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A B S T R A C T

Stomatal closure is one of the first plant responses under a water deficit situation. This leads to a decline in
transpiration but also in the plant photosynthetic activity. Legume plants grown under symbiosis with rhizobium
bacteria present an inhibition of nitrogen fixation that has been shown to occur even before this of photo-
synthesis. One of the hypotheses to explain this rapid inhibition is the accumulation of nitrogen (N) compounds
in nodules due to reduced transpiration, which would provoke the N-feedback inhibition of nitrogenase activity.
The current work analyzes the effects of changes in transpiration rates in the regulation of nitrogen fixation
through the application of the anti-transpirant Vapor Gard (VG) to pea (Pisum sativum L.) plants subjected to a
progressive water deficit. VG produced a rapid inhibition of nitrogen fixation upon application. This inhibition,
however, did not coincide with the accumulation of either amino acids or soluble carbohydrates observed at
later drought stages in nodules. Results show that the application of VG has a beneficial, albeit temporary, effect
in both maintaining the plant water status and apparent nitrogenase activity of nodulated pea plants under
water-deficit conditions.

1. Introduction

Drought stress is one of the environmental factors most limiting
crop productivity (Bray, 1997). Although there are several climate
change scenarios, the general consensus is that the frequency of severe
drought conditions is likely to increase in the future (Dai, 2012). At the
physiological level, water deficit is known to reduce the plant photo-
synthetic activity, to activate stomatal closure by the integration of
abscisic acid (ABA) and hydraulic signaling, as well as to cause meta-
bolic impairment (Lawlor et al., 1999; Schroeder et al., 2001;
Comstock, 2002; Dodd, 2013). In legumes grown under symbiotic
conditions, drought leads to a rapid inhibition of symbiotic nitrogen
fixation, an inhibition that has been shown to occur before this of
photosynthetic activity (Djekoun and Planchon, 1991; Durand et al.,
1987). Although several hypotheses have been drawn to explain the
drought-induced decline in nitrogen fixation, the exact regulatory me-
chanisms remain unclear to date. Regulation based on a nitrogen
feedback inhibition of nitrogenase activity has received much attention
in the last decades. This hypothesis was built on the observation that
ureides and amino acids accumulate in leaves and nodules of drought-
stressed legumes (de Silva et al., 1996; King and Purcell, 2005; Ladrera
et al., 2007; Serraj et al., 2001, 1998; Sulieman et al., 2010, 2014;
Sulieman and Tran, 2013; Vadez et al., 2000). Nonetheless, recent

works using a split-root system have shown that amino acids accumu-
late in nodules before any measurable decline in nitrogen fixation both
in temperate and tropical climate legumes (Gil-Quintana et al.,
2013a,b). One possible explanation for the observed accumulation of N
compounds may involve alterations in long-distance transport of me-
tabolites between aerial and underground plant tissues mediated by
transpiration (Serraj et al., 2001; Walsh, 1990). However, the influence
of transpiration in long-distance metabolite transport and its effects on
the drought-induced inhibition of symbiotic nitrogen fixation have not
been formally tested.

In the current work, the effects of the application of the anti-tran-
spirant Vapor Gard (VG) have been investigated in nodulated pea plants
subjected to a gradual water-deficit treatment. VG is a terpene polymer
(di-1-p-menthene, also known as pinolene) that forms a thin film on
leaves, increasing resistance to water vapor loss and, therefore, redu-
cing plant transpiration (Bender and Lipe, 1986; Byari and Okeefe,
1982, and references therein). The application of this compound has
allowed us to test whether alterations in transpiration rates were as-
sociated to reduced long-distance transport and, consequently, could
explain the observed accumulation of C and N compounds in leaf and
nodule tissue of drought-stressed plants. Additionally, we characterized
the physiological plant responses to the application of the anti-tran-
spirant both under well-watered and water-deficit conditions. Results
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presented here provide insights into the role of transpiration in the
regulation of nitrogen fixation and discusses the potential application of
these compounds to reduce the negative effects of drought in nodulated
legumes.

2. Material and methods

2.1. Plant growth conditions and treatment application

Pea seeds (Pisum sativum L. cv Sugar snap) were surface sterilized
(Labhilili et al., 1995), germinated and grown in 0.6-L pots containing a
mixture of perlite:vermiculite (1:1, v/v) in a growth chamber under
controlled environmental conditions (12 h photoperiod; 525 μmol m−2

s−1 photosynthetic photon flux intensity; 26 °C/22 °C day/night tem-
perature; 60–70% relative humidity) for 4 weeks. Plants were in-
oculated three times with 1ml (OD600 ≃ 0.4) of a bacterial culture of
the hup- strain Rhizobium leguminosarum biovar viciae NLV8. The first
inoculation was carried out at germination, the second one three days
after planting and finally seven days after planting. Plants were watered
three times a week with a nitrogen-free nutrient solution (Rigaud and
Puppo, 1975).

2.2. Application of VG and drought stress

Four-week old plants were separated randomly into two sets; the
first set of plants was treated with a 0.2% (v/v) solution of BioPower
(Bayer, Germany) containing 6.7% (w/w) 3,6-dioxaeicosylsulphate
sodium salt and 20.1% (w/w) 3,6-dioxaoctadecylsulphate sodium salt.
This set of plants used as a negative control (untreated plants). The
second set of plants was treated with a solution containing 2.5% (v/v)
of the anti-transpirant VG (Bio-Agrichem, Spain), having 96% (v/v) di-
1-p-menthene as active ingredient, and 0.2% (v/v) BioPower.
Subsequently, each group was further divided into two subsets, one of
which was maintained under well-watered conditions (hereafter re-
ferred to as control plants), while watering was withheld for the other
subset of plants (drought-stressed plants). Plants were analyzed at day
0, day 1, day 2, day 3 and day 4 after the onset drought. All mea-
surements were independent (biological replicates) and were carried
out inside the growth chamber starting three hours after the onset of the
photoperiod to minimize day-to-day variations. Root, leaf and nodule
samples were collected, snap-frozen in liquid nitrogen and kept at
−80 °C for further determinations.

2.3. Water relations

Leaf water potential (Ψw) was measured in the first fully expanded
leaf 2 h after the beginning of the photoperiod using a pressure chamber
(Soil Moisture Equipment, USA) as previously described (Scholander
et al., 1965). Nodule Ψw was analyzed using C52 sample chambers
coupled to a Wescor HR-33T Dew Point Microvoltmeter (Wescor, USA).
Stomatal conductance was measured in the youngest fully-expanded
leaf using an AP4 porometer (Delta-T Devices, UK). Plant transpiration
rates were gravimetrically determined daily on a whole-plant basis. The
pots used for plant growth have a lid that covers most of the surface of
the pot so evaporation from the substrate is negligible. To calculate
water content, shoots and roots were excised, weighed (fresh weight,
FW) and placed in paper bags for dry weight (DW) determinations.
Aliquots of nodules were also weighed and kept for DW. To estimate
DW, plant tissue was desiccated in an oven for 72 h at 80 °C. The per-
centage of water content of the different tissues was calculated using
the following formula: [(FW−DW)/FW]×100.

2.4. Symbiotic nitrogen fixation measurements

Apparent nitrogenase activity (ANA) was estimated as H2-evolution
of intact plants in an open flow-through system under N2:O2 (79%:21%,

v/v) using an electrochemical H2 sensor (Qubit System Inc., Canada) as
previously described (Witty and Minchin, 1998). The H2 sensor was
calibrated with high purity gases (Praxair, Spain) using a gas mixer (Air
Liquide, Spain) flowing at the same rate as the sampling system (500ml
min−1).

2.5. Analytical determinations

The content of sucrose, fructose and glucose, and free amino acids
were analyzed as earlier described (González et al., 2001; Larrainzar
et al., 2014).

2.6. Statistical analyses

Data are reported as mean ± standard deviation of n = 3–6 bio-
logical replicates. A two-way analysis of variance (ANOVA) was carried
out to analyze whether there was an interaction between the factor
water regimen and the factor VG application. Results of the ANOVA are
included as Supplementary material (Appendix Table A.1). Following
the ANOVA, mean comparison was performed using a Bonferroni-ad-
justed t-test (p < 0.0125). Data were analyzed using Microsoft Excel
and SPSS software.

3. Results

3.1. Physiological effects of the application of Vapor Gard in plants
subjected to drought stress

To characterize the physiological effects of the VG treatment, we
monitored the levels of transpiration, Ψw, stomatal conductance and
water content of both pea plants under well-watered and drought stress
conditions.

Application of the anti-transpirant produced a rapid reduction of
transpiration rates in treated plants starting at day 1 (Fig. 1A). This
reduction was maintained in VG-treated drought-stressed plants, while
in well-watered plants the effect of the anti-transpirant was partially
lost at day 4. In the untreated set, drought stress caused a significant
drop in transpiration rates by the end of the experiment (Fig. 1A). In
terms of stomatal aperture, the film formed by the application of VG
provoked a rapid decline in stomatal conductance that was maintained
during the whole experiment in treated plants (Fig. 1B). Untreated
drought-stressed plants showed a progressive reduction in stomatal
conductance, reaching values close to those of VG-treated plants at day
4 (Fig. 1B). In parallel to the observed decline in stomatal conductance,
plants experiencing water deficit showed a gradual reduction in both
leaf and nodule Ψw values (Fig. 1C and D, respectively). In contrast,
drought-stressed plants treated with VG did not show a reduction in the
levels of leaf Ψw values until the last day of the drought period
(Fig. 1C), while maintaining nodule Ψw values close or above those of
plants without water restriction (Fig. 1D).

Regarding the water content of plants, although there was varia-
bility at the aerial part level (Fig. 2A), application of VG prevented the
drought-induced reduction in water content in the underground organs
of plants treated with the anti-transpirant (Fig. 2B and C).

3.2. Changes in transpiration rates affect symbiotic nitrogen fixation
independently of the accumulation of carbon and nitrogen compounds in
different tissues

In untreated plants, drought stress caused a progressive decline in
the levels of apparent nitrogenase activity (ANA), while application of
the anti-transpirant VG led to early declines in ANA rates both in
control and drought-stressed treated plants (Fig. 3). At day 3 and 4,
however, this VG-induced reduction in ANA was reversed and there
were no significant differences between the ANA values recorded for
VG-treated plants under water deficit and well-watered plants (Fig. 3).
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Transpiration and transport of solutes across the plant are two
closely related physiological processes. Therefore, we investigated the
changes in the content of soluble carbohydrate in leaves, roots and
nodules of pea plants treated with VG under drought conditions
(Table 1). Both the variations in the content of fructose and glucose
presented similar trends in the aerial part, showing a progressive ac-
cumulation under drought conditions in untreated plants. This accu-
mulation of soluble carbohydrates was observed in plants treated with
the anti-transpirant only at day 4 of drought. Sucrose levels, in contrast,
did not show a clear trend during the experiment, although drought-
stressed plants presented higher levels of this compound in all the tis-
sues tested. In nodules, sucrose was found the main soluble carbohy-
drate, with average values of around 50 μmol g−1 DW in well-watered
plants, while fructose and glucose were detected at very low levels.
Drought stress caused a moderate accumulation of sucrose in nodules,
an accumulation that was less pronounced in nodules of plants treated
with the anti-transpirant VG.

To understand whether these variations in the rates of ANA could be
related to the levels of N metabolites in the plant, the content of the
total soluble pool of amino acids was measured in different tissues

(Table 2). Similarly to the trends observed for carbohydrates, water
deficit led to the gradual accumulation of amino acids in all the tissue
tested. In leaves, this accumulation was significant from day 3 onwards,
while in roots amino acids started to accumulate at day 2. Nodules, in
contrast, presented significant differences only at the last day of the
experiment. In samples of plants treated with VG, however, this accu-
mulation was attenuated, being significant only during the last days of
the experiment.

In a parallel series of experiments, foliar application of a 15 μM
solution of the fungal toxin fusicoccin, a well-known activator of sto-
matal opening, led to the exacerbation of the severity of drought in
most of the parameters tested (data not shown). Application of fusi-
coccin to plants with limited water availability caused a rapid decline in
ANA rates, as early as day 1 after the onset of drought, which occurred
even prior to any significant decline in the plant water status para-
meters checked. This early inhibition in nitrogen fixation in fusicoccin-
treated drought plants, however, did not correlate to changes either in
the concentration of sucrose or soluble amino acids in the different
plant tissues tested.

Fig. 1. Effects of the application of Vapor Gard (VG) on the rates of transpiration (A), stomatal conductance (B), leaf water potential (C) and nodule water potential
(D) of pea plants subjected to a progressive drought. Values represent means ± standard error (SE) (3≤ n≤ 6 biological replicates). Different letters refer to
statistically significant differences between treatments [two-way ANOVA (p < 0.05) followed by a Bonferroni-adjusted t-test (p < 0.0125)] for each day.
Interactions between factors are indicated with an asterisk (*).
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4. Discussion

In the present study, we employed the anti-transpirant VG as a tool
to analyze the effects of reduced transpiration in the regulation of
symbiotic nitrogen fixation and long-distance metabolite transport in
drought-stressed pea plants. Anti-transpirant compounds used in agri-
culture are polymers that form a thin film on the leaf surface to tem-
porarily reduce plant transpiration. The application of these compounds
received a considerable amount of attention in the 60–70 s due to their
potential to save significant amounts of water and reduce plant damage
cause by water deficits (Plaut et al., 2004). However, the fact that
several studies suggested that film-forming polymers would inhibit
photosynthesis (and, therefore, crop productivity) to a greater extent

than transpiration partially discouraged investigations in the field
(Kramer and Boyer, 1995). Nonetheless, subsequent works have shown
increased crop yields and improved plant tolerance to drought upon
anti-transpirant application under water-limiting conditions (Bender
and Lipe, 1986; Brillante et al., 2016; Byari and Okeefe, 1982; del Amor
et al., 2010; Faralli et al., 2017; Iriti et al., 2009, and references
thereafter). Anti-transpirants have been also used to decrease stress
associated with other abiotic stresses such as ozone damage (Francini
et al., 2011), as well as to enhance plant resistance to physical damage
and fungal infections (Percival and Boyle, 2009; Sutherland and
Walters, 2002). In the current work we observed that drought-stressed
plants treated with VG were able to maintain water status parameters
similar to those of well-watered plants in the short term. Application of
the anti-transpirant VG provoked a rapid reduction in the levels of
transpiration (Fig. 1A) and stomatal conductance (Fig. 1B) both in well-
watered and drought-stressed plants. Two-way ANOVA analyses in-
dicate that, in general, only at day 4 there is an effect of the water
regimen applied to treated plants, a stage at which the anti-transpirant
effectiveness starts diminishing in terms of reduced transpiration and
stomatal conductance. Thus, an improved drought response in VG-
treated plants experiencing water deficit was observed during the first
three days of the experiment, with plants that presented Ψw and water
content values comparable to those of plants under full water avail-
ability conditions (Fig. 1C and D; Fig. 2).

We further analyzed whether changes in transpiration were asso-
ciated to an inhibition of symbiotic nitrogen fixation and/or to trans-
port of C and N compounds through the plant. Application of the anti-
transpirant VG induced an early inhibition of ANA at day 1 (Fig. 3). In
VG-treated plants nitrogen fixation rates were, however, restored to
control values at day 3 both in the set of plants kept under well-watered
conditions and in those under water deficit (Fig. 3). Therefore, we
observed a beneficial effect of the application of the anti-transpirant
both in maintaining the plant water status, as well as active symbiotic
nitrogen fixation rates in drought-stressed pea plants in the short term.
It is worth noting that the observed changes in ANA were independent
of the plant transpiration rates or the levels of amino acids in the dif-
ferent tissues (Fig. 1A and Table 2, respectively). These observations are
in contrast to earlier works in which reduced transpiration was sug-
gested to provoke an accumulation of N compounds in nodules under
drought stress as a consequence of decreased xylem transport (Serraj
et al., 2001, and references thereafter). Therefore, the rapid reduction
in ANA levels upon the application of the anti-transpirant VG in the
present work could not be explained by the hypothesis of a N-feedback

Fig. 2. Effects of the application of VG on leaf water content (A), root water content (B), and nodule water content (C) of pea plants subjected to progressive drought
stress. Values represent means ± SE (3≤ n≤ 6 biological replicates). Different letters refer to statistically significant differences between treatments [two-way
ANOVA (p < 0.05) followed by a Bonferroni-adjusted t-test (p < 0.0125)] for each day. Interactions between factors are indicated with an asterisk (*).

Fig. 3. Effects of the application of VG on the apparent nitrogenase activity
(ANA) of pea plants subjected to progressive drought stress. Values represent
means ± SE (3≤ n≤ 6 biological replicates). Different letters refer to statis-
tically significant differences between treatments [two-way ANOVA (p < 0.05)
followed by a Bonferroni-adjusted t-test (p < 0.0125)] for each day.
Interactions between factors are indicated with an asterisk (*). NDW, nodule
dry weight.
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Table 1
Effects of the application of VG on the levels of fructose, glucose and sucrose in leaves, roots and nodules of pea plants subjected to a progressive drought. Values
represent means ± SE (3≤ n≤ 6 biological replicates). Different letters refer to statistically significant differences between treatments [two-way ANOVA
(p < 0.05) followed by a Bonferroni-adjusted t-test (p < 0.0125)] for each day. Interactions between factors are indicated with an asterisk (*). DW, dry weight.

Day 0 Day 1 Day 2 Day 3 Day 4

Fructose (μmol g−1 DW) Leaf Control 2.1 ± 0.7 1.8 ± 0.7 b 1.1 ± 0.5 b 1.8 ± 0.8 ab 2.4 ± 1.1 b
Drought 8.2 ± 1.4 a 5.3 ± 0.9 a 30.7 ± 12.5 ab 90.0 ± 18.4 a
Control+VG 4.1 ± 1.8 ab 1.1 ± 0.8 b 0.9 ± 0.6 b 6.1 ± 1.7 b
Drought+VG 6.2 ± 1.6 ab 6.0 ± 0.8 a 5.9 ± 1.3 a 39.3 ± 12.8 a
Interaction (Drought * VG) ns ns ns *

Root Control 2.7 ± 1.3 0.0 ± 0.0 b 0.0 ± 0.0 c 0.0 ± 0.0 b 0.0 ± 0.0 b
Drought 7.6 ± 3.1 ab 9.8 ± 1.7 a 6.6 ± 0.6 a 9.3 ± 3.1 a
Control+VG 1.1 ± 1.1 b 1.4 ± 1.4 bc 0.0 ± 0.0 b 2.9 ± 2.9 ab
Drought+VG 10.7 ± 2.7 a 4.2 ± 1.2 ab 5.6 ± 1.2 a 6.3 ± 3.5 ab
Interaction (Drought * VG) ns * ns ns

Nodule Control 0.6 ± 0.5 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a
Drought 0.4 ± 0.4 a 0.7 ± 0.7 a 1.5 ± 1.5 a 3.2 ± 2.0 a
Control+VG 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a
Drought+VG 0.0 ± 0.0 a 0.1 ± 0.1 a 0.0 ± 0.0 a 2.5 ± 1.2 a
Interaction (Drought * VG) ns ns ns ns

Glucose (μmol g−1 DW) Leaf Control 72.3 ± 9.9 51.9 ± 5.5 a 43.3 ± 3.4 a 45.7 ± 6.0 a 51.0 ± 6.4 b
Drought 74.0 ± 9.1 a 64.1 ± 6.8 a 146.7 ± 41.5 a 294.1 ± 39.9 a
Control+VG 49.7 ± 9.3 a 51.9 ± 11.4 a 57.7 ± 7.4 a 51.1 ± 5.7 b
Drought+VG 54.6 ± 8.6 a 72.1 ± 19.3 a 69.2 ± 7.2 a 145.0 ± 31.8 a
Interaction (Drought * VG) ns ns * *

Root Control 56.7 ± 15.9 18.9 ± 8.1 ab 24.2 ± 9.5 b 3.7 ± 1.9 c 28.9 ± 7.8 b
Drought 75.4 ± 30.2 ab 169.4 ± 51.6 a 120.9 ± 22.7 a 82.3 ± 12.1 a
Control+VG 10.8 ± 4.8 b 14.4 ± 6.4 b 6.0 ± 4.0 bc 17.9 ± 7.6 b
Drought+VG 54.8 ± 9.8 a 66.7 ± 25.3 ab 51.9 ± 10.0 a 59.0 ± 20.5 ab
Interaction (Drought * VG) ns ns * ns

Nodule Control 1.7 ± 0.7 1.7 ± 1.3 a 1.7 ± 0.8 a 1.2 ± 0.5 a 0.4 ± 0.3 a
Drought 4.6 ± 1.4 a 2.5 ± 2.3 a 1.5 ± 1.5 a 6.6 ± 3.8 a
Control+VG 0.8 ± 0.5 a 1.6 ± 0.5 a 1.4 ± 0.6 a 0.7 ± 0.5 a
Drought+VG 0.7 ± 0.7 a 5.7 ± 3.9 a 0.0 ± 0.0 a 3.9 ± 2.6 a
Interaction (Drought * VG) ns ns ns ns

Sucrose (μmol g−1 DW) Leaf Control 490.9 ± 45.1 327.3 ± 23.8 b 330.4 ± 26.9 a 438.1 ± 25.2 a 325.2 ± 32.4 ab
Drought 547.8 ± 34.7 a 444.0 ± 50.6 a 532.4 ± 37.4 a 337.5 ± 75.3 ab
Control+VG 196.5 ± 31.1 c 218.0 ± 9.3 b 321.0 ± 11.6 b 270.5 ± 28.4 b
Drought+VG 259.5 ± 24.5 bc 279.0 ± 44.2 ab 445.9 ± 50.0 ab 428.3 ± 29.8 a
Interaction (Drought * VG) * ns ns ns

Root Control 58.5 ± 6.6 97.5 ± 11.2 a 66.12 ± 9.6 a 65.1 ± 6.9 bc 58.5 ± 5.7 a
Drought 75.5 ± 3.7 ab 121.1 ± 17.1 a 117.7 ± 12.2 a 162.5 ± 49.8 a
Control+VG 33.4 ± 2.1 c 66.15 ± 11.6 a 46.1 ± 4.2 c 67.4 ± 13.9 a
Drought+VG 47.8 ± 7.0 bc 76.1 ± 9.4 a 82.0 ± 6.6 ab 126.2 ± 54.2 a
Interaction (Drought * VG) ns ns ns ns

Nodule Control 61.4 ± 6.8 65.1 ± 7.9 ab 50.2 ± 8.4 a 53.6 ± 13.5 ab 54.3 ± 4.8 b
Drought 88.8 ± 4.5 a 90.9 ± 11.2 a 80.5 ± 4.7 a 96.1 ± 11.9 a
Control+VG 32.9 ± 2.4 c 45.1 ± 9.3 a 51.7 ± 4.5 b 36.5 ± 7.2 b
Drought+VG 37.2 ± 1.7 bc 64.8 ± 5.7 a 55.8 ± 6.0 ab 65.5 ± 10.2 ab
Interaction (Drought * VG) ns ns ns ns

Table 2
Effects of the application of VG on the total amino acid content in leaves, roots and nodules of pea plants subjected to a progressive drought. Values represent
means ± SE (3≤ n≤ 6 biological replicates). Different letters refer to statistically significant differences between treatments [two-way ANOVA (p < 0.05) fol-
lowed by a Bonferroni-adjusted t-test (p < 0.0125)] for each day. Interactions between factors are indicated with an asterisk (*). DW, dry weight.

Day 0 Day 1 Day 2 Day 3 Day 4

Total amino acid content
(μmol g −1 DW)

Leaf Control 99.68 ± 10.8 104.3 ± 12.0 ab 108.2 ± 10.0 a 102.6 ± 7.5 b 103.8 ± 14.1 b
Drought 145.2 ± 17.2 a 146.3 ± 18.8 a 222.1 ± 25.3 a 192.3 ± 26.7 a
Control+VG 73.1 ± 6.9 b 88.7 ± 9.8 a 53.3 ± 7.5 c 54.9 ± 5.1 c
Drought+VG 119.9 ± 2.1 a 125.4 ± 38 a 113.3 ± 16.7 b 117.1 ± 10.9 ab
Interaction (Drought * VG) ns ns * ns

Root Control 14.1 ± 3.3 17.0 ± 3.5 a 14.7 ± 1.7 a 14.4 ± 4.3 bc 22.5 ± 5.5 c
Drought 24.8 ± 5.3 a 51.6 ± 13.9 a 100.5 ± 17.8 a 618.3 ± 103.6 a
Control+VG 15.7 ± 5.8 a 16.2 ± 5.4 a 6.6 ± 3.5 c 9.7 ± 2.9 c
Drought+VG 32.6 ± 8.7 a 18.3 ± 2.9 a 106.3 ± 47.9 ab 108.4 ± 21.4 b
Interaction (Drought * VG) ns * ns *

Nodule Control 82.5 ± 16.5 129.2 ± 21.7 a 121.9 ± 14.1 a 112.1 ± 16.8 ab 82.2 ± 10.3 b
Drought 106.9 ± 15.0 a 115.1 ± 16.1 a 139.3 ± 13.9 a 218.4 ± 8.2 a
Control+VG 87.0 ± 4.9 a 70.7 ± 19.1 a 57.2 ± 11.0 b 71.7 ± 17. 5 b
Drought+VG 125.4 ± 30.8 a 110.1 ± 7.8 a 82.8 ± 14.5 ab 178.6 ± 23.5 a
Interaction (Drought * VG) ns ns ns ns
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regulation of symbiotic nitrogen fixation.
Carbon limitation through inhibition of sucrose synthase activity,

protein or expression levels has been also discussed as a factor con-
tributing to the observed drought-induced inhibition of ANA in dif-
ferent legume species (González et al., 1995; Marino et al., 2006;
Ladrera et al., 2007; Larrainzar et al., 2009). As a consequence, the
inhibition of sucrose synthase has been shown to lead to an accumu-
lation of sucrose in nodules of drought-stressed plants. However, in the
present work application of the anti-transpirant actually induced a
transient decline in the content of sucrose at day 1, discarding a lim-
itation at the level of sucrose synthase in this case. Furthermore, the
application of the stomatal-opening inducer fusicoccin led to an early
inhibition of nitrogen fixation that did not correlate to changes in the
levels of sucrose or soluble amino acids in the various plant tissues
analyzed (data not shown). Thus, using two contrasting pharmacolo-
gical approaches to manipulate plant transpiration, our results suggest
that the inhibition of ANA is not mediated by C and N transport-based
regulatory mechanisms.

Previous studies have suggested that VG application at concentra-
tions of 6% (v/v) was effective for a period of 30–40 days as a strategy
to extend the cultivation of sweet corn during the dry season in the
tropics (Plaut et al., 2004). More recent work, however, estimates that
application of 1% (v/v) VG may be effective for a period of 20–25 days
to reduce water stress in oilseed rape under field conditions (Faralli
et al., 2016). In order to test for how long we could observe the pro-
tective effect of VG under our experimental conditions, we also carried
out a second experiment extending the drought period for three addi-
tional days (data not shown). This extended experiment showed that
the beneficial effects of the anti-transpirant in maintaining the plant
water status and nitrogen fixation were only temporary. Parameters
such as transpiration and water content of different tissues were sig-
nificantly reduced from day 5 onwards, while ANA values of VG-treated
drought-stressed plants were comparable to those of untreated plants
by day 6. Therefore, although treatment with VG can be considered
beneficial to temporarily maintain the plant water status and active
nitrogen fixation rates in pea plants under water deficit conditions,
when the drought period is extended, the protection of the anti-tran-
spirant appears to be lost.

5. Conclusions

In conclusion, our work shows that artificial alterations of plant
transpiration produce a rapid, temporal decline in the rates of nitrogen
fixation in pea plants and that this decline could not be explained by
earlier proposed N-feedback regulation mechanisms. In agreement with
previous studies (Gil-Quintana et al., 2013a,b), the observed accumu-
lation of C and N compounds at later drought stages appears to be a
general drought stress response not necessarily related to the regulation
of nitrogen fixation or associated with reduced transpiration rates. Fi-
nally, application of film-forming polymers such as VG partially at-
tenuates the negative effects of drought stress of nodulated pea plants,
although the protective effect of the anti-transpirant is only temporary
and it is largely dependent on the experimental conditions in which it is
applied.
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