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c-Src: proto-oncogene tyrosine-protein kinase Src 32 

ERK1/2: extracellular signal–regulated kinase 1/2 33 

GBM: glioblastoma 34 

GSK-3: glycogen synthase kinase-3 35 

MOI: Multiplicity of infection 36 

MSK1/2: Mitogen- and Stress-activated protein Kinases 1 and 2 37 

mpi: minutes post infection 38 

hpi: hours post infection 39 

p38 MAPK: p38 mitogen-activated protein kinase 40 

PKA: Protein kinase A 41 

PKC: Protein kinase C 42 

PP1: serine/threonine-protein phosphatase 1 43 

PP2A: serine/threonine-protein phosphatase 2A  44 
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Abstract  74 
 75 



Adenovirus Delta-24-RGD has shown a remarkable efficacy in a phase I clinical trial for 76 

glioblastoma. Delta-24-RGD induces autophagy in glioma cells, however, the molecular 77 

derangements associated with Delta-24-RGD infection remains poorly understood. Here, 78 

proteomics was applied to characterize the glioma metabolic disturbances soon after 79 

Delta-24-RGD internalization and late in infection. Minutes post-infection, a rapid 80 

survival reprogramming of glioma cells was evidenced by an early c-Jun activation and 81 

a time-dependent dephosphorylation of multiple survival kinases. At 48 hours post-82 

infection (hpi), a severe intracellular proteostasis impairment was characterized, detecting 83 

differentially expressed proteins related to mRNA splicing, cytoskeletal organization, 84 

oxidative response, and inflammation. Specific kinase-regulated protein interactomes for 85 

Delta-24-RGD-modulated proteome revealed interferences with the activation dynamics 86 

of protein kinases C and A (PKC, PKA), tyrosine-protein kinase Src (c-Src), glycogen 87 

synthase kinase-3 (GSK-3) as well as serine/threonine-protein phosphatases 1 and 2A 88 

(PP1, PP2A) at 48hpi, in parallel with adenoviral protein overproduction. Moreover, the 89 

late activation of the nuclear factor kappa B (NF-κB) correlates with the extracellular 90 

increment of specific cytokines involved in migration, and activation of different 91 

inflammatory cells. Taken together, our integrative analysis provides further insights into 92 

the effects triggered by Delta-24-RGD in the modulation of tumor suppression and 93 

immune response against glioma. 94 
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1. Introduction 100 



DNX-2401 (Delta-24-RGD) is an oncolytic adenovirus that replicates selectively in 101 

retinoblastoma (Rb) pathway deficient cells and infects tumor cells efficiently (1-3). In 102 

general, results from pre-clinical and clinical studies have revealed that the adenovirus 103 

Delta-24-RGD is an attractive therapeutic agent for malignant gliomas (1, 4-7), 104 

demonstrating favorable toxicity profile and remarkable clinical efficacy (8). Indeed, 105 

novel clinical trials in combination with specific immunomodulators are currently active 106 

(Clinical-Trials.gov identifiers NCT02197169, and NCT02798406).  107 

It is well-known that the mechanism of oncolytic Delta-24-RGD-mediated tumor 108 

suppression involves adenovirus-induced activation of the autophagic machinery in 109 

glioma cells (9). We consider that understanding the proteostatic changes associated with 110 

the viral cycle of Delta-24-RGD, will provide new avenues to enhance the capability of 111 

viral release, and, as a result, to elicit a more therapeutic effect. Using quantitative 112 

extracellular and intracellular proteomics workflows, physical and functional interaction 113 

data, and biochemical approaches, we have partially characterized the missing links in 114 

the biochemical understanding of the signaling pathways impaired during the initial phase 115 

of attachment and internalization of viral particles as well as during the autophagic phase 116 

of Delta-24-RGD infection (10-13). More than 200 differential proteins were detected in 117 

Delta-24-RGD-infected glioma cells, pinpointing protein interaction networks, specific 118 

pathways, and potential novel therapeutic targets. In addition, a specific increase in 119 

specific cytokine subsets was detected by extracellular cytokine profiling of glioma-120 

infected cells, supporting the notion that Delta-24-RGD modulates pathways related to 121 

migration, and activation of different inflammatory cells.  122 

 123 

 124 

2 Materials and methods 125 



2.1 Materials 126 

The following reagents and materials were used: anti-GAPDH (Calbiochem), anti-PKC-127 

Pan, anti-pPKC-pan (T514), anti-pAkt (Ser473), anti-Akt, anti-cJUN, anti-phospho cJUN 128 

(S73), anti-NF-κB p65, anti-NF-κB phospho-p65 (S536), anti-IκB-alpha, anti-MEK, anti-129 

pMEK (S217/221), anti-PKAc alpha, anti-pPKAc (T197), anti-GSK-3α/β, anti-pGSK-130 

3α/β (S21/9) (Cell Signaling), anti-PP1, anti-c-src, anti-p-c-src (Y419), anti-E1A protein 131 

(Santa Cruz Biotechnology), anti-phospho PPP1A (T320), anti-PP2Aα/β (Abcam), and 132 

anti-fiber protein (Neomarkers). Electrophoresis reagents were purchased from Bio-rad 133 

and trypsin from Promega. 134 

2.2 Virus production, culture and treatment of malignant glioma cells.  135 

The generation of Delta-24-RGD vector has been previously described (1, 3). U87 MG 136 

glioma cells (ATCC: HTB-14) were cultured in DMEM/F12-GlutaMAX (Gibco 137 

10565018) supplemented with 10% FBS, and 1% penicillin/streptomycin. 2.5x106 U87 138 

cells were infected with Delta-24-RGD at multiplicity of infection (MOI) of 25. After 139 

incubation for 30 minutes with DMEM/F12 1% penicillin/streptomycin at 37 °C, the 140 

double of the volume of DMEM/F12-GlutaMAX (Gibco 10565018) supplemented with 141 

10% FBS and 1% penicillin and streptomycin was added to the previous media. Cells 142 

were incubated under the same conditions during the indicated periods of time (24 and 143 

48hpi). 144 

2.3 Mass-spectrometry based-proteomics 145 

After the indicated periods of time, the media was removed and the cells were washed 146 

with 1X cold PBS. The cellular pellets were resuspended in lysis buffer (7M urea, 2M 147 

thiourea, 50mM DTT) and let on ice for 30 minutes, spinning and vortexing each 10 148 

minutes. After a sonication step, the lysate was centrifuged for 60 minutes at 20000xg at 149 

15°C. Protein concentration of the supernatants was measured with the Bradford assay 150 



kit (Bio-rad). Total cell extracts from Mock-infected, and U87-infected cells (48hpi) were 151 

diluted in Laemmli sample buffer and loaded into a 1 mm thick polyacrylamide gel with 152 

a 4% stacking gel casted over a 12.5% resolving gel. The run was stopped as soon as the 153 

front entered 3 mm into the resolving gel so that the whole proteome became concentrated 154 

in the stacking/resolving gel interface. Bands were stained with Coomassie Brilliant Blue 155 

and excised from the gel. Protein enzymatic cleavage (15ug) was carried out with trypsin 156 

(Promega; 1:20, w/w) at 37°C for 16 h. Purification and concentration of peptides was 157 

performed using C18 Zip Tip Solid Phase Extraction (Millipore). Peptides mixtures were 158 

separated by reverse phase chromatography as previously described (26). The column 159 

gradient was developed in a 240 min two step gradient from 5% B to 25% B in 210 min 160 

and 25%B to 40% B in 30 min. Column was equilibrated in 95% B for 9 min and 5% B 161 

for 14 min. During all processes, precolumn was in line with column and flow maintained 162 

all along the gradient at 300 nl/min. Eluting peptides from the column were analyzed 163 

using a Sciex 5600 Triple-TOF system. Information data acquisition was acquired upon 164 

a survey scan performed in a mass range from 350 m/z up to 1250 m/z in a scan time of 165 

250 ms. Top 25-35 peaks were selected for fragmentation. Product ions were scanned in 166 

a mass range from 230 m/z up to 1500 m/z and excluded for further fragmentation during 167 

15 s. The MS/MS data acquisition was performed using Analyst 1.7.1 (Sciex) and spectra 168 

files were processed through Protein Pilot Software (v.5.0.1-Sciex) using Paragon™ 169 

algorithm (v.5.0.1) for database search, Progroup™ for data grouping, and searched 170 

against the concatenated target-decoy UniProt proteome reference database (Human 171 

database Proteome ID: UP000005640, 70902 proteins, December 2015 plus adenovirus 172 

HAv5 database UP000004992, 31 proteins, September 2016). False discovery rate was 173 

performed using a non-lineal fitting method and displayed results were those reporting a 174 

1% Global false discovery rate or better. The mass spectrometry proteomics data have 175 



been deposited to the ProteomeXchange Consortium 176 

(http://proteomecentral.proteomexchange.org) (55) via the PRIDE partner repository 177 

with the data set identifier PXD010256. 178 

(For reviewers, Username: reviewer37737@ebi.ac.uk; Password: IVLEQLmD) 179 

2.4 Data analysis 180 

The peptide quantification was performed using the Progenesis LC−MS software (ver. 181 

2.0.5556.29015, Nonlinear Dynamics). Using the accurate mass measurements from full 182 

survey scans in the TOF detector and the observed retention times, runs were aligned to 183 

compensate for between-run variations in our nanoLC separation system. To this end, all 184 

runs were aligned to a reference run automatically chosen by the software, and a master 185 

list of features considering m/z values and retention times was generated. The quality of 186 

these alignments was manually supervised with the help of quality scores provided by the 187 

software. The peptide identifications were exported from Protein Pilot software and 188 

imported in Progenesis LC− MS software where they were matched to the respective 189 

features. Output data files were managed for subsequent statistical analyses and 190 

representation. Proteins identified by site (identification based only on a modification), 191 

reverse proteins (identified by decoy database) and potential contaminants were filtered 192 

out. Proteins quantified with at least two unique peptides, a T-test p-value lower than 193 

0.05, and an absolute fold change of <0.77 (down-regulation) or >1.3 (up-regulation) in 194 

linear scale were considered significantly differentially expressed.  195 

2.5 Bioinformatics 196 

 The proteomic data were analyzed using STRING (56) and QIAGEN’s Ingenuity® 197 

Pathway Analysis (IPA) (QIAGEN Redwood City, www.qiagen.com/ingenuity), to 198 

detect and infer differentially activated/deactivated pathways because of Delta-24RGD 199 

treatment. STRING database includes interactions from published literature describing 200 



experimentally studied interactions, as well as those from genome analysis using several 201 

well-established methods based on domain fusion, phylogenetic profiling and gene 202 

neighbourhood concepts. Accordingly, a confidence score for every protein–protein 203 

association was assigned to the network. A higher score was assigned when an association 204 

is supported by several types of evidence. To minimize false positives as well as false 205 

negatives, all interactions tagged as “low-confidence” (<0.4) in STRING database have 206 

been eliminated from this study. IPA software comprises curated information from 207 

databases of experimental and predictive origin, enabling discovery of highly represented 208 

functions, pathways, and interactome networks. The IPA comparison analysis considers 209 

the signalling pathway rank according to the calculated p-value and reports it 210 

hierarchically. The software generates significance values (p-values) between each 211 

biological or molecular event and the imported molecules based on the Fisher ́s exact test 212 

(p ≤ 0.05). 213 

2.6 Protein arrays 214 

For the secretome analysis, a dot-blot protein array was used for cytokine profiling 215 

(Abcam). Briefly, membranes with 80 cytokine antibodies were blocked with the 216 

manufacturer's blocking buffer at room temperature (RT) for 30 min, and incubated o/n 217 

with 1ml of undiluted cell-cultured media from Mock- and U87-infected cells (24, 48hpi) 218 

(n=3). After washing, a biotinylated anti-cytokine antibody mixture was added to the 219 

membranes followed by incubation with HRP-conjugated streptavidin and then exposed 220 

to the manufacturer's peroxidase substrate. For phospho-kinome analysis, the Proteome 221 

Profiler Array (R&D Systems. Ref: 894552) was used according to the manufacturer 222 

instructions. Cell lysates derived from Mock- and U87-infected cells (5, 15, 30 mpi) (n=3) 223 

were diluted and incubated overnight with the Human Phospho-Kinase Array, that 224 

contains 43 different capture antibodies printed in duplicate. The arrays were washed to 225 



remove unbound proteins followed by incubation with a cocktail of biotinylated detection 226 

antibodies. Streptavidin-HRP and chemiluminescent detection reagents were applied and 227 

a signal was produced at each capture spot corresponding to the amount of 228 

phosphorylated protein bound. For both protein array platforms, chemiluminescence 229 

signals were quantified with the ImageQuant ECL system (BioRad) and normalized to 230 

the positive control signals. The Perseus software (version 1.5.6.0) was used for statistical 231 

analysis (57). 232 

2.7 Western-blotting 233 

Equal amounts of protein (10 μg) were resolved in 4–15% Criterion™ TGX Stain-Free™ 234 

Protein Gels (#5678085 Bio-rad). Mock-infected and U87-infected protein cell extracts 235 

were electrophoretically transferred onto nitrocellulose membranes using Trans-Blot 236 

Turbo (BioRad) for 7 minutes at 2.5A constant, up to 25V. Equal loading of the gels was 237 

assessed by stain free digitalization and Ponceau staining. Membranes were probed with 238 

primary antibodies at 1:1000 dilution in 5% nonfat milk or BSA. After incubation with 239 

the appropriate horseradish peroxidase-conjugated secondary antibody (1:5000), 240 

antibody binding was detected by a ChemidocMP Imaging System (Bio-Rad) after 241 

incubation with an enhanced chemiluminescence substrate (Perkin Elmer). All Band 242 

intensities were measured with Image Lab Software Version 5.2 (Bio-Rad), and 243 

normalized to GAPDH or to total stain in each gel lane (58). 244 

3. Results and discussion 245 

Glioblastoma multiforme (GBM) is the most aggressive type of malignant glioma, 246 

characterized by infiltrative growth causing progressive neurologic dysfunction (14). One 247 

of the treatment strategies currently used is the oncolytic virotherapy (15, 16), that 248 

combines tumoral cell lysis with systemic anti-tumor immunity induction. Delta-24-249 

RGD, also known as DNX-2401, is currently under investigation in clinical trials for 250 



GBM (8). However, the global molecular events that accompany the adenoviral infective 251 

process remain to be elucidated. We consider that a system-wide characterization of 252 

initial phosphoproteomic events as well as the intracellular and extracellular glioma 253 

proteomes underlying the regulation of autophagy upon Delta-24-RGD infection (Figure 254 

1) may provide new inducing or inhibiting strategies to improve the therapeutic effect 255 

against target glioma cells. 256 

3.1 Delta-24-RGD-receptor interactions rapidly modulate the glioma phosphoproteome 257 

To identify signaling events induced soon after Delta-24-RGD engagement of cell surface 258 

receptors, phospho-kinase arrays were performed at 5, 15, and 30 minutes post-infection 259 

(mpi). To synchronize virus binding, we added a high concentration of virus (MOI=25) 260 

in order to obtain a sufficient number of binding events within a very short time-frame. 261 

As shown in figure 2, a time-dependent dephosphorylation of specific survival routes was 262 

observed (Akt, GSK-3, ERK1/2, p38 MAPK, MSK1/2 between others), indicating that 263 

Delta-24-RGD induces an early survival reprogramming of glioma cells for an optimal 264 

viral replication. Akt was progressively inactivated during the time-points analysed 265 

(Figure 2A-B). Phospho-WNK-1 (T60), an Akt substrate implicated in regulating ion 266 

permeability (17, 18) was also dephosphorylated during the first 30 mpi (Figure 2A-B). 267 

Interestingly, the activation of WNK-1/OSR1/NKCC1 signaling pathway facilitates 268 

glioma cell migration and apoptotic resistance to the chemotherapeutic drug 269 

temozolomide (TMZ) (19), reinforcing the idea that co-treatment of glioma cells with 270 

TMZ and Delta-24-RGD might lead to an enhanced therapeutic effect (20). c-Jun was the 271 

unique factor that rapidly increased its activator phosphorylation (Figure 2A-B). 272 

Although Jun N-terminal kinases (JNKs) are the canonical regulator of c-Jun activity (21, 273 

22), a JNK activation was not observed at 5-15 mpi (Figure 2C-D), indicating that 274 

additional kinases (23) may be responsible for the c-Jun early activation peak during 275 



Delta-24-RGD attachment. Together with the shut off induced in the kinase-mediated 276 

signaling, several transcription factors were rapidly inhibited (30mpi) such as STAT2 and 277 

STAT5b (figure 2C-D), probably blocking the antiviral defense (24), causing cycle arrest, 278 

and inhibiting glioma cell growth (25). 279 

3.2 Delta-24-RGD induces protein interactome derangements late in infection  280 

It is well known that for an efficient cell lysis and adenoviral spread, Delta-24-RGD 281 

induces massive autophagy (10-12). We have determined the Delta-24-RGD-induced 282 

glioma proteome remodelling that occurs in parallel with the overproduction viral 283 

proteins and the concomitant activation of Akt and c-Jun at 48hpi (9) (Figure 3A). Among 284 

the 1616 intracellular proteins consistently quantified (figure 3B and supplementary table 285 

1), 240 proteins tend to be differentially expressed between Mock and glioma-infected 286 

cells (127 up-regulated, and 113 down-regulated proteins) (figure 3B and Supplementary 287 

table 2), being potentially distributed across nuclear, cytosolic, exosome, and membranes 288 

between other organelles (Figure 3C). In addition, the over-production of 18 adenoviral 289 

proteins was also detected by mass-spectrometry (supplementary table 2). In accordance 290 

with previous studies (9, 26), Delta-24-RGD modulates proteomic fingerprints involved 291 

in EIF2 and mTOR signalling (figure 3D). Changes in the expression of various 292 

autophagy-related biomarker proteins were also detected in our proteomic survey. p62 293 

(SQSTM1) down-regulation was evidenced in Delta-24-RGD-infected glioma cells. This 294 

molecular event is a marker of autophagy in oncolytic adenovirus-infected tumor cells, 295 

where p62 may act as a receptor for ubiquitinated proteins or organelles (27), being finally 296 

degraded by the autolysosome (28). The autophagosome-lysosome fusion requires the 297 

lysosomal membrane protein LAMP-2 (27), an over-expressed protein in Delta-24-RGD-298 

infected cells. Moreover, cytoskeleton organization (RhoA signaling, ILK signaling), 299 

inflammation (IL-8 signaling), oxidative response, and differentiation (Tec kinase 300 



signalling, HGF and integrin signalling) were disrupted biological functions that 301 

accompanied Delta-24-RGD-mediated autophagy (figure 3D). Interestingly, deregulated 302 

proteins involved in protein synthesis (Ribosome biogenesis protein BOP1, 60S acidic 303 

ribosomal protein P2, 40S ribosomal protein S23) and DNA/RNA metabolism (TATA-304 

binding protein-associated factor 2N, DNA-directed RNA polymerases I and III subunit 305 

RPAC1, DNA replication licensing factor MCM4, Cleavage stimulation factor subunit 3, 306 

and RNA-binding protein FUS) at 48 hpi, have been previously proposed as Delta-24-307 

RGD targets early in infection (26). To characterize in detail the glioma proteotype upon 308 

Delta-24-RGD infection in the autophagic stage, we have performed proteome-scale 309 

interaction networks merging the 240 differential proteins detected in glioma-infected 310 

cells (48 hpi) (Figure 4). The protein interactome was mainly composed by specific 311 

protein clusters related to Poly(A) RNA binding, translation, mRNA splicing, and AMP 312 

metabolism. As shown in figure 4, Delta-24-RGD treatment directly affects the protein 313 

tyrosine kinase signalling, highly associated with glioblastoma oncogenesis (29).  314 

3.3 Activation state of predictive interactome hubs upon Delta-24-RGD infection 315 

We have applied a system biology approach to establish a framework to monitor 316 

interaction between deregulated proteins and potential network modules that may be 317 

considered as protein targets to modulate the infectivity process. Akt and JNK appeared 318 

as functional interactors of part of the deregulated proteome (supplementary file 3), being 319 

activated during Delta-24-RGD mediated autophagy (9). As shown in figure 5, NFκB 320 

also appeared as a hub in the differential interactome network. Subsequent experiments 321 

were performed to monitor the activation state of this signal transducer late in infection 322 

(Figure 5A). The increment in the serine 536 pohosphorylation of NFκB (24-48hpi) and 323 

the drop in the levels of the NFκB inhibitor alpha (IκB-alpha) at 48hpi suggests a potential 324 

activation of this transcription factor. Previous studies point out that adenovirus infection 325 



induces the activation of NF-κB in cancer cell lines (30, 31), being associated with 326 

resistance to different cell death and chemotherapeutic strategies in GBM (32), 327 

suggesting that Delta-24-RGD-induced NF-κB activation might be a protection 328 

mechanism induced by glioma cells. PKC isozymes are overexpressed in astroglial brain 329 

tumors (33). Our data indicate that Delta-24-RGD decreases PKC protein levels (Figure 330 

5B), probably restraining the hyperproliferative state and the invasive capacity of 331 

malignant glioma cells (34). Despite src kinase is also frequently activated in GBM, the 332 

use of specific inhibitory strategies has demonstrated a reduction in cell viability, and 333 

migration (35) as well as an induction of autophagic cell death in GBM cells (36). As 334 

shown in figure 5B, the essential phosphorylation of Y419 in the activation loop of c-src 335 

(37), and total c-src levels were markedly reduced in glioma-infected cells at 48hpi 336 

(Figure 5B). Moreover, Delta-24-RGD also affects the MAPK pathway, as suggested by 337 

the down-regulation of ERK (Supplementary table 2) and its target MEK1/2 (figure 6A). 338 

All these data point out that Delta-24-RGD treatment directly interferes with signaling 339 

pathways involved in cell growth, proliferation, adhesion, and migration. Due to the 340 

reduction of PKA type 1a regulatory subunit (PRKAR1A) in Delta-24-RGD-infected 341 

cells (Supplementary Table 2, network figure 6A), we focus our attention in the potential 342 

deregulation of PKA activation. As shown in figure 6A, an increment in phosphorylated 343 

and total PKA levels was evidenced at 24hpi. Being PKA an E1A adenoviral protein 344 

interactor, the co-overexpression of both proteins observed at 24hpi may contribute to 345 

viral transcription, protein expression and progeny production (38). However, PKA 346 

activation was reduced at 48hpi (figure 6A). This PKA inhibition was supported by the 347 

down-regulation of Ras GTPase-activating protein 1 (RASA1), an inhibitory regulator of 348 

the Ras-cyclic AMP pathway, that compromises cAMP generation.  349 



A growing body of evidences indicates that total and phosphorylated GSK-3 levels are 350 

increased in GBM, influencing its malignant phenotype (39). As shown in figure 6A, a 351 

dephosphorylation of GSK3/ was observed at 24hpi, while GSK3/ protein levels 352 

tend to be reduced at 48hpi. Although targeting of PKA and GSK-3 activity may result 353 

in glioma conventional cell death (40-42), PKA inhibition and GSK-3 down-regulation 354 

could also contribute to Delta-24-RGD-induced autophagic flux in glioma cells (27, 43). 355 

On the other hand, Delta-24-RGD also targeted serine/threonine protein phosphatase 356 

homeostasis in glioma cells late in infection. Specifically, Delta-24-RGD induced the 357 

overproduction of serine/threonine-protein phosphatase 6 catalytic subunit (PPP6C), PP4 358 

regulatory subunit 3A (PPP4R3A) and PP1-beta catalytic subunit (PPP1CB) 359 

(Supplementary table 2). All of them have been previously related to glioblastoma 360 

invasion and recurrence (44). Figure 6B shows the PP1/PP2A-regulated interactome 361 

modulated by Delta-24-RGD. Despite the slight PP1- α catalytic subunit activation (by 362 

dephosphorylation) observed at 24hpi in infected-glioma cells, Delta-24-RGD induced a 363 

decrease in PP1α subunit and PP2A α/β catalytic subunit protein levels at 48hpi (figure 364 

6B). Both S/T phosphatases are adenoviral E4orf4 protein interactors (45, 46) and 365 

cooperating partners in modulating the mitotic progression and tumor growth (47, 48), 366 

although a duality in the GBM field exists because PP2A inhibition or activation appear 367 

to be anti-oncogenic (44). Other protein that takes part in the PP1/PP2A-regulated 368 

interactome, is calreticulin (CALR), which expression is induced during Delta-24-RGD 369 

infection (figure 6B, and supplementary table 2). Interestingly, this protein is a damage-370 

associated molecular pattern (DAMP) molecule involved in the induction of antitumor 371 

immune response during antitumor therapy-induced autophagy (49, 50). 372 

 373 

 374 



3.4 Delta-24-RGD triggers changes in the glioma secretome late in infection 375 

Based on cerebrospinal fluid analysis derived from GBM patients, Delta-24-RGD therapy 376 

alters the tumor microenvironment (51). Considering that the monitorization of cytokines 377 

and growth factors specifically secreted by glioma cells to the tumor microenvironment 378 

may provide new insights into the modulation of the immune response induced by Delta-379 

24-RGD, we have performed a complementary secretome analysis of infected-glioma 380 

cells at 24 and 48hpi. Among the 80 secreted cell–cell signaling molecules analyzed, 14 381 

were significantly increased in a time-dependent manner (Figure 7A). TGF-beta3 was 382 

significantly increased at 24 hpi whereas the chemotactic factor GRO (CXCL1), TIMP-383 

1, and TIMP-2 were up-regulated at 24-48 hpi. Other cytoquines such as GM-CSF, IL-8 384 

(CXCL8), angiogenin, BLC (CXCL13), HGF, IGFBP-1, MIF, osteopontin, and 385 

osteoprotegerin (TNFRSF11B) were specifically overproduced at 48 hpi (Figure 7A). 386 

Some of this cytokine and growth factors (GM-CSF, CXCL1, CXCL8, TIMP-1, TIMP-387 

2, TNFRSF11B) are targets of the NFκB complex. These data indicated that the cytokine 388 

secretion waves induced by Delta-24-RGD are highly dynamic and time-dependent 389 

during all phases of Delta-24-RGD viral cycle (26). To explore the cooperative action 390 

among differentially intracellular and extracellular molecules induced by Delta-24-RGD 391 

at 48hpi, we have performed additional pathway analysis merging the proteomic dataset 392 

and the secretome information. As shown in figure 7B, Delta-24-RGD modulates 393 

pathways related to accumulation, migration, and activation of different inflammatory 394 

cells late in infection (supplementary table 4). It has been previously reported that Delta-395 

24-RGD induces a prolonged shift in the pro-tumoral M2 macrophages towards tumor-396 

detrimental phenotype as well as leukocyte recruitment and activation in GBM patients 397 

(51). All these data complement the notion that the immune system plays a fundamental 398 

role in the therapeutic efficacy of oncolytic Delta-24-RGD therapy of glioma (52-54).   399 



4. Conclusion 400 

This work provides new insights regarding the molecular mechanisms governing the 401 

glioma metabolism during Delta-24-RGD oncolytic adenoviral therapy. Although 402 

additional experiments are needed to evaluate the effect of Delta-24-RGD in additional 403 

cell lines and in vivo models, the application of high-throughput proteomic approaches 404 

proves to be a useful tool to decipher the proteome expression profiles of glioma cells 405 

during antitumor therapy, and more importantly, to define potential therapeutic targets 406 

against GBM.  407 

 408 

Figure legends 409 

Figure 1. Spatio-temporal multi-omic approach applied throughout Delta-24-RGD 410 

Infection.  411 

Figure 2. Rapid phospho-kinome response of Delta-24-RGD-infected cells during 412 

the first 30 minutes of infection. Phosphoproteome variations detected at 5, 15, and 30 413 

mpi respect to mock-infected cells (A, C). Representative images of phospho-kinase 414 

arrays are shown (B, D). 415 

Figure 3. Differentially expressed proteins throughout late phases of Delta-24-RGD 416 

Infection. A) Expression of adenoviral proteins in glioma-infected cells. B) Volcano plot 417 

representing the fold-change of identified proteins with associated P values from the pair-418 

wise quantitative comparison of mock vs glioma-infected proteome at 48hpi (Left). In 419 

green, significantly down-regulated proteins, and in red, upregulated proteins (P < 0.05). 420 

(C) Subcellular and (D) pathway distribution of the glioma proteome modulated by Delta-421 

24-RGD (48hpi). 422 

Figure 4. Protein interactome network for Delta-24-RGD-modulated proteome. 423 

Network analysis was performed submitting the corresponding protein IDs to the 424 



STRING (Search Tool for the Retrieval of Interacting Genes) software (v.10.5) 425 

(http://stringdb.org/). Proteins are represented with nodes and the interactions with 426 

continuous lines to represent direct interactions (physical), while indirect ones 427 

(functional) are presented by interrupted lines. All the edges were supported by at least a 428 

reference from the literature or from canonical information stored in the STRING 429 

database. To minimize false positives as well as false negatives, only interactions tagged 430 

as “high confidence” (>0.7) in STRING database were considered. K means clustering 431 

was applied. 432 

Figure 5. Delta-24-RGD-modulated proteome is functionally related with NFκB, 433 

SRC, and PKC. Specific protein interactomes modulated by Delta-24-RGD in glioma 434 

cells late in infection (48hpi) (down- and up-regulated proteins in Delta-24-RGD-infected 435 

glioma cells in green and red respectively). Levels and residue-specific phosphorylation 436 

of NFκB and IκB (A), PKC, and c-SRC (B) at 24-48hpi. Equal loading of the gels was 437 

assessed by Ponceau staining and band intensities were normalized to total stain in each 438 

gel lane. Representative Western blot images from three independent experiments are 439 

shown. 440 

Figure 6. Delta-24-RGD induces specific signaling derangements late in infection. 441 

Specific kinase-regulated interactomes modulated by Delta-24-RGD in glioma cells at 442 

48hpi (down- and up-regulated proteins in Delta-24-RGD-infected glioma cells in green 443 

and red respectively). Levels and residue-specific phosphorylation of PKAc, MEK1/2, 444 

and GSK3- / (B) at 24-48hpi. Equal loading of the gels 445 

was assessed by Ponceau staining and band intensities were normalized to total stain in 446 

each gel lane. Representative Western blot images from three independent experiments 447 

are shown. 448 



Figure 7. Delta 24-RGD induces late changes in the extracellular cytokine profiling 449 

of glioma cells. A time-dependent analysis of 80 cytokines/growth factors was performed 450 

in the cell media of mock-infected glioma cells and glioma-infected cells (24, and 48hpi) 451 

using a dot-blot protein array method. Three independent experiments were performed. 452 

Data are presented as mean ± SEM. *p < 0.05, **p<0.01, and ***p<0.001 vs mock-453 

infected condition (A). Pathway mapping of intracellular deregulated proteins and the 454 

differential secretome obtained by IPA software (supplementary table 4) (B). 455 
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