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a b s t r a c t 

Faced with a full Intensive Care Unit (ICU), physicians need to decide between turning away a new pa- 

tient in need of critical care and creating a vacancy by prematurely discharging a current occupant. This 

dilemma is widely discussed in the medical literature, where the influencing factors are identified, the 

patient discharge process described and the patient health consequences analyzed. Nevertheless, the ex- 

isting mathematical models of ICU management practices overlook many of the factors considered by 

physicians in real-world triage decisions. 

This paper offers a review of the medical and mathematical literature on patient discharge decisions, 

and a proposal for a new simulation framework to enable more realistic mathematical modeling of the 

real-world patient discharge process. Our model includes a) the times at which discharge decisions are 

made and setup times for patient transfer from the ICU to a general ward and preparation of an ICU 

bed for an incoming patient, in order to capture the impossibility of an immediate switch of patients; b) 

advance notice of the number of patients due to arrive from elective surgery requiring intensive postop- 

erative care and potentially triggering the need for early discharges to avoid surgery cancelations; and c) 

patient health status (to reflect the dependency of physicians’ discharge decisions on health indicators) 

by modeling length of stay with a phase-type distribution in which a medical meaning is assigned to 

each state. 

A simulation-based optimization method is also proposed as a means to obtain optimal discharge de- 

cisions as a function of the health status of current patients, the bed occupancy level and the number of 

planned arrivals from elective surgery over the following days. Optimal decisions should strike a balance 

between patient rejection and LoS reduction. 

This new simulation framework generates an optimal discharge policy, which closely resembles real 

decision-making under a cautious discharge policy, where the frequency of early discharge increases with 

the ICU occupancy level. This is a contrast with previous simulation models, which consider only the 

triage of the last bed, disregarding the pressures on physicians faced with high bed occupancy levels. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction. The ritual of the last bed 

A hospital intensive care unit (ICU) provides continuous surveil-

ance and highly specialized care to acute patients, whose condi-

ions are life-threatening and require comprehensive care. The re-

ources in ICUs are limited and constitute an important part of

ospital budgets. Higher patient expectations and an aging pop-

lation are further increasing pressure on limited ICU resources.
✩ This paper was processed by Associate Editor Bish. 
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ccording to [54] , ICU costs amounted to $4300 per day in the

S in 2010 and the total annual cost of critical care medicine was

108 billion. In a previous study, the same authors estimated criti-

al care as 13.4% of total hospital costs, 4.1% of national health ex-

enditures, and 0.66% of GDP [52] . In highly developed European

ealth-care systems, the average cost per ICU patient is around

1200 per day and €17,000 per admission [41,112] . Efficient use

f these resources in ICU management and, by extension, general

ospital management, is therefore essential. According to the latest

uidelines of the Society of Critical Care Medicine (SCCM) for ICU

dmission, discharge, and triage [87] , further research is needed

n all aspects of critical care rationing in order to address current

hortcomings. Scarcity of resources can threaten or impede critical
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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care provision; and the problem can only worsen with misuse of

resources. There is an urgent need, therefore, to address this prob-

lem which has both current and future implications. 

The hospitalization bed is used to represent a structure or

quantify an activity in the healthcare context. Its use as a unit of

measurement has recently come under criticism, however, because

it is based on capacity rather than activity. Nonetheless, it is still

widely used as a hospital management parameter both at strategic

and operational level. 

Different ICU bed management strategies will obviously have

different im pacts on ICU service quality. Given that most ICU costs

are fixed—that is, independent of the level of occupancy—low oc-

cupancy should be avoided, since it implies the underuse of an ex-

tremely costly service [52] . A management policy aimed at high

occupancy, however, could result in delayed or refused admission

to the ICU, both of which are associated with a poorer prognosis

[15,17] and a higher risk of mortality [11,58,123] . In 1993, Teres

[113] stated that one of the great ethical dilemmas affecting Inten-

sive Care Services was the admission of patients under almost full

occupancy, which he described as the ritual of the last bed , noting

the need for policies to maximize the use of resources and mini-

mize costly triage processes. Increasing ICU occupancy levels and

access block rates are leading to full or even overwhelmed ICUs

[28,51] . Thus, it is no longer a question of how to allocate the last

bed but how to proceed when there is none. The average ICU oc-

cupancy rate in the US is 90% [94] , where it is reported that 90%

of ICUs are unable to provide beds when needed [46] . 

The undesirable consequences of bed shortages include the fol-

lowing: 

• The triage of patients admitted to the ICU. New patients requiring

ICU admission have usually suffered trauma or surgery. In the

event of a bed shortage, space must be re-allocated by trans-

ferring current patients to units with lower staffing and care

levels . Triage decisions are important not only in terms of re-

source management but also in terms of intensive care out-

comes. Nonetheless, despite the recommendations and impli-

cations for triage, there are few ethical decision-making scales

for physicians to rely upon [9,108] . The authors of [66] report

greater severity in patients discharged from the ICU during high

occupancy. Unscheduled or early releases from the ICU have

been associated with a greater probability of readmission [7] ,

longer LoS in hospital, and higher mortality [40,106] . 
• The triage of patients for possible ICU admission. According to

[107] , the status of patients admitted to an ICU during a bed

shortage tends to be more critical. Mortality rates in patients

denied ICU admission are also extensively reported in medi-

cal literature [84,99,105] . The authors of [65] observe a lack of

systematic ICU admission criteria and propose an econometric

model to quantify the effect of ICU admission on patient out-

comes. 
• Referral to other centers. Inter-hospital transfer is associated

with two potential problems: the risk inherent to the trans-

fer [38,73,120] and delay in the proper treatment of time-

dependent diseases [17,22,97] . 
• Cancelation of scheduled surgeries requiring postoperative stays

in the ICU. Hospitals have large daily flows of patients from

the operating theater to the ICU. The combined volume of

scheduled and unscheduled arrivals leads to bed shortages and

surgery cancelations [57,67,83] , with negative, and even fatal

consequences, for patients awaiting surgery, and an increase

in the administrative pressure involved in the modification of

waiting lists [21] . 
• Stress in medical staff due to work overload. The negative ef-

fects of workload saturation in the health services have been

extensively discussed in the medical literature. In [60] , the
relationship between workload and length of stay (LoS) is as-

sessed in an analysis involving 203 hospitals. A lack of ICU beds

calls for rapid triage and referral of patients, which have been

shown to increase stress levels [5,31,53,119] , work overload and

medical errors [1,111,116] in health staff, and thereby poorer

outcomes for ICU patients. 

Optimal ICU bed management is therefore crucial to provid-

ng high-quality healthcare to sick patients. Such a task is not

asy, however, given the complexity of a system which involves

ighly specialized medical staff and equipment, different types of

atients, knock-on effects from other hospital departments—such

s operating theatres, emergency departments, wards, etc.—and

hich evolves stochastically over time. Operations research can

rovide valuable insights into this problem by developing simu-

ation models that accurately reproduce ICU performance under

ifferent management policies and assess the influence of various

arameters and external factors, such as elective surgeries. In ad-

ition, optimal ICU bed management policies can be obtained by

ombining simulation models with optimization techniques. 

The main contributions of this paper can be summarized as fol-

ows: 

• Review of the medical and mathematical literature on discharge

decisions, underlining the main factors influencing real-practice

medical decision-making and found lacking in previous ICU

mathematical models. 
• New simulation framework including all these factors in order

to address the shortcomings of previous models and thus pro-

vide a useful tool for the analysis of medical discharge deci-

sions. 
• Mathematical model of all the factors and features considered

by physicians faced with discharge decisions, such as the pa-

tient ́s evolving health status and the information available at

the time of decision making, etc., which are found lacking

in previous ICU models. Our proposal is for a new approach

whereby discharge decisions are modeled as a function of the

patients’ current health status, the bed occupancy level and the

number of planned arrivals from elective surgery over the fol-

lowing days. 
• Proposal for a simulation-based optimization technique for ob-

taining optimal ICU discharge policies, considering a bi-criteria

optimization model aimed at minimizing both the percentage

of patient rejections and the LoS reduction. 
• The optimal discharge policies thus obtained are structurally

different from those generated by previous ICU models, and

closely reflect real-world medical decision-making, which fol-

lows a cautious discharge policy. 

The remainder of the paper is organized as follows.

ection 2 provides an overview of medical and mathematical

iterature, with particular attention to discharge decisions, the use

f simulation models in the ICU context and the probabilistic rep-

esentation of ICU LoS. Section 3 discusses classic ICU simulation

odels, highlighting neglected aspects that would contribute to

n accurate representation of the real patient discharge process

nd the factors considered by physicians faced with discharge

ecisions. This section presents a proposal for the mathematical

odeling of all these features and their incorporation into a

ew simulation framework, which is then used to obtain optimal

CU management policies using simulation-based optimization

ethodology. Section 4 presents the experimental design and

esults. The paper closes with the conclusions and some final

emarks. 
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. Medical and mathematical literature review 

The math-based approach to solving healthcare problems has

ypically focused on developing complex analytical models, some

f which require assumptions that do not hold in practice. This de-

arture from the representation of real practice in healthcare sys-

ems may explain the low rate of success obtained when imple-

enting the findings [14] . A higher success rate can be achieved by

eviewing the mathematical and medical literatures, and identify-

ng the key factors, processes, personal attitudes, and behaviors for

nclusion in mathematical models. The non-incorporation of any of

hese factors can compromise model validity and result in the re-

ection of the findings by healthcare policy-makers. The following

ections therefore review both the medical and mathematical liter-

tures to find research on the decision-making processes of physi-

ians challenged by ICU bed pressure. 

.1. Discharge decisions 

As mentioned in the latest SCCM guidelines [87] , transfer from

he ICU occurs, ideally, when a patient no longer meeting ICU care

riteria fulfills the clinical criteria for a lower level of care. The de-

ision is hampered by the absence of clear and objective metrics

o determine which patients will continue to benefit from critical

are. The guidelines also state that if a patient is clinically stable,

nd thus no longer requires ICU monitoring and treatment, he/she

an safely be transferred to a lower-acuity area. However, the pa-

ient transfer process is conditioned not only by patient health fac-

ors but also by certain teamwork and organizational issues [74] . In

 bed shortage scenario, one of the proposed solutions is to triage

urrent ICU patients. In 2013, the Ethics Section of the European

ociety of Intensive Care Medicine presented a set of general triage

rinciples under which a patient could justifiably be released from

he ICU in order to admit another patient [109] . Nonetheless, de-

pite these recommendations and the implications of triage, there

re scarcely any decision-making scales for use in these circum-

tances [108] . Whatever the intervening factors, non-scheduled re-

eases could be considered premature or inadvisable because the

ersistence of patients’ severity and organic dysfunction at the

ime of release can compromise their final outcome [24,86] . Fur-

hermore, and as various studies testify, ICU bed shortages are a

rowing problem [42,43,114] . 

In theory, a patient should be sufficiently stable in order to be

onsidered for transfer to a less intensive care environment (such

s an intermediate care unit or medical/surgical ward); the neces-

ary stability assessment should be based ideally on plentiful clini-

al data. In practice, in the absence of predictive models of patient

ynamics, clinicians must make these transfer decisions based en-

irely on clinical judgment [18] . Physicians are aware of the health

isks involved in shortening one patient’s LoS in order to admit

nother when the ICU is full. As stated in the introduction, these

isks include a more prolonged total length of stay in hospital, and

 higher risk of mortality [10,20,42,68,90,93,101,106] , or readmis-

ion to the ICU [39,40,93] , which is also linked to higher mortal-

ty risk and prolonged LoS [19,29,30,62,102] . In fact, the transfer

f patients from ICU to a general ward is among the riskiest care

ransitions [69] . 

Recognizing the clinical risks associated with early ICU dis-

harge, many hospitals are accounting for readmission probabili-

ies in their discharge strategies [37,122] . Action to reduce demand-

riven ICU discharge may feature in healthcare performance im-

rovement projects, but the published research on this topic is

cant [87] . The potential impact of these demand-driven discharge

ecisions on patient welfare presents ethical issues for the hospital

nd is undesirable. A deeper understanding of discharge practices

ould therefore ultimately improve ICU resource availability [74] . 
Thus, patient discharge decisions and their consequences are

lready implicit in much of the medical literature but, although

he importance of ICU management decisions is mentioned in the

athematical literature, they are not formally modeled [23,104] . As

oted in [3] , researchers attempting to model and understand pa-

ient flow through a hospital typically fail to consider physicians’

ecision-making. Patient discharge is commonly assumed to take

lace regardless of the state of the system. Very few mathematical

odels include this decision-making process, where it is variously

eferred to as “bumping”, “demand-driven discharge”, “premature

ischarge” or “early discharge”. 

The authors of [26] develop a stochastic ICU model includ-

ng patient bumping as a response to overcrowding. They con-

ider both scheduled and unscheduled arrivals. The arrival of a

ew patient at a full ICU triggers the discharge of the patient with

he least expected remaining LoS. The authors propose a Markov

hain model for evaluating this discharge policy for different pa-

ient arrival patterns and capacity/load scenarios. Unfortunately, a

atient’s expected remaining LoS is rather difficult to estimate. The

uthors of [18] describe a lowest cost criterion for selecting a pa-

ient for early discharge in order to admit a new arrival when the

CU is full. They also discuss various cost function inputs, including

ortality risk and readmission risk at different occupancy levels.

inally, they propose a patient criticality measure based on an in-

rease of the readmission load score. They assume a memoryless

eometric LoS distribution. A similar study, using non-memoryless

oS distributions, is carried out in [56] , where the readmission

robability and expected LoS following readmission are considered

hen selecting a patient for premature discharge. A dynamic pro-

ramming model is used in [72] to study admissions and prema-

ure discharge decisions in ICUs with bed management policies

ased on bed reservation for more critically-ill patients. Arriving

atients are divided into two classes: those with a higher proba-

ility of survival after ICU admission, who cannot be kept waiting

r referred to another unit, and those with a lower probability of

urvival who will be held for transfer to another unit if no ICU

eds are available. 

All these models depict “aggressive” discharge policies [77] :

hereby no action is taken until there are no remaining beds for

n incoming patient, at which point an instantaneous exchange

f patients takes place. However, physicians consider a “cautious”

olicy to be more representative of their decision-making in prac-

ice. A cautious strategy dictates that the frequency of early dis-

harge must increase with ICU occupancy. Thus, patient triage is

ot delayed until the last bed, but begun in high occupancy sit-

ations in anticipation of scheduled and urgent admissions. Such

dvance discharge planning enables ICU physicians to avoid ex-

reme occupancy situations and discharge to take place at conven-

ional hours, avoiding night shifts, to ensure sufficient staffing at

he patient’s destination and avoid emergency bed management

ssues. 

Adopting this anticipation and management approach, the au-

hors of [77] propose a queuing control problem to obtain effi-

ient bed management policies, with service rates dependent on

ccupancy levels. They propose bi-objective optimization prob-

ems to minimize both patient rejection and LoS reduction. How-

ver, an instantaneous switch of patients for an ICU bed is also

ssumed. 

.2. Simulation in health and in ICU 

Hospitals are highly complex stochastic systems involving a

arge number of interacting agents. At the same time, hospi-

al managers face growing pressures to increase the quality and

uantity of hospital services using limited resources [59] . Opti-

al system logistics management requires tools for interpreting
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the behavior of the system and predicting different scenario out-

comes [117] . In this context, simulation emerges as the most

suitable analytical tool, since it is a powerful quantitative in-

strument for the analysis of complex systems, and commonly

used in combination with other statistical and optimization

techniques. 

The specialist literature contains numerous bibliographical ref-

erences relating to the use of simulation models for decision

making in the healthcare context. Since the first work was pub-

lished in 1965 [35] , these models have been used to analyze

various problems, such as patient flow, bed-planning, waiting

list management, health service design, medical staff schedul-

ing, operating theater management, etc. The reader can refer to

[13,36,50,61,85,95,124] for reviews of the use of simulation mod-

els in healthcare. 

ICU sizing and management optimization are other classic prob-

lems often addressed with simulation modeling. A review of the

use of operations research methods, including simulation, in ICU

management appears in [6] . Some medical journals include sim-

ulation studies aimed at providing mathematical solutions to ICU

capacity problems [23,83,89,91,103,110,125] and the need to opti-

mize the distribution of beds and elective admissions [67,115,121] .

The mathematical literature also includes simulation models for

analyzing ICU capacity problems [75,81,98] and ICU admission and

discharge processes [63] ; for comparing bed allocation rules using

bi-objective optimization [64] ; for bed management optimization

making a distinction between emergency and elective surgery pa-

tients [47] ; for analyzing changes in the patient-flow circuit with

the use of intermediate care wards [79,100] ; for adjusting staffing

to current bed occupancy [49] ; and for assessing bed occupancy

and patient transfers to other ICU facilities due to resource short-

age [110] . The ultimate aim of all these models is to reconcile bed

availability with bed occupancy in order to minimize the number

of rejections from ICU admission while keeping bed occupancy at

a manageable level. Although some studies suggest early discharge

as a bed management tool [98] , they do not include it in their

models. 

The need to include the discharge decision-making process in

order to construct a valid simulation model was noted in [8] and

[78] , where the simulation model is embedded in an optimiza-

tion framework to calibrate a parametric set of patient discharge

rules, which attempt to mimic physician’s decisions. The authors

of [4] perform a sensitivity analysis of the effects of such discharge

decisions on ICU performance indicators: ICU rejection rates and

LoS. Their discharge decision models are implemented in a simula-

tion framework with no time-consuming discharge processes. Op-

erational rules for the practical implementation of the optimal dis-

charge strategies obtained in [77] are assessed by simulation mod-

eling in [76] . 

2.3. Modeling ICU LoS using phase-type distributions 

A critical issue when attempting to construct a valid simulation

model is the probabilistic representation of ICU LoS. An overview

of LoS and patient flow modeling techniques is provided in [80] .

Although the simplest models assume an exponential distribution

[63,83,104] , several studies have shown that LoS distributions are

usually heavily skewed to the right (see, for example, [96,118] ) and,

accordingly, non-exponential distributions have been used: Weibull

distributions in [98] ; lognormal distributions in [23] and [81] ; and

Pearson VI in [49] . The authors of [78] propose regression mod-

els based mainly on lognormal and Weibull distributions, including

variables with the capacity to explain some of the LoS variability,

such as the Apache index or number of infections. 

While the above-mentioned probability distributions can be

used successfully to model LoS, they are not suitable for
escribing ICU patient health status dynamics, and thus pro-

ide inadequate support for real-world patient-discharge decision-

aking; thus, phase-type distributions are a better alternative. A

hase-type distribution is the distribution of the time to absorp-

ion in a finite Markov chain where one state is absorbing and

he remaining states are transient. Phase-type distributions can ap-

roximate any positive-valued distribution, as they are dense in

he field of all positive-valued distributions. Since their introduc-

ion by Neuts [88] , phase-type distributions have been used in a

ide range of stochastic modeling applications, including telecom-

unications, finance, tele-traffic, biostatistics, queuing theory, drug

inetics, reliability theory, and survival analysis. They have also

een used to model LoS in health services such as hospital wards

45,118] , geriatric units [34] , maternity units [55] , and in capac-

ty planning for stroke patients [82] . The author of [32] discusses

he modeling of healthcare systems with phase-type distributions.

pecific models with phase-type distributions, such as the Cox-

an phase-type distribution and the hyper-exponential distribution,

re used to model LoS. The Coxian is used in [25] to model LoS

n neonatal care, which includes three care levels (special care,

igh dependency and intensive care); in [44] it is used to pre-

ict LoS for elderly patients in hospital and community care ser-

ices; and in [18] to model ICU LoS. The hyper-exponential dis-

ribution is employed in [12,48] to model ICU LoS. The authors

f [33] note that the dynamic nature of hospital stays cannot be

aptured except by phase-type modeling. Nevertheless, these stud-

es do not interpret phase states in terms of the patient’s physical

ecovery. 

A summary of the literature review presented in this sec-

ion is included in Appendix A . Table A1 focuses on the

edical literature concerning ICU bed management issues.

able A2 focuses on papers featuring ICU mathematical mod-

ls, listing, in each case, the study objective, quantitative

ools employed and factors considered in the discharge process

odeling. 

. A simulation framework for modeling ICU processes and 

hysicians’ decision-making 

.1. A critique of classical ICU simulation models 

Previous discrete-event simulation models [47,49,63,64,75,79,

1,98,100,110] use simple queuing theory models (M/G/c/c or

/G/c/c) as a mathematical representation of ICU dynamics (see

ig. 1 ), the main characteristics of which are the client (patient)

rrival process, service time (LoS) and the queue discipline (ex-

ept where there is no waiting room, as in most ICUs). The re-

earch on the construction of ICU simulation models has therefore

ocused on analyzing and achieving a better representation of LoS

nd the patient arrival process. Within this queuing theory frame-

ork, an early discharge decision only makes sense in the event of

 new patient arriving when all the beds are occupied. According

o physicians, however, this is not the case in real practice, where

t is more common to adopt the so-called cautious policy men-

ioned in [77] , which is aimed at avoiding the rejection of new

atient arrivals by allowing the rate of early discharges to increase

rogressively prior to full ICU occupancy. Thus, the analysis of dis-

harge decision-making requires simulation models that will im-

rove upon those based on G/G/c/c queuing theory, by having the

apacity to reproduce the key characteristics of the real-world pa-

ient discharge process and the information environment in which

ecisions are made. 

The following are the key aspects to be considered when mod-

ling an ICU with the purpose of analyzing physicians’ decision-

aking with respect to patient discharge. 
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Fig. 1. G/G/c/c queuing model representation of an ICU. 
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• Discharge and admission process times 

The replacement of a current ICU patient with a new arrival is

 complex and non-automatic process requiring a number of con-

itions: a free bed in the ward to which the patient is being trans-

erred; consent of the ward staff; and the availability of a fam-

ly member to assist in the care of the patient. All these require-

ents are essential and cannot be improvised. At the same time,

ischarge can be delayed by bed shortages in other hospital de-

artments [74] . Admission to the ICU is often delayed because it is

ull, possibly due to ICU beds being occupied by patients awaiting

ard beds; a situation referred to as discharge delay, “bed-block”

r outflow limitation [16,71] . Furthermore, the admission of a pa-

ient to a recently freed up bed also requires setup time (cleaning,

isinfection, etc.). 

• Patient health status 

The ICU patient stability level (henceforth referred to as health

tatus ) is a holistic concept summarizing the severity of illness, the

ependence of organic functions on machines (mechanical venti-

ation, continuous renal replacement therapy), complications such

s infections, etc. Patient health status does not evolve linearly, or

ven monotonically, during a stay in the ICU. As noted in [26] , in

ractice, a doctor’s choice of ICU patient for discharge depends on

 stability assessment. The physician must first physically examine

he patient and consult the clinical progress report to check for

tability for transfer to a lower level of care. Mathematical model-

ng of individual patient health status would enable the simulation

f physician discharge decisions based on health indicators rather

han expected remaining LoS, LoS spent in the ICU, the probability

f readmission, expected LoS following readmission or a combina-

ion of the above, as found in previous models [18,56,104] . A re-

uction of LoS will occur in the final stage of the recovery process.

• The integration of scheduled arrivals from surgery in physicians’

discharge decisions 

ICU physicians usually have reliable advance information re-

arding the number of patients due to arrive from elective surgery

equiring intensive postoperative care. This enables them to esti-

ate short-term future bed requirements and plan discharges in

ccordance. The influence of scheduled surgeries on ICU bed occu-

ancy levels, early patient discharge and LoS has been reported in

everal studies [3,62,67,92] . Using techniques ranging from simu-

ation modeling to econometrics and survival analysis, all the cited

orks mention the effect of occupancy levels and elective surgeries
n discharge decisions, but none attempts to model the discharge

ecision-making process. 

• Discharge decision times 

Patient discharge decisions typically take place at only a few

cheduled times of day; as in the twice-a-day routine featured

n our case study (8 a.m. and 4 p.m.). Therefore, the patient dis-

harge decision process is essentially a periodic rather than a

ontinuous review process, as allowed by classic queuing theory

odels. 

The consideration of discharge decision times and discharge

nd admission process times prevents the instantaneous replace-

ent of a current patient with a new incoming one. Therefore,

he decision-making involved in the possible discharge of patients

rior to the arrival of new ones must also be considered. This

ften results in a disconnection between the simulation model

nd the real-world environment. The analysis of discharge deci-

ions also requires consideration of ICU bed occupancy, patient

ealth status and scheduled arrivals from surgery, as described

arlier. 

The following subsection describes an ICU simulation frame-

ork to enable the analysis of real-world discharge decision-

aking. Table 1 summarizes the notation used in the rest of

ection 3 . 

.2. The new simulation framework 

The proposed simulation model incorporates the common ele-

ents of all ICU simulations, such as differentiation between un-

cheduled and elective surgery patients, classification of patients

y type of illness and other personal characteristics, and the mod-

ling of their arrival patterns by non-homogeneous Poisson Pro-

esses for unscheduled arrivals and deterministic or discrete prob-

bilistic patterns for arrivals from elective surgery [78] . The re-

ource unit is the bed, including equipment (monitors, ventilators,

tc.) and sufficient medical and nursing staff to care for the occu-

ant. 

In addition, however, the simulation model must be enhanced

y incorporating the discharge process and the discharge decisions,

ogether with the information these require, as discussed in the

revious section. 

Modeling patient health status . We propose to model the LoS of

ach type of patient with a phase-type distribution in order to rep-

esent the underlying dynamics of the recovery process. Different

tates within the distribution are associated with different health
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Table 1 

List of notations. 

Notation Description 

A Absorbing state of the underlying Markov chain of the Phase-type distribution 

B k (y, X ) Binary function to model discharge decisions for a patient in state k , when y beds are occupied and the number of planned arrivals 

from elective surgery are described by X 

β Row-vector of the coefficients on the logistic function and vector of decision variables in the optimization problem defined in 

expression (4) 

β(i) Value of decision variables in iteration i of the simulation-based optimization methodology to solve the optimization problem defined 

in expression (5) 

c Number of beds in the ICU 

DS Set of states of the underlying Markov chain of the Phase-type distribution in which a patient could be early discharged from the ICU 

ε Upper bound in the ε-constraint method 

E[LoS] Expected LoS 

E[LoS] (i) Simulation estimation of E[LoS] for solution β(i) 

λ Poisson Process rate for non-scheduled ICU-arrivals 

N Number of patients not checked for early release, with health status in state k ∈ DS 

p k (y, X ) Probability of discharge for a patient in state k ∈ DS when y beds are occupied and future planned arrivals from surgery are described 

by X 

P R Percentage of patients rejected due to full ICU-occupancy 

P R 
(i) Simulation estimation of percentage of patients rejected for solution β(i) 

r High ICU-occupancy threshold 

S = { 1 , 2 , . . . , A } Set of states of the underlying Markov Chain of the Phase-type distribution 

S j State of patient j 

u Uniform (0,1) number 

W = ( w 1 , . . . , w T ) Planned surgeries (from day 1 today T in the planning horizon) that will require patient ́s ICU admission 

X = ( x 1 , . . . , x h ) Information about planned surgeries for current day and several days ahead h ), which physicians know and use when making 

discharge decisions 

y Number of occupied beds in ICU 

Z Vector of logistic function predictors 
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acuity levels, to prevent the early discharge of a patient who is in-

sufficiently recovered. Survival and exitus patients should also have

different phase-type distributions. The absorbing state in survival

patients represents physiological stability (henceforth referred to

as full recovery) and the ideal moment for discharge from the ICU,

but transfer to another hospital department is also possible prior

to the absorbing state. The absorbing state for exitus patients is

death, or, in some cases of irreversible terminal illness, transfer to

another ward. In real practice, exitus patients are not considered

for early discharge; thus, only survival patients can be discharged

in states other than the absorbing state. 

Let S = { 1 , 2 , . . . , A } be the set of states of the underlying

Markov chain, where A is the absorbing state. Let DS be the set

of states in which a patient could be selected for early discharge

from the ICU ( DS ⊆S ). In the simulation model, a change of state in

the Markov chain for any patient is an event which changes the

health status of the respective patient and requires simulation of

time spent in the new state. When faced with a patient discharge

decision, the physician will know the state S i of each patient i . If

S i = A, the patient will be discharged; if S i ∈ DS , then patient i

will become a candidate for early discharge; and if S i ∈ ( DS ∪ A ) c , pa-

tient i is not eligible for early discharge from the ICU. 

Fig. 5 represents a phase-type distribution with 5 states and the

absorbing state for modeling the LoS of certain types of patients.

For illustrative purposes, we allow the possibility of discharge for

patients in state 5, that is, not having achieved full recovery, but

able to be moved to an intermediate-care room with little risk of

health consequences (that is, DS = { 5 } ). However, the discharge of

patients in states 1, 2, 3 or 4 (( DS ∪ A ) c = {1,2,3,4}) is not allowed,

because they may require respiratory assistance or have an infec-

tion or other clinical condition that could be exacerbated by dis-

charge, thereby increasing the mortality risk. 

Maximum likelihood estimation is the most common approach

for fitting phase-type distributions [27] . Phase-type distributions

can be fitted using Function phtMCMC2 of the “Phase Type” pack-
ge implemented in [125] , which performs Bayesian inference of

he rate parameters of the latent continuous-time Markov chain,

here the generator has some fixed structure. 

Simulating advance notice of scheduled surgeries. Periodically, the

CU is notified of planned surgeries that will require the patient’s

dmission. We denote this information by W = ( w 1 , . . . , w T ) ,

here w i represents the number of planned arrivals from surgery

or day i within the surgery-planning time horizon T . The value

f T can differ between hospitals. As an example, in the hospi-

al which employs one of the co-authors [8] , this happens at the

nd of Friday mornings, when notification of the surgery sched-

le for the whole of the following week is given. Thus, W =
( w 1 , . . . , w 7 ) , where w 1 denotes the number of planned arrivals

rom surgery for Monday and w 7 those for the following Sun-

ay. On Monday morning, physicians know the number of pa-

ients due to arrive from elective surgery for Monday through

o Sunday, while, on Thursday morning, they know only those

or Thursday through to Sunday. Thus, on day j , ICU physicians

ave notice of planned arrivals ( w j , . . . , w T ) and discharge deci-

ions will be made based on planned arrivals from surgery on cur-

ent day j and several days ahead. This information is denoted by

X = ( x 1 , . . . , x h ) . 

The arrival of this information counts as an event in the sim-

lation model and requires simulation of arrivals from elective

urgery during the next period. This information will be used to

ake patient discharge decisions. 

Representing the decision-making process. The decision-making

akes into account the number of occupied beds (denoted by y) ,

atients’ health status (denoted by states S i for each patient i =
 , . . . , y ) , and the number of planned admissions from elective

urgery, denoted by vector X . At the time of a discharge decision,

ll patients with health status described as “full recovery” (absorb-

ng state A ) begin their discharge process. The bed occupancy level

 is updated, and all patients i with health status S i = k, ∀ k ∈ DS,

re sequentially considered for early discharge, starting with those
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Table 2 

Input data required to run the simulation model. 

Simulation model inputs 

Patient data 

Patient type by nature of illness and other personal characteristics 

Emergency patient arrival pattern 

Arrival pattern for elective surgery patients 

LoS for each type of patient: phase-type distributions 

ICU facility data 

Number of beds 

ICU management data 

Renewal period for advance notice of elective surgery schedule 

Discharge decision times and probabilities of early discharge decisions 

Discharge setup times 
ith the best health status. The discharge decision can be modeled

s a binary function of y and vector X , that is, 

 k ( y, X ) = 

{
1 i f patient in state k is early discharged 
0 otherwise 

(1) 

When the result is an early discharge, the bed occupancy level

 is updated and the next patient in state k ∈ DS is considered for

arly discharge. Observe that a coherent discharge policy must ver-

fy the following monotonicity relations: 

 k ( y, X ) ≥ B k ′ ( y, X ) , ∀ health status k ′ ∈ DS considered worse than k

 k ( y, X ) ≥ B k 

(
y ′ , X 

)
, ∀ y ′ < y 

 k ( y, X ) ≥ B k ( y, X 

′ ) , ∀ X ≥ X 

′ ( componentwise ) 

The binary representation of the patient discharge decision can

e shifted to a probabilistic framework. We define p k ( y , X ) as the

robability of discharge for a patient in state k ∈ DS when y beds

re occupied and future admissions from elective surgery are de-

cribed by X . That is, p k ( y, X ) = P { B k ( y, X ) = 1 } . In this case the

ischarge decision is implemented in the simulation model as fol-

ows: 

Sequentially and in decreasing order of health status, each pa-

ient in state k ∈ DS is subjected to a discharge/no discharge test

hich is performed by drawing a random number u from a uni-

orm (0,1) distribution and comparing it with the patient’s proba-

ility of discharge, p k ( y , X ): 

f u ≤ p k ( y, X ) The patient is early discharged 

f u > p k ( y, X ) The patient remains in the ICU 

As before, when the result is an early discharge, the bed oc-

upancy level y is updated, discharge probabilities for subsequent

atients are recalculated, and the test procedure is iterated with

he remaining patients in state k ∈ DS . The monotonicity conditions

or discharge are also applied here. Fig. 2 outlines the simulation

f the discharge decisions. 

Other details and the practical implementation of the simula-

ion model. Patients arrive from elective surgery during certain

ime windows; one in the early afternoon for interventions per-

ormed before noon and another for those performed in the after-

oon/evening. The times at which discharge decisions are made are

onsidered as new events in the discrete event simulation model.

hese events trigger a decision as to how many and which patients

re to be discharged. 

Once discharge has been decided, the setup time for transfer

o a ward begins, and the future event (effective patient discharge

nd the beginning of the preparation of the bed for the new ar-

ival) is generated. Patients who die in the ICU are discharged im-

ediately or following organ extraction in the case of donations

the event indicating the end of this process is also generated).

nce the setup time (or organ extraction) is complete, the patient

eaves the ICU, and the event indicating the end of the setup time

o prepare the bed for a new arrival is generated. Once this occurs,

he bed is ready for a new patient. 

Summing up, the discrete-event simulation model has now

een enhanced by including the following events: patient arrivals;

ischarge decision times; effective patient discharge from ICU; end

f preparation time for a newly available bed; reception of the

urgery schedule; and patient health status transitions. Fig. 3 out-

ines the simulation model. 

Construction of the simulation model requires the collection

f data for estimating model inputs, which are summarized in

able 2 . Databases with electronic records of ICU patients include
rrival and personal and medical details for each patient. A sta-

istical analysis of these data enables determination of the best-

t probability distribution for the arrival patterns and the LoS

phase-type distributions) for each type of patient. The number

f beds is obtained from ICU facility data. ICU physicians provide

anagement information including details of the procedure, team-

ork, communication with other hospital departments, and orga-

izational factors relating to actual discharge practices, for use in

odeling periodic advance notice of arrivals from elective surgery,

ischarge setup-times, decision times and probabilities of early dis-

harge. 

.3. Patient discharge policies 

A discharge policy is a set of rules to guide patient discharge

ecisions in any ICU situation (bed occupancy level, patient health

tatus and surgery schedule). In the previous section, discharge

olicies were denoted by the set of binary variables { B k ( y , X )} or

he set { p k ( y , X )}. The new simulation model is valid for testing dif-

erent discharge policies by measuring ICU performance by the key

erformance indicators (KPI), based on, for example, the patient re-

ection and early discharge rates [77] . 

By comparing the KPIs of several simulated discharge policies,

CU physicians should, in theory, be able to identify the best ICU

anagement strategy. In reality, however, the continuity of the

ariables { p k ( y , X )} makes this impossible, because the number of

ossible discharge policies is huge, or even infinite. We propose

n optimization model for generating optimal discharge policies,

hich is solved by combining the simulation model with an opti-

ization procedure. 

The discharge probabilities should depend, as explained in

ection 3.2 , on patient health status k ∈ DS , the number y of oc-

upied beds, and the number of planned arrivals from elective

urgery denoted by X . That is, the probability is a function of all

hese values: p k ( y, X ) = f k ( y, X ) . 

We propose a logistic function to link the discharge probability

o its influencing factors: 

p k ( y, X ) = 

1 

1 + exp 

(
−β( 1 , Z ) 

′ ) (2) 

here β is the row-vector of the coefficients and Z is the row-

ector of the predictors, built upon the bed occupancy level y

nd on planned arrivals from surgery for h days ahead X =
( x 1 , . . . , x h ) . 

Several possible formulations fit this general logistic

ramework. For example, the following formulation with

 in = x i 1 { y = n } includes the variable bed occupancy level, which

nteracts with the surgical patient arrival schedule. 

( 1 , Z ) 
′ = β0 + 

h ∑ 

i =1 

c ∑ 

n = r 
βin Z in = β0 + 

h ∑ 

i =1 

c ∑ 

n = r 
βin x i 1 { y = n } (3) 
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Fig. 2. Simulation of discharge decisions. 
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where c is the number of beds in the ICU and r is the high-

occupancy threshold for possible early discharges. 

The logistic link function enables assessment of the odds of

shortening the length of stay of a patient according both to the ICU

occupancy level and the number of planned arrivals from elective

surgery. 

Using this representation of the discharge probabilities, the op-

timization problem involves finding the best values for the param-

eters β in the proposed logistic formulation in order to optimize

two conflicting objective functions: the minimization of patient re-

jection due to full occupancy and the minimization of LoS reduc-

tion. The first is denoted by Min P R and the second is formulated

as the maximization of expected LoS, Max E[LoS]. The decision vari-

ables are the vector β ∈ R 

n . The optimization problem can be for-

mulated as follows: 

min 

β
P R 

max 
β

E [ LoS ] 

Subject to 

{
p k ( y, X ) = 

1 

1+ exp ( −β( 1 , Z ) 
′ ) 

β ∈ R 

n 

(4)

where β(1, Z ) ′ is defined in (3) . 
We transform this bi-objective optimization problem into a

ingle-objective problem by using the ε-constraint method: 

 [ ε ] max 
β

E [ LoS ] 

ubject to 

⎧ ⎨ 

⎩ 

p k ( y, X ) = 

1 

1+ exp ( −β( 1 , Z ) 
′ ) 

P R ≤ ε 
β ∈ R 

n 

(5)

This optimization problem cannot be solved by means of non-

inear optimization methods because neither the objective function

[LoS] nor P R in ε-constraint can be expressed in terms of the de-

ision variables β. Thus, we solve this problem with simulation-

ased optimization methodology, in which the simulation model

roposed in the above section is used as an evaluator of possible

olutions to the optimization problem, as follows. The optimiza-

ion procedure starts with an initial set of values for the vector

f decision variables β (denoted by β(0) ), and an initial value for

he patient discharge probabilities. Every iteration i involves the

ollowing procedure. The ICU is simulated with patient discharge

robabilities calculated using β( i ) . The output of this simulation

nables assessment of the objective function E[LoS] (i) and verifi-

ation of the upper bound constraint of P R 
(i) ≤ ɛ on the probability

f patient-rejection (that is, whether β( i ) is a feasible or infeasi-

le solution). Using this information and its own search method,

he optimization procedure decides the next solution β( i+1 ) to be

valuated by running the ICU-simulation model with the patient
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Fig. 3. ICU simulation model. 
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ischarge probabilities calculated with β( i+1 ) . This process con-

inues until the stopping conditions of the optimization method

re met, thus providing the best solution, β∗. Fig. 4 depicts the

imulation-optimization procedure. Observe that the above de-

cription and Fig. 4 provide an overall view of the optimization

rocedure, which could be implemented with various adequately-

arameterized heuristic algorithms. In the illustrative example pre-

ented in Section 4 , this optimization problem is solved using a

earch-engine based on the scatter-search heuristic procedure [70] .

. Experimental results 

This simulation-optimization framework for generating opera-

ive discharge policies is illustrated for a 20-bed ICU based on a

eal case analyzed by the authors in previous studies [8,78] , with

rrival patterns, LoS, discharge process and discharge decisions as

escribed below. 

Arrival process. Two types of patients are considered, each with

 different arrival pattern: Markovian for unscheduled patients and

on-Markovian for elective surgery patients. Unscheduled patient

rrivals occur daily, round the clock, according to a Poisson Process

ith λ = 1.11 patients/day. Elective surgeries are usually performed

onday to Friday, and elective patients arrive in the late morn-

ng or early afternoon. There are no elective surgeries at weekends.

he daily number of arrivals from elective surgery has the follow-

ng random distribution: no arrivals with a probability of 0.2, one

atient with a probability of 0.6, and two arrivals with a proba-
 t  
ility of 0.2. It is assumed that ICU physicians have reliable, 3-day

dvance notice of the number of patients due to arrive from elec-

ive surgery. 

Discharge process. The simulation model assumes that discharge

ecisions are made twice a day (8 am. and 4 pm.), as in the real-

orld environment. Discharge setup times are also considered:

nif [2,4] distribution, in hours, representing the time required for

he discharged patient’s transfer process (which includes adminis-

rative paperwork, the resolution of bed-block issues, and contact-

ng the family) and Unif [1,2] hours to prepare the bed for a new

rrival. 

Patient LoS. Phase-type distributions with 5 states and the ab-

orbing state are used to model patients’ LoS. The states of the

hase-type distributions represent different patient health statuses,

nd only patients in state five are assumed sufficiently recovered to

e considered for premature discharge (DS = {5}). Different tran-

ition probability matrices are used to model the LoS of each type

f patient and exitus/non-exitus cases. Fig. 5 depicts the states of

he phase-type distribution and transition probabilities for non-

xitus unscheduled patients. The expected times in phases 1–5 are

, 6, 2, 2 and 2 days, respectively (exponential distributions). Fig. 6

hows the transition matrices for the two types of patients and the

xitus/non-exitus cases. 

Discharge decisions. Discharge decisions are modeled in terms

f early discharge probabilities, represented by the following linear

art of the logistic function where y represents the bed occupancy

evel ( y = 0,1,…,20), 18 beds is the high occupancy threshold, and

he number of planned elective surgery arrivals is known 3-days
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Fig. 4. Simulation-optimization procedure to generate patient discharge probabili- 

ties. 

 

 

 

 

 

 

Table 3 

Optimal solutions for the β parameters, obtained by solving the optimization prob- 

lem defined in (5) , with the linear part of the logistic function defined in (6) , and 

considering three levels of patient rejection due to a full ICU ( ε = 6%, 4.5%, 3%). 

Decision variables 

Percentage of patient rejections 

ε = 6% ε = 4.5% ε = 3% 

β0 -17.2 -10 -10 

β1 7.45 8.65 18.4 

β2 4.65 6.45 18.4 

β3 0 3.8 18.4 

β4 7.45 6.45 18.4 

β5 2.3 6.45 18.4 

β6 0.25 2.65 15.55 

β7 0.25 6.45 15.55 

β8 0.2 0.5 12.75 

β9 0 0.5 4.1 

E[LoS] 9.21 9.08 8.86 
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in advance. 

β( 1 , Z ) 
′ = β0 + 

3 ∑ 

i =1 

20 ∑ 

n =18 

βin Z in 

= β0 + β1 x 1 1 { y =20 } + β2 x 1 1 { y =19 } + β3 x 1 1 { y =18 } 
+ β4 x 2 1 { y =20 } + β5 x 2 1 { y =19 } + β6 x 2 1 { y =18 } 
+ β7 x 3 1 { y =20 } + β8 x 3 1 { y =19 } + β9 x 3 1 { y =18 } (6)

Optimization problem . Parameters β = ( β0 , . . . , β9 ) are calcu-

lated by solving the optimization problem defined in (5) , where

β constitutes the vector of decision variables. The simulation

model is implemented in ARENA software, and the optimization

problem is solved with OptQuest software [70] . At every iteration,
Fig. 5. Non-exitus outpatient LoS phase-type distribution: States 
ptQuest determines one value for the parameter-vector of the

ischarge probabilities β, which is sent to ARENA for assessment.

RENA returns the estimated values for the patient rejection per-

entage and expected LoS. With this information and the list of so-

utions already explored, OptQuest determines the next parameter

alues to be assessed by ARENA. The process continues until the

topping criteria are satisfied. The length of each simulation run

s 200 years with one year as a warm-up period. Each solution is

imulated independently at least three times. This simulation run

ength provides accurate KPI estimations. 

Table 3 depicts the optimal solutions of the P[ ε] optimization

roblem, considering three patient rejection levels due to a full

CU: ε = 6%, 4.5%, 3%. 

Without early discharges, expected LoS and the percentage of

atient rejection have the following values: E[ LoS ] = 9 . 22 days

nd P R = 6.29%. These would be the KPIs for a discharge

olicy B A ( y, X ) = p A ( y, X ) = 1 , where A is the absorbing state

nd B k ( y, X ) = p k ( y, X ) = 0 ∀ k 
 = A . Note that reduction of the per-

entage of patient rejection to 4.5% requires an average LoS reduc-

ion of 1.5% (from 9.22 to 9.08). A greater reduction in the percent-

ge of patient rejection (to 3%) requires a greater LoS reduction

4%). 

We also observe an increase in the beta parameters for the

umber of occupied beds. Monotonicity of the beta parame-

ers also occurs when the patient rejection level decreases. The

mpact of the number of patient arrivals grows as the hori-
of the phase-type distribution and transition probabilities. 
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Fig. 6. Phase-type distributions: Transition matrices for the two patient types, exitus/non-exitus cases and expected time spent in each phase (m i ). 

Fig. 7. Expected discharge probabilities for different bed occupancy levels (18,19,20) 

and percentages of patient rejection (6%, 4.5% and 3%). 
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on draws nearer, as reflected in the monotonicity of the beta

arameters. 

The probability of early discharge is given by the following ex-

ression: 

1 

1 + exp 
(
−
(
β0 + β1 x 1 1 { y =20 } + β2 x 1 1 { y =19 } + β3 x 1 1 { y =18 } + 

For example, for P R = 4.5%, the probability of a patient’s early

ischarge with 19 occupied beds and one, zero and two arrivals

rom elective surgery expected within the next three days is 

p 5 ( 19 , ( 1 , 0 , 2 ) ) = 

1 

1 + exp ( 10 − 6 . 45 × 1 − 0 . 5 × 2 ) 

= 

1 

1 + exp ( 2 . 55 ) 
= 0 . 072 (8) 

Similarly, with 20 and 18 occupied beds, the early discharge

robabilities are 1 and 0.005, respectively. Observe that these dis-

harge probabilities only apply to patients who are sufficiently re-

overed, that is, in state 5 of the phase-type distribution shown in

he illustrative example. 

Table 4 shows the probabilities of discharge for a patient in

tate 5 of the phase-type distribution for the three levels of patient
 β9 x 3 1 { y =18 } 
)) (7) 

ejection, ε = 6%, 4.5%, 3%, with 18, 19 and 20 occupied beds, and

he number of arrivals from elective surgery expected within the

ext 3 days is x i , i = 1,2,3, with x i ∈ {0 , 1, 2}, following the stochastic

attern mentioned in the description of the arrival process. Given

he monotonicity of the discharge probabilities in the beta parame-

ers, the previous assertions regarding the monotonicity of the be-

as are again applicable: discharge probabilities increase with the

umber of occupied beds; as the patient rejection rate decreases,

he discharge probabilities increase; and the impact of the number

f patient arrivals in the nearest time horizons is also reflected in

he monotonicity of the discharge probabilities. 

The cautious discharge policy prevails . The Expected discharge

robabilities for the different occupancy levels (see Table 5 and

ig. 7 ) are derived from the results in Table 4 and the probability

alculus of each elective planned-arrival scenario. The probability

f an early patient discharge increases as more ICU beds are occu-

ied and is increasingly ordered as referral probabilities decrease.

hus, the obtained probabilistic discharge policy matches the cau-

ious policy, which is accepted by physicians as being the closest

o their usual practice. 

Discharge probability must not be seen by physicians as a

oulette wheel, generating a random number indicating whether or

ot to discharge a patient (in other words, it is not a coin-tossing

olicy) but rather a full-occupancy risk score, which would indi-

ate the need to reject a new patient arrival. A frequentist interpre-

ation of probability would be more appropriate here. This point is

urther discussed in the Discussion and Conclusions section. 

As is usual in medical studies, we use the odds ratio (OR) as a

easure of the association between an influencing factor and the

ccurrence of an outcome of interest—the discharge of a patient

n our case. The OR represents the odds that a patient’s discharge

ill occur given exposure to a particular value of an influencing-

actor, compared to the odds of it occurring given exposure to a

eference value of the same influencing-factor. The odds ratio can

lso be used to determine whether a particular exposure is a risk

actor for the discharge of a patient and to compare the magnitude

f various risk factors for that patient’s discharge. OR = 1 means

hat the exposure does not affect the odds of a patient discharge;

R > 1 means that the exposure is associated with higher odds of
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Table 4 

Probability of discharging a patient in state 5 of the phase-type distribution, when 18, 19 and 20 beds are occupied and 

the number of planned arrivals from elective surgery within the next 3 days is X i , i = 1,2,3, with X i ∈ {0, 1, 2}, for three 

levels of patient rejection. 

Planned arrivals from elective 

surgery within the next 3 days 

Percentage of patient rejection 

6% 4.5% 3% 

Bed-occupancy level 

X1 X2 X3 20 19 18 20 19 18 20 19 18 

0 0 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0 0 1 0.000 0.000 0.000 0.028 0.000 0.000 0.996 0.940 0.003 

0 0 2 0.000 0.000 0.000 0.948 0.000 0.000 1.000 1.000 0.142 

0 1 0 0.000 0.000 0.000 0.028 0.028 0.001 1.000 1.000 0.996 

0 1 1 0.000 0.000 0.000 0.948 0.045 0.001 1.000 1.000 1.000 

0 1 2 0.000 0.000 0.000 1.000 0.072 0.002 1.000 1.000 1.000 

0 2 0 0.091 0.000 0.000 0.948 0.948 0.009 1.000 1.000 1.000 

0 2 1 0.114 0.000 0.000 1.000 0.968 0.015 1.000 1.000 1.000 

0 2 2 0.142 0.000 0.000 1.000 0.980 0.024 1.000 1.000 1.000 

1 0 0 0.000 0.000 0.000 0.206 0.028 0.002 1.000 1.000 1.000 

1 0 1 0.000 0.000 0.000 0.994 0.045 0.003 1.000 1.000 1.000 

1 0 2 0.000 0.000 0.000 1.000 0.072 0.005 1.000 1.000 1.000 

1 1 0 0.091 0.000 0.000 0.994 0.948 0.028 1.000 1.000 1.000 

1 1 1 0.114 0.000 0.000 1.000 0.968 0.045 1.000 1.000 1.000 

1 1 2 0.142 0.000 0.000 1.000 0.980 0.072 1.000 1.000 1.000 

1 2 0 0.994 0.000 0.000 1.000 1.000 0.289 1.000 1.000 1.000 

1 2 1 0.996 0.000 0.000 1.000 1.000 0.401 1.000 1.000 1.000 

1 2 2 0.996 0.001 0.000 1.000 1.000 0.525 1.000 1.000 1.000 

2 0 0 0.091 0.000 0.000 0.999 0.948 0.083 1.000 1.000 1.000 

2 0 1 0.114 0.000 0.000 1.000 0.968 0.130 1.000 1.000 1.000 

2 0 2 0.142 0.001 0.000 1.000 0.980 0.198 1.000 1.000 1.000 

2 1 0 0.994 0.004 0.000 1.000 1.000 0.562 1.000 1.000 1.000 

2 1 1 0.996 0.004 0.000 1.000 1.000 0.679 1.000 1.000 1.000 

2 1 2 0.996 0.005 0.000 1.000 1.000 0.777 1.000 1.000 1.000 

2 2 0 1.000 0.036 0.000 1.000 1.000 0.948 1.000 1.000 1.000 

2 2 1 1.000 0.043 0.000 1.000 1.000 0.968 1.000 1.000 1.000 

2 2 2 1.000 0.052 0.000 1.000 1.000 0.980 1.000 1.000 1.000 

Table 5 

The cautious discharge policy prevails: Calculus of the expected discharge probabilities with 18, 19 and 20 occupied beds, for three levels of patient rejection 

(6%, 4.5% and 3%). 

Probabilities of each 

planned- arrival scenario 

Planned arrivals from 

elective surgery within 

the next 3 days 

Percentage of patient rejection 

6% 4.5% 3% 

Bed-occupancy level 

X1 X2 X3 20 19 18 20 19 18 20 19 18 

0.0720 0 0 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.1131 0 0 1 0.000 0.000 0.000 0.028 0.000 0.000 0.996 0.940 0.003 

… … … … … … … … … … … … …

0.0274 0 2 1 0.114 0.000 0.000 1.000 0.968 0.015 1.000 1.000 1.000 

0.0091 0 2 2 0.142 0.000 0.000 1.000 0.980 0.024 1.000 1.000 1.000 

0.1131 1 0 0 0.000 0.000 0.000 0.206 0.028 0.002 1.000 1.000 1.000 

0.0309 1 0 1 0.000 0.000 0.000 0.994 0.045 0.003 1.000 1.000 1.000 

… … … … … … … … … … … … …

0.0309 1 2 1 0.996 0.000 0.000 1.000 1.000 0.401 1.000 1.000 1.000 

0.0103 1 2 2 0.996 0.001 0.000 1.000 1.000 0.525 1.000 1.000 1.000 

0.0091 2 0 0 0.091 0.000 0.000 0.999 0.948 0.083 1.000 1.000 1.000 

0.0389 2 0 1 0.114 0.000 0.000 1.000 0.968 0.130 1.000 1.000 1.000 

… … … … … … … … … … … … …

0.0103 2 2 1 1.000 0.043 0.000 1.000 1.000 0.968 1.000 1.000 1.000 

0.0034 2 2 2 1.000 0.052 0.000 1.000 1.000 0.980 1.000 1.000 1.000 

Expected discharge probabilities 0.1933 0.0013 0.0000 0.6771 0.4693 0.1086 0.9275 0.9212 0.7826 

  

o  

t  

r

a patient discharge; and OR < 1 means that exposure is associated

with lower odds of a patient discharge. 

For example, in the case of bed occupancy level y = 18, 

P ( Discharge | Y = 18 , (n, x 2 , x 3 ) ) /P ( No Discharge | Y = 18 , (n, x 2 , x 3 ) ) 

P ( Discharge | Y = 18 , (n − 1 , x 2 , x 3 ) ) /P ( No Discharge | Y = 18 , (n − 1 , x 2 , x 3 ) ) 

= exp ( β3 ) 
Thus, with patient rejection at 4.5% and bed occupancy at 18,

ne new arrival within the next 24 h multiplies the odds of a pa-

ient discharge by 44.7. These odds drop to 1 in the 6% patient-

ejection scenario. 
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When bed occupancy increases from 18 to 19 and ( x 1 ,0,0)

cheduled arrivals are planned within the following few days, the

stimated OR is 

P ( Discharge | Y =19 , ( x 1 , 0 , 0 ) ) /P ( No Discharge | Y =19 , ( x 1 , 0 , 0 ) ) 

P ( Discharge | Y =18 , ( x 1 , 0 , 0 ) ) /P ( No Discharge | Y =18 , ( x 1 , 0 , 0 ) ) 

= exp ( x 1 ( β2 − β3 ) ) 

Then, with patient rejection at 4.5%, a change in ICU bed occu-

ancy from 18 to 19 multiplies the odds of a patient discharge by

4.15, assuming (1,0,0) scheduled arrivals for the next three days.

he estimated OR values increase to 104.6 when (2,0,0) scheduled

rrivals are expected. In the 6% patient-rejection scenario, the ex-

osure does not affect the odds. 

. Discussion and conclusions 

This paper offers a thorough review of the medical and the

athematical literature with particular attention to physicians’ ICU

ed management practices. The medical literature highlights the

xisting ICU saturation problem and its patient health implica-

ions, and describes the triage of current ICU patients. Early pa-

ient discharge has become an ICU management tool with physi-

ians trying to strike a balance between the rate of patient re-

ection due to a full ICU and the degree of LoS reduction for pa-

ients already admitted. The medical literature also describes the

atient discharge process, which involves physicians from other

nits and the patient’s family and can take several hours. This

escription is important because it prevents consideration of the

ubstitution of one patient with another in an ICU bed from be-

oming an instantaneous process. However, most of the math-

matical models found in the literature treat such an exchange

f patients as an instantaneous event. While focusing on ob-

aining an accurate representation of the stochasticity of the pa-

ient arrival process and patient LoS, these models neglect the

ntire discharge process. This is no minor issue because it im-

lies a poor representation of the discharge decisions made prior

o the arrival of new patients in need of the beds made avail-

ble by discharging others. None of the queuing theory models

r other stochastic models which appear in the mathematical lit-

rature includes this anticipation. Thus, the management policies

xamined in mathematical models are aggressive; since they con-

ider only the triage of the last bed and disregard the pressure

n physicians working close to full capacity. Any model of ICU

hysician discharge decisions must include the bed requirements

f planned arrivals from elective surgery, which make it neces-

ary for early discharge decisions to be made in advance of full

ccupancy. 

The simulation model presented in this paper bridges the gap

etween the real-world patient discharge process and how it is

odeled in the mathematical literature. The new framework pre-

ented here not only reflects the discharge process as it actually

ccurs but also takes into account that not every patient in the

CU is eligible for early discharge. In the real world, patient dis-

harge is based exclusively on clinical criteria and the possibility

f discharge is considered only when the patient is considered sta-

le and under no health risk if transferred to a lower level of care.

hen mathematically modeling the underlying dynamics of the

ecovery process, LoS is represented by a phase-type distribution

n which patient health status is indicated by the different states,

ome of which contraindicate patient discharge. This type of model

s closer to clinical reality since individual discharge decisions are
ased on health indicators rather than other criteria, such as the

xpected remaining LoS or the probability of readmission, which

o not determine whether the patient is stable enough for transfer

o a unit with lower staffing. 

This new simulation framework enables a more accurate anal-

sis of discharge policies by testing them in a more realistic en-

ironment. It also serves to obtain optimal discharge policies (or

ather, efficient ones, given that there are two conflicting objec-

ives), by parameterizing them as a function of the number of oc-

upied beds and the number of planned arrivals from surgery. 

In this study, physicians are assumed to have reliable advance

otice of the number of patients due to arrive from elective

urgery. Occasionally, however, some such patients may not ulti-

ately require an ICU-bed for one of several reasons (for exam-

le, a change in the patient’s health status —nosocomial infection,

eri–operative myocardial infarction or even death—, technical or

perational problems in the operating theater, a shortage of theater

ime, a change in the surgery schedule or the cancelation of elec-

ive surgeries to accommodate emergency surgery) [2] . By way of

xample, in the hospital which employs one of the co-authors, can-

elations are usually filled by drawing patients with similar needs

rom the waiting list and the percentage of cancelations of planned

urgeries within a 24-h period is less than 1%. The probability of

ancelation could be easily incorporated into the simulation model.

ensitivity analysis could be used to assess how the optimal dis-

harge policy is influenced by the fact that cancelations create un-

ertainty about the number of surgical arrivals. 

The discharge policies indicate the patient discharge probabili-

ies in any given ICU situation and for any ICU patient health sta-

us required to meet a certain target rejection rate and minimize

oS reduction. These probabilities are interpreted by physicians as

ressure to discharge patients early in order to avoid saturation.

he greater the probability, the greater the need for an early dis-

harge in order to comply with the target rejection rate. 

A frequentist interpretation of probability would say that, in

urrent conditions, physicians should resort to early discharge at

 rate equal to that probability. Thus, a discharge probability score

f 0.4 would mean that early discharge should take place on 40%

f the occasions that current conditions prevail. 

The interpretation of the discharge probability score as

pressure-to-discharge” brings the optimal discharge policy into 

ine with the cautious policy used by physicians in practice. There-

ore, this result validates our proposed simulation framework,

hich reproduces real-world ICU patient flow, tested on real in-

ut data. This simulation framework generates optimal strategies

atching those considered best and commonly used by physicians,

hich outperform the optimal strategies generated by queuing-

ased simulation models. 

As mentioned in the introduction, the dilemma of the last bed

xtends to all beds when doctors are under pressure due to ICU

aturation. 
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Table A1 

Medical literature concerning issues relating to ICU physicians’ bed management decisions. 

MEDICAL LITERATURE REVIEW 

Publication Period Country Type of ICUs Research objective Research design Conclusion Category 

Baker et al. [7] 2006–2007 USA 22-bed adult 

neurosciences ICU 

To determine whether high 

ICU inflow volumes are 

associated with unplanned 

readmissions 

Retrospective comparative 

analysis. Statistical 

analysis 

Days with high ICU inflow 

volumes were significantly 

associated with subsequent 

unplanned readmissions 

Health risk-Readmission 

Beck et al. [10] 1996–2000 Germany 9-bed general ICU To assess the effects of 

discharge TISS scores, 

discharge time and type of 

discharge facility on 

ultimate hospital mortality 

after intensive care 

Retrospective cohort study. 

Statistical analysis 

Premature ICU discharge was 

associated with increased 

mortality. Intermediate care 

reduced mortality in 

patients prematurely 

discharged 

Health risk- Hospital 

mortality 

Chen et al. [18] 1995–1996 Canada 3 ICUs of two teaching 

hospitals and 4 ICUs of 4 

community hospitals 

To determine the clinical 

features and outcomes of 

patients readmitted to the 

ICU during the same 

hospital stay and the causes 

for these readmissions 

Retrospective, multicenter, 

cohort study. Statistical 

analysis 

Readmitted patients have a 

high risk of hospital death 

Health risk- Hospital 

mortality 

Chrusch et al. [20] 1989–1996 Canada Tertiary care teaching 

hospital 

To determine whether a bed 

shortage was leading to 

premature patient discharge 

and subsequent early 

readmission or death 

Prospective cohort study. 

Statistical analysis 

Increased patient occupancy is 

associated with an increased 

risk of early death or 

readmission post 

ICU-discharge. Overloading 

ICU capacity may affect 

physician decision-making, 

resulting in premature 

discharge 

Health risk- Readmission 

and hospital mortality 

Daly et al. [24] 1989–1998 United Kingdom 13-bed ICU at Guy’s 

hospital and 19 UK ICUs 

(Riyadh ICU program 

users group, RIPUG) 

To reduce mortality after 

discharge 

Multiple-center, 

prospective cohort 

study. Statistical analysis 

The discharge mortality of at 

risk patients can be reduced 

by 39% if they remain in ICU 

for a further 48 h. The 

discharge triage model for 

identifying patients at risk 

from too early discharge 

may help doctors to make 

the difficult clinical decision 

of whom to discharge to 

make room for a patient 

requiring urgent admission 

Health risk 

Durbin et al. [29] 18-month period 

(1993) 

USA 8-bed medical and 16-bed 

surgical ICU in a 

650-bed university 

hospital 

To determine the 

characteristics of patients 

requiring readmission to an 

ICU 

Retrospective, case-control 

chart review 

Readmission to an ICU carries 

a high risk of mortality and 

increased length of stay and 

may represent premature 

discharge in at least 30% of 

patients 

Health risk- Hospital 

Mortality and length of 

stay 

Elliot et al. [30] 2007 Australia 12-bed general ICU in a 

500-bed tertiary referral 

hospital 

To identify and describe the 

experiences and perceptions 

of nurses regarding the 

contributing factors of ICU 

readmissions 

Early discharge of clinically 

unstable patients creates 

issues around workload and 

challenges ward staff. It also 

increases the likelihood of 

patients being readmitted 

Health risk-Readmission 

( continued on next page ) 
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Table A1 ( continued ) 

MEDICAL LITERATURE REVIEW 

Publication Period Country Type of ICUs Research objective Research design Conclusion Category 

Franklin et al. [37] 1979–1980, 

(1year) 

USA Medical ICU To identify those patients 

most likely to be readmitted 

to a Medical ICU 

Retrospective cohort study. 

Statistical analysis 

To delineate diseases, 

medications, and 

complications which may 

predict the high-risk 

discharge from MICU 

Define better discharge 

strategies 

Frost et al. [39] 1997–2007 Australia 24-bed ICU To develop a prediction model 

using an inception cohort of 

patients surviving an initial 

ICU stay to determine the 

risk of readmission to the 

ICU during the same 

hospital stay 

Statistical analysis Discharge after-hours was 

associated with a higher risk 

of readmission to the ICU 

Health risk-Readmission 

Gantner et al. [40] . 2005–2012 Australia Data from the Australian 

and New Zealand 

Intensive Care Society 

Adult Patient Database 

To examine trends over time 

in discharge timing and 

contemporary associations 

with mortality and 

readmission 

Multiple-center, 

retrospective cohort 

study Statistical analysis 

After-hours discharge remains 

an important independent 

predictor of hospital 

mortality and readmission 

Health risk- Readmission 

and hospital mortality 

Goldfrad et al. [42] 1988–90 and 

1995–98 

United Kingdom 26 ICUs in the first period 

and 62 ICUS in the 

second period 

To determine discharge at 

night as a proxy measure to 

investigate pressure 

Multiple-center, 

prospective cohort 

study. Statistical analysis 

Night discharges are 

increasing in the UK 

Premature discharge in 

lack of bed 

Goldhill et al. [43] 1992–1996 United Kingdom 24 ICUs To identify priorities for ICU 

intervention and research 

Multiple-center, 

retrospective cohort 

study. Statistical analysis 

Many patients die after 

discharge from ICU and this 

mortality may be decreased 

by minimizing inappropriate 

early discharge to the ward 

Premature discharge in 

lack of bed 

Kim et al. [66] 2013–14 (15 

months) 

USA 36-bed medical and 

21-bed surgical ICU at a 

teaching hospital 

To study whether workload 

has an impact on a direct 

measure of the health status 

of discharged patients 

Multiple-center, 

retrospective cohort 

study. Econometric 

model 

More acutely ill patients are 

discharged when ICU 

occupancy levels are high 

Health risk 

Kramer et al. [68] 2002–2010 USA One hundred five ICUs at 

46 hospitals 

To examine the association 

between ICU readmission 

rates and case-mix-adjusted 

outcomes 

Multiple-center, 

retrospective cohort 

study. Statistical analysis 

Patients readmitted to ICUs 

have increased hospital 

mortality and lengths of stay 

Health risk- Readmission 

and hospital mortality 

Moreno et al. [86] 1997–1998 Spain Database of the EURICUS-II 

study, 44 ICUs, 10 

European countries and 

4621 patients 

To examine whether post-ICU 

discharge mortality is 

associated with the presence 

and severity of organ 

dysfunction/failure just 

before ICU discharge 

Multiple-center, 

prospective cohort 

study. Statistical analysis 

It is better to delay the 

discharge of a patient with 

organ dysfunction/failure 

from the ICU, unless 

adequate monitoring and 

therapeutic resources are 

available in the ward 

Health risk 

Nates et al. [87] 2016 To update the Society of 

Critical Care Medicine’s 

guidelines for ICU 

admission, discharge, and 

triage, providing a 

framework for clinical 

practice, the development of 

institutional policies, and 

further research 

Revision of the literature 

to develop these 

guidelines 

These recommendations 

provide a comprehensive 

framework to guide 

practitioners in making 

informed decisions during 

the admission, discharge, 

and triage process as well as 

in resolving issues of no 

beneficial treatment and 

rationing 

Define better discharge 

strategies 

( continued on next page ) 
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Table A1 ( continued ) 

MEDICAL LITERATURE REVIEW 

Publication Period Country Type of ICUs Research objective Research design Conclusion Category 

Ouanes et al. [90] 1998–2008 French 4 ICUs To identify independent risk 

factors for early post-ICU 

readmission or death and to 

construct a prediction model 

Multiple-center, 

retrospective cohort 

study. Statistical analysis 

Independent risk factors were 

indicators of patients’ 

severity and discharge at 

night (a marker of bed 

shortage) 

Health risk- Readmission 

and hospital mortality 

Priestap et al. [93] 2001–2004 Canada 31 ICUs of community and 

teaching hospitals 

To determine the impact of 

night-time discharge on 

patient outcome 

Multiple-center, 

retrospective cohort 

study. Statistical analysis 

Patients discharged at night 

have a higher risk of 

mortality than those 

discharged during the day 

Health risk- Hospital 

mortality 

Rodríguez-Carvajal 

et al. [101] 

2000–2005 Spain A 10-bed general ICU in a 

community hospital 

To determine the frequency 

and to evaluate the 

relationship between 

premature discharge and 

post-ICU hospital mortality 

Retrospective cohort study. 

Statistical analysis 

Premature discharges appear 

to be common in our setting 

and have a significant 

impact on mortality 

Health risk- Hospital 

mortality 

Rosenberg et al. 

[102] 

2000 USA To evaluate the causes, risk 

factors, and mortality rates 

associated with unexpected 

ICU-readmissions 

Review article ICU readmission is associated 

with dramatically higher 

hospital mortality 

Health risk- Hospital 

mortality 

Singh et al. [106] 2004–2006 Australia ICU in a tertiary care 

teaching hospital 

To assess the frequency of 

after-hours discharge of 

patients and its effect on 

in-hospital mortality 

Retrospective cohort study. 

Statistical analysis 

Discharge after-hours was 

associated with a higher risk 

of in-hospital mortality than 

discharge during work hours 

Health risk- Hospital 

mortality 

Sprung et al. [109] 2013 Europe To provide an updated 

consensus statement on the 

principles and 

recommendations for 

patient triage 

Review article Consensus was reached for 

most general and specific 

ICU triage principles and 

recommendations 

Discharge strategies 

Tobin et al. [114] 1992–2002 Australia A 16-bed ICU in a 400-bed 

tertiary referral hospital 

To determine the impact of 

time of discharge on 

subsequent hospital 

mortality 

Retrospective cohort study. 

Statistical analysis 

More patients are being 

discharged in the afternoon 

and night suggesting 

increasing pressure on ICU 

beds. Patients discharged on 

these shifts have a higher 

mortality risk 

Premature discharge in 

lack of bed 

Yoon et al. [122] 2000–2002 Korea 34 beds of two 

medical-surgical units 

To evaluate the effect of 

intensivists’ discharge 

decision-making on 

readmission to ICU 

Prospective and 

retrospective cohort 

study. Statistical analysis 

The readmission rate was 

lower when intensivists 

participated in the discharge 

decision-making 

Discharge strategies 
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Table A2 

ICU-modeling literature: Study objectives, quantitative tools used and elements included in the modeling of the discharge process. 

Publication Type of 

literature 

Objective Quantitative tools Elements considered in modeling the discharge process 

Early discharge Occupancy level Health status Discharge decision 

times 

Discharge process 

times 

Planned scheduled 

arrivals 

Anderson et al. [3] Math How occupation affects 

discharge rate and LoS 

Survival analysis Y Y N N N Y 

Azcárate et al. [4] Math Calibrate the simulation model Optimization Simulation Y Y N Y N N 

Barado et al. [8] Medical Capacity planning Simulation Y N N Y N N 

Bowers [12] Math Capacity planning Simulation N N N N N N 

Chan et al. [18] Math Discharge policy that 

minimizes cost associated 

with early discharge 

Dynamic optimization Y ∗ Y Y N N N 

Costa et al. [23] Medical Capacity planning Simulation N N N N N N 

Dobson et al. [26] Math To predict performance (in 

terms of bumping) under 

different arrival pattern and 

capacity 

Markov chain Y ∗ Y Y ∗ Y N N 

Griffiths et al. [47] Math Bed-management Simulation N Y N N N N 

Griffiths et al. [48] Math Bed-management Queuing theory N N N N N N 

Griffiths et al. [49] Math Minimize nursing staff cost Simulation N N N N N N 

Hosseinifardet al. 

[56] 

Math Minimize ICU-load resulting 

from readmission of 

early-discharge patients 

Stochastic dynamic 

problem solved by 

optimization–simulation 

Y ∗ N Y ∗ N N N 

Kc et al. [62] . Math Estimate the impact of 

occupancy on LoS and 

readmission 

Statistical analysis Y ∗ N N N N N 

Kim et al. [63] Math Capacity planning Queuing theory Simulation N N N N N N 

Kim et al. [64] Math Minimize the number of 

canceled surgeries by means 

of bed-reservation schemes 

Simulation N N N N N N 

Kolker [67] Medical Maximize the number of 

elective surgeries scheduled 

per day in order to reduce 

ICU-diversion 

Simulation N N N N N Y 

Li et al. [72] Math To determine the best policy 

to allocate beds to different 

classes of patients by 

reducing premature 

discharge costs 

Dynamic Programming Y ∗ Y Y N Y N 

( continued on next page ) 
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Table A2 ( continued ) 

Publication Type of 

literature 

Objective Quantitative tools Elements considered in modeling the discharge process 

Early discharge Occupancy level Health status Discharge decision 

times 

Discharge process 

times 

Planned scheduled 

arrivals 

Litvack et al. [74] Math Capacity planning Queuing theory N N N N N N 

Mallor et al. [76] Math Minimize patient rejection and 

LoS reduction 

Queuing theory 

Optimization 

Y Y Y N N N 

Mallor et al. [77] Math Minimize patient rejection and 

LoS reduction 

Queuing theory 

Optimization-based 

simulation 

Y Y Y N N N 

Mallor et al. [78] Math Capacity planning Simulation Y Y N N Y N 

Marmor et al. [79] Math Capacity planning Simulation N N N N N N 

Masterson et al. 

[81] 

Math Capacity planning Simulation N N N N N N 

McManus et al. 

[83] 

Medical Capacity planning Queuing theory N N N N N N 

Nguyem et al. [89] Medical Capacity planning Simulation N N N N N N 

Ridge et al. [98] Math Capacity planning Simulation N N N N N N 

Pearson et al. [91] Medical Capacity planning Simulation N N N N N N 

Rodrigues et al. 

[100] 

Math Capacity planning Simulation N N N N N N 

Shahani et al. 

[103] 

Medical Capacity planning Simulation N N N N N N 

Shmueli et al. 

[104] 

Math Determine the best admission 

policy to maximize the 

expected survival benefit 

Queuing theory N N N N N N 

Steins et al. [110] Medical Capacity planning Simulation N Y N N N Y 

Troy et al. [115] Medical Capacity planning Simulation N N N N N Y 

Yang et al. [121] Medical Determine the best 

elective-admission policy to 

minimize surgery 

cancelations 

Simulation N Y N N N N 

Zhuet al. [124] Medical Capacity planning Simulation N Y N N N N 

Early discharge: Y ∗: only if full ICU. 

Health status: Y ∗: through probability properties of LoS and/or readmission probability. 
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