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Abstract
In this work we study the relation between moderate deviation functions,
restricted dissimilarity functions and restricted equivalence functions. We
use moderate deviation functions in order to measure the similarity or dis-
similarity between a given set of data. We show an application of moderate
deviate functions used in the same way as penalty functions to make a final
decision from a score matrix in a classification problem.
Keywords: Deviation; Aggregation function; Restricted equivalence
function; Moderate deviation function; Penalty function

1. Introduction

Aggregation functions are used to fuse several input values into one single
output value [1, 8, 18]. This fusion step is crucial in many algorithms and
applications such as classification systems [11, 13], pattern recognition [17],
image processing [4] or decision making [16].
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A very relevant problem is that of choosing the best output value to rep-
resent a given set of inputs. This problem has been widely considered in
the literature. In particular, the notion of penalty function was introduced
to tackle with it [8]. Penalty functions determine the output by means of a
minimization procedure and allow for defining the notion of penalty-based
aggregation function [7]. However, the need of imposing convexity condi-
tions, so that the minimization procedure can be carried out, leads to several
difficulties from an analytical point of view (see for more details [6]).

More recently, it was introduced the notion of deviation-based aggrega-
tion functions [9], based on Daróczy’s deviation functions [10]. The latter
functions measure the difference or deviation between two real values x and
y and, in this sense, they are closely related to some well-known notions such
as equivalence or restricted equivalence functions (REFs) [3]. In particular,
by aggregating deviation functions in an appropriate way, it is possible to
measure up to what extent a given value is different from a set of inputs.
This is similar to the way in which similarity measures can be built aggre-
gating restricted equivalence functions [3], and it can be used as a basis to
determine the best value to represent the given inputs.

Having this idea in mind, the objective of this work is twofold:
1. To study the relation between moderate deviation functions and re-

stricted equivalence functions, and
2. to build deviation-based functions using moderate deviation function

based on restricted equivalence functions in order to determine which
is the best output to replace a given set of inputs.

In particular, we show how we can use deviation-based functions in the
same way as penalty functions, but without getting involved in the convex-
ity problems linked to the latter. In order to prove the usefulness of our
approach, we present an illustrative example consisting of an image classi-
fication problem. In this case, the final decision on to which class a given
image belongs to is made by deviation-based functions. We then compare
the results to those obtained by other usual techniques.

The structure of the paper is as follows: first, we present some prelimi-
nary concepts that help making the paper self-contained. Section 3 presents
a study of the relation between moderate deviation functions and restricted
equivalence functions. Section 4 describes the way moderate deviation func-
tions can be used as penalty functions and some examples are presented.
Section 5 exhibits a practical example on the use of non-symmetric penalty
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based aggregations generated from moderate deviation functions and REFs,
in the aggregation of the scores in an image classification problem. Finally
most important conclusions and future research are described in Section 6.

2. Preliminaries

We start recalling some basic notions which are necessary for our subse-
quent developments.

Definition 1. An automorphism is a bijective and increasing function φ :
[0,1]→ [0,1].

Definition 2. A negation N is a decreasing function N : [0,1]→ [0,1] such that
N(0) = 1 and N(1) = 0.

A negation N is non-vanishing if N(x) = 0 if and only if x = 1. A negation
N is strict if it is continuous and strictly decreasing. A negation N is strong
if, for every x ∈ [0,1] it holds that N(N(x)) = x.

Definition 3. An implication function is a mapping I : [0,1]2 → [0,1] such that

(I1) I is decreasing in the first component;
(I2) I is increasing in the second component;
(BC) I(0,1) = (1,1) = I(0,0) = 1 and I(1,0) = 0 (Border Conditions).

Among the different properties that we can request to implication func-
tions, the following are of special interest for us.

(OP) I(x,y) = 1 if and only if x ≤ y (Ordering Property);
(CP) I(x,y) = I(N(y),N(x)) for some strong negation N and for every x,y ∈

[0,1] (Contrapositive Property);
(P1) I(x,y) = 0 if and only if x = 1 and y = 0.

For an in-depth analysis of the notion of implication function as well as
these and other properties, see [2].

Regarding the notion of moderate deviation function, we follow the ap-
proach given in [9].

Definition 4. A function D : [0,1]2 → R is called a moderate deviation func-
tion, if it satisfies:
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(MD1) D is non-decreasing in the second component;
(MD2) D is non-increasing in the first component;
(MD3) D(x,y) = 0 if and only if x = y.

The set of all moderate deviation functions is denoted by MD.

The notion of moderate deviation is closely related to those of restricted
equivalence function [3] and restricted dissimilarity function [5] that we recall
now.

Definition 5. A function R : [0,1]2 → [0,1] is called a restricted equivalence
function, if it satisfies:

(R1) R(x,y) = 0 if and only if {x,y}= {0,1};
(R2) R(x,y) = 1 if and only if x = y;
(R3) R(x,y) = R(y,x) for all x,y ∈ [0,1];
(R4) If x≤ y≤ z, then R(x,z)≤R(x,y) and R(x,z)≤R(y,z) for all x,y,z∈ [0,1].

Definition 6. A function d : [0,1]2 → [0,1] is called a restricted dissimilarity
function, if it satisfies:

(d1) d(x,y) = d(y,x) for all x,y ∈ [0,1];
(d2) d(x,y) = 0 if and only if x = y;
(d3) d(x,y) = 1 if and only if {x,y}= {0,1};
(d4) If x ≤ y≤ z, then d(x,y)≤ d(x,z) and d(y,z)≤ d(x,z) for all x,y,z∈ [0,1].

Definition 5 and Definition 6 are related via strong negations, as the
following result shows.

Proposition 1. [5] Let R : [0,1]2 → [0,1] be a restricted equivalence function
and N be a strong negation. Then the function d : [0,1]2 → [0,1] defined by:

d(x,y) = N(R(x,y))

is a restricted dissimilarity function.

If we focus on REFs, it is possible to obtain them using automorphisms
and implication functions, as two results proven in [4].
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Theorem 1. [4] Let ϕ1,ϕ2 : [0,1] → [0,1] be two automorphisms. Then, the
function:

R(x,y) = ϕ−1
1 (1−|ϕ2(x)−ϕ2(y)|)

is a restricted equivalence funcion.

Theorem 2. [4] Let R : [0,1]2 → [0,1] be a function. the following statements
are equivalent.

1. R is a restricted equivalence function.
2. There exists a function I : [0,1]2 → [0,1] which verifies (I1), (OP), (CP)

and (P1) and such that

R(x,y) = min(I(x,y), I(y,x)) .

3. Moderate deviation and restricted equivalence functions

Next, we study the relation between moderate deviation functions, re-
stricted dissimilarity functions and, based on Proposition 1, also restricted
equivalence functions.

Let D : [0,1]2 →R be a moderate deviation function. The following prop-
erties will be of use later:

(MP) D(x,y) =Mp if and only if x = 0 and y= 1 for some positive real number
Mp;

(MN) D(x,y) = −Mn if and only if x = 1 and y = 0 for some positive real
number Mn.

Note that if D satisfies properties (MP) and (MN), then D : [0,1]2 →
[−Mn,Mp].

A construction method of restricted equivalence functions from moderate
deviation functions is given in the following theorem.

Theorem 3. Let N : [0,1]→ [0,1] be a strong negation and Mn,Mp be positive
real numbers. Let D : [0,1]2 → [−Mn,Mp] be a moderate deviation function
satisfying properties (MP) and (MN) w.r.t. Mp and Mn, respectively. Let A :
[0,max{Mn,Mp}]2 → [0,∞[ be a non-decreasing function such that A(0,0) = 0;
A(x,y) ̸= 0 whenever x ̸= 0 and y ̸= 0; A(x,Mn)< A(Mp,Mn) whenever x < Mp
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and A(Mp,y) < A(Mp,Mn) whenever y < Mn. Then the function d : [0,1]2 →
[0,1] defined by

d(x,y) =
A
(

D
(

min(x,y),max(x,y)
)
,−D

(
max(x,y),min(x,y)

))
A(Mp,Mn)

(1)

for all x,y ∈ [0,1], is a restricted dissimilarity function.
Moreover the function R : [0,1]2 → [0,1] defined by

R(x,y) = N

A
(

D
(

min(x,y),max(x,y)
)
,−D

(
max(x,y),min(x,y)

))
A(Mp,Mn)

 (2)

for all x,y ∈ [0,1], is a restricted equivalence function.

Proof: Since 0≤D
(

min(x,y),max(x,y)
)
≤Mp and 0≥D

(
max(x,y),min(x,y)

)
≥

−Mn, for all x,y ∈ [0,1], the functions d and R are well-defined.
(d1) The symmetry of d follows from the symmetry of min and max.
(d2) Directly follows from (MD3).
(d3) Let x ≤ y. Then d(x,y) = 1 if and only if D(x,y) = Mp and −D(y,x) =

Mn which only holds if x = 0 and y = 1. Similarly, for x > y, d(x,y) = 1 if and
only if D(y,x) = Mp and −D(x,y) = Mn which only holds if x = 1 and y = 0.
Hence, (d3) is proved.

(d4) Observe that if x ≤ y ≤ z, then

0 ≤ D(x,y)≤ D(x,z) and D(z,x)≤ D(y,x)≤ 0,

hence

d(x,y) =
A(D(x,y),−D(y,x))

A(Mp,Mn)
≤ A(D(x,z),−D(z,x))

A(Mp,Mn)
= d(x,z).

Similarly can be proved that d(y,z)≤ d(x,z), thus axiom (d4) is proved.
The proof regarding the restricted equivalence function straightforwardly

follows from Proposition 1. �

Theorem 4. Under the same assumptions as in Theorem 3, the function d :
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[0,1]2 → [0,1] defined by

d(x,y) =
A
(
−D

(
max(x,y),min(x,y)

)
,D
(

min(x,y),max(x,y)
))

A(Mn,Mp)
(3)

for all x,y∈ [0,1], is a restricted dissimilarity function. Moreover the function
R : [0,1]2 → [0,1] defined by

R(x,y) = N

A
(
−D

(
max(x,y),min(x,y)

)
,D
(

min(x,y),max(x,y)
))

A(Mn,Mp)

 (4)

for all x,y ∈ [0,1], is a restricted equivalence function.

Proof: The proof is similar to that of Theorem 3. �

Remark 1. (i) Equations (2) and (4) can be reformulated in the following
way, respectively:

R(x,y) = N

A
(

max
(
D(x,y),D(y,x)

)
,−min

(
D(x,y),D(y,x)

))
A(Mp,Mn)

 (5)

R(x,y) = N

A
(
−min

(
D(x,y),D(y,x)

)
,max

(
D(x,y),D(y,x)

))
A(Mn,Mp)

 (6)

and similarly also Equations (1) and (3).
(ii) It is worth pointing out that though d and R are both symmetric

functions, the function A need not be symmetric. For symmetric A, Equa-
tions (2), (4), (5) and (6) are equivalent and can be simplified as follows:

R(x,y) = N

(
A
(
|D(x,y)|, |D(y,x)|

)
A(Mp,Mn)

)
. (7)

The same holds for Equations (1) and (3).

Example 1. (i) Consider Theorem 3 and let N(x) = 1−x, A(x,y) = (1−w)x+
wy for some w ∈]0,1[ and D(x,y) = y− x. Then Mp = Mn = 1 and by Eq. (1)
we obtain d(x,y) = |y− x| and by Eq. (2) we have R(x,y) = 1−|y− x|.
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(ii) Now consider the same N and A as in item (i) and let moderate
deviation function is given by (see Example 3.3 in [9]):

Dε,δ (x,y) =


y− x+ ε, if y > x,
0, if y = x,
y− x−δ , if y < x,

for some positive constants ε and δ . Then Mp = 1+ ε , Mn = 1+ δ , i.e.,
Dε,δ : [0,1]2 → [−1−δ ,1+ ε], and by Eq. (1) we obtain:

d(x,y)=


y−x+(1−w)ε+wδ

1+(1−w)ε+wδ , if x < y,
0, if x = y,
x−y+(1−w)ε+wδ

1+(1−w)ε+wδ , if x > y,
=

{
|y−x|+(1−w)ε+wδ

1+(1−w)ε+wδ , if x ̸= y,
0, if x = y.

Consequently, by Eq. (2) we have:

R(x,y) =

{
1−|y−x|

1+(1−w)ε+wδ , if x ̸= y,
1, if x = y.

Clearly, item (i) is a special case of item (ii).

Now, an inverse construction, i.e., the construction of moderate deviation
functions from restricted equivalence functions, is given.

Theorem 5. Let fp, fn : [0,1]→ [0,∞[ be non-decreasing functions such that
fp(x) = 0 if and only if x = 0 and fn(x) = 0 if and only if x = 0. Let Np,Nn :
[0,1] → [0,1] be non-vanishing negations and Rp,Rn : [0,1]2 → [0,1] be re-
stricted equivalence functions. Then the function D : [0,1]2 → [− fn(1), fp(1)]
defined by

D(x,y) =
{

fp (Np (Rp(x,y))) , if x ≤ y,
− fn (Nn (Rn(x,y))) , if x > y,

(8)

for all x,y ∈ [0,1], is a moderate deviation function.

Proof: Clearly, the function D is well-defined.
(MD1) Let y1 < y2. We need to consider the following three cases:
1. Let x ≤ y1 < y2. Since Rp(x,y1)≥ Rp(x,y2), we have

D(x,y1) = fp (Np (Rp(x,y1)))≤ fp (Np (Rp(x,y2))) = D(x,y2).
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2. If y1 < y2 < x, then Rn(x,y1)≤ Rn(x,y2) and consequently:

D(x,y1) =− fn (Nn (Rn(x,y1)))≤− fn (Nn (Rn(x,y2))) = D(x,y2).

3. If y1 < x ≤ y2, then D(x,y1)< 0 ≤ D(x,y2). Hence, D is non-decreasing
in the first component.

The proof of (MD2) is similar.
Finally, since Nn,Np are non-vanishing, D(x,y)= 0 if and only if (Rp(x,y)=

1 and x ≤ y) or (Rn(x,y) = 1 and x > y), which only holds when x = y. Thus
(MD3) is proved. �

Moderate deviation functions are not symmetric, however, under some
conditions, the construction by Eq. (8) secures the symmetry property given
in the following proposition.

Proposition 2. Under the assumptions of Theorem 5, if Rp = Rn = R, Np =
Nn = N and fp = fn = f , then Eq. (8) is equivalent to:

D(x,y) = sign(y− x) f (N (R(x,y))) (9)

and D satisfies:
D(y,x) =−D(x,y)

for all x,y ∈ [0,1].

Proof: Immediately follows from (8). �

Remark 2. If Rp = Rn, Np = Nn and fp = fn, Eq. (8) is simplified by Eq. (9),
otherwise (8) can be reformulated as follows:

D(x,y) =
sign(y− x)+1

2
fp (Np (Rp(x,y)))−

sign(x− y)+1
2

fn (Nn (Rn(x,y))) .

(10)

Example 2. (i) Under the conditions of Theorem 5, let

fp =


0, if x = 0,
s1, if x ∈]0,1[,
s2, if x = 1,

fn =


0, if x = 0,
t1, if x ∈]0,1[,
t2, if x = 1,
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where 0 < s1 < s2 and 0 < t1 < t2. Then the moderate deviation function
obtained by Eq. (8) is, for any strong negations Np,Nn and any restricted
equivalence functions Rp,Rn, as follows:

D(x,y) =


0, if x = y,
s1, if x < y and {x,y} ̸= {0,1},
s2, if x = 0,y = 1,
−t1, if x > y and {x,y} ̸= {0,1},
−t2, if x = 1,y = 0.

(ii) If Np(x) =Nn(x) = 1−x, fp(x) = sx, fn(x) = tx and Rp(x,y) = Rn(x,y) =
1−|y− x|, then

D(x,y) =
{

s(y− x), if x ≤ y,
t(y− x), if x > y.

(iii) Let Np(x) = Nn(x) = 1− x, fp(x) = sxq1 , fn(x) = txr1 , Rp(x,y) = 1−
|y− x|q2 and Rn(x,y) = 1−|y− x|r2 , where s, t,q1,q2,r1,r2 > 0. Then

D(x,y) =
{

s(y− x)q1q2, if x ≤ y,
−t(x− y)r1r2, if x > y.

Theorem 6. Let Mp,Mn be positive real numbers. The following statements
are equivalent:

(i) A function D : [0,1]2 → [−Mn,Mp] is a moderate deviation function
satisfying properties (MP) and (MN) w.r.t. Mp and Mn, respectively.

(ii) There exist restricted equivalence functions R1,R2 : [0,1]2 → [0,1] such
that

D(x,y) =
{

Mp −MpR1(x,y), if x ≤ y,
MnR2(x,y)−Mn, if x > y,

(11)

for all x,y ∈ [0,1].

Proof: (ii) ⇒ (i) Immediately follows from Theorem 5 for fp(x) = Mp x,
fn(x) = Mn x and Np(x) = Nn(x) = 1− x for all x ∈ [0,1].

(i)⇒ (ii) Let us define R1 and R2, for all x,y ∈ [0,1], as follows:

R1(x,y)=
Mp −D(min(x,y),max(x,y))

Mp
, R2(x,y)=

Mn +D(max(x,y),min(x,y))
Mn

.

A trivial verification shows that R1 and R2 are restricted equivalence func-
tions. The proof is completed by applying R1 and R2 into Eq. (11). �

10



Taking into account Theorems 1 and 2, the following two corollaries are
straightforward.

Corollary 1. Let ϕ1,ϕ2,ψ1,ψ2 : [0,1]→ [0,1] be automorphisms and let Mp,Mn
be positive real numbers. Then the function

D(x,y) =

{
Mp −Mpϕ−1

2 (1−|ϕ1(x)−ϕ1(y)|) if x ≤ y,

Mnψ−1
2 (1−|ψ1(x)−ψ1(y)|)−Mn, if x > y,

is a moderate deviation function satisfying properties (MP) and (MN) w.r.t.
Mp and Mn, respectively.

Corollary 2. Let Mp,Mn be positive real numbers. The following statements
are equivalent:

(i) A function D : [0,1]2 → [−Mn,Mp] is a moderate deviation function
satisfying properties (MP) and (MN) w.r.t. Mp and Mn, respectively.

(ii) There exist functions I1, I2 : [0,1]2 → [0,1] verifying (I1), (OP), (CP)
and (P1) such that

D(x,y) =
{

Mp −Mp min(I1(x,y), I(y,x)), if x ≤ y,
Mn min(I2(x,y), I2(y,x)−Mn, if x > y,

for all x,y ∈ [0,1].

4. Moderate deviation functions used as penalty functions

In this section we use moderate deviation functions in a similar way as
penalty functions are used to measure the similarity or dissimilarity between
a given set of data [7, 18]. The main idea is, given a set of numbers, to
determine another number which represents all of them and which is the most
similar to all of them in the sense determined by the deviation function. That
is, we look for the value of y which makes the sum D(x1,y)+ . . .+D(xn,y) to
be as close to 0 as possible. In this way, for every point in the hypercube
[0,1]n, we can find an output y which can be understood to be the most
similar to all the inputs.

11



Theorem 7. Let Mp,Mn be positive real numbers and D : [0,1]2 → [−Mn,Mp]
be a moderate deviation function defined by Eq. (11). Let F : [0,1]n+1 → R
be the function given by:

F(x1, . . . ,xn,y) = D(x1,y)+ . . .+D(xn,y).

Then
(i) If R1,R2 are continuous, then, for each n-tuple (x1, . . . ,xn)∈ [0,1]n, there

exists y ∈ [0,1] such that F(x1, . . . ,xn,y) = 0.
(ii) If R1,R2 are strictly monotone, then, for each n-tuple (x1, . . . ,xn) ∈

[0,1]n, there exists at most one minimum of the function |F(x1, . . . ,xn, ·)|.

Proof: (i) Since the continuity of R1,R2 and (R2) implies the continuity of
D and consequently also continuity of the function F(x1, . . . ,xn, ·), the proof
follows from the observation that F(x1, . . . ,xn,0)≤ 0 and F(x1, . . . ,xn,1)≥ 0.

(ii) Observe that the strict monotonicity of R1,R2 implies the strict mono-
tonicity of D and consequently also strict monotonicity (increasingness) of
the function F(x1, . . . ,xn, ·). �
Corollary 3. Let Mp,Mn be positive real numbers, D : [0,1]2 → [−Mn,Mp] be a
moderate deviation function defined by Eq. (11) and let R1,R2 be continuous
strictly monotone restricted equivalence functions. Let F : [0,1]n+1 → R be
the function given by F(x1, . . . ,xn,y) =D(x1,y)+ . . .+D(xn,y) and f : [0,1]n →
[0,1] be the function given by:

f (x1, . . . ,xn) = argy min |F(x1, ...,xn,y)|.

Then, f is idempotent and for each n-tuple (x1, . . . ,xn) ∈ [0,1]n such that
there exist i, j ∈ {1, . . . ,n} with xi ̸= x j, it holds f (x1, . . . ,xn) ∈ [xσ(k),xσ(k+1)[
and the following statements are equivalent:

(i) f (x1, . . . ,xn) = y;
(ii) F(x1, . . . ,xn,y) = 0;

(iii)
k
∑

i=1

(
Mp −MpR1(xσ(i),y)

)
=

n
∑

i=k+1

(
Mn −MnR2(xσ(i),y)

)
;

where σ : {1, . . . ,n}→ {1, . . . ,n} is a permutation such that xσ(1) ≤ . . .≤ xσ(n)
and k ∈ {1, . . . ,n−1} satisfies

n

∑
i=1

D(xσ(i),xσ(k))≤ 0 and
n

∑
i=1

D(xσ(i),xσ(k+1))> 0. (12)
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Proof: First observe that f (x1, . . . ,xn) is symmetric. Moreover, due to (MD1)
and (MD2) we have: if k satisfies Eq. (12), then for all j ∈ {1, . . . ,k} and all
m ∈ {k+1, . . . ,n} it holds

n

∑
i=1

D(xσ(i),xσ( j))≤ 0 and
n

∑
i=1

D(xσ(i),xσ(m))> 0,

hence f (x1, . . . ,xn) ∈ [xσ(k),xσ(k+1)[.
The equivalence of (i) and (ii) immediately follows from Theorem 7. The

equivalence of (ii) and (iii) follows from the observation:

F(x1, . . . ,xn,y) =
k

∑
i=1

(
Mp −MpR1(xσ(i),y)

)
+

n

∑
i=k+1

(
MnR2(xσ(i),y)−Mn

)
.

Finally, the idempotency of f is straightforward. �

Remark 3. As stated above, for continuous strictly monotone R1 and R2, the
function f (x1, . . . ,xn) defined as in Corollary Eq. (3) is idempotent. Moreover,
for n-tuples (x1, . . . ,xn) ∈ [0,1]n such that there exist i, j ∈ {1, . . . ,n} with
xi ̸= x j, the computation of f (x1, . . . ,xn) consists of the following two steps:

1. To obtain a switch point: first we need to obtain a switch point k,
which is the greatest number from {1, . . . ,n−1} satisfying:

n

∑
i=1

D(xσ(i),xσ(k))≤ 0.

2. To solve an equation: we obtain f (x1, . . . ,xn) = y as a solution of equa-
tion

k

∑
i=1

(
Mp −MpR1(xσ(i),y)

)
=

n

∑
i=k+1

(
Mn −MnR2(xσ(i),y)

)
where y ∈ [xσ(k),xσ(k+1)[.

Example 3. Let us consider the moderate deviation function D defined by
Eq. (11).

(i) If R1(x,y) = R2(x,y) = 1−|y− x|, then (see Example 2 (ii))

D(x,y) =
{

Mp(y− x), if x ≤ y,
Mn(y− x), if x > y (13)

13



Figure 1: f function in Eq. (14) for different Mp and Mn values.

and by Corollary 3 we have:

f (x1, . . . ,xn) =

Mp
k
∑

i=1
xσ(i)+Mn

n
∑

i=k+1
xσ(i)

kMp +(n− k)Mn
. (14)

It is easy to observe that depending on the values of the parameters Mp
and Mn the resulting deviation-based function is different. In Figure 1 is de-
picted function f , Eq. (14), considering as input vector x=(0.1,0.3,0.5,0.7,0.9)
when the values of Mp and Mn range from 1 to 10.

For high values of Mp the values of the vector x that are greater than y
are highly penalized, so we can see that the higher Mp is, the lower the value
of the resulting function. On the contrary for higher values of Mn the final
value of the function is bigger.

Moreover, if Mn = Mp, we have

f (x1, . . . ,xn) =

Mp
n
∑

i=1
x(i)

nMp
=

n
∑

i=1
x(i)

n
,

that is, f is arithmetic mean.
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For instance, let Mp = 4, Mn = 10, x1 = 0.6, x2 = 0.6, x3 = 0.1, x4 = 0.8,

x5 = 0.3. Then k = 2, since
5
∑

i=1
D(xσ(i),xσ(2)) = 4 ·0.2+0−10 ·0.3−10 ·0.3−

10 · 0.5 = −10.2 < 0 and
5
∑

i=1
D(xσ(i),xσ(3)) = 4 · 0.5+ 4 · 0.3+ 0− 10 · 0− 10 ·

0.2 = 1.2 > 0. Consequently, f (0.6,0.6,0,1,0,8,0,3) ∈ [0.3,0.6[, which is in
accordance with the calculation of y = f (0.6,0.6,0.1,0.8,0.3) by item (iii) of
Corollary 3:

4(y−0.1)+4(y−0.3) = 10(0.6− y)+10(0.6− y)+10(0.8− y)
8y−1.6 = 20−30y

y = 0.568421

(ii) Let R1(x,y) = 1− (y− x)2 and R2(x,y) = 1−|y2 − x2|. Then

D(x,y) =
{

Mp(y− x)2, if x ≤ y,
Mn(y2 − x2), if x > y

and by Corollary 3 we have f (x1, . . . ,xn) = y, where y ∈ [xσ(k),xσ(k+1)[ is a
solution of the equation:

y2 (kMp +(n− k)Mn)+ y

(
−2Mp

k

∑
i=1

xσ(i)

)
+Mp

k

∑
i=1

x2
σ(i)−Mn

n

∑
i=k+1

x2
σ(i) = 0.

For instance, let Mp,Mn,x1, . . . ,x5 be as in item (i). Then k = 4, since
5
∑

i=1
D(xσ(i),xσ(4)) =−1.44< 0 and

5
∑

i=1
D(xσ(i),xσ(5)) = 3.28> 0. Consequently,

f (0.6,0.6,0.1,0.8,0.3)∈ [0.6,0.8[, which is in accordance with the calculation
of y = f (0.6,0.6,0.1,0.8,0.3) by item (iii) of Corollary 3:

4(y−0.1)2 +4(y−0.3)2 +8(y−0.6)2 = 10(0.64− y2)

26y2 −12.8y−3.12 = 0
y = 0.671115

Similarly, if R1(x,y) = 1−|y2−x2| and R2(x,y) = 1−(y−x)2, then we have

D(x,y) =
{

Mp(y2 − x2), if x ≤ y,
−Mn(y− x)2, if x > y

15



and the equation

y2 (kMp − (n− k)Mn)+ y

(
−2Mn

n

∑
i=k+1

xσ(i)

)
−Mp

k

∑
i=1

x2
σ(i)−Mn

n

∑
i=k+1

x2
σ(i) = 0,

if R1(x,y) = R2(x,y) = 1− (y− x)2, we have

D(x,y) =
{

Mp(y− x)2, if x ≤ y,
−Mn(y− x)2, if x > y

and the equation

y2 (kMp +(n− k)Mn)+y

(
2Mn

n

∑
i=k+1

xσ(i)−2Mp

k

∑
i=1

xσ(i)

)
+Mp

k

∑
i=1

x2
σ(i)−Mn

n

∑
i=k+1

x2
σ(i)= 0,

if R1(x,y) = R2(x,y) = 1−|y2 − x2|, we have

D(x,y) =
{

Mp(y2 − x2), if x ≤ y,
Mn(y2 − x2), if x > y

and the equation

y2 (kMp +(n− k)Mn)−Mp

k

∑
i=1

x2
σ(i)−Mn

n

∑
i=k+1

x2
σ(i) = 0.

(iii) Now we show that for R1,R2 which are neither continuous nor strict
monotone there can exist infinitely many minima of the function |F(x1, . . . ,xn, ·)|,
and the value of the minima is not equal to 0. Let Mp = 10, Mn = 2 and

R1(x,y) = R2(x,y) =


0, if {x,y}= {0,1},
1, if x = y,
0.5, otherwise.

Then

D(x,y) =


10, if x = 0,y = 1,
5, if x < y except the case x = 0,y = 1,
0, if x = y,
−2, if x = 1,y = 0,
−5, if x > y except the case x = 1,y = 0
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and k = 1. Consequently, the set of minima of the function |F(x1, . . . ,xn, ·)|
is ]0.1,0.2[ where the value of the minima is equal to 1.

5. Illustrative example: Moderate deviate functions for aggregation of a score
matrix

In this section we describe an application of moderate deviation functions
when they are used in order to determine the output which best represents
a given set of inputs.

This example is framed in an image classification scenario, but can be
extended to any classification problem. In an image classification problem,
we are given several sets of images and a new image and we must determine
to which of the given sets it belongs to. In this sense, image classification is
a multi-class problem that can be tackled with an ensemble of binary clas-
sifiers [13]. One of the most widely used methods to deal with this kind
of problems is the One-vs-One ensemble method (OVO). Recall that OVO
ensemble divides an m class problem into m(m−1)/2 binary problems. Each
binary problem is faced by a binary classifier, called base classifier, which is
responsible for distinguishing from one class Ci from another class C j. In the
training phase each binary classifier is trained with images of its correspond-
ing classes i and j, that is, the images which belong tho the classes i and
j are used to fix the parameters the classifiers in order to distinguish when
they belong to the class i and when they belong to the class j. When a new
instance should be classified, all the base classifiers are considered and their
outputs are stored in a score matrix R:

R =


− r12 · · · r1m
r21 − ·· · r2m
... ...

rm1 rm2 · · · −

 (15)

being ri j ∈ [0,1] the confidence value in favour of class Ci given by the
classifier that distinguishes between {Ci,C j}; on the contrary, the confidence
for C j is calculated by r ji = 1− ri j (just in case this value is not provided by
the classifier).

A common method to decide to which class belongs an instance is the
following: aggregate the confidences of each row with the arithmetic mean
and select the row with the highest value (this method is usually known as
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Method Performance
Arithmetic mean 65.47
Mp = 10, Mn = 1 64.67
Mp = 1, Mn = 10 65.72

Table 1: Percentage of correctly classified test images with different deviation functions

the weighted vote).

Class = arg max
i=1,...,m


∑

1≤ j ̸=i≤m
ri j

m−1

 (16)

But, there exist some cases in which the confidences of certain classes are
underestimated by the binary classifiers; for example if there are few examples
of a certain class, all of the binary classifiers related to this class usually
returns very low confidence values for said class [14]. Therefore the arithmetic
mean may not be the most adequate aggregation operator. Instead, we
propose to use operators derived from moderate deviate functions in order
to fuse the values in each row of the score matrix R.

To test this proposal we carried out an experiment in an image classifi-
cation problem. We use the cifar-10 data-set [15] (10 categories with 5000
images for training and 1000 for test per class of 32x32). We process the
images with Bag-of-features method and extract a vector of 128 features for
each image (see more details in [12]). The problem is divided in a One-vs-One
strategy as explained before and the base classifiers (linear kernel Support
Vector Machine L2-SVM) are trained with the images of the training set.
Finally for each image in the test set we calculate the score matrix with the
confidences of the classifiers, i.e. for each image we have a 10× 10 matrix.
In Table 1 we show the percentage of correctly classified images of the test
set using three different methods of the score matrix, the first row by means
of the arithmetic mean and in the second and third rows considering Eq.(13)
with Mp > Mn (i.e. penalizing higher values) and Mn > Mp, respectively.

Analyzing the class selected in each case, we noticed that in 9375 cases
of 10000 the three different methods made the same prediction; in 615 cases
one method predicts a different class from the other two and only in 10 cases
the three predictions are different. As we can see in this case the best option
is to use the function that penalizes the lower values. This means that some
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confidences are underestimated and the function build with the moderate
deviation function provides a better representative value of each row. But a
simple question arises: How can we set the correct values for the moderate
deviation function?. Due to Mp and Mn are the parameters that modify
the behaviour of the function we can learn their ideal values by means of
the gradient descent algorithm. For this example we have fixed the value
of Mp = 1 and the gradient descent algorithm learns the value of Mn. We
have used a set of 5000 images of the training set, and the gradient descent
algorithm tries to minimize the following cost function:

J =
m

∑
i=0

{
0 if the image is correctly classified
( ∑

1≤ j ̸=i≤m
ri j − ∑

1≤ j ̸=z≤m
rz j)

2 if the image is classified as i but it is of class z

(17)
Initializing Mn = 1 and the step α = 0.1 the algorithm converges in very

few epochs. The algorithm obtain a value of Mn = 29, which achieves a
performance of 65.68 in the test set of images. Therefore, the gradient descent
algorithm finds a suited value of Mn for this problem. The performance
achieved is similar to the best case of Table 1.

In this example we have seen that there are some cases in which the
values to be aggregated have some bias, therefore the arithmetic mean is not
the most suitable aggregation, because it will also produce biased results.
Therefore, operators based on moderate deviation functions can be used to
overcome the problem of biased values. We have observed that even, we
can calculate through a simple gradient descent algorithm, the most fitted
parameter of the moderate deviation function to a problem; so, by simply
changing the operator an improvement of the results is obtained.

6. Conclusions

In this work we have studied the relation between deviation functions
and restricted equivalence functions. We have provided a construction the-
orem to generate moderate deviation functions from restricted equivalence
functions. Also we have shown how to use moderate deviation functions as
penalty functions. We have applied moderate deviation based penalty for the
aggregation of a score matrix in an image classification problem. We have
shown that this type of function can be fitted to the data therefore obtain
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better accuracy results than common aggregation operators like the average
mean.
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