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The regulation of a disturbed output can be improvedwhen severalmanipulated inputs are available. A popular choice in these cases
is the series control scheme, characterized by (1) a sequential intervention of loops and (2) faster loops being reset by slower loops,
to keep their control action around convenient values. This paper tackles the problem from the frequency-domain perspective.
First, theworking frequencies for each loop are determined and closed-loop specifications are defined.Then,Quantitative Feedback
Theory (QFT) bounds are computed for each loop, and a sequential loop-shaping of controllers takes place.The obtained controllers
are placed in a new series architecture,which unlike the classical series architectureonly requires one controller with integral action.
The benefits of the method are greater as the number of control inputs grow. A continuous stirred tank reactor (CSTR) is presented
as an application example.

1. Introduction

In process control, it is common to find several manipulated
variables regulating a single measurable output (MISO:Mul-
tiple Input Single Output control). Remarkable examples are
distillation columns [1], chemical and biochemical reactors
[2–4], heat-exchangers [5], paper-machines [6], and medical
control systems [7, 8]. Recent fields of application are the
automotive industry [9, 10], consumer-electronics [11, 12],
and robotics and unmanned aerial vehicles [13, 14].

The architectures for MISO control can be grouped
in two: the parallel [15, 16] and the series disposition of
controllers. The latter (see Figure 1) originally appeared in the
habituating control by Henson et al. [15] and the midranging
control by Allison and Isaksson [17]. It can be seen as a
generalization of the valve position control (VPC) for the
process industry presented by Shinskey [1] and Luyben [18].
Skogestad and Postlethwaite [19] labelled it as cascade control.
The architecture seeks a sequential loop intervention from
the fastest (bottom) to the slowest (top) loop, in order to
recover the set-point 𝑟 at the 𝑑-disturbed output 𝑦. Besides,
the fastest control variable 𝑢2 returns to the setpoint 𝑟𝑢2 when

the slowest loop resets the fastest loop (input resetting control).
Plant models 𝑝1 and 𝑝2 characterise the dynamic behaviour
of the output 𝑦 in response to the manipulated inputs 𝑢1 and𝑢2, respectively. Similarly, 𝑝𝑑 models the response of 𝑦 to the
disturbance input 𝑑. The signal V has been added to account
for sensor noise.

In steady state, several combinations of the manipulated
inputs (𝑢1, 𝑢2) could achieve the desired output 𝑟 = 𝑦.
Hence, 𝑟𝑢2 can be chosen according to different criteria, which
are usually linked to efficiency, cost savings, and physical
limitations. For example, midranging [17, 20] chooses 𝑟𝑢2
as the midpoint of the 𝑢2 actuator to preserve the largest
maneuvering range in the fast loop. Conversely, in the
temperature (𝑦) control of a chemical stirred tank reactor
(CSTR), Luyben [21] manipulates the coolant flow to a tank
jacket (𝑢2) around the maximum removal capacity (𝑟𝑢2)
in such a way that the feed-flow rate (𝑢1) is indirectly
maximized, and so is the production rate. Other works [6, 15]
prefer reducing 𝑟𝑢2 as much as possible since 𝑢2 represents
a more expensive physical variable than 𝑢1, and global plant
operating expenses are dominated by steady state control
actions. Parallel structures of controllers can equally attain
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Figure 1: Classical series architecture (midranging).

those aims. For instance, Nájera et al. [4] shows several
ways to conduct the air flow set-point (𝑟𝑢2) in the sludge
temperature (𝑦) control of a biochemical reactor operated by
the air-flow (𝑢2) and the inlet sludge flow (𝑢1). A smaller 𝑟𝑢2
reduces direct expenses by cutting the amount of 𝑢2. On the
other hand, a higher 𝑟𝑢2 deliberately pursues amajor spending
of 𝑢2 in order to force a higher 𝑢1, which raises the production
rate and makes the plant operation more profitable.

Most applications and methods in the literature show
integral action in both controllers 𝑐1 and 𝑐2 to obtain zero
steady-state tracking error in 𝑟 − 𝑦 and 𝑟𝑢2 − 𝑢2. However,
the two integrators in series can make the slowest loop 𝑐2𝑐1𝑝1
conditionally stable [22]. Moreover, the more manipulated
inputs there are, the harder the control design becomes. This
is one of the concerns of the present work. A second one
has to do with the frequency bands at which each input
contributes to the regulation. The location of each input
inside the control structure determines which plant works in
high (𝑝2) and low (𝑝1) frequencies, respectively, whereas the
controllers determine the border between these two ranges.
These decisions may not be trivial. As stated before, some
considerations are linked to the steady-state and permitted
range of the manipulated variables themselves. Others have
to do with the best achievable performance according to
the plant frequency responses. Most contributions in the
literature solve practical examples with ad-hoc decisions and
tailor-made design methods, although some general design
methods are described in [1, 15, 22–25]. Their common
approach is firstly designing the fastest loop (i.e. 𝑐2) to
achieve certain performance in the regulation of 𝑦, and
then, designing the slowest loop (i.e. 𝑐1) that takes 𝑢2 to
the setpoint 𝑟𝑢2 . One important remaining challenge is how
to perform the switching-off of the fast loop since global
performance or even stability may be compromised [22].
Moreover, nomethod has been reported on how to distribute
the performance amongst more than two branches as far as
the authors are aware.

Under these premises, the present work proposes a new
series structure of 𝑛 controllers allowing to exploit the
benefits of using 𝑛 manipulated inputs while avoiding the
inconveniences of having integral action in all controllers. In
this work, integrators appear only in the controller that is next
to the plant that works at the lowest frequencies (𝑐1 if 𝑛 = 2). It
will be shown that this is sufficient to achieve the set-points at
the output and at the 𝑛− 1midrange inputs with zero steady-
steady error. The present work adopts a frequency domain

perspective, showing how to allocate the control load among
the different loops. In particular, a robust methodology is
proposed in the framework of Quantitative Feedback Theory
(QFT) [26–28], which includes plant uncertainty in the
controller design process. The new method details how to
compute the QFT bounds and how to perform a sequential
loop-shaping of controllers.

The paper is organised as follows. Section 2 justifies the
new series structure for MISO control. Section 3 describes
the multi-input participation from a frequency domain per-
spective and proposes a frequency domainmethod to achieve
robust stability and performance in the regulation of the
disturbed output and midrange inputs. Section 4 illustrates
the usefulness of the proposed methodology to improve the
controllability of a continuous stirred tank reactor (CSTR).
Finally, Section 5 presents the main conclusions.

2. A New Series Architecture

The two controlled variables in Figure 1 can be expressed in
terms of the external inputs as follows (either 𝑠-Laplace or 𝜔-
frequency domains are possible for variables and functions):

𝑦 = 𝑙𝑡1 + 𝑙𝑡 (𝑟 − V) + 𝑝𝑑1 + 𝑙𝑡 𝑑 + 𝑐1𝑝11 + 𝑙𝑡 𝑟𝑢2 , (1)

𝑢2 = 𝑐21 + 𝑙𝑡 (𝑟 − V) + −𝑝𝑑1 + 𝑙𝑡 𝑑 + −𝑐2𝑐1𝑝11 + 𝑙𝑡 𝑟𝑢2 , (2)

where

𝑙𝑡 = 𝑙2 + 𝑙1 = 𝑐2𝑝2 + 𝑐2𝑐1𝑝1. (3)

Let us consider: the sensor noise V(𝑡) exclusively contains
high frequency components, i.e. V(𝑡 = ∞) = V𝑠𝑠 = 0, the𝑝1 and 𝑝2 plants model self-regulating processes (absence of
integrating dynamics), the 𝑟 and 𝑟𝑢2 set-points take constant
values, and the 𝑑 disturbance is step-type. A suitable feedback
design demands both |𝑙𝑡(𝑗0)| ≫ 1 and |𝑙𝑡(𝑗0)| ≫ |𝑝𝑑(𝑗0)| at
steady-state 𝑠 = 𝑗𝜔 = 𝑗0. Besides, distinguishing the fast and
slow loops requires that |𝑐2(𝑗0)𝑐1(𝑗0)𝑝1(𝑗0)| ≫ |𝑐2(𝑗0)𝑝2(𝑗0)|,
i.e. |𝑙1(𝑗0)| ≫ |𝑙2(𝑗0)|. Thereby, considering (𝑟 − V) and 𝑑
inputs in (1), a zero steady-state error at the output, 𝑦𝑠𝑠 =𝑦(𝑡 = ∞) = 𝑟𝑠𝑠 needs of |𝑙𝑡(𝑗0)| = ∞, which must be
necessarily provided by |𝑐1(𝑗0)| = ∞ since |𝑙1(𝑗0)| ≫ |𝑙2(𝑗0)|.
An integrator in 𝑐1 does the job. Furthermore, |𝑐2(𝑗0)| = ∞
(an integrator in 𝑐2) is also needed to neglect the influence
of 𝑟𝑢2 at 𝑦𝑠𝑠 in (1), which also preserves |𝑙1(𝑗0)| ≫ |𝑙2(𝑗0)|.
Regarding (2) both controllers also need integral part to
achieve 𝑢2𝑠𝑠 = 𝑟𝑢2𝑠𝑠 . Beyond their usefulness for steady-
state purposes, integrators become a problem for linear
stability, in addition to other practical issues such as wind-up
phenomena. Regarding the stability, the loop 𝑙1 is the most
troublesome since it contains two integrators, which means a
phase lag of −180∘ at 𝜔 = 0. Because of that, [22] discusses
some examples of conditional stability. Achieving stable
loops would become more and more challenging if more
manipulated inputs were used. Let us suppose the Figure 1
structure were generalised for 𝑛 > 2 manipulated inputs. As
each 𝑐𝑖 controller (𝑖 = 1, . . . , 𝑛) should contribute with one
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Figure 2: Series architecture for 𝑛 actuators.

integrator, the most critical loop 𝑙1 = 𝑝1∏𝑛𝑖=1𝑐𝑖 would have
a phase lag of −90∘𝑛 at 𝜔 = 0. Thus, the loops 𝑖 > 2 would
be conditionally stable and demand lead-lag networks that
would increase the order of controllers and make harder the
design procedure. The new series arrangement of controllers
in Figure 2 overcomes the above problems.

In the new architecture, the system output is

𝑦 = 11 + 𝑙𝑡 (𝑙𝑡 (𝑟 − V) + 𝑝𝑑𝑑 + 𝑛∑
𝑖=1

𝑝𝑖𝑟𝑢𝑖) , (4)

where

𝑙𝑡 = 𝑛∑
𝑖=1

𝑙𝑖 (5)

is the total open-loop transfer function, which is made up of
individual loops

𝑙𝑖 = 𝑝𝑖𝑐∗𝑖 = 𝑝𝑖 𝑛∏
𝑗=𝑖

𝑐𝑗. (6)

This branch open-loop function 𝑙𝑖 defines the direct path
from the output set-point 𝑟 to each 𝑝𝑖-plant contribution to
the output:

𝑦𝑖 = 𝑙𝑖1 + 𝑙𝑡 (𝑟 − V − 𝑝𝑑𝑑) −∑
𝑗 ̸=𝑖

𝑝𝑗𝑙𝑖1 + 𝑙𝑡 𝑟𝑢𝑗
+ (1 + 𝑙𝑡 − 𝑙𝑖) 𝑝𝑖1 + 𝑙𝑡 𝑟𝑢𝑖 .

(7)

Eventually, each plant is driven by

𝑢𝑖 = 𝑙𝑖/𝑝𝑖1 + 𝑙𝑡 (𝑟 − V − 𝑝𝑑𝑑) − ∑
𝑗 ̸=𝑖

𝑝𝑗𝑙𝑖/𝑝𝑖1 + 𝑙𝑡 𝑟𝑢𝑗
+ 1 + 𝑙𝑡 − 𝑙𝑖1 + 𝑙𝑡 𝑟𝑢𝑖 .

(8)

Andparticularly, themanipulated input 𝑢𝑖>1 steady-states can
be conveniently trimmed by the set-points 𝑟𝑢𝑖>1 , while the

dependent variable 𝑢1 steady-state can be freely adapted by
the control law to fight persistent disturbances 𝑑 or any other
kind of system unknowns. So there is not a set-point for 𝑢1,
as in classical structures. A first advantage of the new archi-
tecture is that negative comparisons of Figure 1 are no longer
needed at midrange variable sum-points since the negative
feedback at 𝑟 sum-point suffices. This avoids unnecessary
inverse gains on the controllers. A second and major advan-
tage is that an integral action in 𝑐1 makes |𝑙𝑡(𝑗0)| = ∞, which
suffices to achieve 𝑦(𝑡 = ∞) = 𝑟(𝑡 = ∞) (4), and to achieve𝑢𝑖>1(𝑡 = ∞) = 𝑟𝑢𝑖>1 (𝑡 = ∞) (8), under the assumption of
constant set-points and step-type disturbances. Furthermore,
integrators are no longer needed to yield |𝑙𝑖(𝑗0)| ≫ |𝑙𝑖+1(𝑗0)|.
In general, 𝑐1 must provide the number of integrators that
were needed depending on the external inputs, the plants, and
the prescribed steady-state tracking errors.

Inputs 𝑢𝑖 must be conveniently arranged in the structure
considering that 𝑙𝑛 will be the fastest loop and 𝑙1 will be
the slowest loop. Feedback controllers 𝑐𝑖 will determine the
specific working frequencies for each loop 𝑙𝑖 in the global
regulation task. These frequencies also condition the time
at which an upper loop disconnect a lower loop inside the
structure.The next section details a frequency domain design
procedure for those controllers.

There is an equivalent of the series structure (Figure 2) to
a parallel one where 𝑟 − (𝑦 + V) would be lead to independent
branches 𝑙𝑖 (6) whose controllers would be 𝑐∗𝑖 . Let us note
as controllers 𝑐𝑖 are of lower order than controllers 𝑐∗𝑖 =∏𝑛𝑗=𝑖𝑐𝑗, since each individual controller 𝑐𝑖 does not need to
add dynamics of high order that have been added by 𝑐𝑗>𝑖. The
counterpart of simpler controllers is a lower flexibility of the
structure. Thus, the series structure sets the time sequence of
plant intervention, while the controllers could freely allocate
it in a parallel structure [16]; furthermore, this can make
several plants work in the same frequency band.

3. A Robust Frequency Domain
Control Design

3.1. Multi-Input Participation in the Frequency Domain. For
simplicity, let us assume 𝑝𝑑 = 1 and dual input 𝑖 = 2 in the
series architecture of Figure 2. A sensitivity function 𝑆(𝑠)
models the desired performance for disturbance rejection𝑦(𝑠)/𝑑(𝑠); Figure 3(a) depicts its magnitude frequency
response |𝑆(𝑗𝜔)|. The closed-loop specification 𝑆 = 1/(1 + 𝑙𝑡)
can be straight away expressed in terms of the open-loop
function 𝑙𝑡, whose magnitude frequency response |𝑙𝑡(𝑗𝜔)| is
also depicted on Figure 3(a); 𝜔𝑔𝑐 represents the gain cross-
over frequency, which quantifies the control system band-
width. Let us remark that the maximum magnitude peak of|𝑆(𝑗𝜔)| also defines a minimum degree of stability since it
bounds a distance from 𝑙𝑡(𝑗𝜔) to the critical point (stability
margins) [29]. Thereby, |𝑙𝑡(𝑗𝜔)| in Figure 3(a) represents the
robust performance and stability to be achieved by the MISO
control.

However, there are infinite pairs (𝑙1, 𝑙2) that build 𝑙𝑡 and
satisfy that 𝑙1 prevails over low frequencies and 𝑙2 over high
frequencies. An arbitrary pair is depicted on Figure 3(a),
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Figure 3: Frequency goals.

revealing that the switching frequency 𝜔𝑠𝑤 must be specified
by the designer. This frequency is closely related to when the
fastest loop is disconnected by the slowest loop, i.e. to the time𝑡𝑠𝑤 ≈ 4/𝜔𝑠𝑤 that takes 𝑢2 to recover its midrange setpoint 𝑟𝑢2 .

Saving feedback (less gain) at each branch implies each
loop dominates over its frequency band. Thus, |𝑙1(𝑗𝜔)| rolls
off to −∞ from 𝜔 ≥ 𝜔𝑠𝑤 and |𝑙2(𝑗𝜔)| rolls off to −∞
before 𝜔 ≤ 𝜔𝑠𝑤. An abruptly roll-off would require quite
complex controllers (great number of poles and zeros), not
only to achieve a sharp gain increment/decrement but also
to guarantee system stability (let us remind that according
to Bode integrals the magnitude slope is closely related to
its phase lag [27]). Besides, the fact that 𝑙𝑡 achieves sufficient
stability, by means of a large enough distance of 𝑙𝑡 to the
critical point (stability margins), does not necessary imply
that both 𝑙1 and 𝑙2 show large enough distances to the
critical point. Thus, as long as stability margins are chosen in
consonance with the uncertainty about plant models, it will
be of interest to define sufficient stability margins for both
loops, which hampers their disconnection slopes.

Other relevant points are the frequency allocation of
plants in the frequency band and the best choice of 𝜔𝑠𝑤,
which are intimately linked to the application and designer
expertise. Let us describe some general examples in Figures
3(b), 3(c), and 3(d). They depict the magnitude frequency

responses of plants𝑝1 and𝑝2 that have already been chosen to
contribute over low and high frequency bands, respectively.
It is important to remark that plants must be conveniently
scaled [19] for a fair comparison. Figure 3(b) depicts twomin-
imum phase plants with different frequency characteristics.
Thus, choosing𝜔𝑠𝑤 at the cross-frequency where |𝑝1(𝑗𝜔𝑠𝑤)| =|𝑝2(𝑗𝜔𝑠𝑤)| will make the most of both plants to achieve
the required performance while saving feedback (smaller
controller gains). This case is thoroughly exploited inside
a parallel structure in [16]. Similarly the case depicted in
Figure 3(c) also makes the most of input-output character-
istics. In this case, the low-frequency gain superiority and
the presence of a RHP zero in one of the plants make it the
option to work at low frequencies; 𝜔𝑠𝑤 is chosen sufficiently
less than 𝜔RHP𝑧 for an appropriated degree of stability. On
the other hand, Figure 3(d) shows an apparent contradiction
considering only the plant frequency responses. At a first
glance 𝑝2 should be the only plant to be involved in the
regulation task inside a SISO control structure, since 𝑝1 will
not improve the performance. In fact, 𝑝1 will demand a
higher control action than 𝑝2 would have at the steady-state.
In this case, the trick s 𝑢1 physically represents a much less
expensive actuation than 𝑢2, which justifies its intervention.

In summary, quantitative and frequency design methods
can be of great help to guide the control designer. Particularly,
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the loop-shaping of 𝑙1(𝑗𝜔) and 𝑙2(𝑗𝜔) appears to be the wiser
approach.

3.2. Robust Control Problem Statement. Plant model uncer-
tainty and unknown disturbances justifies feedback [26, 30].
The explicit consideration of uncertainty in the design makes
the control robust. Let us consider𝑚 uncertain parameters in
the set of 𝑛 + 1 plant models 𝑝𝑖=1,...,𝑛, 𝑝𝑑 of Figure 2. And take
q𝑗 as a vector in the set of all their possible values Q ∈ R𝑚.
Thus, the MISO uncertain system is defined

P = {P (𝑠, q𝑗) : q𝑗 ∈ Q} , (9)

where P is a 1 × (𝑛 + 1) vector in the uncertain set.
Hence, a set of time responses (4) is possible when

a 𝑑-disturbance happens. A performance model 𝑊𝑑(𝑠) is
chosen to limit those responses. According toQFTprinciples,
the robust performance for disturbance rejection can be
expressed in the frequency domain 𝑠 = 𝑗𝜔, 𝜔 = [0,∞) as

󵄨󵄨󵄨󵄨𝑇𝑑󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦𝑑
󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑝𝑑1 + 𝑙𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝑊𝑑󵄨󵄨󵄨󵄨 ; ∀P. (10)

And the robust stability in 𝑠 = 𝑗𝜔, 𝜔 = [0,∞) is being
expressed in this work by the set

󵄨󵄨󵄨󵄨󵄨𝑇𝑠𝑖 󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑙𝑖/ (1 + ∑𝑗 ̸=𝑖 𝑙𝑗)
1 + 𝑙𝑖/ (1 + ∑𝑗 ̸=𝑖 𝑙𝑗)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑙𝑖1 + 𝑙𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝑊𝑠𝑖 ,
𝑖 = 1, . . . , 𝑛; ∀P.

(11)

For a particular 𝜔 frequency, each inequality of (11) defines a
forbidden region around the critical point -1 that cannot be
violated by 𝑙𝑖 = 𝑐∗𝑖 𝑝𝑖/(1 + ∑𝑗 ̸=𝑖 𝑙𝑗). In this way the prescribed
degree of stability can be linked to the uncertainty of each
plant 𝑝𝑖. Particularly, to achieve certain gain margin GM𝑖
above 𝑝𝑖 gain uncertainty, the upper tolerance is chosen as

𝑊𝑠𝑖 = 1
GM𝑖 − 1 , GM𝑖 > 1. (12)

To enforce a phase margin PM𝑖 above 𝑝𝑖 phase uncertainty,
the upper tolerance becomes

𝑊𝑠𝑖 = 12 sin (PM𝑖/2) . (13)

Then robust stability (11) is straight forward related to
individual loops, while robust performance (10) is a col-
laborative task among loops. Thus, the robust performance
must be distributed among the loops along the frequency
band. Let us explicitly define 𝜔𝑙𝑖 and 𝜔ℎ𝑖 as the low and high
frequencies, respectively, that enclose the interval for the 𝑖-
loop participation. Since 𝑖 = 𝑛 numbers the fastest loop and𝑖 = 1 numbers the slowest loop, thus 𝜔𝑙1 = 0 and 𝜔ℎ𝑛 = ∞.
A sequential design of the 𝑛 controllers is following proposed
to carry out a quantitative allocation of the frequency band
among the loops.

3.3. Robust Frequency Domain Design Method. The con-
trollers 𝑐𝑖=1,...,𝑛 are initially set to zero. Then, the design
sequence evolves from 𝑘 = 𝑛 to 𝑘 = 1. When the 𝑙𝑘-loop
design takes place at step 𝑘, 𝑐𝑘 is the only unknown.

QFT bounds will translate the robust specifications (10)
(11) in terms of the nominal open loop 𝑙𝑘𝑜 at discrete
frequencies 𝜔. These bounds can be computed by using
the command genbnds of Terasoft QFT Toolbox [31], which
handles specifications in the general form

󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝐴 + 𝐵𝐺𝐶 + 𝐷𝐺
󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝑊. (14)

Therefore, specifications (10) (11) must be conveniently
rewritten to identify the coefficients 𝐴, 𝐵, 𝐶, and 𝐷 of (14)
at each step 𝑘, being 𝐺 = 𝑐𝑘. Firstly, let us group the loops
already designed in the sequential procedure as

𝑙−𝑘 = 𝑛∑
𝑗=𝑘+1

𝑙𝑗, 𝑘 < 𝑛; 𝑙−𝑘 ≡ ⌀, 𝑘 = 𝑛, (15)

and concatenate their controllers as

𝑐−𝑘 = 𝑛∏
𝑗=𝑘+1

𝑐𝑗, 𝑘 < 𝑛; 𝑐−𝑘 ≡ ⌀, 𝑘 = 𝑛. (16)

Thus, (10) can be rewritten as

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑝𝑑1 + 𝑙−𝑘 + 𝑝𝑘𝑐−𝑘𝑐𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝑊𝑑󵄨󵄨󵄨󵄨 ; ∀P. (17)

And the set (11) can be rewritten as two separated formulas:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑝𝑘𝑐−𝑘𝑐𝑘1 + 𝑙−𝑘 + 𝑝𝑘𝑐−𝑘𝑐𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝑊𝑠𝑘 ; ∀P, (18)

which cares for the stability of the 𝑘 loop and the set

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑙𝑗1 + 𝑙−𝑘 + 𝑝𝑘𝑐−𝑘𝑐𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝑊𝑠𝑗 , 𝑗 = 𝑘 + 1, . . . , 𝑛; ∀P, (19)

which cares for the stability of the loops that have already
been designed. Now the control specifications (17)-(19) can
be easily identified with the format (14). As an example, let us
take 𝐴 = 𝑝𝑑, 𝐵 = 0, 𝐶 = 1 + 𝑙−𝑘,𝐷 = 𝑝𝑘𝑐−𝑘, and𝑊 = |𝑊𝑑| for
(17).

At the 𝑘 step and for a discrete frequency 𝜔, there are a
performance bound for (17) and a total amount of 𝑛 − 𝑘 + 1
stability bounds gathering (18) and (19). Let us denote 𝛽𝑙𝑘(𝜔)
to the matching of all those bounds at certain frequency 𝜔. A
set of discrete frequencies 𝜔 ∈ [0,∞) is chosen.

After computing the intersection bounds and taking into
account the working frequencies for the 𝑘-loop, the nominal
open-loop function 𝑙𝑘𝑜(𝑗𝜔) is shaped fulfilling 𝛽𝑙𝑘(𝜔) only at𝜔𝑙𝑘 ≤ 𝜔 ≤ 𝜔ℎ𝑘 .

The example in Section 4.2 details thoroughly the sequen-
tial procedure for the bound computation and the loop-
shaping of controllers.
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Figure 4: MISO control of cooled CSTR.

4. Example: MISO Control of Continuous
Stirred-Tank Reactor

The usefulness of the proposed methodology is being illus-
trated through the control of a Chemical Stirred TankReactor
(CSTR), which is a recurrent benchmark in the process
control literature because of its unquestionable importance
in the chemical and materials industry [21].

4.1. Continuous Stirred-Tank Reactor. A coolant flow (usually
water), through either a cooling jacket or a cooling coil [32],
or both [33], removes the necessary energy to prevent the
exothermic and irreversible reaction runaway and to regulate
the reactor temperature. Due to the limited heat-removal
capacity of the coolant flow, the manipulation of the reactant
flow can contribute to temperature control.Thus [21] presents
a MISO strategy founded on VPC [1], which follows the clas-
sical series architecture in Figure 1. The jacket coolant flow𝑢2 = 𝐹𝑗 (the fastest actuation) midranges around its maxi-
mum energy removal capacity 𝑟𝑢2 = 𝑟𝐹𝑗 , while large reaction
temperature excursions𝑦 = 𝑇𝑟 are compensatedwith the feed
flow-rate 𝑢1 = 𝐹 (the slowest actuation). Furthermore, this
smart MISO strategy achieves the highest possible produc-
tion rate:𝐹 ismaximised since𝐹𝑗 is set tomaximum. Its coun-
terpart is feed temperature 𝑑 = 𝑇𝑖𝑛 gets a significant impact
on dynamic controllability. When the feed is colder than the
reactor (𝑇𝑖𝑛 < 𝑇𝑟), the immediate effect of increasing the feed
flow-rate is a temporary decrease in the reactor temperature;
i.e., 𝐹-𝑇𝑟 behaves as a nonminimum phase (NMP) plant.
Then, a wise frequency distribution of MISO dynamic con-
trollability is of importance and can be quantitatively accom-
plished through the robust frequency domain method that
this paper develops. Beyond that and to illustrate the ability
to deal with more than two manipulated inputs, the cooling
capacity is being contributed from two sources: amain supply
provided by a cooling jacket 𝐹𝑗 and a quick auxiliary supply
provided by a cooling coil 𝐹𝑐. Figure 4 shows the set-up.

Figure 5 depicts the magnitude frequency response of the
linear input-output relations that intervene. In agreement
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Figure 5: Plant frequency responses.

with the notation in the series control architecture (Figure 2),
the contribution from the manipulated inputs, the feed flow𝑢1 = 𝐹, the jacket flow 𝑢2 = 𝐹𝑗, and the coil flow𝑢3 = 𝐹𝑐, to the output, the reactor temperature 𝑦 = 𝑇𝑟,
yields plants 𝑝1, 𝑝2, and 𝑝3, respectively. Three disturbance
inputs deviate 𝑇𝑟: the feed concentration 𝑑1 = 𝐶𝑎𝑖𝑛 , the feed
temperature 𝑑2 = 𝑇𝑖𝑛, and the inlet coolant temperature𝑑3 = 𝑇𝑗𝑖𝑛 = 𝑇𝑐𝑖𝑛 , whose contributions are represented by
plants 𝑝𝑑1 , 𝑝𝑑2 , and 𝑝𝑑3 , respectively. A detailed procedure on
how to obtain the plant models is appended at the end of the
paper. Several operating points are considered for the inputs,
which yield the plant parameter uncertainty in the linearised
models. A plant matrix P (9) collects 240 vectors P =[𝑝1, 𝑝2, 𝑝3, 𝑝𝑑1, 𝑝𝑑2, 𝑝𝑑3], and Figure 5 shows the envelope of
their magnitude frequency responses.

It is a fact that the gain of𝑝1 is higher than the gain of both𝑝2 and 𝑝3 along the whole frequency band. However 𝑝1 par-
ticipation will be restricted to low frequencies due to its RHP
zero (increasing 𝑢1 = 𝐹 produces a temporary decrease in𝑦 = 𝑇𝑟).TheRHP zero that is closer to the origin for thewhole𝑝1 uncertainty set is at 𝑠 = 9.7318×10−4.Thus, 𝜔 = 1×10−4 is
chosen as the border frequency for 𝑝1 participation. Beyond
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Table 1: Frequency band allocation among 𝑙𝑖=1,2,3.
𝜔𝑙1 𝜔ℎ1 = 𝜔𝑙2 𝜔ℎ2 = 𝜔𝑙3 𝜔ℎ30.00 0.0001 0.001 ∞

that frequency, the contribution of 𝑝2 and 𝑝3 will be able to
improve the performance of the temperature regulation. |𝑝2|
dominates medium frequencies (𝜔 below 1 × 10−3) and |𝑝3|
dominates high frequencies (𝜔 above 1 × 10−3). This agrees
with the cooling system dimensioning to the extent that the
coil cooling becomes an auxiliary system with a quicker but
less powerful response than the jacket cooling. Let us also
mention that 𝑝2 and 𝑝3 have inverse gain, since raising any
of the coolant flows makes the reactor temperature drop.

The other relevant point in MISO control is a convenient
selection of the midrange setpoints. Since 𝐹𝑐 is the fastest
actuation, 𝑟𝐹𝑐 is chosen at exactly the midpoint of the
coolant capacity of coil cooling system to achieve maximum
maneuverability. However, 𝑟𝐹𝑗 is chosen near the maximum
coolant capacity of jacket cooling system in order to 𝐹 tends
to maximum production rate. A reduction of 𝑟𝐹𝑗 saves 𝐹𝑗 but
also reduces 𝐹.
4.2. MISO Robust Control of CSTR. Three performance
specifications for robust disturbance rejection are defined
following (10) and being 𝑝𝑑 equal to 𝑝𝑑1 , 𝑝𝑑2 , and 𝑝𝑑3 ,
respectively. The required performance is that, in the case
of a maximum disturbance happens, the reactor temperature
deviation must be less than 0.6 K. And this maximum
deviation must be reduced to 0.2 K no later than 20 min and
fully extinguished in steady state. To ensure these conditions,
the performance upper model is

󵄨󵄨󵄨󵄨𝑊𝑑 (𝑗𝜔)󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

489.3𝑗𝜔
(𝑗𝜔/0.003 + 1)2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (20)

Theperformance specification𝑊𝑑 has been precisely defined.
It could not be achieved neither with a SISO control using the
jacket flow-rate as single control variable, nor with a MISO
strategy using the cooling jacket as single midrange control
variable. A roughly proof of this is the cross-over frequency
of the scaled plant𝑝2 in Figure 5.Thus the dual cooling (jacket
and coil) becomes necessary, and theMISO controlmust have
three loops (two midrange inputs).

To guarantee minimum phase margins of 30∘ (13) on each𝑖-loop, three robust stability specifications (11) take as upper
tolerance

𝑊𝑠𝑖 = 1.932. (21)

The discrete set of 𝜔-frequencies to compute QFT tem-
plates and bounds is

Ω = [0.1, 1, 3, 5, 7, 10, 20, 30, 50] × 10−4. (22)

Section 3.3 detailed the procedure for QFT bound com-
putation that represented the robust specifications. Eventu-
ally, an intersection bound set 𝛽𝑙𝑖(𝜔), 𝜔 ∈ Ω, is obtained.

Then, the shaping of 𝑙𝑖𝑜 (𝑗𝜔) is performed. In accordance to
comments on plant peculiarities in Section 4.1, Table 1 shows
the frequency band distribution among loops to be achieved.
The sequential design of controllers 𝑐3, 𝑐2, and 𝑐1 is performed
as follows; Figure 6 illustrates it. Each row of plots matches
a step, which is designated by the loop under design 𝑘, and
each column of plots depicts bounds 𝛽𝑙𝑖(𝜔) and nominal
open-loop function 𝑙𝑖𝑜(𝑗𝜔) of the 𝑖-loop; different line colours
distinguish the frequencies in (22).

𝑘 = 3 The procedure begins with the design of controller𝑐3 in the fastest loop 𝑙3. As the other controllers are
initially taken as zero, thus 𝑙1 = 𝑙2 = 0 and 𝑙𝑡 reduces
to solely 𝑙3. Hence, bounds at Figures 6(a), 6(b), and
6(c) reveal a situation where 𝑙3 should assume the
whole control task and no bounds appear for 𝑙𝑖=1,2; see
Figures 6(a) and 6(b). Bounds 𝛽𝑙3 are computed from
(17) (18) with 𝑙−3 ≡ 𝑐−3 ≡ ⌀. However, 𝑙𝑜3 shaping
must only assume the control task over its working
frequencies; i.e., 𝑙𝑜3 must only meet those 𝛽𝑙3 over𝜔 ≥ 0.001. The design procedure is driven as usual
in QFT: loop gain is conveniently adjusted to bounds
from𝜔 = 0.001 to roll off frequencies; see Figure 6(c).
It yields

𝑐3 (𝑠) = − 1.6
(𝑠/0.02 + 1)2 . (23)

The negative gain of controller (23) is due to 𝑝3 being
inverse gain.

𝑘 = 2 It is aimed as the design of 𝑐2 as part of the loop 𝑙2. Now
only 𝑐1 controller is zero, and 𝑙𝑡 = 𝑙3+𝑙2; i.e., both loops
should contribute to the regulation task. As 𝑙1 = 0,
this loop does not intervene and there are no bounds
for it; see Figure 6(d). Taking 𝑙−2 = 𝑙3 and 𝑐−2 =𝑐3, bounds 𝛽𝑙2 are computed from (17) (18) (19); see
Figure 6(e). At frequencies where 𝑙3𝑜 met its bounds,
i.e., over 𝜔 ≥ 0.001, 𝛽𝑙2 bounds become closed
forbidden regions, which prevents 𝑙2𝑜 from being in
counterphase with 𝑙3𝑜 , and consequently spoiling the
previously achieved performance or violating robust
stability. Due to the residual gain contributed by 𝑙3𝑜
over 𝜔 < 0.001, 𝛽𝑙2 bounds show dips at certain
phases. Then, 𝑙𝑜2 loopshaping is performed meeting𝛽𝑙2 over 𝜔 ≥ 0.0001. It yields

𝑐2 (𝑠) = 5.5 (𝑠/0.0012 + 1)
(𝑠/0.00018 + 1) (𝑠/0.01 + 1)2 . (24)

Owing to the series structure 𝑙2 includes 𝑐3 (6). As𝑐3 (23) had negative gain, 𝑐2 (24) must have positive
gain despite 𝑝2 having inverse gain. Furthermore, 𝑐2
adds zeros-poles at lower frequencies than 𝑐3 did, if
needed.Thus, the series arrangement lowers the order
of controllers. Once 𝑐2 is designed, the bounds 𝛽𝑙3 can
be updated as Figure 6(f) depicts. Comparing it with
Figure 6(c), let us note as 𝑙3𝑜 now meets bounds that
were before violated (𝛽𝑙3 over 0.0001 ≤ 𝜔 < 0.001)
since the specifications have already been achieved at
these frequencies by 𝑙2.
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Figure 6: Bounds and loop-shaping for each loop (column) and design step (row).
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Figure 7: Frequency responses.

𝑘 = 1 Theprocedure endswith the design of 𝑐1 in the slowest
loop 𝑙1. Taking 𝑙−1 = 𝑙3 + 𝑙2 and 𝑐−1 = 𝑐3𝑐2, bounds 𝛽𝑙1
are computed from (17) (18) (19); see Figure 6(g).They
reveal the frequencies where 𝑙1𝑜 is required to achieve
the performance; i.e., 𝛽𝑙1 bounds depict nonclosed
regions over 𝜔 < 0.0001.The loopshaping of 𝑙𝑜1 yields

c1 (𝑠) = −0.00015𝑠 . (25)

As 𝑙1 includes 𝑐2𝑐3 (6); 𝑐1 just has to append dynamics
at frequencies below those contributed by 𝑐2 (24). One
integrator in 𝑐1 suffices for zero steady-state error at
the output and at the two midrange actuations. 𝑐1
negative gain cancels 𝑐3 negative gain (23) in (6) since𝑝1 does not have inverse gain. Bounds 𝛽𝑙2 and 𝛽𝑙3 can
be now updated; see Figures 6(h) and 6(i). Let us note
that 𝑙2𝑜 and 𝑙3𝑜 now meet their bounds at the whole
frequency band. All branches now participate in the
regulation task 𝑙𝑡 = 𝑙3 + 𝑙2 + 𝑙1 as Table 1 required.

Figure 7 proves the fulfilment of control specifications for
the whole set of 240 plant cases: (a) what concerns the robust

rejection at the output of the three disturbance inputs; (b)
what concerns the robust stability of the three loops; (c) what
concerns the frequency band allocation among loops. Let
us remark the smooth disconnection of loops around their
switching frequencies, which preserves stability and avoids
higher order of controllers. Beyond its switching frequency
a steep gain reduction of 𝑙𝑖 saves the amount of feedback
in favour of a smaller V-sensor noise amplification at the
actuator 𝑢𝑖 (Horowitz’s cost of feedback [26]).

Closed-loop time responses of main system variables
are in Figure 8. These results have been obtained using the
proposed control system in the nonlinear model of CSTR
(at this point it is recommended to see the annex for a full
understanding of the physical units and experiments). The
simulation shows the systembehaviour for step-type changes:
in the feed concentration (𝛿𝐶𝑎𝑖𝑛 = +10%𝐶𝑎𝑖𝑛𝑜 at 𝑡 = 2 h), in
the feed temperature (𝛿𝑇𝑖𝑛 = +5 K at 𝑡 = 8 h), and in the
coolant temperature (𝛿𝑇𝑗𝑖𝑛 = −5 K at 𝑡 = 14 h). Several oper-
ating points have been tested, which correspond to jacket flow
set-points 𝑟𝐹𝑗 between 50% and 70% of 𝐹𝑗 maximum cooling
capacity and a coil flow set-point 𝑟𝐹𝑐 at the midrange point
(50%) of 𝐹𝑐 maximum cooling capacity. In all cases, when
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Figure 8: Closed-loop time responses.

any disturbance happens the reactor temperature 𝑇𝑟 deviates
from the set-point (𝑟𝑇𝑟 = 350 K) less than the maximum
permitted 0.6 K and less than 0.2 K after 0.33 h. The actuator
collaboration is as follows. When a disturbance happens, the
coil flow 𝐹𝑐 quickly reacts to initially compensate the reactor
temperature deviation. Its intervention is progressively reset
by the jacket flow𝐹𝑗, when this takes control of the regulation
task. As long as 𝐹𝑐 finally returns to the midrange 𝑟𝐹𝑐 , max-
imum maneuverability is preserved if another disturbance
happened. Finally, 𝐹 dominates the situation, and this returns𝐹𝑗 to 𝑟𝐹𝑗 . Let us note that larger 𝑟𝐹𝑗 involves larger 𝐹; i.e., it
pursues increasing the production rate. On the other hand, a
smaller 𝑟𝐹𝑗 pursues saving the amount of 𝐹𝑗. In summary, the
use of three manipulated inputs allowed not only improving
the performance but also enhancing the controllability. As a
matter of fact three variables are controlled, the output and
two manipulated inputs.

5. Conclusions

This paper highlighted the relevance of a frequency domain
method to design feedback controllers inside a new series
architecture that involved several manipulated inputs. They
not only intervened in the dynamic regulation of the output
but also in returning all but one of the manipulated inputs to
conveniently chosen set-points (midrange inputs).

Controllers and loops were arranged to participate in
a series fashion when a disturbance deviated the output:
the fastest open loop transfer function included a single
controller, meanwhile the slowest open loop incorporated

the whole set of controllers in cascade. The novelty of the
new series architecture was that the controllers were on the
feedback path instead of on the direct path to the midrange
input set-points, as it happened in classical structures (valve
position control or midranging control). In this way, integral
action was only needed in the controller next to the slowest
actuation to achieve zero steady state error at the regulated
variables (output and midrange inputs). Since the stability of
each loop was not compromised any more by a high number
of integrators, the procedure to design the controllers became
easier and the order of controllers was lower, especially when
the number of manipulated inputs increased.

Concerning the controller design method, the frequency
bandwas allocated among the loops that had towork together
to achieve certain robust performance in disturbance rejec-
tion. Robust stability was also of concern. Achieved stability
margins were linked to the uncertainty of input-output plant
models. Quantitative Feedback Theory was the framework
for robust control design. The multi-loop design was accom-
plished in a sequential way in order to use well-known tools
to compute QFT bounds, which represented the robust per-
formance and stability. Amethod was proposed to shape each
loop according to the bounds and the frequency allocation.

As a challenging example the temperature of a chemical
stirred tank reactor was regulated manipulating coil and
jacket cooling flows, and the reactant flow, despite several
conditions on the flow temperatures and the feed concentra-
tion tried to deviate the desired temperature in the reactor.
Besides, the cooling flows were regulated to certain set-
points to achieve maximum maneuverability and to manage
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Table 2: Parameters and initial conditions for irreversible exothermic liquid-phase reaction A 󳨀→ B; reactor parameters.

Unit Value
Reaction rate pre-exponential factor 𝑘0 s−1 20.75 × 106
Activation energy 𝐸 J/kmol 69.71 × 106
Process molecular weight kg/kmol 100
Process densities 𝜌𝑖𝑛 and 𝜌 kg/m3 801
Coolant density 𝜌𝑗, 𝜌𝑐 kg/m3 1000
Process heat capacities 𝑐𝑝𝑖𝑛 and 𝑐𝑝 Jkg−1K−1 3137
Coolant heat capacity 𝑐𝑝𝑗 , 𝑐𝑝𝑐 Jkg−1K−1 4183
Heat of reaction 𝜆 J/kmol −69.71 × 106
Feed concentration 𝐶𝑎𝑖𝑛 kmol/m3 8.01
Feed temperature𝑇𝑖𝑛 K 290.00
Inlet coolant temperature𝑇𝑗𝑖𝑛 , 𝑇𝑐𝑖𝑛 K 290.00
Overall heat transfer coefficient𝑈 Wm−2K−1 851

the production rate. The system frequency responses under
different operating conditions allowed the frequency band
allocation among the three loops in a quantitative way. The
provided QFT control design method achieved a frequency
distribution of the best MISO controllability in order to meet
prescribed specifications on robust performance and stability.

Appendix

CSTR Dimensioning and Dynamic Modelling

A dual cooling CSTR (Figure 4) was used in the example
of Section 4. This CSTR has been dimensioning mainly
following the procedure in [21], which has been conveniently
modified to split the cooling capacity into two: the jacket
and coil cooling systems. An 𝛼-parameter distributes their
participation: 𝛼 = 1 means a coil-full cooling and 𝛼 = 0
means a jacket-full cooling.

Process parameters and reaction initial conditions are in
Table 2. In the nominal equilibrium the following is adopted:
a reactor temperature of 𝑇𝑟𝑜 = 350K, a conversion level of𝑥 = 90%, a cooling distribution of 𝛼 = 0.25, and a feed
flow-rate of 𝐹𝑜 = 4.377 × 10−4m3/s. Then, considering mass
and energy equations, the cooling CSTR is sized and the
nominal equilibrium is computed for the remaining variables.
Table 3 collects the most relevant values. Let us remark as
the nominal values for the manipulated inputs 𝐹𝑜, 𝐹𝑗𝑜 and 𝐹𝑐𝑜
mean 37%, 65%, and 50% of full capacities 𝐹𝑚𝑎𝑥, 𝐹𝑗𝑚𝑎𝑥 , and𝐹𝑐𝑚𝑎𝑥 , respectively.

The system behaviour can be modelled by the following
nonlinear ordinary differential equations:

(i) Component A balance:

𝑑𝐶𝑎 (𝑡)𝑑𝑡 = 𝐹 (𝑡)𝑉𝑟 (𝐶𝑎𝑖𝑛 (𝑡) − 𝐶𝑎 (𝑡)) − 𝑘 (𝑡) 𝐶𝑎 (𝑡) (A.1)

(ii) Reaction rate:

𝑘 (𝑡) = 𝑘𝑜𝑒−𝐸/𝑅𝑇𝑟(𝑡) (A.2)

(iii) Reactor energy balance:

𝑑𝑇𝑟 (𝑡)𝑑𝑡 = 𝐹 (𝑡)𝑉𝑟 (𝑇𝑖𝑛 (𝑡) − 𝑇𝑟 (𝑡)) − 𝜆𝜌𝑐𝑝 𝑘 (𝑡) 𝐶𝑎 (𝑡)
− 𝑈𝐴𝑗𝑉𝑟𝜌𝑐𝑝 (𝑇𝑟 (𝑡) − 𝑇𝑗 (𝑡))
− 𝑈𝐴𝑐𝑉𝑟𝜌𝑐𝑝 (𝑇𝑟 (𝑡) − 𝑇𝑐 (𝑡)) .

(A.3)

(iv) Jacket energy balance:

𝑑𝑇𝑗 (𝑡)𝑑𝑡 = 𝑈𝐴𝑗𝑉𝑗𝜌𝑐𝑝𝑗 (𝑇𝑟 (𝑡) − 𝑇𝑗 (𝑡))

− 𝐹𝑗𝑉𝑗 (𝑇𝑗 (𝑡) − 𝑇𝑗𝑖𝑛 (𝑡)) ,
(A.4)

(v) Coil energy balance:

𝑑𝑇𝑐 (𝑡)𝑑𝑡 = 𝑈𝐴𝑐𝑉𝑐𝜌𝑐𝑝𝑐 (𝑇𝑟 (𝑡) − 𝑇𝑐 (𝑡))
− 𝐹𝑐𝑉𝑐 (𝑇𝑐 (𝑡) − 𝑇𝑐𝑖𝑛 (𝑡)) ,

(A.5)

Coil energy balance (A.5) is a simplification to obtain
a small-signal linear model later. However, for nonlinear
simulations in Figure 8, the coil is divided in 𝑛 = 40 segments
whose dynamic behaviour yields:

𝑉𝑐𝜌𝑐𝑐𝑝𝑐𝑛 𝑑𝑇𝑖 (𝑡)𝑑𝑡 = 𝑈𝐴𝑐𝑛 (𝑇𝑟 (𝑡) − 𝑇𝑖 (𝑡))
− 𝐹𝑐 (𝑡) 𝜌𝑐𝑐𝑝𝑐 (𝑇𝑖 (𝑡) − 𝑇𝑖−1 (𝑡)) ,

(A.6)

and

𝑄𝑖 (𝑡) = 𝑈𝐴𝑐𝑛 (𝑇𝑟 (𝑡) − 𝑇𝑐 (𝑡)) , (A.7)



12 Mathematical Problems in Engineering

Table 3: Jacket-coil cooling CSTR: dimensioning and nominal case.

Unit Value
Nominal feed flow-rate 𝐹𝑜 kmol/s 4.37 × 10−4
Nominal reactor temperature𝑇𝑟𝑜 K 350.00
Conversion level 𝑥 % 90
Coolant distribution 𝛼 — 0.25
Volume of the vessel 𝑉𝑟 m3 4.77
Diameter of the vessel𝐷 m 1.45
Length of the vessel 𝐿 m 2.90
Vessel aspect ratio 𝐿/𝐷 — 2
Jacket thickness 𝐸𝑗 m 2.00 × 10−1
Jacket heat transfer area 𝐴 𝑗 m2 13.24
Jacket volume 𝑉𝑗 m3 2.65
Coil pipe diameter 𝑑𝑐 m 5.08 × 10−2
Coil loop diameter factor 𝛽 — 0.8
Number of coils𝑁𝐿 — 7
Coil heat transfer area 𝐴 𝑐 m2 4.08
Coil volume 𝑉𝑐 m3 5.15 × 10−2
Nominal reactant concentration 𝐶𝑎𝑜 kmol/m3 0.80
Nominal jacket flow-rate 𝐹𝑗𝑜 kmol/s 5.50 × 10−4
Nominal coil flow-rate 𝐹𝑐𝑜 kmol/s 1.52 × 10−4
Nominal jacket temperature𝑇𝑗𝑜 K 339.80
Nominal coil temperature𝑇𝑐𝑜 K 349.72
Maximum feed flow-rate 𝐹𝑚𝑎𝑥 kmol/s 11.96 × 10−4
Maximum jacket flow-rate 𝐹𝑗𝑚𝑎𝑥 kmol/s 8.45 × 10−4
Maximum coil flow-rate 𝐹𝑐𝑚𝑎𝑥 kmol/s 3.04 × 10−4

where𝑇𝑖−1(𝑡) is the temperature at the input of the 𝑖-segment,𝑇𝑖 the temperature at the output of the 𝑖-segment, and 𝑄𝑖 is
the energy exchanged with the reactor along the 𝑖-segment.
The total energy that is absorbed by the 𝑖 = 1, .., 𝑛 segments
of the coil is

𝑄𝑐 (𝑡) = 𝑛∑
𝑖=1

𝑄𝑖 (𝑡) . (A.8)

Thenonlinear equations (A.1)-(A.5) are linearised around
certain steady-state values of the systemvariables. It yields the
small-signal linear model in (A.9), where the equilibrium of
a variable is denoted by an upper bar and the small deviation
of variables around equilibrium is denotedwith the 𝛿-symbol.
There is supposed to be the same inlet coolant temperature at
both cooling systems, i.e., 𝑇𝑗𝑖𝑛 = 𝑇𝑐𝑖𝑛 .

[[[[[[[[
[

𝛿𝐶̇𝑎 (𝑡)
𝛿𝑇̇𝑟 (𝑡)
𝛿𝑇̇𝑗 (𝑡)
𝛿𝑇̇𝑐 (𝑡)

]]]]]]]]
]

=

[[[[[[[[[[[[[[[[[[
[

− 𝐹𝑉𝑟 − 𝑘 −𝐶𝑎𝑘𝐸
𝑅𝑇2𝑟 0 0

− 𝜆𝑘𝜌𝑐𝑝 − 𝐹𝑉𝑟 −
𝜆𝐶𝑎𝑘𝐸
𝜌𝑐𝑝𝑅𝑇2𝑟 −

𝑈𝐴𝑗𝑉𝑟𝜌𝑐𝑝 −
𝑈𝐴𝑐𝑉𝑟𝜌𝑐𝑝

𝑈𝐴𝑗𝑉𝑟𝜌𝑐𝑝
𝑈𝐴𝑐𝑉𝑟𝜌𝑐𝑝

0 𝑈𝐴𝑗𝑉𝑗𝜌𝑐𝑝𝑗 − 𝑈𝐴𝑗𝑉𝑗𝜌𝑐𝑝𝑗 −
𝐹𝑗𝑉𝑗 0

0 𝑈𝐴𝑐𝑉𝑟𝜌𝑐𝑝𝑐 0 − 𝑈𝐴𝑐𝑉𝑟𝜌𝑐𝑝𝑐 −
𝐹𝑐𝑉𝑐

]]]]]]]]]]]]]]]]]]
]

[[[[[[[[
[

𝛿𝐶𝑎 (𝑡)
𝛿𝑇𝑟 (𝑡)
𝛿𝑇𝑗 (𝑡)
𝛿𝑇𝑐 (𝑡)

]]]]]]]]
]
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+

[[[[[[[[[[[[[[
[

𝐶𝑎𝑖𝑛 − 𝐶𝑎𝑉𝑟 0 0 𝐹𝑉𝑟 0 0
𝑇𝑖𝑛 − 𝑇𝑟𝑉𝑟 0 0 0 𝐹𝑉𝑟 0

0 −(𝑇𝑗 − 𝑇𝑗𝑖𝑛)𝑉𝑗 0 0 0 𝐹𝑗𝑉𝑗
0 0 −(𝑇𝑐 − 𝑇𝑐𝑖𝑛)𝑉𝑐 0 0 𝐹𝑐𝑉𝑐

]]]]]]]]]]]]]]
]

[[[[[[[[[[[
[

𝛿𝐹 (𝑡)
𝛿𝐹𝑗 (𝑡)𝛿𝐹𝑐 (𝑡)𝛿𝐶𝑎𝑖𝑛 (𝑡)𝛿𝑇𝑖𝑛 (𝑡)𝛿𝑇𝑗𝑖𝑛 (𝑡)

]]]]]]]]]]]
]

(A.9)

An effective control of CSTR should consider several
operating points. The set of main process variables at certain
equilibrium

q𝑗 = [𝑇𝑟, 𝐹, 𝐹𝑗, 𝐹𝑐, 𝐶𝑎𝑖𝑛 , 𝑇𝑖𝑛, 𝑇𝑗𝑖𝑛] (A.10)

consists of output, three manipulated inputs, and three
disturbance inputs. Then, several equilibria q𝑗 are being
considered. Since the reactor temperature is the controlled
variable, let us adopt a single equilibrium for it: 𝑇𝑟 = 𝑇𝑟𝑜 . The
three disturbance inputs are taken as independent variables,
whose equilibrium values are estimated as

𝐶𝑎𝑖𝑛 = {0.9, 1.0, 1.1} × 𝐶𝑎𝑖𝑛𝑜 , (A.11)

being 𝐶𝑎𝑖𝑛𝑜 = 8.01 the nominal feed concentration;

𝑇𝑖𝑛 = {285, 288, 290, 295} , (A.12)

which represents a variation range of ±5 around nominal𝑇𝑖𝑛𝑜 = 290, and
𝑇𝑗𝑖𝑛 = {285, 288, 290, 295} , (A.13)

which represents a variation range of ±5 around nominal𝑇𝑗𝑖𝑛𝑜 = 290.The cooling flow-rates must return to desired set-
points after temperature regulation. Therefore, they complete
the set of independent variables. The coil flow-rate is the
fastest actuation for reactor temperature recovering. Thus
the coil-flow set-point is fixed at the middle of its range
to preserve maximum maneuverability, which means 𝐹𝑐 =0.5𝐹𝑐max

. The jacket flow-rate set-point can be conveniently
moved such that

𝐹𝑗 = {0.50, 0.55, 0.60, 0.65, 0.70} × 𝐹𝑗𝑚𝑎𝑥 . (A.14)

Let us remark that larger 𝐹𝑗 involves larger 𝐹, which increases
the production rate.The combination of all possible values in
(A.11), (A.12), (A.13), and (A.14) yields 240 cases. 𝑇𝑟 = 𝑇𝑟𝑜
and 𝐹𝑐 = 𝐹𝑐𝑜 complete the set of independent variables for
each of the 240 operating points. Substituting them in (A.9),
the dependent variable 𝐹 can be computed. Eventually, (A.9)
models the system dynamic behaviour for 240 operating
points q𝑗 (A.10).

Applying the Laplace transform to (A.9), and conve-
niently rearranging the equations, it yields the transfer
functions:

𝑚𝑗=1,...,6 (𝑠) = 𝑏𝑗3𝑠3 + 𝑏𝑗2𝑠2 + 𝑏𝑗1𝑠 + 𝑏𝑗0𝑠4 + 𝑎3𝑠3 + 𝑎2𝑠2 + 𝑎1𝑠 + 𝑎0 , (A.15)

being 𝑚1 = Δ𝑇𝑟/Δ𝐹, 𝑚2 = Δ𝑇𝑟/Δ𝐹𝑗, 𝑚3 = Δ𝑇𝑟/𝐹𝑐, 𝑚4 =Δ𝑇𝑟/Δ𝐶𝑎𝑖𝑛 ,𝑚5 = Δ𝑇𝑟/Δ𝑇𝑖𝑛, and𝑚6 = Δ𝑇𝑟/Δ𝑇𝑗𝑖𝑛 . Coefficients𝑏𝑗𝑘 and 𝑎𝑘 (𝑗 = 1, . . . , 6; 𝑘 = 0, . . . , 3) depend on process
parameters (see Tables 2 and 3) and on the 240 equilibrium
values q𝑗.

Multivariable systems must be conveniently scaled for
control design tasks [19]. Here the presence of a single output
makes only necessary to scale the ranges of the five inputs.
The scaling gains for 𝐶𝑎𝑖𝑛 , 𝑇𝑖𝑛, and 𝑇𝑗𝑖𝑛 are 0.1𝐶𝑎𝑖𝑛𝑜 , 5, and
5, respectively, according to the smallest distance from 𝐶𝑎𝑖𝑛𝑜 ,𝑇𝑖𝑛𝑜 , and𝑇𝑗𝑖𝑛𝑜 to the edge of intervals (A.11), (A.12), and (A.13),
respectively. The scaling gain for 𝐹𝑗 is 0.3𝐹𝑗max

according to
the smallest distance from any equilibrium value 𝐹𝑗 (A.14)
to the maximum capacity 𝐹𝑗max

. In a similar way a scaling
gain of 0.254𝐹max for 𝐹 and a scaling gain of 0.5𝐹𝑐max

for 𝐹𝑐
is computed. These scaling gains are applied to plants (A.15).
Eventually, the plant matrixP is obtained which collects 240
vectors P(𝑠; 𝑞𝑗) = [𝑝1, 𝑝2, 𝑝3, 𝑝𝑑1 , 𝑝𝑑2 𝑝𝑑3], whose magnitude
frequency response is depicted in Figure 5.
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