
A Dynamic Model of COVID-19: Contagion and 

Implications of Isolation Enforcement 
 

 

 

          Miguel Casares                                      Hashmat Khan 

Universidad Pública de Navarra               Carleton University 

 

 

 

 

Working Paper 

D.T. 2001 

 

 

 

 Departamento de Economía 

Universidad Pública de Navarra 

 

 

 

 

 

 

 

 



A Dynamic Model of COVID-19: Contagion and
Implications of Isolation Enforcement

Miguel Casares∗ Hashmat Khan†

Universidad Pública de Navarra Carleton University

March 26, 2020
Comments Welcome

Abstract

We present a dynamic model that produces day-to-day changes in key variables due to

the COVID-19 contagion: the number of ever infected people, currently infected, deaths,

healed, and infected people who require hospitalization. The model is carefully calibrated

to Spanish data and we conduct simulation exercises to study the role of isolation mea-

sures to contain the virus spread. We find that virus containment from isolation exhibits

increasing returns. Our model simulations show that the State of Alarm intervention of

the Spanish government on March 14th, 2020 reduces deaths by almost 85%, and lowers

the maximum number of infected people who need daily hospitalization by a factor of

1/12. The simulations also indicate that both the timing and the intensity of the isola-

tion enforcement are key for the evolution of the virus spread and the smoothing of the

hospitalization needs.
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1 Introduction

On March 11th 2020, the World Health Organization declared the Coronavirus Disease 2019
(COVID-19) outbreak a pandemic—a worldwide spread of the disease. Figure 1 shows that
as of March 25th, there are 18,565 confirmed deaths due to COVID-19 worldwide and the six
countries with over 800 confirmed deaths, namely, Italy (6820), China (3287), Spain (2696),
Iran (1934), France (1100) and the US (801). The total number of confirmed cases is over
416,916 (Roser et al. (2020)).

Figure 1: Total Confirmed Deaths as of March 25th, 2020.

Unfortunately, the pandemic is still in progress unleashing a global health crisis and
putting enormous pressure on health care systems. In addition to the travel related source
of virus spread there is now a full-blown ‘community spread’ where the initial source of
the infection remains unidentified. Governments and public authorities are implementing
mandatory actions to contain the virus spread such as travel restrictions, lockdowns, clo-
sures of public spaces, institutions, and businesses, social (and physical) distancing, and self-
isolation.

Drawing on the epidemiological SIR methodology, pioneered by Kermack and McK-
endrick (1927), we present a simple dynamic model to study the COVID-19 contagion. Even
though the model is simple, it captures the main characteristics of the contagion process and
provides insights valuable for policy orientation. The model can help understand the effects

2



of changes in medical and social policies. Due to its simplicity, the model may also be suitable
for communicating the response of health and political authorities to the public.

As one clear-cut applied exercise, we calibrate the model parameters to Spanish data and
present simulations to show the dramatic implications of enforcing mobility constraints over
the COVID-19 spread in Spain.1 Our paper is related to three recent contributions. Wang et al.
(2019) estimates the evolution of the COVID-19 cases in Wuhan, China, while Atkeson (2020)
investigates the impact of social distancing for the virus spread in the US, and Ferguson et al.
(2020) analyze the impact of non-pharmaceutical interventions to contain the virus expansion
in the UK. We use the global epidemiological data provided in Anderson et al. (2020) for the
calibration of some of the model parameters.

2 Model description

For any given day t, we have the decomposition

N = xt + zt

where N is the total population on the arrival day of the first person infected by COVID-
19, xt is the accumulated number of people infected by COVID-19 on day t and zt is the
accumulated number of people never infected on day t.2 On day 1, x1 = 1 and z1 = N − 1.
For any future day t, the law of motion for xt is

xt = xt−1 + αy
x̃t−1

N − kt−1
zt−1 (1)

that adds up to its value on the previous day, xt−1, the number of newly infected people
αy x̃t−1

N−kt−1
zt−1. In the latter term, 0 < α < 1 is the contagion probability on each encounter

between one non-infected person and one infected person, y > 0 is the number of people
each person meets per day, x̃t−1 is the number of people currently infected as of day t− 1,

1While our focus is on studying the effects of immediate mobility controls in dealing with the ongoing
health crisis, their unavoidable drastic effects on economic activity are underway. Eichenbaum et al. (2020)
embed an epidemiological model in a macroeconomic general equilibrium model to study the tradeoff between
the severity of decline in output and lives saved.

2We assume that the initial population N remains constant in this decomposition to consider that all deaths
caused by the virus infection will determine the fatality rate of the virus. The same result would be obtained if
there where no migration flows and the daily natality rate would be the same as the mortality rate not-related
to COVID-19. Given the short time horizon of the analysis and the focus of the paper, we have decided to keep
N fixed.
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and kt−1 is the number of deaths caused by COVID-19 as of day t − 1.3 The ratio x̃t−1
N−kt−1

provides the share of currently infected people with respect to the surviving population at
the end of day t− 1, which determines the probability of meeting someone infected. Thus,
the product of the number of encounters by the rate of infected people, y x̃t−1

N−kt−1
, is the number

of infected people every person meets on day t. Once we multiply it by the contagion rate
on each encounter, we have αy x̃t−1

N−kt−1
as the effective daily contagion rate per person. The

number of people who have never been infected at the end of day t − 1 is zt−1, and they
are the potential newly infected people. Therefore, the second term on the right side of (1),
αy x̃t−1

N−kt−1
zt−1 is the number of newly infected people on day t. It explains how the number

of new cases depends on both the contagion rate α, and on the intensity at which the disease
spreads in the matching between infected and non-infected individuals, y x̃t−1

N−kt−1
zt−1.

The difference between xt and the number of people (still) currently infected, x̃t comes
from the fact that the COVID-19 disease is neither chronic nor necessarily lethal. Let us
assume, for simplicity and taking a realistic average, that the duration of the disease is T
days and the incubation period is Ti days with Ti < T. Thus, T days after catching the virus
the individual either recovers (with an associated survival probability 0 < 1− λ < 1) or dies
(with an associated fatality probability 0 < λ < 1). Both outcomes together reduce x̃t by one.
On day t, the number of infected people who will either get cured or die are xt−T − xt−T−1,
i.e. those who were infected between day t − T − 1 and day t − T. Therefore, the law of
motion for the number of people currently infected by COVID-19 is

x̃t = x̃t−1 + αy
x̃t−1

N − kt−1
zt−1 − (xt−T − xt−T−1) (2)

where x̃t is the number of people still infected on day t and (xt−T − xt−T−1) is the number
of newly diagnosed cases between days t− T and t− T − 1 who drop out on day t as their
disease outcome (either cured or death) is realized.4

3For simplicity, the contagion probability α is both constant over time and identical for all meetings, which
ignores heterogeneity in the meeting duration, the degree of physical contact, the viral load of the counterpart,
etc. Hence, α is considered to represent contagion probability under average circumstances. We also assume
the number of daily social contacts, y, is constant and exogenous, which must be interpreted as the behavior of
the representative individual.

4Since the outcome of the disease is known T days after being infected, people who are excluded from the
number of people holding the virus are the sum of those who survive and those who die:

(xt−T − xt−T−1) = λ (xt−T − xt−T−1) + (1− λ) (xt−T − xt−T−1)
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With the model elements that have been introduced, we can also define the total number
of deaths on day t as

kt = kt−1 + λ (xt−T − xt−T−1)

where λ is the (constant and exogenous) fatality rate. Naturally, the total number of healed
people, ht, is

ht = ht−1 + (1− λ) (xt−T − xt−T−1)

Since xt = ht + kt + ∑T
j=0
(
xt−j − xt−j−1

)
, from N = xt + zt we also get

N = ht + kt +
T

∑
j=0

(
xt−j − xt−j−1

)
+ zt (3)

which means that total population, N, comprises four groups of people: those who have al-
ready healed, ht, those who have already died, kt, those who are infected with their outcome
not yet known, ∑T

j=0
(
xt−j − xt−j−1

)
, and those who have never been infected, zt.

COVID-19 is an infectious virus that typically causes mild symptoms similar to the com-
mon flu, and only a minor fraction of infected people who test positive need hospitalization.5

Nevertheless, the contagion rate of COVID-19 is very high and the capacity of hospitals to
give treatment to sick people is severely constrained. In the model, we assume that a fraction
θ of the infected people who have passed the incubation period, Ti, suffer from severe com-
plications (typically, respiratory difficulties and pneumonia) and need hospitalization. Thus,
the number of hospital beds, bt, required to treat COVID-19 positive people on day t is

bt = θ
T

∑
j=Ti

(
xt−j − xt−j−1

)
where ∑T

j=Ti

(
xt−j − xt−j−1

)
is the total number of infected people who have passed the in-

cubation period on day t.

5In fact, some of the people infected with COVID-19 are asymptomatic, which makes the spreading out of
the epidemic more difficult to prevent and control by the health authorities.
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To summarize, we have a dynamic system of 6 equations as follows:

xt = xt−1 + αy
x̃t−1

N − kt−1
zt−1

x̃t = x̃t−1 + αy
x̃t−1

N − kt−1
zt−1 − (xt−T − xt−T−1)

N = xt + zt

kt = kt−1 + (1− λ) (xt−T − xt−T−1)

ht = ht−1 + λ (xt−T − xt−T−1)

bt = θ
T

∑
j=Ti

(
xt−j − xt−j−1

)
which, given initial values, determine the evolution of the 6 endogenous variables {xt, x̃t, zt,
kt, ht, bt}.

3 Model calibration for Spain

The baseline calibration is aimed at representing the outbreak of COVID-19 in a medium-
size country. We take the case of Spain as one representative country and assume realistic
values for the medical parameters that provide the epidemiological characteristics of COVID-
19 based on Anderson et al. (2020). Table 1 provides the calibration values for the seven
model parameters.

The total population is N = 47 million people to coincide approximately with the popu-
lation of Spain in 2020. For the fatality rate, λ, we follow Anderson et al. (2020) who provide
an estimated range of Case Fatality Rate (CFR) between 0.3% and 1% with reference to the

Table 1: Calibration of model parameters for Spain

1. Population N = 47× 106

2. Fatality rate λ = 0.0075
3. Disease duration (days) T = 16
4. Incubation period (days) Ti = 5
5. Hospitalization rate θ = 0.0528
6. Daily meetings per person y = 25
7. Contagion probability α = 0.016
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data released by the World Health Organization.6 Typically, the Infection Fatality Rate (IFR)
(= confirmed COVID-19 deaths/(confirmed+unconfirmed cases)) is lower than the CFR as
some of the cases are not reported because they are either asymptomatic or the tests have not
been taken. Our model produces the IFR and this would recommend a lower value for λ than
the range suggested by Anderson et al. (2020). However, Spain may experience a relatively
higher IFR due to the population aging (in 2019 people over 75 years old represented 9.54%
of the total population in Spain) and the much stronger severity of COVID-19 on the elderly.7

Balancing out both arguments, we set λ = 0.0075 (0.75%), slightly above the median value of
the range suggested by Anderson et al. (2020).

Anderson et al. (2020) report that the incubation period for COVID-19 is about 5 or 6 days
and there is an average period of 10 days or more (longer than a common flu) of confrontation
between the immune system and the virus.8 Therefore, we set an average disease duration
at T = 16 days and the incubation period to last for 5 days, Ti = 5.

Ferguson et al. (2020) estimate the COVID-19 hospitalization rate for the population of
the Great Britain using a subset of cases obtained from China. Their estimate is set at 4.4%.
For Spain, since the population has a higher fraction of elderly people than in either Great
Britain or China, we set the hospitalization rate 20% higher at θ = 0.0528 (5.28%).

The number of two-people encounters per day is subject to heterogeneity because it clearly
depends on the specific social and economic characteristics of the individuals: type of job,
social/leisure activities, age, etc, as well as on the social norms and habits of a country or
territory. For the case of Spain, we set y = 25 meetings to represent an average behavior
of a Spanish citizen, though recognizing the uncertainty and variance that affect this model
parameter.

The contagion probability α measures the speed at which the virus spreads. Typically,
this speed is calculated in the data with the time it takes for the infected people to pass on
the infection to the same amount of people: the doubling time (also called serial interval).
According to Anderson et al. (2020), COVID-19 is spreading more rapidly than the 2009 In-
fluenza A H1N1 pandemic with a doubling time between 4.4 and 7.5 days (similar to SARS).
In particular, COVID-19 is showing exponential growing patterns in Spain with doubling

6Recently, Wu et al. (2020) have lowered the estimate of the case fatality risk (measured as the the probability
of dying after developing symptoms) of COVID-19 in Wuhan to 1.4%.

7For comparative purposes, we found that in the UK the percentage of population over 75 years old was
8.29% in 2018.

8Anderson et al. (2020) cast some doubts about the length of the disease after the COVID-19 incubation as
they say “...perhaps lasting for 10 days or more after the incubation period”.
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times of confirmed cases around 3.5 days and of deaths close to 2 days.9 Hence, we search
for a value of α required in model simulations to match the speed of 2 days of doubling
time that has characterized the initial COVID-19 pattern of deaths observed in Spain.10 This
search determined setting α = 0.016.

4 Simulations

We have programmed simulations in MatLab.11 For initial values, we consider that on day
1, t = 1, there is one imported contagion and one person gets infected while the rest of the
population had no virus, i.e. x1 = x̃1 = 1. Then, we run the calibrated six-equation model
forward over the next 200 days. Since COVID-19 is a seasonal virus, the effects observed after
200 days could tentatively be discarded due to a half-year seasonal change (from Winter to
Summer) that would likely kill the virus due to warmer temperatures. Similarly, a future
period of no further contagion could be considered if the COVID-19 vaccine were clinically
tested successful and vaccinations could be administered to all the individuals.12 In order to
test the effects of policies aimed at people isolation and restrictions to mobility, we check the
effects of having different values for y, i.e. the number of people each person meets per day.

Before commenting on the results, we briefly discuss the role of y in the dynamics of
the model. If the number of individual contacts y is high there is also a high effective daily
contagion rate per person, αy x̃t−1

N−kt−1
, which accelerates the growth in both the accumulated

number of infected people (Equation (1)) and the number of currently infected people (Equa-
tion (2). The downward phase is also fast. As T days pass, there will be many infected people
that will turn (most of them) healed and (some of them) will die. In both cases, these people

9Ferguson et al. (2020) assume a doubling time of the confirmed cases of COVID-19 at 5 days.
10A direct observation of the contagion probability α is not possible because the incubation period of COVID-

19 is typically long (5 or 6 days). Additionally, the contagion probability may depend on many circumstances
such as the length of the meeting, the extent of physical contact and body proximity involved, the viral load of
the transmitter, etc. These difficulties justify the criterion chosen to calibrate α based on the matching between
ex post observations of model simulations and the data.

11The MatLab code written to carry out the model simulations is available upon request.
12An alternative model setup could have included T as the number of days after the first infected person from

which the virus cannot spread out any further due to either climate conditions or a universal administration of
vaccinations. This would imply α = 0 if t > T, and we could rewrite the low of motion for xt and x̃t as follows:

xt =

{
xt−1 + αy x̃t−1

N−kt−1
zt−1 if t < T

xt−1 if t > T

}

x̃t =

{
x̃t−1 + αy x̃t−1

N−kt−1
zt−1 − (xt−T − xt−T−1) if t < T

x̃t−1 − (xt−T − xt−T−1) if t > T

}
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are being excluded from the number of currently infected people (Equation 2). If there is a
policy oriented to isolate people and y falls, these patterns of the virus spread become both
slower and milder.

4.1 Reducing social interaction

Our first exercise illustrates the impact of reducing social interaction on the extent and length
of the virus spread. We have simulated the model under three alternative values for the
number of daily physical contacts among individuals: the value assigned in the calibration
(y = 25) and two lower values that result from initially subtracting 8 daily meetings (y = 17)
and additionally 8 more meetings subtracted (y = 9). Figures 2-4 and Table 2 show the
results.

Figure 2: Simulated series of COVID-19 infected people in Spain depending on social
interaction

The case with the highest social interactions (y = 25 meetings) displays a fast and sharp
contagion pattern. As Figure 2 displays, there is a rapid increase of infected cases around
day 40 and the epidemic is over by day 80 (black line). Almost all the population get infected
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(46.97 million). Table 1 reports 352 thousand deaths (0.75% of all the accumulated infected
population) and the maximum number of people who need hospitalization on a single day is
more than 2 million (observed on day 62). If we considered that the Spanish people have less
social interaction and, therefore, a lower number of daily encounters at y = 17 meetings per
individual, the contagion pattern is slower and less pronounced (dark blue line). Figure 2
shows the number of COVID-19 cases increasing around day 55, reaching a maximum daily
value around day 85 and falling to close to zero levels by day 115. Still, the epidemic turns
out to have very severe consequences, with most of the population getting infected (46.56
million) and 349 thousand deaths (see Table 2). The peak value of health coverage needs is
reported on day 84 when nearly 1.6 million infected people must be hospitalized.

Figure 3: Simulated series of COVID-19 hospitalization needs in Spain depending on
social interaction

If we have a second same-sized reduction in the number of daily meetings to y = 9 in
the model, the results show even a greater containment of the COVID-19 outbreak. The
“flattening of the curve” is clearly observed in the green lines of Figure 2 both in terms of the
slowing down in the pace of the total cases and also in the number of people who currently
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Figure 4: Distribution of the Spanish population following the COVID-19 outbreak de-
pending on social interaction

Table 2: Model simulation results with alternative social interaction regimes

y = 25 y = 17 y = 9
• Accumulated infected people, millions 46.97 46.56 40.83
• Total deaths, thousands 352 349 302
• Daily peak of hospitalized people, thousands 2034 1596 731

Peak day 62 84 158
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suffer the infection.13 As reported in Table 2, we find still the number of deaths is very
high at 302 thousand people and almost 41 million people (out of 47 million) get infected.
The hospitalization needs turn clearly lower with a maximum of 731 thousand hospitalized
people (around 1/3 the number reported when y = 25 and 1/2 of the number when y = 17).
Notably, the slow down of the contagion process is really remarkable. The daily peak on the
hospitalization of infected people takes place on day 158, which means 5 months after the
start of the outbreak. It is quite likely that the climate conditions are favorable for the virus
containment.

Figure 3 shows the needs for hospitalization and treatment depending on the three sce-
narios of social interactions. Spain has approximately 300 hospital beds per 100,000 people
(below the EU average of about 372 beds), which brings an overall amount of around 141,000
units. We represent this as the horizontal line of hospitals bed capacity in Figure 3. The three
scenarios of social interaction clearly give a number of people who need hospitalization that
exceed the Spanish capacity (though the deficit is significantly smaller in the least social in-
teraction case). This result indicates the urgent need of a policy action in Spain to reduce the
number of daily meetings below y = 9 to prevent the health care system from collapsing.

Figure 4 illustrates the distribution of the initial population between the four possible
daily states indicated in Equation 3): in the top left-hand side, the people who have already
healed, ht; in the top right-hand side, the people who have already died, kt; in the bottom
left-hand side, the people who are still infected, ∑T

j=0
(
xt−j − xt−j−1

)
, and in the bottom right-

hand side, the people who have never been infected, zt. The impact of social distancing is
very significant in the population allocation. As individuals meet less people, the speed
of contagion is lower, people get infected later and, subsequently, people either recover or
die later. Although there are fewer infected people as y is lower, the number of days with
currently infected people is higher (see wider curves in the infected people cell of Figure 4).

Remarkably, all these effects are substantially more pronounced when social distancing
switches from moderate to strict (y = 17 to y = 9) than from loose to moderate (y = 25
to y = 17). Therefore, we find increasing returns to isolation, which is confirmed with the
numbers reported in Table 2. Hospitalization needs are reduced by 438 thousand (a 21.5%
reduction) when the number of interactions is reduced to moderate. However, for the same
number of reductions in interactions, a move from moderate to strict lowers hospitalization
needs by 865 thousand (a 54.2% reduction).

13See, for example, https://www.flattenthecurve.com/.
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4.2 Policy intervention

On March 14th, 2020, the Spanish government declared the “State of Alarm” in response
to the COVID-19 outbreak in Spain. The decree contemplated mobility restrictions, activity
suspensions and home confinement for the population whose jobs were not related to either
health care or basic needs. This is a natural response of most countries to the COVID-19
expansion worldwide. The calibrated model can capture the State of Alarm as one policy
intervention that significantly reduces the number of physical contacts among citizens.14

This subsection analyzes the effects of the Spanish government intervention to alter social
distancing following the COVID-19 outbreak. People gatherings for social and economic
activities are quite common in Spain. The population density is moderately high at 93.53
inhabitants per square kilometer and slightly below the density in Europe.15 Thus, we have
initially characterized Spain in our calibration with a high degree of social interaction, y =

25, having each citizen 25 face-to-face contacts per day. In the model, once the COVID-19
infection arrives in Spain, we can simulate the effects of the State of Alarm intervention as a
switch from y = 25 daily meetings per person to an isolation regime with y = 3 meetings.

The choice of the day in which the isolation is enforced can be crucial for the posterior
extension of the disease (as we will document below). Thus, we paid special attention to
selecting the day of our simulated series when the policy intervention took place. The State of
Alarm decree was published on March 14th when the coronavirus death toll in Spain passed
100 people (121 confirmed deaths at the end of that day and 84 the day before). We have used
this information in the calibrated model with y = 25 and searched for the day on which the
number of deaths in the simulations surpasses the 100 threshold. This is day 46th (with 128
deaths in the simulation of the calibrated model), which we consider as the moment for the
State of Alarm declaration in Spain.16 We evaluate the impact of such intervention and two
alternative timings as described in the following list:
◦ Four days earlier: day 42th with 33 deaths in the model (28 deaths in the Spanish data).
◦ State of Alarm: day 46th with 128 deaths in the model (121 deaths in the Spanish data).

14It could be argued that a policy intervention of governments or health authorities following the COVID-19
outbreak would reduce the primary contagion probability α. Since the product α · y determines the evolution
of the newly infected people, a decrease of α would result equivalent to an increase of y. For example, setting
y = 3 and keeping α = 0.016 is equivalent to setting y = 4 and lowering α at α = 0.012.

15Population density in the World is 14.7 persons per square kilometer. Europe (excluding Russia, Azerbaijan
and Georgia) has a population density of 103 persons per square kilometer.

16On January 29, a German tourist tested positive of COVID-19 in La Gomera (Canary Island) who was the
first confirmed infected person in Spain. Coincidently, if January 29th is considered day #1, the State of Alarm
declaration day (March 14th) is day #46.
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◦ Four days later: day 50th with 489 deaths in the model (491 deaths in the Spanish data).

Figure 5: Alternative timings for the isolation policy in Spain following the COVID-19
outbreak

Figure 5 and Table 3 show the results. The benchmark case for comparison is the “no
intervention” scenario, keeping y = 25 which would lead to having almost all the Spanish
people infected and over 350 thousand deaths.

The effects of the actual State of Alarm intervention is displayed as red lines in Figure
5. In comparison to the no intervention case (black lines), the curves of infected people and
hospitalized people shift down and widen up as a clear example of the “flattening of the
curve” pattern. Thus, the State of Alarm intervention of the Spanish government cuts by
almost 85% the number of infected people (from 46.97 million to 7.16 million), while the
maximum number of people who need daily hospitalization is reduced by 92% relative to
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the no intervention case (from slightly more than 2 million people to 153.6 thousand people).
Although the numerical effects present a sharp contrast, the slowdown in the virus expansion
is not observed. The peak day of hospitalization needs is slightly earlier (day 56 with respect
to day 62). The reason is that there is a tradeoff between the increasing pattern on the number
of people who got infected less than T = 16 days ago and the decreasing pattern of the
number of new people who get infected. The former goes up because the daily change in
new infected people was increasing over the days before the State of Alarm, while the latter
goes down because not-infected people are less likely to meet the virus due to the isolation
regime. The trade-off is favorable to the pressure of formerly infected people from day 46 to
day 56 and from that time onwards the curve bends down.

Figure 6: Estimated effects of the State of Alarm intervention on the number of COVID-19
infected people who require hospitalization
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Table 3: Simulation results of the timing of social distancing in Spain

No intervention Day 42 Day 46 (S. of A.) Day 50
• Accumulated infected people, millions 46.97 2.32 7.16 17.48
• Deaths, thousands 352 17.4 53.7 131.1
• Daily peak of hospitalized people, thousands 2034 42.2 153.6 499.0

Peak day 62 52 56 59

For a better look of the red line of Figure 5, the reader can look at the red line of Figure 6
which is a substantial zoom-in of the State of Alarm effects. The first five days of the State of
Alarm show no apparent deviation in the number of people who need to be hospitalized from
the no intervention scenario because the reduction in the newly infected people is not noticed
before the end of the incubation period (5 days). Precisely, it is day 51 when the slope of the
curve flattens as the change in there is a fall in the number of newly infected people who
have developed symptoms and need hospitalization. The model also shows that there will
be seven days (from day 52 to day 58, both included) of a deficit of hospitalization capacity
because the number of people who need to be hospitalized is greater than the 141,000 hospital
beds available in Spain. The downward phase is fast for some days after the peak day but
it turns slower on day 62 onwards (coinciding with the 16 day duration of the infection we
have assumed in the calibraton). To illustrate the slow pace on the recovery path predicted by
the model, on day 100 the simulation indicates that there are around 20,000 infected people
treated at the hospitals (13% of the number of people found on peak day).

A 4-day earlier intervention (day 42) would have been prevented many infections and
reduced the number of deaths and the hospitalization needs (see the flattening and pushing
down of the green lines in Figure 5 relative to the red line). Numbers reported in Table 3
support an important point on undertaking early action. If the social distancing enforcement
would have been passed just 4 days earlier the model produces a reduction by over 65% in
the number of infected people and deaths. Moreover, the number of required hospitalizations
drops from 153,600 to 42,200 which can be totally covered by the Spanish health care system.

The 4-day postponement of the intervention to day 50 would increase infected people
and deaths by a factor higher than 2. The situation would have been catastrophic for the
health assistance of nearly half a million people people who need medical treatment when
this number is more than 3 times the Spanish hospitalization capacity.

In short, the simulation results indicate that the choice of the day for setting the enforce-
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ment of social distancing has critical consequences on the evolution of the virus spread.

Figure 7: Alternative intensities for the isolation policy in Spain following the COVID-19
outbreak

Finally, we examine the effects of different degrees of intensity of the social distancing ac-
tion taken by the Spanish government. Figure 7 and Table 4 document the sensitivity of the
results to assuming either a stronger or a weaker enforcement in the State of Alarm. Thus,
we compare the cases of y = 2 (more intensity on isolation) and y = 4 (less intensity on
isolation) to the calibrated setting of y = 3 for the State of Alarm procurement. Once again,
the quantitative effects are very large. The numbers reported in Table 4 indicate that only
reducing the State of Alarm enforcement in one more meeting would produce an estimated
decrease in the number of deaths by 38% and in the peak number of people who need hos-
pitalization by 9% (which would place the curve always below the capacity line as shown
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Table 4: Simulation results of the intensity of social distancing in Spain

No intervention y = 2 y = 3 (S. of A.) y = 4
• Accumulated infected people, millions 46.97 4.40 7.16 13.75
• Deaths, thousands 352 33.0 53.7 103
• Daily peak of hospitalized people, thousands 1902 140.0 153.6 173.2

Peak day 60 54 56 77

in Figure 7). By contrast, a looser implementation of the State of Alarm with an increase of
daily meetings to y = 4, would have a very important cost in human lives (number of deaths
would almost double) and on the number of people who need hospitalization (on peak day
around 20,000 more people). Actually, the health care system would be on the verge of col-
lapsing because for 10 consecutive days (from day 51 to day 60, both included) that would
require more hospital beds than the installed capacity.

A caveat to bear in mind is that the quantitative results obtained from the simulations of
the model are sensitive to the choice of the calibrated parameters. Moreover, there might be
changes in the early patterns of the COVID-19 spread which recommends some recalibration
of the model parameters. For example, the spread speed is, fortunately, showing signs of
decreasing in the latest available data from Spain: the 2-day doubling time for deaths that
had been informed at the beginning of the spread (which we used as the criterion in the
calibration of the contagion probability of the model) is rising to 3 days.17 Thus, this change
could be incorporated into the model prediction as a reduction of the calibrated value of the
primary contagion probability, α, which could be capturing the response of Spanish citizens
to the State of Alarm health recommendations to wear a protective gear (masks, gloves) when
exposed to physical contacts. The slow down in the pace of the contagion would recommend
a substantially downward revision on the estimates of the numbers of infected people, deaths
and hospitalized people after the State of Alarm declaration in Spain (Tables 3 and 4). Some
guidance on the numerical effects under this scenario of a lower contagion rate is reported
in the column of Table 4 with lower meetings per person, y = 2, which would replicate the
equivalent results of moving down α from α = 0.016to α′ = 0.01067 keeping the State of
Alarm average meetings per person at y = 3.18 Together with the quantitative effects under

17The latest observation of accumulated deaths, released on the afternoon of March 25th is 3,434 deaths,
which implies a 3-day doubling time because on March 22nd there were 1,720 deaths officially reported.

18The equivalency can be proved by having the same calibration for the α · y product at α · y = 0.016 · 2 =
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alternative scenarios, the qualitative results of our empirical simulations clearly show the
significant effects of different decisions of social interaction and policy actions to contain the
COVID-19 spread.

5 Conclusions

We presented a dynamic model of the COVID-19 spread. The model provides information
on six variables relevant to the ongoing containment efforts. We carefully calibrate the pa-
rameters of the model to Spanish data. A key advantage of the model is that it can provide
quantitative answers to many ongoing containment efforts. Three general results emerge
from the simulations. First, isolation efforts significantly slow down the speed of the conta-
gion. Second, isolation reduces both the total number of people infected and deaths. Third,
isolation exhibits increasing returns. The model provides a clear interpretation of the forces
that produce the “flattening of the curve” of infected people towards the maximum capacity
of the health care system.

In the simulation exercises conducted to examine the COVID-19 spread in Spain, the cal-
ibrated model shows that the actions of social distancing have tremendous effects on the
evolution of the disease. According to the model results, no intervention to reduce people
face-to-face interactions would condemn almost all the population to get infected and more
than 350,000 Spanish people would die. The State of Alarm, characterized in the model by a
reduction in the number of face-to-face contacts among individuals from 25 to 3 per day, is
estimated to cut the number of deaths by 85% and the number of hospital beds needed by
92%. Significantly larger cuts would have been found with an earlier policy intervention or
with a tighter social distancing action.

Finally, our model can be calibrated to other countries’ data to quantify the impacts of
isolation measures in the face of the COVID-19 pandemic.

0.01067 · 3 = 0.032.

19



References

Anderson, R. M., Heersterbeek, H., Klinkenberg, D. and Hollingsworth, T. D.: 2020, How
will country-based mitigation measures influence the course of the COVID-19 epidemic?,
The Lancet .

Atkeson, A.: 2020, What will be the economic impact of COVID-19 in the US? rough estimates
of disease scenarios, NBER Working Paper 26867, UCLA.

Eichenbaum, M. S., Rebelo, S. and Trabandt, M.: 2020, The macroeconomics of epidemics,
NBER Working Paper 26882, Northwestern University.

Ferguson, N. M., Laydon, D., Nedjati-Gilani, G., Imai, N., Ainslie, K., Baguelin, M., Bhatia,
S., Boonyasiri, A., Cucunubá, Z., Cuomo-Dannenburg, G., Dighe, A., Dorigatti, I., Fu, H.,
Gaythorpe, K., Green, W., Hamlet, A., Hinsley, W., Okell, L. C., van Elsland, S., Thompson,
H., Verity, R., Volz, E., Wang, H., Wang, Y., Walker, P. G. T., Walters, C., Winskill, P., Whit-
taker, C., Donnelly, C. A., Riley, S. and Ghani, A. C.: 2020, Impact of non-pharmaceutical
interventions (NPIs) to reduce covid-19 mortality and healthcare demand, Technical report,
Imperial College COVID-19 Response Team, Imperial College, London.

Kermack, W. O. and McKendrick, A. G.: 1927, A contribution to the mathematical theory of
epidemics, Proceedings of the Royal Society of London. Series A, Containing Papers of aMathe-
matical and Physical Character 115(772), 700–721.

Roser, M., Ritchie, H. and Ortiz-Ospina, E.: 2020, Coronavirus disease (COVID-19) – Statistics
and Research, Our World in Data . https://ourworldindata.org/coronavirus.

Wang, H., Wang, Z., Dong, Y., Chang, R., Xu, C., Yu, X., Zhang, S., Tsamlag, L., Shang, M.,
Huang, J., Wang, Y., Xu, G., Shen, T., Zhang, X. and Cai, Y.: 2019, Phase-adjusted estimation
of the number of coronavirus disease 2019 cases in Wuhan, China., Cell Discovery 6(1).

Wu, J. T., Leung, K., Bushman, M., Kishore, N., Niehus, R., de Salazar, P. M., Cowling, B. J.,
Lipsitch, M. and Leung, G. M.: 2020, Estimating clinical severity of COVID-19 from the
transmission dynamics in Wuhan, China., Nature Medicine .

20

https://ourworldindata.org/coronavirus

	Introduction
	Model description
	Model calibration for Spain
	Simulations
	Reducing social interaction
	Policy intervention

	Conclusions

