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Abstract

In this paper Strong Stability Preserving (SSP) properties of Runge Kutta methods obtained by com-
posing k different schemes with different step sizes are studied. The SSP coefficient of the composition
method is obtained and an upper bound on this coefficient is given. Some examples are shown. In par-
ticular, it is proven that the optimal n2-stage third order explicit Runge-Kutta methods obtained by D.I.
Ketcheson [SIAM J. Sci. Comput. 30(4), 2008] are composition of first order SSP schemes.
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1 Introduction
Given an initial value problem of the form

d

dt
y(t) = f(y(t)) , t ≥ t0 ,(1)

y(t0) = y0 ,

a common class of schemes to solve it are explicit Runge-Kutta (RK) methods. An s-stage explicit RK
method is defined by a strictly lower triangular s× s matrix A = (aij) and a vector b = (bj) ∈ Rs. If yn is
the numerical approximation of the solution y(t) at t = tn, the numerical approximation of the solution at
tn+1 = tn + h, denoted by yn+1, is obtained from

Yi = yn + h
s−1∑
j=1

aijf(Yj) , 1 ≤ i ≤ s ,(2)

yn+1 = yn + h
s∑

i=1

bif(Yi) ,(3)
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where the internal stage Yi approximates y(tn + cih), and, as usual, ci =
∑s−1

j=1 aij .
Composition methods have been widely studied in the literature (see, e.g., [1, 11, 12, 17, 18] and the

references therein). The basic idea is to consider k ordered Runge-Kutta methods and, from an initial
value y0, compute a numerical approximation y1 using the first scheme with step size h1; next, from y1 the
process is repeated to compute a numerical approximation y2 using the second scheme with step size h2.
This process continues until a numerical solution yk is computed with the last hk-step size Runge-Kutta
method. The composition of these schemes is considered as a single method that is used to compute, from
y0, a numerical solution y1 = yk with step size h = h1 + · · · + hk. Composition schemes are aimed at
increasing the convergence order while relevant properties of the method are preserved. For this purpose,
properties of the composition method must be studied in terms of the ones of the Runge-Kutta schemes
involved and the step sizes used.

Different kinds of composition methods and different properties have been studied in the literature. For
example, in [11, Section III.1.3] (see too [12, Section II.12]), composition of two different Runge-Kutta
methods with the same step size is considered and order properties of the new scheme are derived in terms
of those of the original two methods. In [11, Section II.4], the composition of a basic one-step method (and
eventually, its adjoint method) with k different step sizes is studied and order conditions to increase the
order of the basic one-step method are given; in this way, high order symplectic and symmetric methods are
obtained by composition of low order schemes. In [17, 18], composition of low order Runge-Kutta methods
with different step sizes to improve stability for stiff problems is analyzed.

In this paper we consider the most general case where different Runge-Kutta methods are composed
with different step sizes. Thus, given k si-stage Runge-Kutta methods (Ai, b

t
i) satisfying the first order

conditions btiesi = 1, where esi = (1, . . . , 1)t ∈ Rsi , i = 1, . . . , k, we consider their composition with step
sizes dih, i = 1, . . . , k, such that d1 + · · ·+ dk = 1, with di > 0, i = 1, . . . , k. The composition method is
an s-stage Runge-Kutta method, with s = s1 + · · ·+ sk, whose Butcher matrix is of the form

d1c1 d1A1 0 · · · · · · 0

d1es2 + d2c2 d1es2b
t
1 d2A2 0 · · · 0

...
...

... . . . . . . 0(∑k−2
i=1 di

)
esk−1

+ dk−1ck−1 d1esk−1
bt1 d2esk−1

bt2 · · · dk−1Ak−1 0(∑k−1
i=1 di

)
esk + dkck d1eskb

t
1 d2eskb

t
2 · · · dk−1eskb

t
k−1 dkAk

(A, bt) d1b
t
1 d2b

t
2 · · · dk−1b

t
k−1 dkb

t
k

(4)

Observe that, for the composition method (A, bt), the first blocks in vector bt, namely dibti, i = 1, . . . , k−1,
are the same as the ones in the last row of A; in this way, the structure of the Butcher tableau allows us to
detect easily whether or not a Runge-Kutta method is a composition scheme. On the other hand, it is well
known that the stability function of a composition method is the product of the stability functions of the
schemes involved in the composition [17]; thus the stability function can also be used to analyze if a given
method is a composition one.

For differential systems (1) with a large number of equationsN , the high dimension of the problem may
compromise the computer memory capacity and thus it is convenient to take into account the memory usage
of the scheme (see, e.g., [20] and the references therein). From this point of view, composition Runge-Kutta
methods may be competitive with general Runge-Kutta methods with the same number of stages. A plain
implementation of an s-stage Runge-Kutta method requires s+ 1 memory registers of length N . However,
for a general composition method (4), the number of memory registers required to implement the method
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can be reduced to maxi=1,...,k{si}+1 registers, and this diminution is even better if all the schemes involved
in the composition are low-storage methods.

As it has been pointed out above, one of the goals of constructing composition schemes is to increase
the order while preserving important properties of the schemes involved. In this paper, we deal with Strong
Stability Preserving (SSP) Runge-Kutta schemes.

SSP methods were introduced in the context of hyperbolic problems to ensure numerical monotonicity
for the Total Variation seminorm [9, 28, 29]; in this context, SSP methods are also known as Total Variation
Diminishing (TVD) methods. Numerical contractivity, closely related to numerical monotonicity, has also
been studied in the seminal paper by Kraaijevanger [24]. Stepsize restrictions for numerical monotonicity
or contractivity are given as the product of two coefficients, one that depends on the problem and the other
one that depends on the numerical method used. Depending on the context, the coefficient associated to
the scheme is known as SSP coefficient, CFL coefficient, Kraaijevanger coefficient or radius of absolute
monotonicity (see, e.g., [6], [8, 27], [16], [24], respectively).

Different issues on SSP Runge-Kutta methods have been deeply studied in the literature. In [4, 14],
the relationship between the SSP coefficient [28, 29] and the radius of absolute monotonicity [24] is es-
tablished (see also [3, 13]). For a given order and number of stages, explicit and implicit optimal SSP
schemes have been studied in [26, 27, 33, 34] and [5, 21], respectively; besides, optimal SSP methods
can be constructed with the code RKOpt [22]. A more general framework for analyzing SSP methods is
introduced in [32]; this framework can be applied to different kinds of methods like additive Runge-Kutta
methods [15], General Linear Methods, Linear Multistep methods or multistep-multistage methods. With
regard to implementation issues, low-storage SSP methods have been analyzed in [19, 26]. For linear prob-
lems, monotonicity properties of the Runge-Kutta scheme are obtained from the stability function of the
method [30, 31]. Thus, the study for explicit and implicit schemes is reduced to the analysis of absolute
monotonicity for polynomials [23] and rational functions [10], respectively. See too [7] and the references
therein.

The aim of this paper is to study SSP properties of composition Runge-Kutta methods. Our goal is to
increase the order and, at the same time, preserve or improve SSP properties of the involved schemes. The
main results of the paper are the following ones:

• We obtain the SSP coefficient of the composition method in terms of the SSP coefficients of the
schemes involved. Furthermore, an upper bound for the SSP coefficient of the composition method
is also given. These results, valid for explicit and implicit Runge-Kutta methods, are given in Propo-
sition 1.

• We obtain a fourth order explicit SSP Runge-Kutta composition method.

• We prove in Proposition 3 that optimal n2-stage third order explicit SSP Runge-Kutta schemes intro-
duced in [19] are the composition of first order SSP Runge-Kutta methods. Then we obtain the SSP
coefficient of this composition method from Proposition 1.

Besides, in Proposition 2 we give the simplified order conditions needed to obtain a third order composition
method starting from first order schemes.

The rest of the paper is organized as follows. In Section 2 we give a brief introduction to SSP Runge-
Kutta methods. The main results of the paper are given in Section 3. The order conditions needed to obtain
a third order composition method are given in Section 4; they are needed for the examples shown later
in the paper. In this section we also obtain a fourth order explicit SSP composition method. Section 5 is
devoted to examples of explicit and implicit composition Runge-Kutta methods; among them, we study the
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optimal n2-stage third order explicit SSP Runge-Kutta schemes obtained in [19] (see too [7, p. 85]). The
paper ends with some conclusions. In Section 7 we give the proofs of the results in the paper together with
two auxiliary lemma. We have collected them in a separate section in order not to interrupt the reading of
the paper.

2 Strong Stability Preserving Runge-Kutta methods
In this section we briefly review some known concepts on SSP methods that will be used throughout this
paper. These methods are relevant for dissipative problems (1), that is, problems such that the exact solution
satisfies a monotonicity property of the form

(5) ‖y(t)‖ ≤ ‖y(t0)‖ , for all t ≥ t0 ,

where ‖ · ‖ : RN → R denotes a convex functional (e.g., a norm or a semi-norm). A sufficient condition for
(5) is monotonicity under explicit Euler steps

(6) ‖ y + h f(y) ‖ ≤ ‖ y ‖ , for h ≤ ∆tEE.

for all y ∈ RN and a fixed ∆tEE > 0 (see, e.g., [24, p. 501 ] or [15, p. 1-2] for details).
As usually, ci ≥ 0. As Yi ≈ y(tn + cih), taking into account (5), it makes sense to impose numerical

monotonicity not only for the numerical solution but also for the internal stages, that is,

(7) ‖Yi‖ ≤ ‖yn‖ , i = 1 . . . , s , ‖yn+1‖ ≤ ‖yn‖ ,

for all n ≥ 0, probably under a stepsize restriction h ≤ ∆t
MAX

. The seminal papers by Spijker [30, 31, 32]
and Kraaijevanger [23, 24] on numerical contractivity issues for Runge-Kutta schemes, settle a theoretical
framework that is valid not only for contractivity but also for monotonicity.

With a different terminology and notation, the numerical preservation of monotonicity has also been
investigated in the context of hyperbolic systems of conservation laws. In this setting, for different reasons,
it is critical to deal with Total Variation Diminishing (TVD) schemes, and in the pioneering papers [28, 29],
monotonicity issues for the Total Variation semi-norm are analyzed. In these references, high order methods
satisfying (7) when the explicit Euler discretization of (1) satisfies (6) are studied. In this context, these
methods are known as SSP methods.

The idea in [24, 28, 29] is to construct high order schemes by means of convex combinations of explicit
Euler steps. Thus, Runge-Kutta methods (2-3), that in compact form can be written as

Y = eN ⊗ yn + (A⊗ IN)F (Y ) ,

where⊗ denotes the Kronecker product, Y = (Y1, . . . , Ys, yn+1)
t ∈ R(s+1)N , F (Y ) = (f(Y1), . . . , f(Ys), 0)t ∈

R(s+1)N , and

A =

(
A 0
bt 0

)
,(8)

are expressed as

Y = αr ⊗ yn + (Λr ⊗ IN)

(
Y +

h

r
F (Y )

)
,(9)
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where r ∈ R and

αr = (I + rA)−1es+1 , Λr = r(I + rA)−1A .(10)

If αr ≥ 0 and Λr ≥ 0, where the inequalities should be understood component-wise, then the right hand
side of (9) is a convex combination of yn and explicit Euler steps. The radius of absolute monotonicity, also
known as Kraaijevanger’s coefficient or SSP coefficient, is denoted and defined by

R(A) = sup
{
r | r = 0 or r > 0, (I + rA)−1 exits, and αr ≥ 0,Λr ≥ 0

}
.(11)

Blockwise, conditions in (11) can be written as

(I + rA)−1A ≥ 0 , (I + rA)−1es ≥ 0 , bt(I + rA)−1 ≥ 0 , 1− rbt(I + rA)−1es ≥ 0 .(12)

If the explicit Euler method satisfies condition (6), then from (9), numerical monotonicity (7) can be proven
under the step size restriction

h ≤ R(A) ∆tEE .

It is well known that, for an irreducible SSP Runge-Kutta method (A, bt), the coefficients must satisfy
aij ≥ 0, bj > 0 (see [24, Theorem 4.2]). This sign condition implies an order barrier p ≤ 4 and p ≤ 6 for
explicit and implicit SSP methods, respectively [24, Corollary 8.7].

Expression (9) is a particular case of Shu-Osher representations of a Runge-Kutta method (see, e.g.,
[14, Section 2]). Given a Runge-Kutta method with Butcher matrix A, a representation is given in terms
of two matrices (Λ,Γ) such that the matrix I − Λ is invertible and A = (I − Λ)−1Γ; then the numerical
approximation of the Runge-Kutta scheme is written as

Y = α⊗ yn + (Λ⊗ IN)Y + h(Γ⊗ IN)F (Y ) ,(13)

where α = (I − Λ)e. We can consider α = (1, 0, . . . , 0)t for explicit methods as Y1 = yn. Adding and
subtracting the term r(Γ⊗ IN)Y , equation (13) can also be written as

Y = α⊗ yn + ((Λ− r Γ)⊗ IN)Y + r(Γ⊗ IN)

(
Y +

h

r
F (Y )

)
.(14)

If

Λ ≥ 0 , Γ ≥ 0 , α ≥ 0 , Λ− r Γ ≥ 0 ,(15)

then the right hand side of equation (14) is a convex combination of yn, the internal stages and forward Euler
steps. For r = R(A), it can be proven [14, Proposition 2.7] that there exist Shu-Osher representations (Λ,Γ)
of A such that inequalities (15) hold. Observe that the largest value r in (15) that satisfies Λ − r Γ ≥ 0
is given by r = minij{λij/γij}, that agrees with the SSP coefficient of a Runge-Kutta method defined in
the context of TVD schemes (see, e.g., [28]; see also [7] and the references therein). In other words, these
representations are optimal. For example, αr and Λr in (10), together with Γr := Λr/r give an optimal
representation. Observe that, in this case, Λr − rΓr = 0 and thus (14) is reduced to (9).

Optimal explicit SSP Runge-Kutta methods for a given order p and a number of stages s, denoted by
SSP (s, p), have been studied in the literature. In [24, Section 9], optimal SSP (s, 1), SSP (s, 2), SSP (3, 3)
and SSP (4, 3) are given. Optimal SSP (n2, 3) schemes were found in [19] in the context of low-storage
methods. Numerically optimal SSP methods, in the sense that the schemes have been constructed with
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numerical optimization techniques but no formal proof of optimality has been done, are also given in the
literature [26, 33, 34]; furthermore, they can also be constructed with the code RKOpt [22]. With regard to
implicit methods, optimal SSP SDIRK schemes were studied in [5] and general implicit SSP methods can
be reviewed in [21] (see too [7, Chapter 7]).

For explicit Runge-Kutta methods, an upper bound of the SSP coefficient can be given in terms of the
Butcher coefficients of the scheme [27, Lemma 3.2],

R(A) ≤ 1

max{aij, bj}
.(16)

This is a bound of practical relevance because it is easy to compute and, reversely, if we fix R(A), (16)
trivially implies an upper bound of the coefficients of the Runge-Kutta method

max{aij, bj} ≤
1

R(A)
.(17)

It can be checked that for optimal methods SSP (s, 1), SSP (s, 2), SSP (3, 3), SSP (4, 3) in [24], and
SSP (s, 3), s = 5, . . . , 8, in [26], the non zero entries in first rows of matrix A are equal to 1/R(A). This
is also the case for the optimal scheme SSP (10, 4) given in [19]. However, the optimal SSP (5, 4) method
does not have this property [24, 33].

For linear problems, SSP properties can be obtained from the stability function of the Runge-Kutta
method, defined as

φ(z) = 1 + zbt(I − zA)−1es .

For explicit Runge-Kutta methods, optimal stability functions were obtained in [23] whereas results for
implicit schemes can be seen in [10]. For first and second order s-stage optimal Runge-Kutta methods,
the SSP coefficient for linear and nonlinear problems is the same; this is also the case for some third order
optimal or numerically optimal SSP schemes [6, Table 3].

For a detailed study on numerical monotonicity and SSP methods, see the references in Section 1.

3 SSP coefficient of composition methods
In this section we give some results on the SSP coefficient of a Runge-Kutta method that is the composition
of k SSP Runge-Kutta schemes. For simplicity, we have written down the proof of each result in section 7.

Proposition 1. Consider a Runge-Kutta method A that is the composition of k first order SSP schemes Ai

with step sizes dih, such that di > 0, i = 1, . . . , k, and d1 + · · · + dk = 1. Then, the SSP coefficient R(A)
for the composition method is

R(A) = min
i=1,...,k

{
R(Ai)

di

}
.(18)

Furthermore, if we define Ik = {i ∈ {1, . . . , k} | R(Ai) <∞} and we assume that Ik 6= ∅, then

R(A) ≤

∑
i∈Ik

R(Ai)∑
i∈Ik

di
,(19)
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and the maximum value for R(A) =
∑

i∈Ik R(Ai)/
∑

i∈Ik di is obtained if and only if

di =

∑
j∈Ik

dj∑
j∈Ik

R(Aj)
R(Ai) , i ∈ Ik .(20)

In particular, if R(Ai) <∞ , for i = 1, . . . , k, then

R(A) ≤ R(A1) + · · ·+R(Ak) ,

and the maximum value R(A) = R(A1) + · · ·+R(Ak) is obtained if and only if

di =
R(Ai)

R(A1) + · · ·+R(Ak)
.

Thus, given k SSP Runge-Kutta methods, it is always possible to construct a new SSP scheme with
larger SSP coefficient and more stages. However, in order to increase the order of the composition scheme,
the coefficients di must satisfy some order conditions (see section 4).

Remark 1.

1. Observe that, as expected, the SSP coefficient of the composition method does not depend on the
position of each Ai method in the composition process.

2. Recall that Proposition 1 is valid for both implicit and explicit Runge-Kutta methods. �

As we have pointed out above, one of the goals of constructing composition schemes is to increase
the order at the same time that important properties are preserved. Next, we study order conditions of
composition methods.

4 Order conditions of composition methods
Given a Runge-Kutta method (A, bt), the set of order conditions to achieve third order is well known:

bte = 1 , btc =
1

2
, btc2 =

1

3
, btAc =

1

6
.(21)

However, in the analysis or construction of composition methods with large or arbitrary number of stages,
the determination of the order with these standard conditions (21) may become a laborious task. The
problem can be simplified if we consider the method as a composition scheme [17, 18]. In this section we
give the second and third order conditions for the composition method in terms of the order conditions of
the involved schemes and the step-length ratios di, i = 1, . . . , k. We will use them for the examples given
in section 3.

Proposition 2. We consider a Runge-Kutta method (A, bt) that is the composition of k first order Runge-
Kutta methods (Ai, b

t
i), with step sizes dih, such that di > 0 , i = 1, . . . , k , and d1 + · · · + dk = 1 , with

di > 0 , i = 1, . . . , k , then
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1. The second order condition btc = 1/2 for the composition method is equivalent to

(22)
k∑

i=1

d2i (b
t
ici − 1

2
) = 0 .

2. The third order condition btc2 = 1/3 for the composition method is given by

k∑
i=1

d3i (b
t
ic

2
i − 1

3
) + 2

k∑
i=2

(
i−1∑
j=1

dj

)
d2i (b

t
ici − 1

2
) = 0 .(23)

If the second order condition (22) holds, then the third order condition btAc = 1/6 is equivalent to

k∑
i=1

d3i
(
(btiAici − 1

6
)− (btici − 1

2
)
)

= 0 .(24)

The proof of this result is given in section 7.
The order conditions (22)-(24) are extremely useful to obtain the order of a given composition method or

to construct second and third order composition schemes. Besides, they can also be used to obtain necessary
conditions on the methods used in the composition or, equivalently, to prove that the composition of some
schemes never achieves a given order. For example, from (22), we conclude that the expressions btici − 1

2
,

i = 1, . . . , s, must have different signs; in particular, second order cannot be achieved by concatenating the
same first order scheme. In a similar way, from (23), third order cannot be achieved by the composition
of the same second order method. Another straightforward conclusion obtained from (22) is that a second
order composition method cannot be obtained from the composition of a first and a second order method.

Remark 2.

1. Observe that, in equations (22) and (24), the arrangement of the different schemes in the composition
method is not relevant to fulfill them. This result is not surprising because btc = 1/2 and btAc = 1/6
are the order conditions for linear problems, and they are included in the stability function of a
method. It is well known that the stability function of a composition method is the product of the
stability functions of the schemes involved in the composition [17] and thus, the order of the factors is
irrelevant. However, the arrangement of the different schemes is relevant for the non linear condition
(23).

2. The composition of different one-step methods of order p is considered in [18]; in particular, the order
conditions needed to construct a composition method with order p+ 1 are given in [18, Theorem 1].
However, in Proposition 2 we give the order conditions needed to obtain a third order composition
method starting from first order schemes.

�

In Proposition 1 we have shown that the composition of SSP methods is also an SSP scheme. Conse-
quently, the SSP order barriers, namely p ≤ 4 and p ≤ 6 for explicit and implicit methods, respectively, are
also valid for the composition of SSP methods. We wonder whether there exist fourth order SSP explicit
Runge-Kutta schemes obtained by composing lower order explicit SSP methods. We answer this question
in the next subsection.
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4.1 Fourth order SSP explicit composition Runge-Kutta methods
In this section we try to construct a fourth order method by composing two third order schemes, denoted
by (A1, b1) and (A2, b2), with positive step-length ratios d1 and d2 , such that d1 + d2 = 1. The fourth order
conditions for the composition method, that can be obtained from [18, Theorem 1], are

d41

(
bt1A

2
1c1 −

1

24

)
+ d42

(
bt2A

2
2c2 −

1

24

)
= 0 , d41

(
bt1A1c

2
1 −

1

12

)
+ d42

(
bt2A2c

2
2 −

1

12

)
= 0 ,

d41

(
bt1c

3
1 −

1

4

)
+ d42

(
bt2c

3
2 −

1

4

)
= 0 , d41

(
bt1(A1c1 · c1)−

1

8

)
+ d42

(
bt2(A2c2 · c2)−

1

8

)
= 0 .

(25)

If we consider (25) as a linear system Md = 0, with unknowns d = (d41, d
4
1) and M = (mij), we obtain that

(25) has a positive solution if and only if Kmi1 = mi2, i = 1, . . . , 4, with K < 0, that is,

K

(
bt1A

2
1c1 −

1

24

)
= bt2A

2
2c2 −

1

24
, K

(
bt1A1c

2
1 −

1

12

)
= bt2A2c

2
2 −

1

12
,

K

(
bt1c

3
1 −

1

4

)
= bt2c

3
2 −

1

4
, K

(
bt1(A1c1 · c1)−

1

8

)
= bt2(A2c2 · c2)−

1

8
.

(26)

In this case, equations (25) are reduced to d41 +Kd42 = 0.
Observe that conditions (26) can be considered as four pseudo order conditions, easier to check than

standard fourth order Runge-Kutta equations. We have considered these conditions in the numerical opti-
mization process to get the 21 unknowns, namely, the coefficients of both methods (A1, b

t
1) and (A2, b

t
2),

and the parameterK, that give the largest value of the SSP coefficient of the composite methodR(A). More
precisely, the following optimization problem has been solved:

Maximize R(A) subject to:

Third order conditions (21) for methods (Ai, b
t
i) , i = 1, 2.

Positivity of the non-zero coefficients of schemes (Ai, b
t
i) , i = 1, 2.

Kmi1 = mi2, i = 1, . . . , 4, with K < 0 .

(27)

Once that K is known, from d1 + d2 = 1 and d41 + Kd42 = 0, the step-length ratios d1 and d2 can be
obtained. In this way, we obtain an 8-stage fourth order SSP Runge-Kutta method (A, bt) with maximal
SSP coefficientR(A) = 0.8561887, that is the composition of the following 4-stage third order SSP Runge-
Kutta methods (A1, b

t
1) and (A2, b

t
2)

0 0 0 0 0

1.355799533961411 1.355799533961411 0 0 0

0.382966116123274 0.130435927623664 0.252530188499610 0 0

0.456559352213873 0.061507046874709 0.029346849161985 0.365705456177179 0

(A1, b
t
1) 0.064411678388945 0.088196417893538 0.087798298497448 0.759593605220069

0 0 0 0 0

0.325452697522574 0.325452697522574 0 0 0

0.517030163135817 0.077328101144592 0.439702061991226 0 0

0.821413740789189 0.026827996375588 0.152548997366219 0.642036747047382 0

(A2, b
t
2) 0.131599472101293 0.346443702425774 0.136319923552512 0.385636901920421
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with step-length ratios d1 = 0.3688662 and d2 = 0.6311338. The SSP coefficients of each method are
R(A1) = 0.3160628 andR(A2) = 0.5403697. Besides, in agreement with formula (18), the SSP coefficient
of the composition method (A, bt) is R(A) = 0.8561887 ; observe that in this case, R(A1)/d1 = R(A2)/d2
and R(A) = R(A1) + R(A2). For (A1, b

t
1) and (A2, b

t
2) the pseudo order conditions (26) are satisfied for

K = −0.1166781.
We remark that this example is intended to show that fourth order composition methods exist. A detailed

study on the largest SSP coefficient for composition schemes is out of the scope of this paper.

5 Examples
In this section we give some examples of composition schemes.

Example 1. We consider the composition of s implicit midpoint rule methods, (Ai, b
t
i), where a(i)11 = 1/2,

b
(i)
1 = 1, with di = 1/s, i = 1, . . . , s. The Butcher tableau for the composition method A is

1
2s

1
2s

0 . . . 0
3
2s

1
s

1
2s

. . . ...
...

...
... . . . 0

2s−1
2s

1
s

1
s

. . . 1
2s

1
s

1
s

. . . 1
s

(28)

For each scheme, R(Ai) = 2, i = 1, . . . , s. Then Proposition 1 gives us R(A) = 2s. Furthermore,
as implicit midpoint rule is a second order scheme, the second order condition (22) for the composition
method is satisfied. Schemes (28) are well known in the literature: for s = 1, 2, they are the optimal SSP
second order s-stage implicit DIRK schemes, and for s ≥ 3 they are the numerically optimal ones found in
[5] (see too [7, p. 95]). �

Example 2. We consider the composition of the following first, second and first order, respectively, implicit
schemes

0 0 0
2
3

1
3

1
3

(A1, b
t
1)

1
3

2
3

,
1
2

1
2

(A2, b
t
2) 1

,
1 1

(A3, b
t
3) 1

,

with step-length ratios d1 = 1/2, d2 = 1/3 and d3 = 1/6. Their SSP coefficients are R(A1) = 3,
R(A2) = 2, R(A3) = ∞. According to (18) in Proposition 1, we get R(A) = 6. Observe that the
maximum value in (19), namely R(A) = 6, is achieved. In this case, the second order condition (22) for
the composition method is

− 1

18
d21 +

1

2
d23 = 0 ,

that is satisfied for the above values of d1 and d3. Thus, the 4-stage second order implicit Runge-Kutta
composition method

0 0 0 0 0
1
3

1
6

1
6

0 0
2
3

1
6

1
3

1
6

0

1 1
6

1
3

1
3

1
6

(A, bt) 1
6

1
3

1
3

1
6
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withR(A) = 6 is obtained. This composition method has been considered in [25]. Other similar schemes in
the literature can also be obtained as composition methods. For example, we may consider the composition
of these three first order schemes

0 0 0
8
9

4
9

4
9

(A1, b
t
1)

4
9

5
9

,
2
7

2
7

(A2, b
t
2) 1

,
1 1

(A3, b
t
3) 1

,

with step-length ratios d1 = 3/5, d2 = 7/30 and d3 = 1/6. Their SSP coefficients are R(A1) = 9/4,
R(A2) = 7/5, R(A3) = ∞. Now, from (18) in Proposition 1, we get R(A) = 15/4. In this case, the
maximum value in (19), namely 4.38, is not achieved. The step-length ratios satisfy the second order
condition (22) for the composition method

− 1

162
d21 −

3

14
d22 +

1

2
d23 = 0 .

Consequently, the 4-stage composition method (A, bt) below, also considered in [2], is a second order
scheme with R(A) = 15/4.

0 0 0 0 0
8
15

4
15

4
15

0 0
2
3

4
15

1
3

1
15

0

1 4
15

1
3

7
30

1
6

(A, bt) 4
15

1
3

7
30

1
6

�

Example 3. We consider the composition of the following first-order explicit Runge-Kutta methods

(29)

0 0 0 0

1 1 0 0

2 1 1 0

(A1, b
t
1)

1
3

1
3

1
3

,
0 0

(A2, b
t
2) 1 ,

with step sizes d1h and d2h, with d1 + d2 = 1, d1, d2 > 0. For these methods the coefficients involved in
the second and third order conditions (22-24) for the composition method are

bt1c1 − 1
2

= 1
2
, bt2c2 − 1

2
= −1

2
, bt1c

2
1 − 1

3
= 4

3
, bt2c

2
2 − 1

3
= −1

3
, bt1A1c1 − 1

6
= 1

6
, bt2A2c2 − 1

6
= −1

6
.

With these coefficients the second order condition (22) is reduced to d21 − d22 = 0. Then, together with
equation d1 + d2 = 1, we obtain d1 = d2 = 1/2. Third order conditions (23)-(24) are satisfied with these
step-length ratios. Consequently, the composition of methods (29), with step sizes h/2, gives us the third
order method with Butcher tableau

0 0 0 0 0
1
2

1
2

0 0 0

1 1
2

1
2

0 0
1
2

1
6

1
6

1
6

0
1
6

1
6

1
6

1
2

(30)
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Furthermore, the SSP coefficients of the schemes (A1, b
t
1) and (A2, b

t
2) are R(A1) = R(A2) = 1, and thus,

from (18), we obtain that the SSP coefficient for (30) is R(A) = 2. Recall that method (30) is the optimal
4-stage third order SSP method [24, Theorem 9.5].

If we change the composition order of methods (29), that is, we advance first with the 1-stage method
and secondly with the 3-stage one, then the second order condition (22) is reduced again to d21−d22 = 0 and
we get d1 = d2 = 1/2. However, the third order condition (23), now

−1

3
d31 +

4

3
d32 + d1d

2
2 = 0 ,

is not satisfied and the composition method cannot achieve third order. �

In the next subsection we study optimal n2- stage SSP explicit Runge-Kutta methods.

5.1 Optimal n2- stage SSP explicit Runge-Kutta methods
Optimal n2- stage SSP explicit Runge-Kutta methods were found in [19]. In this section we study the
structure of these schemes for n ≥ 3. We begin by proving a technical lemma whose proof is given in
section 7.

Lemma 1. Consider an s-stage explicit Runge-Kutta method of the form

0 0 0 · · · 0

α α 0
. . . 0

...
... . . . . . . ...

(s− 1)α α · · · α 0

β β · · · β

(31)

with α > β > 0. Then:

1. The SSP coefficient of the method is R(A) = 1/α.

2. The left hand side of the first, second and third order conditions (21) are

bte = s β , btc =
1

2
αβ(s− 1)s , btc2 =

1

6
α2β(s− 1)s(2s− 1) , btAc =

1

6
α2β(s− 2)(s− 1)s .

(32)

Some well known optimal SSP methods are of the form (31).

Example 4.

1. The first order s-stage optimal SSP methods [24, Theorem 9.2]

0 0 0 · · · 0
1
s

1
s

0 . . . ...
...

... . . . . . . ...
s−1
s

1
s
· · · 1

s
0

1
s

1
s
· · · 1

s

(33)
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are of the form (31) with α = β = 1/s. The SSP coefficient for these schemes is R(A) = s. Observe
that they are the composition of s explicit Euler steps of length h/s. Observe too that the step-length
ratios di = 1/s, i = 1, . . . , s, agree with the ones in (20) that give the largest SSP coefficient for the
composition method.

2. The second order s-stage optimal SSP methods [24, Theorem 9.3]

0 0 0 · · · 0
1

s−1
1

s−1 0 . . . ...
...

... . . . . . . ...
1 1

s−1 · · ·
1

s−1 0
1
s

1
s
· · · 1

s

(34)

are of the form (31) with α = 1/(s− 1) and β = 1/s. For these schemes R(A) = s− 1. However, in
this case, although the internal stages are the concatenation of explicit Euler steps of length h/(s−1),
these schemes are not composition methods. �

With Lemma 1 and the previous propositions, we can prove the following result.

Proposition 3. Consider the following Runge-Kutta methods (A1, b
t
1), (A2, b

t
2) and (A3, b

t
3),

0 0 0 · · · 0

γ γ 0
. . . ...

...
... . . . . . . ...

(n−3)n
2

γ γ · · · γ 0

(A1, b
t
1) γ γ · · · γ︸ ︷︷ ︸

(n−1)(n−2)
2

0 0 0 · · · 0

α α 0
. . . ...

...
... . . . . . . ...

2(n− 1)α α · · · α 0

(A2, b
t
2) β β · · · β︸ ︷︷ ︸

2n− 1

0 0 0 · · · 0

δ δ 0
. . . ...

...
... . . . . . . ...

(n−2)(n+1)
n(n−1) δ δ · · · δ 0

(A3, b
t
3) δ δ · · · δ︸ ︷︷ ︸

n(n−1)
2

(35)

where
γ =

2

(n− 1)(n− 2)
, α =

1

n− 1
, β =

1

2n− 1
, δ =

2

n(n− 1)
,

and n ≥ 3. We denote by A the method obtained from the composition of these schemes with step-length
ratios

d1 =
n− 2

2n
, d2 =

1

n
, d3 =

1

2
.(36)

Then, the composition method A is an optimal n2-stage third order SSP Runge-Kutta scheme with SSP
coefficient R(A) = n2 − n.

Proof. First, we compute the order of the composition method. From Lemma 1 we easily obtain the coef-
ficients needed to write down the second order equation (22)

− 1

(n− 2)(n− 1)
d21 +

1

2
d22 −

1

(n− 1)n
d23 = 0 .(37)
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Again we use Lemma 1 to compute the coefficients of d3i , i = 1, . . . , 3 , in the third order equation (24)

4

3(n− 2)2(n− 1)2
d31 −

1

3(n− 1)
d32 +

4

3(n− 1)2n2
d33 = 0 .(38)

For k = 3, the third order condition (23) is

d31(b
t
1c

2
1 − 1

3
) + d32(b

t
2c

2
2 − 1

3
) + d33(b

t
3c

2
3 − 1

3
) + 2d1d

2
2(b

t
2c2 − 1

2
) + 2d23(d1 + d2)(b

t
3c3 − 1

2
) = 0 .

From Lemma 1 we obtain the equation

− 3n2 − 9n+ 4

3(n− 2)2(n− 1)2
d31 +

3n− 2

3(n− 1)
d32 −

3n2 − 3n− 2

3(n− 1)2n2
d33 + d1d

2
2 −

2

(n− 1)n
d23(d1 + d2) = 0 .(39)

It can be checked that the coefficients d1, d2 and d3 in (36) satisfy equations (37-39) and thus the composi-
tion method achieves third order.

Next, we compute the SSP coefficient of the composition method. Schemes (A1, b
t
1) and (A3, b

t
3) are

the optimal first order SSP methods with (n−1)(n−2)/2 and n(n−1)/2 stages, respectively. On the other
hand, method (A2, b

t
2) is a (2n−1)-stage method of the form (31) with α = 1/(n−1) and β = 1/(2n−1),

and from Lemma 1, R(A2) = n− 1. Thus, we get that

R(A1) =
(n− 1)(n− 2)

2
, R(A2) = n− 1 , R(A3) =

n(n− 1)

2
.(40)

For the composition method with step-length ratios di in (36), Proposition 1 gives R(A) = n(n − 1). For
s = n2, the third order optimal threshold factor for linear problems is R(A) = n(n− 1) (see [23, Theorem
5.2]) and thus the third order n2-stage composition method is optimal. �

The schemes obtained in the above proposition are the optimal SSP n2-stage third order method found
in [19] in the context of low-storage SSP Runge-Kutta methods. The fact that they are composition of first
order schemes gives a new insight in these optimal schemes.

Remark 3. For linear problems, optimal polynomials and optimal threshold factors for s-stage p-th order
methods, denoted by Φs,p and Rs,p, respectively have been studied in [23]. In particular, it is proven that
for third order n2-stages, with n ≥ 2, the threshold factor is Rn2,3 = n(n − 1) and the stability function is
given by

Φn2,3(x) =
n

2n− 1

(
1 +

x

n(n− 1)

)(n−1)2

+
n− 1

2n− 1

(
1 +

x

n(n− 1)

)n2

This function can be factorized and written as

Φn2,3(x) =

(
n

2n− 1
+

n− 1

2n− 1

(
1 +

x

n2 − n

)2n−1
)(

1 +
x

n(n− 1)

)(n−1)2

=

(
1 +

1

(2n− 1)n

2n−1∑
i=1

x

(
1 +

x

n(n− 1)

)i−1
)(

1 +
x

n(n− 1)

)(n−1)2

(41)

where we have used that (
1 +

x

r

)m
= 1 +

x

r

m∑
i=1

(
1 +

x

r

)i−1
.
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Expression (41) shows that, for linear problems, the optimal method is the composition of several schemes.
One of them is a (2n − 1)-stage method, where the internal stages are the concatenation of explicit Euler
steps, and the numerical solution is obtained as a final average of the internal stages. The rest of the schemes
in the composition method are one or more methods obtained by composition of explicit Euler steps; all
together, the number of explicit Euler steps is (n− 1)2. Thus, the factorization of the stability function can
be used to show whether a method is a composition method; at the same time, it can also be used to guess
the main methods involved in the composition. �

Remark 4.

1. Observe that the SSP coefficient for the composition method is the largest SSP coefficient given in
(19), and the step-length ratios di in (36) are the values (20) that provide this upper bound.

2. Observe too that scheme (A3, b
t
3) for s = n2 is the same as scheme (A1, b

t
1) for s = (n+ 1)2. �

Next, we display the composition methods in Proposition 3 for the particular cases n = 3, 4. We also
show the schemes (35) whose composition gives rise to these optimal n2-stage SSP methods.

Example 5.

1. The composition of schemes

0 0

(A1, b
t
1) 1

0 0 0 0 0 0
1
2

1
2

0 0 0 0

1 1
2

1
2

0 0 0
3
2

1
2

1
2

1
2

0 0

2 1
2

1
2

1
2

1
2

0

(A2, b
t
2)

1
5

1
5

1
5

1
5

1
5

0 0 0 0
1
3

1
3

0 0
2
3

1
3

1
3

0

(A3, b
t
3)

1
3

1
3

1
3

with d1 = 1/6, d2 = 1/3, d3 = 1/2, gives the optimal 9-stage third-order SSP method withR(A) = 6
and Butcher coefficients

0 0 0 0 0 0 0 0 0 0
1
6

1
6

0 0 0 0 0 0 0 0
1
3

1
6

1
6

0 0 0 0 0 0 0
1
2

1
6

1
6

1
6

0 0 0 0 0 0
2
3

1
6

1
6

1
6

1
6

0 0 0 0 0
5
6

1
6

1
6

1
6

1
6

1
6

0 0 0 0
1
2

1
6

1
15

1
15

1
15

1
15

1
15

0 0 0
2
3

1
6

1
15

1
15

1
15

1
15

1
15

1
6

0 0
5
6

1
6

1
15

1
15

1
15

1
15

1
15

1
6

1
6

0

(A, bt) 1
6

1
15

1
15

1
15

1
15

1
15

1
6

1
6

1
6︸︷︷︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

1 5 3
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2. The composition of schemes

0 0 0 0
1
3

1
3

0 0
2
3

1
3

1
3

0

(A1, b
t
1)

1
3

1
3

1
3

0 0 0 0 0 0 0 0
1
3

1
3

0 0 0 0 0 0
2
3

1
3

1
3

0 0 0 0 0

1 1
3

1
3

1
3

0 0 0 0
4
3

1
3

1
3

1
3

1
3

0 0 0
5
3

1
3

1
3

1
3

1
3

1
3

0 0

2 1
3

1
3

1
3

1
3

1
3

1
3

0

(A2, b
t
2)

1
7

1
7

1
7

1
7

1
7

1
7

1
7

0 0 0 0 0 0 0
1
6

1
6

0 0 0 0 0
1
3

1
6

1
6

0 0 0 0
1
2

1
6

1
6

1
6

0 0 0
2
3

1
6

1
6

1
6

1
6

0 0
5
6

1
6

1
6

1
6

1
6

1
6

0

(A3, b
t
3)

1
6

1
6

1
6

1
6

1
6

1
6

with d1 = 1/4, d2 = 1/4, d3 = 1/2, gives the optimal 16-stage third-order SSP method with
R(A) = 12 and Butcher coefficients

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
12

1
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
6

1
12

1
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
4

1
12

1
12

1
12 0 0 0 0 0 0 0 0 0 0 0 0 0

1
3

1
12

1
12

1
12

1
12 0 0 0 0 0 0 0 0 0 0 0 0

5
12

1
12

1
12

1
12

1
12

1
12 0 0 0 0 0 0 0 0 0 0 0

1
2

1
12

1
12

1
12

1
12

1
12

1
12 0 0 0 0 0 0 0 0 0 0

7
12

1
12

1
12

1
12

1
12

1
12

1
12

1
12 0 0 0 0 0 0 0 0 0

2
3

1
12

1
12

1
12

1
12

1
12

1
12

1
12

1
12 0 0 0 0 0 0 0 0

3
4

1
12

1
12

1
12

1
12

1
12

1
12

1
12

1
12

1
12 0 0 0 0 0 0 0

1
2

1
12

1
12

1
12

1
28

1
28

1
28

1
28

1
28

1
28

1
28 0 0 0 0 0 0

7
12

1
12

1
12

1
12

1
28

1
28

1
28

1
28

1
28

1
28

1
28

1
12 0 0 0 0 0

2
3

1
12

1
12

1
12

1
28

1
28

1
28

1
28

1
28

1
28

1
28

1
12

1
12 0 0 0 0

3
4

1
12

1
12

1
12

1
28

1
28

1
28

1
28

1
28

1
28

1
28

1
12

1
12

1
12 0 0 0

5
6

1
12

1
12

1
12

1
28

1
28

1
28

1
28

1
28

1
28

1
28

1
12

1
12

1
12

1
12 0 0

11
12

1
12

1
12

1
12

1
28

1
28

1
28

1
28

1
28

1
28

1
28

1
12

1
12

1
12

1
12

1
12 0

(A, bt) 1
12

1
12

1
12

1
28

1
28

1
28

1
28

1
28

1
28

1
28

1
12

1
12

1
12

1
12

1
12

1
12︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

3 7 6

�

6 Conclusions
In this paper we have studied SSP properties of composition Runge-Kutta methods. We have obtained the
SSP coefficient of a composition method in terms of the SSP coefficients of the involved schemes and an
upper bound of it. These results are valid for both explicit and implicit Runge-Kutta methods. Explicit and
implicit SSP composition methods have the well known order barriers p ≤ 4 and p ≤ 6, respectively. In
this paper we have constructed an 8-stage fourth order SSP explicit composition method to show that the
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bound p = 4 is sharp. Besides, we have also given some examples of explicit and implicit SSP composition
methods. In particular, we have shown that the n2-stage third order optimal SSP methods obtained in [19]
are composition of first order SSP methods, obtaining a new insight into these schemes.

Some of the examples given in this paper have also been considered in the context of SSP low-storage
methods. In particular, optimal SSP (s, p) schemes in (30), (33) and (34), and optimal SSP (n2, 3) methods
in Proposition 3, have also been studied in the context of explicit SSP low-storage methods with sparse Shu-
Osher form (13) [7, 19]. On the other hand, the 4-stage implicit methods in Example 2 are the implicit part
of the Implicit-Explicit schemes studied in [2, 25]. If we consider that a low-storage s-stage Runge-Kutta
method is one that requires less than the s+1 memory registers of a naive implementation, then composition
methods are low-storage schemes. However, the set of low-storage methods in the sense of [19] is different
from the set of composition schemes. For example, optimal SSP (s, 2) methods in (34) are low-storage
schemes [7, p. 84] but they are not composition methods.

This paper provides some results on SSP composition Runge-Kutta methods, nevertheless some in-
teresting issues have not been considered. For example, the construction of a sixth order implicit SSP
composition method, to prove whether the order barrier p = 6 is sharp; or the study of the largest SSP
coefficient for s-stage p-th order SSP composition Runge-Kutta methods, that may be of interest to know
to what extent SSP composition methods are competitive compared to other SSP schemes. These will be
the topic of a forthcoming research.

7 Proofs of some results in the paper

In this section we prove some of the results of the paper, namely Propositions 1 and 2, and Lemma 1. Some
of them will be proven by induction on k, this is the number of methods taking part in the composition.
First, we will prove the desired property for k = 2, then we will assume that the property holds for the
composition of k schemes and finally, we will prove that it also holds for the composition of k+ 1 methods
Ai, i = 1, . . . , k + 1, with step-length ratios di, i = 1, . . . , k, such that d1 + · · · + dk = 1. In the induction
process we will make use of the assumption below.

Assumption 1. We consider the composition of k+ 1 schemes as the composition of two methods, namely
Ā and Ak+1, with step-length ratios d̄ and dk+1, such that d̄+ dk+1 = 1, and d̄ = d1 + · · ·+ dk. In addition,
method Ā is the composition of k schemes Ai, i = 1, . . . , k, with step-length ratios di/d̄. Observe that
d1/d̄+ · · ·+ dk/d̄ = 1.

7.1 Proof of Proposition 1

First, we compute the block inequalities (12) for the composition of two schemes. Next, we prove Propo-
sition 1 for k = 2, and finally, we prove Proposition 1 by induction on k. We introduce the following
notation:

A(r) := (I + rA)−1A , e(r) := (I + rA)−1e , bt(r) := bt(I + rA)−1 , φ(r) = 1− rbt(I + rA)−1e .
(42)

Lemma 2. We denote by (A, bt) the composition of the Runge-Kutta methods (A1, b
t
1), (A2, b

t
2) with step
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sizes d1h, d2h, where d1, d2 > 0 and d1 + d2 = 1. Then,

(I + rA)−1A =

(
d1A1(rd1) 0

d1 e2(rd2) b
t
1(rd1) d2A2(rd2)

)
, (I + rA)−1e =

(
e1(rd1)

φ1(rd1) e2(rd2)

)
,

(43)

bt(I + rA)−1 =

(
d1 φ2(rd2) b

t
1(rd1)

d2 b
t
2(rd2)

)
, 1− rbt(I + rA)−1e = φ1(rd1)φ2(rd2) .

(44)

Consequently, the SSP coefficient R(A) is the largest r such that (I + rA)−1 exists and

A1(rd1) ≥ 0 e1(rd1) ≥ 0 , A2(rd2) ≥ 0 , bt2(rd2) ≥ 0 ,

e2(rd2) b
t
1(rd1) ≥ 0 , φ1(rd1) e2(rd2) ≥ 0 , φ2(rd2) b

t
1(rd1) ≥ 0 , φ1(rd1)φ2(rd2) ≥ 0 .

(45)

Proof. As

(I + rA)−1 =

(
(I + rd1A1)

−1 0

−rd1(I + rd2A2)
−1ebt1(I + rd1A1)

−1 (I + rd2A2)
−1

)
,

we get that

(I + rA)−1A =

(
(I + rd1A1)

−1 0

−rd1(I + rd2A2)
−1ebt1(I + rd1A1)

−1 (I + rd2A2)
−1

)(
d1A1 0

d1eb
t
1 d2A2

)

=

(
d1A1(rd1) 0

−rd21(I + rd2A2)
−1ebt1(I + rd1A1)

−1A1 + d1(I + rd2A2)
−1ebt1 d2A2(rd2)

)

The (2,1) block can be simplified to

− rd21e2(rd2)b
t
1(I + rd1A1)

−1A1 + d1e2(rd2)b
t
1 = d1e2(rd2)b

t
1(I + rd1A1)

−1 = d1 e2(rd2) b
t
1(rd1) ,

and thus we obtain the first block in (43). In a similar way

(I + rA)−1e =

(
(I + rd1A1)

−1 0

−rd1(I + rd2A2)
−1ebt1(I + rd1A1)

−1 (I + rd2A2)
−1

)(
e

e

)

=

(
e1(rd1)

−rd1(I + rd2A2)
−1ebt1(I + rd1A1)

−1e+ (I + rd2A2)
−1e

)
.

Simplifying the second block we get the second expression in (43)

− rd1e2(rd2)b
t
1(I + rd1A1)

−1e+ e2(rd2) =
(
1− rd1bt1(I + rd1A1)

−1e
)
e2(rd2) = φ1(rd1) e2(rd2) .

18



Next, we compute

bt(I + rA)−1 =
(
d1b

t
1, d2b

t
2

)( (I + rd1A1)
−1 0

−rd1(I + rd2A2)
−1ebt1(I + rd1A1)

−1 (I + rd2A2)
−1

)

=

(
d1b

t
1(I + rd1A1)

−1 − rd1d2bt2(I + rd2A2)
−1ebt1(I + rd1A1)

−1

d2b
t
2(rd2)

)
.

The first block is reduced to

d1b
t
1(rd1)− rd1d2bt2(I + rd2A2)

−1ebt1(rd1) = d1
(
1− rd2bt2(I + rd2A2)

−1e
)
bt1(rd1) = d1 φ2(rd2) b

t
1(rd1) ,

that gives the first expression in (44). Finally, we compute the second part in (44)

1− rbt(I + rA)−1e = 1− r
(
d1b

t
1, d2b

t
2

)( e1(rd1)

φ1(rd1) e2(rd2)

)
= 1− rd1bt1e1(rd1)− rd2bt2φ1(rd1) e2(rd2)

= φ1(rd1)− rd2bt2φ1(rd1) e2(rd2) = φ1(rd1)(1− rd2bt2 e2(rd2)) = φ1(rd1)φ2(rd2) .

The result follows from (43-44) and the definition (11) of R(A). �

Once we have the block inequalities (12) for the composition of two schemes, we can prove expression
(18) in Proposition 1 for k = 2.

Lemma 3. Consider a method A that is the composition of the SSP schemes A1 and A2 with step sizes d1h,
d2h, where d1, d2 > 0 and d1 + d2 = 1. Then, the SSP coefficient R(A) of the composition method is

R(A) = min

{
R(A1)

d1
,
R(A2)

d2

}
.(46)

Proof. Block-wise, the composition method can be written as

Y1 = e⊗ yn + d1h(A1 ⊗ I)F (Y1) ,

y∗n+1 = yn + d1h(bt1 ⊗ I)F (Y1) ,

Y2 = e⊗ y∗n+1 + d2h(A2 ⊗ I)F (Y2) ,

yn+1 = yn + d1h(bt1 ⊗ I)F (Y1) + d2h(bt2 ⊗ I)F (Y2) .

Thus, if hd1 ≤ R(A1) and hd2 ≤ R(A2), we get

‖Y1‖ ≤ ‖yn‖ , ‖y∗n+1‖ ≤ ‖yn‖ , ‖Y2‖ ≤ ‖y∗n+1‖ ≤ ‖yn‖ , ‖yn+1‖ ≤ ‖y∗n+1‖ ≤ ‖yn‖ ,

and thus,

min

{
R(A1)

d1
,
R(A2)

d2

}
≤ R(A) .

Next, we prove that

R(A) ≤ min

{
R(A1)

d1
,
R(A2)

d2

}
.(47)
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For r = R(A), from Lemma 2 we obtain inequalities (45), in particular, φ1(rd1)φ2(rd2) ≥ 0. From the
definition of the function φ in (42), we can write

φ1(rd1)φ2(rd2) = φ1(rd1)
(
1− rd2bt2e2(rd2)

)
= φ1(rd1)− rd2bt2φ1(rd1)e2(rd2) ≥ 0 ,

φ1(rd1)φ2(rd2) =
(
1− rd1bt1(rd1)e

)
φ2(rd2) = φ2(rd2)− rd1φ2(rd2)b

t
1(rd1)e ≥ 0 ,

that is,

φ1(rd1) ≥ rd2b
t
2φ1(rd1)e2(rd2) , φ2(rd2) ≥ rd1φ2(rd2)b

t
1(rd1)e .(48)

In (45) we have that φ1(rd1) e2(rd2) ≥ 0 and φ2(rd1) b
t
1(rd1) ≥ 0, and thus, from (48) we obtain that

φ1(rd1) ≥ 0 and φ2(rd2) ≥ 0. Consequently, e2(rd2) ≥ 0 and bt1(rd1) ≥ 0. In this way, together with
(45), we obtain

A1(rd1) ≥ 0 e1(rd1) ≥ 0 , bt1(rd1) ≥ 0 , φ1(rd1) ≥ 0 ,

A2(rd2) ≥ 0 , e2(rd2) ≥ 0 , bt2(rd2) ≥ 0 , φ2(rd2) ≥ 0 .

We have proven that rd1 ≤ R(A1), rd2 ≤ R(A2) and thus inequality (47) holds. �

Proof. of Proposition 1 by induction on k
We use Assumption 1 to consider the composition of k + 1 schemes as the composition of two methods,
namely Ā and Ak+1, with step-length ratios d̄ and dk+1, such that d̄ + dk+1 = 1, and d̄ = d1 + · · · + dk.
Besides, Ā is the composition of the k schemes Ai, i = 1, . . . , k, with step-length ratios di/d̄. We assume
by induction that the SSP coefficient R(Ā) of this composition method is given by (18), that is

R(Ā) = min

{
R(A1)

d1/d̄
, . . . ,

R(Ak)

dk/d̄

}
.(49)

Now, from Lemma 3 and (49), we trivially obtain

R(A) = min

{
R(Ā)

d̄
,
R(Ak+1)

dk+1

}
= min

{
R(A1)

d1
, . . . ,

R(Ak)

dk
,
R(Ak+1)

dk+1

}
.(50)

Next, we prove an upper bound for (50). For this purpose, we define the set Ik+1 = {i ∈ {1, . . . , k + 1} |
R(Ai) < ∞}. Observe that if Ik+1 = Ik if R(Ak+1) = ∞, and Ik+1 = Ik ∪ {k + 1} if R(Ak+1) < ∞.
Now we can write equation (50) as the minimum of a set of real numbers

R(A) = min
i∈Ik+1

{
R(Ai)

di

}
.(51)

In order to obtain an upper bound for (51), we consider the convex hull of the set or real numbers {Z1, Z2, . . . , Z`},
where ` is the cardinality of Ik+1. As the convex hull of the set of real numbers is the line segment joining
the outermost two points, we trivially obtain

min {Z1, Z2, . . . , Z`} ≤
α1∑`
i=1 αi

Z1 + · · ·+ α`∑`
i=1 αi

Z` , for all α1, . . . , α` > 0 .(52)

Furthermore, the maximum in (52) is obtained if and only if Zi = Zj for all i, j. In that case, the following
equality holds

Zi =

∑`
j=i αiZi∑`
i=1 αi

.(53)

Inequality (52) directly aplied to the set of real numbers in (51) gives us inequality (19). In a similar way,
from (53) we obtain the values (20). �
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7.2 Proof of Proposition 2 (section 4)

The order conditions for linear problems, namely (22) and (24), can be obtained by using Theorem 2 in
[17]. Next, we prove the order condition (23) by induction on k, the number of schemes in the composition
method. First, we prove this condition for k = 2.

Lemma 4. Consider a method (A, bt) that is the composition of schemes (A1, b
t
1) and (A2, b

t
2) with step-

length ratios d1, d2, such that d1 + d2 = 1 and d1, d2 > 0. Then, the third order condition btc2 = 1/3 for
the composition method is equivalent to

d31(b
t
1c

2
1 − 1

3
) + d32(b

t
2c

2
2 − 1

3
) + 2d1d

2
2(b

t
2c2 − 1

2
) = 0 .(54)

Proof. A direct computation gives

btc2 = (d1b
t
1, d2b

t
2)(d

2
1c

2
1, (d1e+ d2c2)

2)t = d31 b
t
1c

2
1 + d21d2 b

t
2e+ 2d1d

2
2 b

t
2c2 + d32 b

t
2c

2
2

=
2∑

i=1

d3i (b
t
ic

2
i − 1

3
) + 2d1d

2
2(b

t
2c2 − 1

2
) + 1

3
(d1 + d2)

3 .

Now, from the condition d1 + d2 = 1, we obtain that btc2 = 1/3 is equivalent to (54). �

Proof of condition (23) in Proposition 2. We use Assumption 1 to consider the composition of k + 1
schemes as the composition of two methods, namely A1 and Ā, with step-length ratios d1 and d̄, such
that d1 + d̄ = 1, and d̄ = d2 + · · · + dk+1. In addition, Ā is the composition of the k schemes Ai,
i = 2, . . . , k + 1, with step-length ratios di/d̄. We assume that the third order condition b̄tc̄2 = 1/3 for the
composition method Ā is equivalent to condition (54), namely

k+1∑
i=2

d3i
d̄3

(btic
2
i − 1

3
) + 2

k+1∑
i=3

(
i−1∑
j=2

dj
d̄

)
d2i
d̄2

(btici − 1
2
) = 0 .(55)

Now we use Lemma 4 for schemes (A1, b
t
1) and (Ā, b̄t), and the condition (55) for (Ā, b̄t) to obtain that

0 = d31(b
t
1c

2
1 − 1

3
) + d̄3(b̄tc̄2 − 1

3
) + 2d1d̄

2(b̄tc̄− 1
2
)

= d31(b
t
1c

2
1 − 1

3
) + d̄3

(
k+1∑
i=2

d3i
d̄3

(btic
2
i − 1

3
) + 2

k+1∑
i=3

(
i−1∑
j=2

dj
d̄

)
d2i
d̄2

(btici − 1
2
)

)
+ 2d1d̄

2

k+1∑
i=2

d2i
d̄2

(btici − 1
2
)

=
k+1∑
i=1

d3i (b
t
ic

2
i − 1

3
) + 2

k+1∑
i=3

(
i−1∑
j=2

dj

)
d2i (b

t
ici − 1

2
) + 2d1

k+1∑
i=2

d2i (b
t
ici − 1

2
)

=
k+1∑
i=1

d3i (b
t
ic

2
i − 1

3
) + 2

k+1∑
i=3

(
i−1∑
j=1

dj

)
d2i (b

t
ici − 1

2
) + 2d1d

2
2(b

t
2c2 − 1

2
)

=
k+1∑
i=1

d3i (b
t
ic

2
i − 1

3
) + 2

k+1∑
i=2

(
i−1∑
j=1

dj

)
d2i (b

t
ici − 1

2
) .
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7.3 Proof of Lemma 1 (section 5.1)
Part i). Straightforward computations give

bte = s β , btc = αβ

s−1∑
i=1

i =
1

2
αβ(s− 1)s ,

btc2 = α2β

s−1∑
i=1

i2 =
1

6
α2β(s− 1)s(2s− 1) , btAc = α2β

s−2∑
i=1

i(s− 1− i) =
1

6
α2β(s− 2)(s− 1)s .

Part ii). If we denote r = 1/α, we get

(I + rA) =


1

1 1
... . . . . . .
1 1 · · · 1

 , (I + rA)−1 =


1

−1 1
. . . . . .
−1 1

 .

Then

(I+rA)−1A =


0

α 0
. . . . . .

α 0

 , (I+rA)−1e =


1

0
...
0

 , bt(I+rA)−1 = (0, . . . , 0, β) , 1−rbt(I+rA)−1e = 1−β
α
,

which are nonnegative for α > β > 0, and, consequently, R(A) ≥ 1/α. From (16) we obtain that
R(A) ≤ 1/α and thus the result follows. �

References
[1] Calvo, M.P., M., S.S.J.: Numerical Hamiltonian Problems. Chapman & Hall (1994)

[2] Cavaglieri, D., Bewley, T.: Low-storage implicit/explicit Runge-Kutta schemes for the simulation of
stiff high-dimensional ode systems. J. Comput.l Phys. 286, 172 – 193 (2015)

[3] Ferracina, L., Spijker, M.N.: Stepsize restrictions for the Total-Variation-Diminishing property in
general Runge-Kutta methods. SIAM J. Numer. Anal. 42(3), 1073–1093 (2004)

[4] Ferracina, L., Spijker, M.N.: An extension and analysis of the Shu-Osher representation of Runge-
Kutta methods. Math. Comput. 74, 201–219 (2005)

[5] Ferracina, L., Spijker, M.N.: Strong stability of singly-diagonally-implicit Runge-Kutta methods.
Appl. Numer. Math. 58(11), 1675–1686 (2008)

[6] Gottlieb, S., Ketcheson, D.I., Shu, C.W.: High order strong stability preserving time discretizations.
J. Sci. Comput. 38(3), 251–289 (2009)

[7] Gottlieb, S., Ketcheson, D.I., Shu, C.W.: Strong stability preserving Runge-Kutta and multistep time
discretizations. World Scientific (2011)

22



[8] Gottlieb, S., Shu, C.W.: Total variation diminishing Runge-Kutta schemes. Math. Comp. 67(221),
73–85 (1998)

[9] Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability preserving high-order time discretization meth-
ods. SIAM Rev. 43(1), 89–112 (2001)

[10] van de Griend, J.A., Kraaijevanger, J.F.B.M.: Absolute Monotonicity of Rational Functions Occurring
in the Numerical Solution of Initial Value Problems. Numerische Mathematik 49, 413–424 (1986)

[11] Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration. Structure-Preserving Algorithms
for Ordinary Differential Equations, Second Edition. Springer, Berlin (2006)

[12] Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Problems,
Second Revised Edition. Springer, Berlin (1993)

[13] Higueras, I.: On strong stability preserving time discretization methods. J. Sci. Comput. 21(2), 193–
223 (2004)

[14] Higueras, I.: Representations of Runge-Kutta methods and strong stability preserving methods. SIAM
J. Numer. Anal. 43(3), 924–948 (2005)

[15] Higueras, I.: Strong stability for additive Runge-Kutta methods. SIAM J. Numer. Anal. 44(4), 1735–
1758 (2006)

[16] Hundsdorfer, W., Spijker, M.N.: Boundedness and strong stability of Runge-Kutta methods. Math.
Comput. 80, 863–886 (2011)

[17] Iserles, A.: Composite exponential approximations. Math. Comput. 38(157), 99–112 (1982)

[18] Iserles, A.: Composite methods for numerical solution of stiff systems of ODE’s. SIAM J. Numer.
Anal. 21(2), 340–351 (1984)

[19] Ketcheson, D.I.: Highly efficient strong stability preserving Runge-Kutta methods with low-storage
implementations. SIAM J. Sci. Comput. 30(4), 2113–2136 (2008)

[20] Ketcheson, D.I.: Runge Kutta methods with minimum storage implementations. J. Comput. Phys.
229(5), 1763–1773 (2010)

[21] Ketcheson, D.I., Macdonald, C.B., Gottlieb, S.: Optimal implicit strong stability preserving Runge-
Kutta methods. Appl. Numer. Math. 59(2), 373–392 (2009)

[22] Ketcheson, D.I., Parsani, M., Ahmadia, A.J.: RK-Opt: Software for the design of Runge-Kutta meth-
ods, version 0.2 (2013)

[23] Kraaijevanger, J.F.B.M.: Absolute monotonicity of polynomials occurring in the numerical solution
of initial value problems. Numer. Math. 48(3), 303–322 (1986)

[24] Kraaijevanger, J.F.B.M.: Contractivity of Runge-Kutta methods. BIT 31(3), 482–528 (1991)

[25] Pandal, A., Pastor, J.M., Garcı́a-Oliver, J.M., Baldwin, E., Schmidt, D.P.: A consistent, scalable model
for eulerian spray modeling. Int. J. Multiph. Flow 83, 162 – 171 (2016)

23



[26] Ruuth, S.J.: Global optimization of explicit strong-stability-preserving Runge-Kutta methods. Math.
Comput. 75(253), 183–208 (2006)

[27] Ruuth, S.J., Spiteri, R.J.: High-order strong-stability-preserving Runge-Kutta methods with
downwind-biased spatial discretizations. SIAM J. Numer. Anal. 42, 974 (2004)

[28] Shu, C.W.: Total-Variation-Diminishing time discretizations. SIAM J. Sci. Comput. 9(6), 1073–1084
(1988)

[29] Shu, C.W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes.
J. Comput. Phys. 77(2), 439–471 (1988)

[30] Spijker, M.N.: Contractivity in the numerical solution of initial value problems. Numer. Math. 42(3),
271–290 (1983)

[31] Spijker, M.N.: Stepsize restrictions for stability of one-step methods in the numerical solution of initial
value problems. Math. Comput. 45(172), 377–392 (1985)

[32] Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial value problems.
SIAM J. Numer. Anal. 45(3), 1226–1245 (2008)

[33] Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong stability preserving time discretiza-
tion methods. SIAM J. Numer. Anal. 40(2), 469–491 (2002)

[34] Spiteri, R.J., Ruuth, S.J.: Non-linear evolution using optimal fourth-order strong-stability-preserving
Runge-Kutta methods. Math. Comput. Simulat. 62(1-2), 125–135 (2003)

24


