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Abstract. 

The influence of mechanically-induced defects on the magnetostructural properties is analyzed 

in a Ni-Co-Mn-Sn alloy subjected to soft milling and subsequent annealing treatments. It is 

found that, opposite to what occurs in Ni-Mn-Sn ternary alloys, the annealing treatment affects 

the magnetic properties in a different way in martensite and in austenite. In particular, the 

saturation magnetization significantly increases in martensite after annealing whereas just a very 

slight variation is observed in austenite. This leads to the interesting fact that the presence of 

microstructural defects, far for worsening, makes the magnetocaloric effect to be higher in the 

as-milled state than after annealing. This behavior is explained as the result of the combination 

of the effect of defects on the Mn-Mn distance, the effect of Co on the magnetic exchange 

coupling between Mn atoms, and the effect of defects on the vibrational entropy change at the 

martensitic transformation.  

Keywords: Ni-Mn-Sn-Co, magnetocaloric effect, defects, vibrational entropy 
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1. INTRODUCTION

Ni-Mn-based metamagnetic shape memory alloys are being widely studied during the last 

decade because of the unique multifunctional features they show as a result of the interplay 

between a structural transformation and a complex magnetic ordering. Due to the strong 

dependence of the magnetic exchange interactions on the Mn-Mn distances [1-3], the change in 

the interatomic distances caused by the occurrence of a thermoelastic martensitic transformation 

(MT) in some of these alloys results in a large magnetization change (∆M) at the transformation 

temperature that favors the induction of the structural transformation by an applied magnetic 

field [4-7]. Such magnetic induction of the MT, and the different features of the different 

structural phases (austenite and martensite), give rise to interesting properties such as the 

magnetic shape memory effect, large magnetoresistance or giant inverse magnetocaloric effect, 

that make these alloys very attractive for practical applications in sensing and magnetic 

refrigeration [8-18].  

  The most promising alloys for magnetocaloric applications are those alloys in the Ni-Mn-X 

(X=In, Sn, and Sb) systems in which the MT takes place between a ferromagnetic austenite and 

a weaker-magnetic martensite. The MT characteristics and the magnetic properties of these 

alloys depend on composition, atomic order and, to a lesser extent, on microstructure. The 

compositional dependence has been widely studied, being the complete phase diagrams of the 

appearing structural and magnetic phases well stablished [19-22]. Atomic order has been also 

systematically studied. In Ni-Mn-In and Ni-Mn-In-Co alloys it has been shown that the 

magnetostructural properties can be properly tuned varying the long-range atomic order, which 

can be easily controlled by means of thermal treatments [23-25]. In Ni-Mn-Sn and Ni-Mn-Sb 

alloys, in turn, the L21 structure is highly stable and the atomic order is then hardly modifiable 

by means of conventional thermal treatments [26]. In these alloys, the modification of the 

microstructural parameters (grain size, defects, internal stresses…) is the only way to modify 

the functional properties for a selected alloy composition. Mechanical milling and subsequent 

annealing treatments are one of the simplest and most used method to modify the 
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microstructure. Typically, the grain size reduction and the presence of defects and internal 

stresses induced by milling degrade the MT and the magnetic properties, which can be then 

partially restored upon microstructural recovery processes brought by subsequent annealing [27-

32]. In this respect, by comparing a Ni-Mn-Sn alloy in both the as-milled and the annealed 

states, we have recently shown that, even though no appreciable long-range atomic disorder was 

induced by milling, the saturation magnetization of both martensitic and austenitic phases are 

considerably higher after annealing, due to the reduction of the density of the anti-phase 

boundaries (linked to dislocations) which promote the antiferromagnetic coupling between Mn 

moments [32]. A similar magnetic deterioration at anti-phase boundaries was indeed evaluated 

in Ni-Mn-Al-Ga alloys by electron holography, and explained as a consequence of a local 

atomic disordering in the boundary region [33]. 

The addition of Cobalt has been shown to enhance the magnetism of the austenite and to hinder 

ferromagnetic ordering in martensite in Ni-Mn-X alloys, thus leading to an increase of ∆M and 

therefore to larger magnetically-induced shifts of the MT temperature and higher associated 

magnetocaloric effects [4, 34-38]. In particular, in Ni-Mn-Sn alloys it has been also shown that 

the magnetic coupling between the Mn moments on the 4a (Mn sublattice) and 4b sites (Sn 

sublattice) of the austenitic cubic structure changes from being antiferromagnetic to 

ferromagnetic as a consequence of the substitution of Ni by Co [37] (the magnetic coupling 

between Mn atoms on  the 4a sites is ferromagnetic both in the ternary and the quaternary 

alloys). In this regard, it could be thought that the influence of the presence of anti-phase 

boundaries (and any other microstructural defect resulting in local atomic disordering) on the 

magnetic properties will be different in the quaternary Co-doped alloys to that in the ternary 

ones. In this sense, the effect of mechanically-induced defects on the magnetostructural 

properties, and in particular on the magnetocaloric effect, is analyzed on a quaternary Ni-Co-

Mn-Sn alloy subjected to soft milling and subsequent annealing. It is found that the presence of 

microstructural defects, far for worsening, can make the magnetocaloric effect to be higher in 

the as-milled state than after subsequent annealing. This unusual beneficial presence of defects 
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is explained as the result of the combination of the effect of defects on the Mn-Mn distance, the 

effect Co on the magnetic exchange coupling between Mn atoms, and the effect of defects on 

the vibrational entropy change at the martensitic transformation.  

 

2. EXPERIMENTAL 

  A Ni45Co5Mn35Sn15 alloy was prepared from high purity elements by arc melting under 

protective Ar atmosphere. The as-cast ingot was homogenized at 1173 K during 24h and then 

slowly cooled to RT. The composition was analyzed by EDS in a Jeol JSM-5610LV Scanning 

Electron Microscope (SEM). In order to induce defects, the alloy was subjected to hand milling 

in an agate mortar until reaching a uniform particle-size distribution. The mean particle size of 

the powder, estimated from SEM images, was 60 ± 20 µm. A part of the obtained powder was 

then subjected to a 5 minutes annealing at 673 K in order to remove some of the defects induced 

by milling. In previous works, such annealing treatment has been shown (from Mössbauer 

spectroscopy and XR diffraction measurements) to cause a significant microstructural evolution 

in milled ternary Ni-Mn-Sn alloys [32, 39]. The microstructural states obtained in the as-milled 

and the annealed samples were then analyzed and compared: the martensitic transformations 

were characterized by differential scanning calorimetry (Q-100 DSC, TA Instruments), on 

heating ramps performed from 140 K up to 300 K at 10 K/min; the magnetic properties (low 

and high field magnetization) by SQUID magnetometry (QD MPMS XL-7); and the 

crystallographic and magnetic structures were determined from powder neutron diffraction 

measurements performed on the D1B diffractometer, at the Institute Laue-Langevin (Grenoble, 

France), using a neutron wavelength of 1.28 Å. The structures were refined by the Rietveld 

method using the FullProf package programs [40].  

 

3. RESULTS AND DISCUSSION 
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  Figure 1 shows the temperature dependence of the magnetization in the as-milled and annealed 

samples under (a) 7.95·103 A/m (100 Oe) and (b) 4.77·106 A/m (60 kOe) applied magnetic 

fields. The sequences of magnetostructural transformations can be clearly determined from the 

low-field M(T) curves: in both samples, the high temperature paramagnetic austenite becomes 

ferromagnetic around 360 K and a subsequent magnetization jump takes place around 180 K 

linked to the martensitic transformation to a weaker-magnetic martensite. The occurrence of 

such martensitic transformation is confirmed from the appearance of endothermic peaks (see 

inset) associated to the reverse MT on the heating curves in calorimetric measurements. The 

transformation temperatures and the magnetization change at the MT obtained from the 

different M(T) curves are summarized in Table 1 along with the entropy change at the MT, ∆S, 

estimated from the DSC thermograms. As it occurred in ternary Ni-Mn-Sn alloys [32], neither 

the Curie temperature, TC
a, nor the MT temperature, TM, seem to evolve substantially with the 

annealing treatment. Taking into account the high sensibility of these transition temperatures to 

long-range atomic order [41], the absence of evolution suggests a scarce effect of annealing on 

atomic order, as it could be indeed expected given the high stability of the L21 structure in the 

Ni-Mn-Sn system [26]. With respect to the entropy change it is worth noting that obtained value 

is higher in the as-milled sample in spite of ∆S typically increases as a consequence of the 

microstructural recovery processes brought by annealing (as in fact occurs in ternary Ni-Mn-Sn 

alloys [39]). This point will we analyzed later in detail. On the other hand, the thermal 

hysteresis linked to the MT is also practically unaffected by annealing (in fact, it is slightly 

larger in the annealed sample). As shown in Figure 1b, the MT shifts toward lower temperatures 

under the application of a 4.77·106 A/m magnetic field, being the shift (with respect to TM 

obtained at 7.95·103 A/m) almost the same in both as-milled and annealed samples. On the 

contrary, the magnetization change at the MT, ∆M, is definitively affected by annealing, being 

∆M quite lower in the annealed sample. 

  The effect of annealing on the saturation magnetization, MS, is illustrated in Figure 2, where 

the magnetic-field dependence of magnetization is shown for both phases in both as-milled and 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 6 

annealed states. In all cases, the magnetization shows an initial abrupt increase and a subsequent 

trend to saturation, typical of a ferromagnetic behavior. Interestingly, the annealing treatment 

affects the magnetization in a different way in martensite and in austenite. In particular, the 

saturation magnetization significantly increases in martensite after annealing (∆MS
mart/ MS

mart ~ 

28%) whereas a very slight variation (∆MS
aust/ MS

aust ~ 3%) is observed in austenite. This 

behavior is quite surprising as long as it is opposite to that found in similarly-milled ternary Ni-

Mn-Sn alloys, for which the high-field magnetization increase linked to annealing is larger in 

austenite and in martensite [32].  

In order to ascertain the origin of the different evolution of the saturation magnetization in 

martensite and austenite upon annealing, neutron diffraction measurements were performed. 

Figure 3 shows the obtained diffractograms together with the Rietveld refinement of the 

diffraction patterns. The nuclear structures have been first refined from diffractograms obtained 

at 400 K in paramagnetic austenite, which allowed a more accurate determination of the site 

occupancy, and then a combined nuclear and magnetic refinement has been performed for 

ferromagnetic austenite at 300 K and ferromagnetic martensite at 10K. The structural and 

magnetic parameters obtained after Rietveld refinement are shown in Table 2. Both in 

martensite and in austenite, the crystallographic structure is the same before and after annealing. 

The austenitic phases show the typical cubic L21 structure (space group ��3��) with almost the 

same lattice parameter. Some of the intensity peaks indexed according to the associated Bragg 

reflections are shown in the diffractograms. In particular, the (111), (200) and (220) 

superstructure reflections, linked to the L21, B2 and A2 type of ordering, respectively [26, 42], 

are clearly distinguished at low angles. As expected, no significant variation of the atomic order 

is observed, in agreement with the null evolution of the structural and magnetic transition 

temperatures. Likewise, the martensitic structure is the same in both samples; a 3M modulated 

monoclinic structure (space group P2/m) with similar lattice parameters, no trace of austenitic 

phase being observed at all at 10 K. With respect to the refined magnetic structure (a collinear 

magnetic structure, in all cases), it is first worth noting that the magnetic moments of Mn atoms 
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are all positive in austenite, thus confirming the ferromagnetic coupling between Mn atoms, 

even between those in the 4a and 4b sites. On the contrary, negatives moments are obtained in 

martensite for Mn atoms in those sites resulting from the monoclinic distortion of the 4b sites 

(as expected due to the weakening of the exchange interactions as a consequence of the abrupt 

change in the Mn–Mn interatomic distances upon the MT [43]). Interestingly, the net magnetic 

moments in austenite are unaffected by annealing whereas a significant influence of annealing is 

observed on the magnetic moments in martensite, where a marked decrease in the negative 

antiferromagnetic contribution is observed.  

  Since neither crystallographic structure nor lattice parameters nor long-range atomic order 

evolve upon annealing, the observed evolution of the saturation magnetization and the magnetic 

moments in martensite must be purely attributable to a microstructural relaxation, just as it 

occurs in a similarly-milled ternary Ni-Mn-Sn alloy [32]. In that case, the increase of the 

saturation magnetization of austenite and martensite after annealing was ascribed to a reduction 

of the density of anti-phase boundaries as a result of the annihilation of superlattice dislocations. 

In the cubic phase of the ternary Ni-Mn-Sn alloys, the magnetic coupling between Mn atoms in 

the 4a sites is ferromagnetic whereas it is antiferromagnetic between Mn atoms in the 4a and 4b 

sites [32]. Hence, the magnetic coupling between Mn atoms may change from ferromagnetic to 

antiferromagnetic across linear or planar defects, thus leading to a decrease in the net magnetic 

moment. In the austenitic phase of the quaternary alloy, in turn, the presence of Co on the Ni 

sites makes the Mn atoms at the 4a and 4b sites to couple ferromagnetically, and therefore the 

magnetic coupling between Mn atoms (whether nearest or next-nearest neighbors) will be 

always ferromagnetic, irrespectively of the presence of defects. Therefore, assuming that a 

similar annihilation process occurs on annealing the quaternary alloy, the almost null evolution 

of the saturation magnetization of austenite can be explained as a direct consequence of the 

ferromagnetic coupling between Mn atoms. With respect to the martensitic phase, the change in 

the interatomic distances upon the martensitic transformation makes the Mn atoms in the 

martensitic structure to couple antiferromagnetically or ferromagnetically depending on whether 
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they are nearest or next-nearest neighbors, respectively, both in the ternary and the quaternary 

alloys. Therefore, the change of the Mn-Mn distance associated to the presence of defects (or 

even to internal stresses) may explain the lower antiferromagnetic contribution in the annealed 

sample, where the amount of defects is presumably lower than in the as-milled one.  

The effect of defects on the magnetic properties can be qualitatively estimated from the fitting 

of the field-dependence of the magnetization to the classical law of approach to saturation for 

magnetization 

2
1S

a b
M M H

H H
χ = − − + 

 
   (1) 

where H is the applied field, MS the saturation magnetization, χ the field independent 

susceptibility and a and b are coefficients related to magnetic and structural properties of the 

sample [44-46]. In particular, the parameter a depends on the stresses field created by 

dislocations and non-magnetic inclusions and it can be approximated to a ≈ 4πρMSPeff, where ρ 

is the density of the material and Peff is the effective fraction of porosity and non-magnetic 

inclusions [47]. From the fitting of the magnetization curves in martensite at 10 K to the law of 

approach to saturation (Figure 2b) Peff values of 0.021 and 0.014 are obtained for the as-milled 

and annealed samples, respectively. The higher value of effective fraction of non-magnetic 

inclusions in the as milled sample points out that the density of dislocations where the 

ferromagnetic coupling is lost by the local atomic disordering is higher in the as-milled sample 

than in the annealed one, in agreement with the expected reduction of defects upon heating 

treatment. 

  The magnetically-induced shift of TM is directly related to ∆M through the Clausius-Clapeyron 

equation 

                                                           0
MdT M

dH S
µ ∆= −

∆
          (2) 
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(where H is the applied magnetic field). The observed effect of annealing on the magnetic 

moments, and in particular on ∆M, suggests a possible influence of the mechanically-induced 

defects on the magnetic induction of the MT and therefore on the magnetocaloric effect (MCE).  

The effect of magnetic field on the MT temperature has been analyzed from the temperature 

dependence of magnetization under different applied magnetic fields. Figure 4a shows the M(T) 

curves obtained on heating under applied magnetic fields ranging from 7.95·103 A/m to 

4.77·106 A/m around the martensitic transformation of the as-milled and the annealed samples. 

As expected, in both cases the magnetization jump associated to the MT occurs at lower 

temperatures on increasing the magnetic field, because of the magnetic stabilization of the 

austenite. The shift of TM (determined from the peaks of the derivative curve of magnetization 

measurements) is shown in Figure 4b as a function of the applied field. The transformation 

temperatures linearly decrease with the increasing applied field, being the slope the same in 

both samples, ���/�	 ≈	6.3·10-6 K/(A/m) (0.5	K/kOe).  It is worth noting that this slope is in 

agreement with the	���/�	 values calculated by substituting into Equation 1 the values of ∆M 

and ∆S shown in Table 1.  

  The MCE, which can be defined as the entropy change in isothermal conditions, ∆Siso, has 

been calculated from the ZFC magnetization measurements shown in Figure 4a using the 

expression  

                         ( ) ( )
0

, ,0
H

iso

H

M
S S T H S T dH

T

∂ ∆ = − =  ∂ 
∫                            (3) 

The numerical integration of ∂M/∂T from a set of magnetization versus temperature spectra at 

different constant values of applied field M(T)H is the correct procedure [48]. The obtained ∆Siso 

values are shown in Figure 5 as a function of temperature and applied magnetic field. In both 

cases, a positive peak (inverse MCE) is observed linked to the magnetostructural transformation 

at TM
rev and the maximum MCE values increase with the increasing magnetic field. In particular, 

the maximum values, obtained under 4.77·106 A/m, are ∆Siso
Mill  
≈ 8 J/kgK and ∆Siso

Ann 
≈ 6 J/kgK 

for the milled and annealed samples, respectively. These values are much lower than the higher 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 10 

values obtained in Ni-Co-Mn-Sn alloys (around ∆Siso ≈ 32 J/kgK [49]), but comparable or even 

greater than those obtained in the Ni-Mn-Sn system [11, 17, 27]. In order to better compare the 

influence of annealing on the magnitude of the MCE, the ∆Siso values obtained in both samples 

are plotted together as a function of temperature in Figure 6. It can be seen that the 

magnetocaloric effect is considerably higher in the as-milled sample than in the annealed one. 

Interestingly, this result suggest that the presence of defects, far for worsening, may be 

beneficial for MCE in metamagnetic Heusler alloys. 

  In this alloys the magnetically-induced entropy change is linked to the magnetic induction of 

the MT. In both, the as-milled and annealed samples, a similar transformed fraction is induced 

since the shift of the MT temperature and the width of the MT temperature range is nearly the 

same. Therefore, the higher ∆Siso obtained in the as-milled sample must a consequence of its 

higher intrinsic MT entropy change (see table 1). The entropy change linked to the reverse MT 

(represents the maximum attainable ∆Siso) can be considered as the sum of a vibrational ∆Svib
(+) 

(positive) and a magnetic ∆Smag
(-) (negative) term, in such a way that ∆S ≈ ∆Svib

(+) + ∆Smag
(-) must 

be positive [50]. Since ∆Smag
(-) (directly related to ∆M [42]) is higher in the as-milled sample, a 

lower total ∆S should be expected. Nevertheless, ∆S is actually higher indicating that the 

vibrational contribution ∆Svib must be considerably higher in the as-milled sample than in the 

treated one. Taking into account that the crystallographic structures are exactly the same in both 

samples, the decrease of the entropy change in the treated sample should be attributable to the 

decrease in the concentration of mechanically-induced defects upon annealing. Assuming that in 

general the presence of defects increase the entropy of the alloy independently of the 

crystallographic structure (phase), the increase of the vibrational entropy change ∆Svib is a 

consequence of the much stronger influence of the induced defects on the vibrational entropy of 

the austenite than on the vibration entropy of the martensite (opposite to the above mentioned 

higher influence of defects on the magnetism of the martensitic phase). Although the influence 

of defects (point defects, dislocations and anti-phase boundaries) in the vibrational properties of 

some metals has been analyzed in several theoretical studies [51-53], up to our knowledge this 

is the first indirect evidence of the effect of defects on the vibrational entropy change at the 
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martensitic transformation. In any case, further works on the analysis of the type and 

concentration of defects should be need in order to quantitatively correlate defects and 

magnetically-induced entropy change. 

 

 

 

3. SUMMARY AND CONCLUSSIONS 

  The influence of mechanically-induced defects on the magnetostructural properties is analyzed 

in a Ni-Co-Mn-Sn alloy. It is found that the mechanically-induced defects, far for worsening, 

improve the magnetocaloric response. This is due to two main features; first, the different 

exchange coupling between nearest-neighbors Mn atoms in the austenitic and in the martensitic 

structures makes the magnetization change at the martensitic transformation to be increased as a 

result of the presence of defects. Second, the mechanically-induced defects increase the 

vibrational entropy change at the transformation, thus leading to a higher total entropy change 

and, therefore, to a higher attainable magnetocaloric effect. Given the difficulty to modify the 

atomic order in the Ni-Mn-Sn system by means of conventional thermal treatments, the 

presented results show that, once fixed the composition, the induction of microstructural defects 

can be an effective way to enhance the multifunctional properties of these alloys. 
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Figure captions 

FIG. 1: Temperature dependence of magnetization of the as-milled and annealed samples under 

(a) 7.95·103 A/m and (b) 4.77·106 A/m applied magnetic field. Inset in Fig.1a: detail of the 

heating curve of the DSC thermogram. 

FIG. 2: (a) Magnetization in the austenitic (at 225 K) and martensitic (at 10 K) phases of the as-

milled and annealed samples, as a function of the applied magnetic field. (b) Detail of the fitting 

of the magnetization curves in martensite at 10 K to the law of approach to saturation  

FIG. 3: Measured neutron diffraction pattern (dots), calculated profile (full line) and difference 

between the measured and calculated profiles (dashed line) for the as-milled and treated samples 

alloy at (a) 300K (austenite) and (b) 10 K (martensite). 

FIG. 4: (a) ZFC M(T) curves on heating under different applied fields ranging from 7.95·103 

A/m up to 4.77·106 A/m in the as-milled and annealed samples.  (b) Shift of the transformation 

temperature as a function of the applied magnetic field. 

FIG. 5: Isothermal magnetically-induced entropy change as a function of temperature and 

applied magnetic field for (a) as-milled sample and (b) annealed sample. 

FIG. 6: Isothermal magnetically-induced entropy change under 4.77·106 A/m applied magnetic 

field as a function of temperature for the as-milled and annealed samples. 
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Table captions 

 

Table. 1: Temperature of the reverse martensitic transformation (TM
rev) at 7.95·103 A/m and 

4.77·106 A/m, Curie temperature of the austenite (TC
a) and entropy change at the MT (∆S) for 

the as-milled and annealed samples.  

 

Table. 2: Structural and magnetic parameters obtained from Rietveld refinement of the neutron 

diffraction patterns at 300 K (austenite) and 10 K (martensite) in the as-milled and annealed 

samples. *The magnetic moments of Ni and Co in site 8c are assumed to be 0.2 µB and 1.0 µB 

respectively 
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Fig.1 

Sánchez-Alarcos et al. 
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Fig.2 

Sánchez-Alarcos et al. 
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Fig.3 

Sánchez-Alarcos et al. 
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Fig.4 

Sánchez-Alarcos et al. 
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Fig.5 

Sánchez-Alarcos et al. 
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Fig.6 

Sánchez-Alarcos et al. 
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Table 1 

Sánchez-Alarcos et al. 

 

 

Sample 
TM

rev (100 Oe) 
(K) 

TM
rev (60 kOe) 

(K) 
TC

a 
(K) 

∆M 
(Am2/Kg) 

∆S 
(J/kgK) 

As-milled 187 159 362 52 9.8 

Annealed 188 159 360 40 8.1 
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Table 2 

Sánchez-Alarcos et al. 

 

 

State 

Cubic ��3�� Monoclinic �2/� 

a = 5.9697 (0002) 
a=4.309(001) b=5.583(001) c=13.176(003) 

 β=92.479(016) 

Site Atom µ (µB)               Site µ (µB) 

As-
milled 

4a 0.94Mn+0.06Sn 3.11(2) 1a, 1h, 2n, 2m 2.47 (10) 

4b 0.47Mn+0.53Sn 1.14(2) 1b, 1g, 2m’, 2n’  -0.91(10) 

8c 0.88Ni+0.12Co 0.296* 2j, 2k, 4o, 4o’ 0.296* 

Annealed 

4a 0.97Mn+0.03Sn 3.11(2) 1a, 1h, 2n, 2m 2.50(21) 

4b 0.49Mn+0.51Sn 1.19(2) 1b, 1g, 2m’, 2n’  -0.56(41) 

8c 0.90Ni+0.10Co 0.28* 2j, 2k, 4o, 4o’  0.28* 

Atomic positions: 2n: x = 0.397(1), z = 0.201 (1); 2m: x = 0.032(1), z = 0.326 (1); 2m’: x = -0.034(4), z = 0.201 (1); 
2n’: x = 0.453(5), z = 0.326 (1); 2j: y = 0.245(13); 2k: y = 0.221(7);  4o: z = 0.201 (1); 4o’: z = 0.326 (1) 
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Saturation magnetization increases in martensite but not in austenite after annealing 

Local atomic disorder linked to defects hinders ferromagnetic coupling in martensite  

Microstructural defects makes the magnetocaloric effect to be higher before annealing 

Higher attainable magnetically-induced entropy change in the as-milled state  

Stronger influence of induced defects on the vibrational entropy of the austenite  


