of outliers within the observations. Furthermore, Figure 1(b) indicates 
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extreme Mx moments in the blade root, resulting from steady calculations, versus extreme values from 

the DLC1.2 calculations. Most of the observations exhibit an accurate linear correlation between the 

steady and dynamic conditions; however, a significant number of observations with high dynamic load 

amplification exist. Accordingly, these are classified as normal or abnormal when the linear 

correlation between the steady and dynamic extremes exists or not, respectively. 

Figure 2(a) illustrates the Mx time history of a specific observation classified as abnormal. This 

specific load case exhibits an 8 m/s mean wind speed and 0° mean wind direction. Figure 2(b) 

presents the auto-spectral density of the same signal. The amplified response suggests the existence of 

a certain type of aeroelastic instability [23].  

Following observation of the phenomenon, the assessment is focused on avoiding undesirable 

amplified responses by identifying the combination of design variables leading to its appearance. A 

detailed classification of the type of aeroelastic instability is beyond the scope of this paper and should 

be assessed separately. 

Two statistical methods are employed to predict the existence of the abnormal situation: multiple 

logistic regression and FFTrees. 

 

 

Figure 1 (a) Violin plot of DELs of Mx moment in blade root. (b) Maximum Mx moment in blade 

root from steady calculations versus maximum Mx moment in blade root from DLC1.2 calculations. 

Each point corresponds to one observation generated using LHS. 
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Figure 2 (a) Time history of Mx moment in root of specific observation classified as abnormal (8 m/s 

mean wind speed and 0° mean wind misalignment). (b) Auto-spectral density of Mx moment in root 

of specific observation classified as abnormal (8 m/s mean wind speed and 0° mean wind 

misalignment). 

2.5.  Overfitting in prediction models 

Overfitting refers to the phenomenon in complex approximation models whereby the known data are 

fit with high accuracy, but new unknown observations are poorly predicted [16]. To avoid this 

phenomenon, the observations are randomly divided into two groups. The first, larger group serves to 

train the prediction model; the second group is used for accuracy validation and assessment under 

unknown data. 

2.6.  Multiple logistic regression 

Prior to the statistical treatment, a binary response known as abnormal is artificially created and 

assigned to the calculated observations. The unity represents the existence of the dynamic 

amplification observed in subsection 2.4.   

When assessing the relationship between the design variables and a binary response, linear 

regression is not an appropriate prediction model. In contrast, multiple logistic regression is 

convenient for this type of analysis [16][24].  

The multiple logistic regression follows the equation: 

log (
𝑝(𝑋)

1−𝑝(𝑋)
) =  𝛽0 +  𝛽1𝑋1 + ⋯ +  𝛽𝑝𝑋𝑝, 

where X is the array of p design variables, 𝛽𝑖 denotes the regression coefficients and 𝑝(𝑋) is the 

probability of obtaining an observation that produces a response classified as abnormal: 

𝑝(𝑋) = Pr (𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 = 1||𝑋). 

The maximum likelihood method is used to estimate the regression coefficients. The significance 

of each design variable is determined by means of a contrast hypothesis test performed on the 

associated regression coefficients [16]. 

2.7.  Fast and frugal trees  

Decision trees are methods that stratify the design space into regions by following a tree scheme to 

predict a binary response. The cue-based questions in the tree are known as nodes, the answers to 

these questions are branches and the leaves are the decisions. The main advantage offered by these 
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methods is simplicity of interpretation. Nevertheless, the accuracy level is generally lower than that of 

more complex methods [16].  

Among the different techniques related to decision trees, such as bagging, random forests and 

boosting, the novel FFTree method is selected [25]. For the fundamentals of this method,  [25] or [26] 

can be consulted. The advantages of FFTrees with respect to other techniques are that they are fast, 

frugal, simple and transparent algorithms. Moreover, they are robust against overfitting [25].  

2.8.  Confusion table 

The confusion table displayed in figure 3 presents the results of a binary prediction model. The rows 

refer to decisions according to the model and the columns, to true values. Accordingly, the diagonal 

provides correct decisions and the off-diagonal provides erroneous values [25]. The results are 

classified according to the following nomenclature: 

 Hits (hi) are response predictions as 1 that are correct. 

 Correct rejections (cr) are response predictions as 0 that are correct. 

 Misses (mi) are response predictions as 0 that are incorrect.  

 False alarms (fa) are response predictions as 1 that are incorrect. 

 

Figure 3 General confusion tables of binary prediction models. 

Based on the confusion table, the following metrics assess the predictor performance. 

 Sensitivity (sens). Probability of correctly identifying a true positive case: 

𝑠𝑒𝑛𝑠 =  
ℎ𝑖

ℎ𝑖 + 𝑚𝑖
 

 Specificity (spec). Probability of correctly identifying a true negative case: 

𝑠𝑝𝑒𝑐 =  
𝑐𝑟

𝑐𝑟 + 𝑓𝑎
 

 Accuracy (acc). Probability of correctly identifying any case: 

𝑎𝑐𝑐 =  
ℎ𝑖+𝑐𝑟

ℎ𝑖 +𝑐𝑟+𝑚𝑖+𝑓𝑎
. 

At present, the threshold probability for assigning a prediction as unity is defined as 0.5. However, 

this probability can be increased to improve specificity, although this implies an associated sensitivity 

reduction.  

3.  Results 

3.1.  Multiple logistic regression  

The model is fit using training data. A subsequent contrast hypothesis test performed reveals that 

variables involved in the pre-bending curve and blade thickness along the span present the highest 

impact in the binary response. 

Regarding the prediction accuracy, figure 4 displays the confusion table for a validation group of 

observations, while table 1 presents the performance metrics. 

 

Figure 4 Confusion table of multiple logistic regression performed for validation observations. 

1 0

Prediction 1 hi fa

0 mi cr

Truth

1 0

Prediction 1 18 6

0 10 167

Truth
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3.2.  FFTree 

The FFTree obtained from the training data is presented in figure 5. Only three variables are relevant 

in the prediction model: one coefficient and knot of the pre-bending B-spline, and one coefficient of 

the B-spline thickness. Figure 6 illustrates two pre-bending B-spline curves that are predicted as 

abnormal or normal according to the FFTree. Furthermore, the confusion table in figure 7 displays the 

predictor performance for the validation observations. 

 

Figure 5 FFTree for predicting binary abnormal response  (=1). 

 

Figure 6 Example cases of pre-bending curves that represent associated abnormal or normal dynamic 

responses in the DLC1.2 load cases. 

 

Figure 7 Confusion table for FFTree analysis performed for validation observations. 

 

1 0

Prediction 1 25 29

0 6 140

Truth
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The efficiency metrics for both prediction models are summarised in table 1. 

Model Sensitivity Specificity Accuracy 

Logistic (p=0.5) 79% 94% 92% 

Logistic (p=0.85) 64% 97% 93% 

FFTree 81% 83% 83% 

Table 1 Efficiency metrics of prediction models for validation observations (logistic regression with 

probability p=0.5, logistic regression with probability p=0.85 and FFTree). 

4.  Discussion 

The appropriate prediction model sensitivity and specificity depend on the prediction purpose, and 

represent a solution of compromise [16]. If the model is used to specify a constraint in a subsequent 

optimisation problem, it is preferable to have a low number of false alarms (high specificity) and high 

number of misses (low sensitivity) than vice versa. One missed prediction provided incorrectly by the 

optimisation as a feasible solution can be identified afterwards by performing aeroelastic simulation to 

verify the prediction goodness. Nevertheless, a false alarm means a possible feasible solution that the 

optimisation has incorrectly rejected, without possible knowledge by the designer. 

In terms of multiple logistic regression, the accuracy for unknown observations is high (92%), 

while the specificity (94%) is higher than the sensitivity (79%). When the threshold probability is 

changed to 0.85, the specificity changes from 94% to 97%; however, this implies a significant 

sensitivity loss, from 79% to 64%. 

The FFTree provides a less accurate set of predictions (83%), with balanced sensitivity and 

specificity. However, the model simplicity offers an advantage for implementation in an optimisation 

problem constraint and for understanding the phenomenon. 

5.  Conclusions 

Design exploration is performed as a prior stage to the multi-disciplinary optimisation of the blade, in 

order to obtain important information regarding the design space. Blade geometry, structural layout 

and control features are sampled using the LHS technique to cover the design space efficiently. As the 

result of aeroelastic calculations, a set of steady, ultimate and fatigue loads are obtained. A visual 

inspection with the aid of violin plots reveals high dynamic load amplification in certain complex 

design variable combinations. The consequent excessive loading should be avoided in the design.  

Multiple logistic regression and the FFTree are fit and validated to predict the conditions causing 

the phenomenon. Although multiple logistic regression provides a more accurate prediction, the 

FFTree presents a visual tree scheme with easy implementation. In terms of the model sensitivity and 

specificity, further considerations should be made. For the model implementation in an optimisation 

problem, a high specificity is preferred as a constraint to avoid undesired load amplification, as one 

missed prediction can be identified afterwards. 

The predicting models identify the pre-bending and blade thickness B-spline coefficients as those 

involved in the instability phenomenon.  

Classification of the dynamic load amplification should be assessed in separate future research.  
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