
 

 
 

 

 

 

Simultaneous and quasi-independent strain and temperature sensor 

based on microstructured optical fiber 
 

A. Lopez Aldaba*a, J.-L. Augusteb, R. Jamierb, P. Royb and M. Lopez-Amoa 
 
aUniversidad Pública de Navarra, Dept. of Electrical and Electronic Engineering, Campus Arrosadia 

S/N, E-31006, Pamplona, Spain 
bXlim, Fibre Photonics Department, UMR CNRS/University of Limoges 7252, 123 Avenue Albert 

Thomas, 87060 Limoges Cedex, France 

ABSTRACT   

In this paper, a new sensor system for simultaneous and quasi-independent strain and temperature measurements is 

presented. The interrogation of the sensing head has been carried out by monitoring the FFT phase variations of two of 

the microstructured optical fiber (MOF) cavity interference frequencies. This method is independent of the signal 

amplitude and also avoids the need to track the wavelength evolution in the spectrum, which can be a handicap when 

there are multiple interference frequency components with different sensitivities. The sensor is operated within a range 

of temperature of 30ºC-75ºC, and 380µε of maximum strain were applied; being the sensitivities achieved of 127.5pm/ºC 

and -19.1pm/µε respectively. Because the system uses an optical interrogator as unique active element, the system 

presents a cost-effective feature. 
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1. INTRODUCTION  

Sensors based in optical fibers have proven to be very useful measuring different parameters such as strain, temperature, 

curvature, displacement, pressure, refractive index, electric field and gases, among others. Since the first experiments 

with microstructured optical fibers (MOFs), they have shown some improved characteristics over conventional optical 

fibers, which offer a great potential for sensing applications [1]. Different geometries have been proposed for this kind of 

special fibers. Among them, suspended-core MOFs present relatively large air holes surrounding a small core (typically 

few µm in diameter) resembling to be suspended along the fiber length maintained by small width silica bridges. 

Different pure silica suspended-core fibers have been applied for instance in temperature [2], curvature [3], and gas 

sensing [4]. 

Moreover, there are PCF sensors for simultaneous strain and temperature measurements based on the wavelength 

tracking of different sensing cavities with different sensitivities: a multimodal PCF interferometer with a fiber Bragg 

grating (FBG) [5], with resolutions of 0.27ºC and 9.1με , or another PCF in combination with a long period grating 

(LPG) [6], with resolutions of 1.5ºC and 5.2με. Other sensors were based on the detection of different interference 

patterns in a single sensing structure, which had different sensitivities to strain and temperature. In [7] a new design 

based on clover geometry PCF in a Sagnac configuration was used showing resolutions of 2ºC and 11µε. Also in [8] a 

Hi-Bi PCF was used, in a Sagnac configuration too, achieving resolutions of 1.5ºC and 4.7µε. 

In this work a simultaneous strain and temperature sensor based on a microstructured suspended core fiber is 

characterized. The sensor comprises a suspended core PCF with its end cleaved spliced to a single mode fiber (SMF) and 

is based on the combination of a multimodal and a birefringent interferences with different fringe patterns. Resolutions 

of 0.039ºC and 0.262µε were achieved. 

2. EXPERIMENTAL SETUP AND OPERATING PRINCIPLE 

The sensing head was fabricated by splicing a commercial SMF to 23cm of a four-bridge MOF with its end cleaved. The 

fiber is composed by four big air holes divided by four thin silica bridges, approximately 900 nm thick, and presents a 

non-circular core of 3.2m by 1.07m, exhibiting a double Y shape. This specific shape provides unprecedented 
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possibilities for interferometric sensing. The cross-section of the four-bridge MOF and its core details are presented in 

Figure 1. 

 

Figure 1: a) Cross-section of the four-bridge MOF and close-up on the double Y shape core and b) schematic representations of the 

two experimental set-ups used here. 

 

Figure 1.b shows the two different experimental set-ups used to characterize the four-bridge MOF Fabry-Perot 

interferometer. In the first set-up (top of the Figure 1.b), the sensing head was inserted into an oven where temperature 

changes going from 30ºC to 75ºC by steps of 5ºC were applied. Figure 1.b (bottom) shows the strain testing set-up. In 

this set-up, point 1 of the fiber was fixed, and a maximum longitudinal strain of 380µε was applied to point 2, having the 

length of the MOF fiber equal to 14.5cm. 

A commercial interrogator of optical fiber sensors (Smartec SM125) was used to illuminate the network and also to 

analyze the spectra signal guided through the MOF sensor. It should be noticed that this equipment was originally 

commercialized for FBG sensors´ monitoring and allows to interrogate sensors with a scan frequency of 1Hz [9] and a 

5pm resolution. The FFT is computed in MATLAB also every second, providing real-time information of the sensor 

system. 

3. EXPERIMENTAL RESULTS 

 

Typical interferometric sensors are based on tracking the spectrum displacement with the measured parameter. However, 

the presence of many interference frequencies and their different sensitivities is a challenge for this kind of sensing 

systems. Alternatively, by monitoring the FFT phase change of each interference, more stable and accurate 

measurements can be carried out. 

The MOF sensor is based on the combination of two interferences. Due to the multimodal and birefringent behaviors of 

the fiber, multiple interference combinations are present in the sensors’ transfer function, as it is shown in Figure 2 a). 

Each interference leads to a sinusoidal contribution. In this manner, the FFT module spectrum of the transfer function is 

represented in the spatial frequency domain by a combination of peaks where each one represents a frequency 

contribution. When a phase change occurs to a spatial frequency component, it will be reflected as a change in the FFT 

phase spectrum at that component´s spatial frequency. 

Figure 2 b) shows the FFT module of the sensors’ transfer function. It can be easily noticed the presence of multiple 

spatial frequency interference contributions. Those who present the best sensing features are component f1 and 

component f2 located at 0.476nm-1 and 0.574nm-1 respectively. Other strong components, such as the one located at 

0.687nm-1 (2*f2-f1), are intermodulation products of the main spatial frequency components. 

The spatial frequency peak located at 0.149nm-1 is produced by the cavity formed between the MOF fiber interfaces: 

SMF-MOF and MOF (cleaved)-air. 
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Figure 2. (a) Optical transmission spectra of the sensor at 25ºC and 20% humidity, and (b) its fast Fourier transform. 

 

In order to verify the operation of the sensing head, the strain and temperature performances of the MOF sensing head 

were experimentally carried out.  

On the one hand, the temperature characterization was carried out by using an oven in the temperature range going from 

30ºC to 75ºC with 5ºC per step. On the other hand, strain characterization was performed using two translation stages, 

one remaining fixed (point 1 in Figure 1.b) while the other moves applying strain to the fiber (point 2 in Figure 1.b). 

Both spatial frequencies f1 and f2 were simultaneously monitored to ensure the independence of the both measurements. 

 

          

Figure 3. Performance of the spatial frequencies versus temperature and strain variations: a) component f1 and b) component f2. 

 

Figure 3 a) illustrates the response of the FFT phase at the spatial frequency f1 to strain and temperature variations. As it 

can be noticed the phase presents linear response to strain variations (due to the lack of tightness in the fiber during the 

strain measurements in the range located from 0 to 50µε, the measured results show a slight deviation from the linear fit) 

and almost non sensitivity to temperature variations. This is due to the multimodal character of the interference related to 

the f1 spatial frequency, showing sensitivities to strain and temperature of 0.018π rad/µε and -0.00058π rad/ºC 

respectively and resolution of 0.262µε. Overhanging these results to the optical domain (spatial frequency f1 gives an 
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optical interference spectrum pattern of 2.1nm) sensitivities to strain and temperature are -19.1pm/µε and 0.615pm/ºC 

respectively. 

Figure 3 b) describing the component f2 shows similar results. As for f1, it presents a linear response to temperature 

variations and very low sensitivity to strain variations, because of the birefringence of the MOF fiber. Sensitivities to 

strain and temperature are respectively of 0.00087π rad/µε and -0.15π rad/ºC and resolution of 0.039ºC. Overhanging the 

results to the optical domain (spatial frequency f2 gives an optical interference spectrum pattern of 1.7nm) sensitivities to 

strain and temperature are -0.74pm/µε and 127.5pm/ºC respectively. 

As a direct conclusion of the results, component f1 can be used for temperature-quasi-independent strain measurements 

and f2 for strain-quasi-independent temperature measurements. 

4. CONCLUSION 

To summarize, a new sensor system for simultaneous and quasi-independent strain and temperature measurements has 

been proposed and experimentally demonstrated. The sensing head is based on a microstructured optical fiber used to 

create a cavity in reflection configuration. The interrogation of the sensing head has been carried out by monitoring the 

FFT phase variations of two of the MOF cavity interference frequencies. This method is independent from the signal 

amplitude and also avoids the need to track the wavelength evolution of the spectrum, which can be a handicap when 

there are multiple interference frequency components with different sensitivities. The sensor presents linear response to 

strain and temperature variations with sensitivities of -19.1pm/µε and 127.5pm/ºC and resolutions of 0.262µε and 

0.039ºC respectively with very low crosstalk (3.87% for strain measurements and 0.48% for temperature measurements). 
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