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1. Introduction

Forests are likely the most complex ecosystems on Earth, as they cross scales from the largest and longest-

lived organisms on the planet (trees) with a myriad of diminutive organisms such as microarthropods, fungi, 

or bacteria, to create habitat for thousands of plant and wildlife species around the world. In addition, forests 

are vital for livelihoods of human populations, providing a multitude of goods and services both in the forest 

neighborhood as well as in other regions further away. Such socio-ecological complexity has been translated 
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into different modelling approaches to try to understand forest systems, from continental, regional or 

landscape-scales to individual-base models. Similarly, forest models have been developed at all kind of 

complexity levels, from very complex, integrative models to simpler models focused on one specific eco-

physiological process. Thus, continuous efforts by the forest modelling community have provided a wealth 

of research and expertise, but at the same time have generated a dispersion and lack of linkages between 

different modelling approaches and applications.  

 

Forest science is integrative by nature: understanding climate, soil and water processes is as important as 

understanding plant eco-physiology to understand how forests work. Therefore, forest science has evolved 

during the last centuries to understand how trees and forests grow, and which patterns and processes rule 

their development through time and space. Following the common scientific method, empirical reductionist 

approaches tried to isolate and study one ecological factor or variable at a time (Popper 1968), trying to 

reduce the complexity inherent to ecological processes. On the contrary, theoretical ecological models 

explore the ecological interactions among the components that exist in a forest, assembling the pieces of 

evidence generated through traditional field and lab work (Kimmins et al. 2010). In this special issue, we 

want to show some of the latest developments in forest modelling, understanding forests like working 

systems in which human intervention has played and is still playing a historical role, and will likely do so in 

the future.  

 

Following the sharp increase in data availability, modelling is now being applied in forest ecosystems at 

multiple scales, from continental and regional studies on forests and species distribution to leaf scales 

modelling plague and pathogen infestation in individual branches. Similarly, models are being applied to 

understand short-time processes such as nutrient transport in cells, to extremely long scales such as genetic 

drift in tree populations. From the application point of view, models are also being applied from purely 

ecological issues, such as coexistence and resource competition among tree species, to multidisciplinary 

socio-economic-ecological issues, such as design of tourist routes inside natural reserves, estimating timber 

flow to sawmills under climate change scenarios, or engineering concerns such as designing forest harvesting 

machinery with lower ecological footprint (in energy, rut formation, noise, etc.).  

 

When organizing this special issue, we (the guest editors) decided to carry out a quick overview of current 

trends in forest modelling. To do so, we used Clarivate’s Web of Science to carry out a search in the top five 

journals with “Forestry” as their unique category (Forest Ecology and Management, Tree Physiology, Trees 

– Structure and Function, Canadian Journal of Forest Research, International Journal of Wildland Fire), 

and two journals specialized in ecological modeling (Environmental Modelling and Software and Ecological 

Modelling). We searched for papers containing the same keywords as the papers published in the present 

article collection on modelling forest ecosystems. We limited our search to the last three complete years in 

the database (2017 and 2019). As several hundred papers were obtained, we made our personal selections as 

our search was not intended to be exhaustive, only to provide a sense on what is going on nowadays in the 

forest ecological modelling community (Table 1). 
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1. Theoretical developments: are the classics still valid? 

 

Although growth and yield tables have been used in forest science for more than 200 years, the model 

JABOWA by Botkin et al. (1972) is usually considered as the first modern model based on computational 

algorithms. Since them, algorithm-based forest models have kept evolving, creating an impressive “forest of 

models” by itself. For example, Blanco et al. (2015) described 200 models for mixed forests alone. Many of 

such models were created for specific applications, whereas others pretended to be theoretical explanations 

of how forest ecosystems grow. Some of those models have over time generated a community of users that 

have kept the models’ use and development thriving. We asked ourselves if some of those models, developed 

in the 1980s and 1990s, were still considered as valid research tools by the forest modelling community. 

Indeed they are, with several “classical” forest models being actively used.  

 

In Africa, Armstrong et al. (2018) used FORMIND to simulate tropical forests in Madagascar. In Asia, Zhu 

et al. (2019) simulated Chinese temperate forests with FORSKA, whereas Zheng et al. (2018) simulated 

Metasequoia plantations in Shanghai’s urban forests with FORECAST. Huang et al. (2018) integrated the 

FSV and F3 models in North American temperate forests. Also for the same type of biome, McKenzie et al. 

(2019) used LANDIS II and PnET, whereas Meyer et al. (2018) used 3-PG in Canada. In Europe, Ameztegui 

et al. (2017) linked SORTIE-ND to a hydrologic model to study the effects of combined water and light 

limitations on growth and mortality of temperate conifer forests. Han et al. (2018) combined phenology 

observations with BIOME-BGC for European temperate forests. Also in Europe, González de Andrés et al. 

(2017) simulated competition for nutrient, light and water in mixed conifer-broadleaf forests, whereas in this 

issue Lo et al. (2019) demonstrated the low impact of increased CO2 availability in the productivity of pine 

forests. Both works used FORECAST Climate. Also in this special issue, Miquelajauregui et al. (2019) used 

CBM-CFS3 to estimate carbon pools in boreal forests in North America. Such flurry of activity demonstrates 

that “classical” models have not being kept static since their origins several decades ago, but they have kept 

evolving, adding new modules, capabilities and refinements as theoretical and empirical findings have 

indicated the need for them. 

 

Such continuous use of forest models developed in the last years of the 20th century has by no means altered 

the production of new models. For example, new theoretical developments are happening in the way to 

define harvestable areas, such as the use of the hydrological neighborhood, a new concept introduced in this 

issue by Giménez et al. (2019). Also in this special issue, Gómez-Sanz (2019) explores the applicability of 

the ecological marginality concept to explain vegetative decline in Aleppo pine stands in Spain. However, 

many of the new models are mainly focused on the understanding of carbon cycles, biomass and timber 

volume. Indeed, yield tables were the origin of forest models in the 17th century, and estimating timber 

production continues to be one of the main modelling objectives of the forest modelling community. Current 

efforts are being focused now in species underrepresented in the international scientific literature. For 

example, In Africa, Dury et al. (2018) developed a new model of net primary productivity for African 

tropical forests while Djomo and Chimi (2017) developed a model of biomass and carbon for tropical forests 

in Cameroon. In Asia, Van Vinh et al. (2019) have recently developed a biomass and carbon model for 
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Vietnamese mangroves whereas in this special issue, Kumar et al. (2019) introduce a model to simulate 

phenological changes in Himalayan pines. Similarly, Khan et al. (2018) have estimated carbon and biomass 

in Bangladesh forests. In South America, Piponiot et al. (2018) have created a model to estimate volume and 

mortality of tropical stands in the French Guyana. Resquin et al. (2018) created a new mortality model for 

temperate forests in Uruguay. In Europe, a dynamic growth model is introduced in this special issue for 

sweet chestnut (Prada et al. 2019).  

 

Theoretical developments are steadily moving towards more integrative models. Increasing model 

complexity by incorporating either more ecological processes or more ecological actors is a clear trend, as 

new ways are developed to deal with the issues of increasing complexity (Kimmins et al. 2008). Some of 

such processes are natural disturbances, whose understanding has changed from being considered as “natural 

disasters” to inherent parts of forest ecosystem functioning. Disturbances are key processes in forest 

ecosystem dynamics (Oliver and Larson 1996). They strongly influence the structure, composition and 

functioning of forest ecosystems (Franklin et al. 2002) and determine the spatial and temporal patterns of 

forested landscapes (Forman 1995). Natural disturbances play a key role in ecosystem dynamics and are 

important factors that should be taking into account when implementing sustainable forest ecosystem 

management. Quantitative models are frequently employed to tackle the complexities associated with 

disturbance processes (Seidl et al. 2011). In short, ecological disturbances (in this editorial we will evaluate 

them as wind, fires, diseases and pests) are a critical challenge for natural resource managers (Baggio and 

Hillis 2018). Cannon et al. (2017) showed a review and classification of interactions between forest 

disturbance from wind and fire.  

 

Snow and wind damages are one of the major abiotic disturbances playing a key role in forest ecosystems, 

affecting both stand dynamics and forest management decisions. Although the most common empirical 

approach to develop stand-scale windthrow models has been logistic regressions (Kramer et al. 2001, 

Mitchell et al. 2001, Rich et al. 2007), new methods from artificial intelligence recently proved to be superior 

in modelling windthrow susceptibility (Hanewinkel et al. 2004). In this issue, Díaz-Yáñez et al. (2019) 

analyze the occurrence of wind and snow damage based on data from four consecutive Norwegian National 

Forest Inventories. Their methodological approach was based on boosted regression trees, a machine 

learning method also used by Suvanto et al. (2019). Other non-parametric quantitative models such as 

classification and regression trees or gradient boosting have been commonly used to model windthrow 

susceptibility (Dobbertin 2002, Lindemann and Baker 2002, Kupfer et al. 2008). Wind-risk simulators such 

as ForestGALES allow for a good understanding of the dynamics involved in wind damage, and for 

calculations of risk to be made, and therefore provide vital information on the best practices to minimize 

such risk. Recently, Locatelli et al. (2016, 2017) parameterized ForestGALES for three of the arguably most 

widespread and commercially important species at global level: Eucalptus globulus, Picea sitchensis and 

Pinus pinaster. 

 

One of the main consequences of disturbances is tree mortality. As such, fire is always an element to keep in 

mind in forestry. The prediction of fire propagation across landscapes is necessary for safe and effective fire 
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management. Recent developments in fire simulators allow predicting fire spread and behavior in real-time. 

Forestland managers rely on predictions of tree mortality generated from fire behavior models to identify 

stands for post-fire salvage and to design fuel reduction treatments that reduce mortality (Barker et al., 2019).  

In this issue, Cardil et al. (2019) present an innovative method implemented in the Wildfire Analyst and 

Wildfire analyst pocket (see Monedero et al. 2019, also in this issue), to adjust fire simulations in real time. 

Cruz et al., (2018) analyzed the predictive accuracy of models currently used operationally in Australia for 

predicting fire spread rates in five different fuel types compared to their previous counterparts, demonstrating 

the utility of such models in real-life management. 

 

Fire determines forest ecosystem functioning not only at the time of burning and spreading, but also 

afterwards. In this issue, Canelles et al. (2019) parameterize a model of post-fire regeneration and species 

growth, including climate influences on such processes, from the stand to landscape.  Similarly, Foster et al. 

(2019) analyze the importance of tree- and species-level interactions with wildfire, climate, and soils under a 

warming climate.  However, due to the high cost and time to conduct fieldwork, remote sensing is an 

appealing alternative to assess post-fire condition over larger areas (Klauberg et al. 2019). In this way, 

Fernández-Guisuraga et al. (2019) demonstrates the potential of fine-grained satellite imagery to conduct 

post-fire recovery studies with a high degree of generality across different contexts. Past research has relied 

overwhelmingly on logistic regression analysis that predicts post-fire tree status as a binary outcome. 

Leuenberger et al. (2018) recently compared two stochastic versus a well-established deterministic 

methodological approaches for wildfire susceptibility mapping. Grayson et al. (2017) validated 54 logistic 

regression mortality models from seven published articles and two sets of mortality guidelines from two 

sources. However, Sherman et al. (2019) demonstrated that random forest algorithms improve discrimination 

of imbalanced data. In this special issue, Klauberg et al. (2019) characterize fire effects on conifers at tree 

level from airborne laser scanning and high-resolution, multispectral satellite data, using methods based on 

artificial intelligence. Savage et al. (2017) used Landsat satellite imagery to map percent canopy cover by 

species and sub-canopy species counts to be used in adaptive forest management strategies using zero-

inflated models. Chen et al. (2017) developed a predictive model for estimating forest surface fuel load in 

Australian eucalypt forests with LiDAR data. Barker et al. (2019) evaluated post-fire mortality predictions 

using the Forest Vegetation Simulator Fire and Fuels extension. Finally, Huang et al. (2018) simulated 

spatiotemporal forest change from field inventory, remote sensing, growth modeling, and management 

actions.  

 

Forest insects and pathogens have enormous impacts on community dynamics, carbon storage and ecosystem 

services. However, its modelling is limited due to their variability in severity and extent (Dietze and Matthes 

2014). In the context of urban trees, Koch et al. (2018) recently modeled urban distributions of host trees for 

invasive forest insects using field inventory data. However, studies at stand or landscape level are much 

more numerous. In this case, remote sensors are also a very common source of information. Liang et al. 

(2017) integrated cellular automata, remote sensing, and a geographic information system to understand the 

insect ecological processes and tested it with measured data of mountain pine beetle. Navarro-Cerrillo et al. 

(2019) assessed holm oak defoliation by classifying two different levels using a combination of multispectral 
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WorldView-2 and airborne laser scanning data in an automated random forest modeling approach. Barnes et 

al. (2017) evaluated metrics from high-density discrete airborne laser scanning point clouds and canopy 

height models to identify individual trees infected with Phytophthora ramorum and to discriminate between 

four disease severity categories using a k-nearest neighbor classifier. Smigaj et al. (2019) investigated the use 

of unmanned aerial vehicle (UAV)-borne thermal systems for detecting disease-induced canopy temperature 

increase and explores the influence of the imaging time and weather conditions on the detected relationship.  

 

Finally, the use of simulators and the influence of global change is focusing a new framework for analysis. 

Ikegami and Jenkins (2018) estimate global risks of a forest disease under current and future climates using 

MaxEnt (a useful tool to predict species occurrence), ARTEMIS (a growth model), and a simple thermal 

model. In this line, Honkaniemi et al. (2018) evaluate interaction of disturbance agents on Norway spruce 

based on a mechanistic model of bark beetle dynamics integrated in the simulation framework WINDROT. In 

this issue, Suárez-Muñoz et al. (2019) simulate the population dynamics of the forest pest Thaumetopoea 

pityocampa through INSTAR, a new Agent-Based Model.  

 

2. Technological developments: modelling supported by remote sensing data  

 

Remote sensing applied to forest management comprises mainly four categories: forest cover classification, 

estimation of forest attributes, detection of changes in the forest and spatial modeling (Franklin 2001). On 

the other hand, the importance of remote sensors is based on the fact that LiDAR and satellite imagery are a 

cost-effective alternative that can provide high-resolution characterizations of variation in forest structure 

among landform types. As such costs keep coming down and technology becomes quickly available for non-

specialized scientists, remote sensing is quickly gaining popularity in the forest modelling community. 

 

Developing a robust and cost-effective method for accurately estimating forest’s carbon pools over large 

areas is a fundamental requirement for the implementation of Reducing Emissions from Deforestation and 

forest Degradation (REDD; Phua et al. 2017). The recently launched Sentinel imagery offers a new 

opportunity for forest mapping and monitoring (Chen et al. 2018). In smaller study areas, Djomo and Chimi 

(2017) developed allometric equations to estimate aboveground biomass using crown diameter as predictor 

variable. Although managers and researchers have often been reluctant to use LiDAR for characterizing 

structure because of low confidence in its capacity to approximate actual tree distributions, Wiggins et al. 

(2019) show an example of how to use LiDAR to develop high-resolution reference models of forest 

structure and spatial pattern. Tree crown geometry and height, especially when coupled with remotely sensed 

data, can aid in the characterization of tree and forest structure (Sullivan et al. 2017). Forest processes that 

play an essential role in carbon sequestration, such as light use efficiency, photosynthetic capacity, and trace 

gas exchange are closely tied to the three-dimensional structure of forest canopies. Kamoske et al. (2019) 

evaluate leaf area density from airborne LiDAR, comparing sensors and resolutions in a temperate broadleaf 

forest ecosystem. Finally, Mohan et al. (2019) present an airborne-based laser scanning tree detection 

method applied for automatically identifying individual coconut trees in a plantation in southeast Brazil.  
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In addition, the evaluation of accuracy is essential for assuring the reliability of ecological models. Pascual et 

al. (2019) examined the problem of selecting predictor variables derived from airborne laser scanning when 

using stepwise and multiple linear regression, and when using kNN imputation using Random Forests to 

select predictor variables. Moreover Valbuena et al. (2017) concluded that statistical measures of accuracy, 

precision and agreement are necessary but insufficient for model evaluation. They therefore advocate for 

incorporating evaluation measures specifically devoted to testing observed-versus-predicted fit, and to 

assessing the degree of overfitting. Finally, both sophisticated statistical methods and supercomputing tools 

are increasingly comdined in scientific studies. Li et al. (2019) evaluate a GPU-based lightweight parallel 

processing toolset for LiDAR data for terrain analysis. Hawrylo et al. (2019) compared the accuracy of 

multiple linear regression and random forest methods for predicting growing stock volume of Scots pine 

stands using Sentinel-2 satellite imagery and airborne image-derived point clouds. 

 

3. Methodological developments: statistics moving into new realms 

 

Statistical techniques that were once considered advanced are becoming increasingly mainstream in 

ecological modelling. For example, in this special issue Pavão et al. (2019) demonstrated the differences 

between using discrete and continuum community models with Bayesian methods in Azorean plant 

communities. Indeed, machine-learning methods are becoming increasingly used tools in biology and 

ecology (Cutler et al. 2007). Algorithms such as Random Forests (Breiman 2001) are now widely used for 

classification and prediction purposes, particularly in the remote sensing field, where they have become a 

widely accepted procedure (Belgiu and Drăguţ 2016). A random forest is a classification and regression 

method based on the aggregation of a large number of classification and regression trees. Trees are 

constructed by drawing a subset of bootstrap training samples from the data, yielding a prediction of the 

response variable given the values of the predictors (Boulesteix et al., 2012). Random forest algorithms have 

a number of advantages that have made them so successful, the most crucial being their great predictive 

capacity, both for classification and regression. As a non-parametric method, random forests do not make 

distributional assumptions about the response variable, nor the predictors or their relationship, and admit 

large sets of predictors, even correlated among them. Moreover, they are robust against outliers and capable 

of imputing missing data values. However, their en masse implementation has come along with the 

development of software that eases their use (Boulesteix et al. 2012), especially R packages such as 

randomForest (Liaw and Wiener 2002) or party (Hothorn et al. 2017).  

 

Random forests are ideal for large datasets with a multi-dimensional independent variable space. Therefore, 

they are often used to relate information from remote sense sources – which are inherently large and multi-

dimensional – to stand-scale forest characteristics, allowing the prediction and spatialization of the latter. For 

instance, Brubaker et al. (2018) used random forests to spatialize predictions of tree and shrub biomass from 

LiDAR, whereas Chen et al. (2019) calculated aboveground biomass from SAR data, using random forest 

krigging to spatialize the predictions. An increasingly promising trend is the combination of several sources 

of remote sensing information. For example, Navarro-Cerrillo et al. (2019) successfully used random forests 

to integrate multispectral imagery and aboveground LiDAR to identify trees damaged by Phytophtora, and 
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similar approaches have been used to identify the main drivers of fire severity (Garcia-Llamas et al., 2019b; 

Klauberg et al., 2019). The suitability of random forests for relating remote sensing to field data has been 

assessed by several authors. Recently, Zhang et al. (2018) compared different distance metrics to integrate 

MODIS data with forest inventory data in China, and found that RF outperformed the six metrics evaluated. 

Moreover, Zhao et al. (2019) compared the ability of four machine learning algorithms to estimate a set of 

forest parameters (age, aboveground biomass, canopy cover, DBH, density, etc.), and observed that random 

forests yielded the highest determination coefficient (R2) and the lowest error (measured as rRMSE) for all 

the parameters. However, Pascual et al. (2019) observed that random forests are more affected than 

parametric approaches when there are co-registration errors between remote sensing data sources and ground 

surveys, and recent studies have warned that spatial cross-validation is essential to prevent overoptimistic 

model performance when there is spatial autocorrelation (Meyer et al. 2019, Schratz et al. 2019). 

 

Other authors have taken advantage of the flexibility of random forests and the availability of large spatial 

databases of variables such as climate or soil to infer their role in the distribution of species, leading to a new 

generation of species distribution models (see Castaño-Santamaria et al. 2019, Gobeyn et al. 2019). Such 

models can cover areas with scarce field data (Pelletier et al. 2019) or produce spatialized predictions of 

forest attributes at continental scales (Roxburgh et al. 2019). When compared to other model algorithms for 

species distribution models, random forests have yielded similar or superior accuracy that well established 

algorithms such as maximum entropy - MaxEnt (Jarnevich et al. 2017).  

 

The increased availability of large databases such as national forest inventories has led to the increasing use 

of random forests algorithms to identify the factors driving a particular variable of interest, often associated 

with forest productivity. For example, Shi et al. (2018) quantified the driving factors of carbon stock in 

bamboo forests, and Thom and Keeton (2019) identified stand structure as the main driver of carbon storage 

disparities between different forest types in North America. However, when comparing the predictive 

performance of various techniques to predict aboveground biomass from field observations, Corona-Nuñez 

et al. (2017) found that general linear models (GLM) and general additive models (GAM) outperformed 

more complex approaches, including random forests. In recent years, applications of random forests 

algorithms in forestry are becoming progressively less restricted than measuring only productivity. Recently, 

Andrews et al. (2018) and Ma et al. (2019) have used random forests to identify the drivers of self-thinning 

and maximum stand density index, which can aid forest managers to better predict and manage stand 

dynamics. Random forest algorithms are currently also extensively used in forest fire research, including the 

determination of drivers of burn rate (Boulanger et al. 2018), fire severity (Garcia-Llamas et al. 2019a, 

2019b, Klauberg et al. 2019) or burnt area (Ying et al. 2018). Other uses include assessing drivers of crown 

defoliation (Iacopetti et al. 2019, Navarro-Cerrillo et al. 2019), phosphorus concentrations in trees (Faeth et 

al. 2019), and seedling survival (Dyderski and Jagodzinski 2019, Kupferschmid et al. 2019), predicting 

understory vegetation structure (Krebs et al. 2019), or estimating bird abundance and diversity (Reise et al. 

2019), among others. 
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In all these cases, the method is used with explanatory rather than predictive purposes. In this sense, most 

studies use the capacity of random forests to classify and rank the variables according to their importance as 

predictors, using variable importance measures (VIMs). In addition, the ability of random forests algorithms 

to deal with any type of variable, without making assumptions about its distribution or potential correlations 

between variables, is commonly cited by the authors as one of the reasons for choosing this technique. This 

often leads to approaches where numerous predictors – often non-independent one from another – are 

introduced into the models, without careful consideration of the ecological sense of such predictors or the 

consequences for the model performance. In this regard, although correlation between predictors does not 

usually have much influence on prediction accuracy, variable importance measures can be strongly affected 

(Boulesteix et al. 2012), leading to biases in variable selection (uninformative predictors can be often 

preferred over informative ones if they are highly correlated with some of the other predictors). In case of 

highly dimensional predictor spaces, it might thus be useful to incorporate a variable selection procedure to 

better separate noise from informative predictors (Boulesteix et al. 2012). This can also help to detect causal 

relationships that allow for improved inference about how the ecosystems actually functions. 

 

4. Where the wild trees are ... where the wild trees will be? 

 

Understanding distribution of organisms is at the origin of ecology, a scientific discipline that arguably 

started mostly focused on biogeography. As an example, one of the earliest models is the beautiful painting 

by Alexander Humboldt in 1802 depicting vegetation distribution on the slopes of the Chimborazo (the 

highest peak in Ecuador). Nowadays, species distribution models – also called habitat models, niche-based 

models, habitat suitability models or climate envelope models – relate species occurrence data to 

environmental variables, generating maps that predict past, present or future species distribution (Pecchi et 

al. 2019). This approach was developed in the 1980s, and was initially based on the concept of ecological 

niche derived by Hutchinson (1957), later refined by several authors. The method was firstly limited by the 

availability of sufficient reliable climatic data at large spatial scales, and the release of global climatic 

datasets thus meant a golden era of species distribution models in the late 1990s and early 2000s. After 

facing important criticism for not considering issues such as biotic competence or species adaptive capacity 

(Lo et al. 2010), species distribution models have been able to cope with these limitations (Guisan and 

Thuiller 2005), and are now recognized as a powerful method to forecast the most likely impact of a 

changing climate on the geographic distribution of species (Booth 2018, Pecchi et al. 2019). 

 

The use of species distribution models in modeling forest ecosystems has continued to grow, as shown by the 

ever increasing number of papers published between 2000 and 2019 (Pecchi et al. 2019). Traditionally, this 

modelling approach has mostly focused on species with particular interest such as those with high economic 

value (Pelletier et al. 2019), or with importance for wildlife and biodiversity (Shirk et al. 2018). However, 

they are particularly interesting for invasive, rare or endangered species (Arieira et al. 2018, Srivastava et al. 

2018, Thurm et al. 2018). Species distribution models have allowed a more precise definition of the thermal 

niche of endangered species (Koo et al. 2017a), which is fundamental for identifying future areas that can act 

as thermal microrefugia in the event of climate change. Li et al. (2018) and Liang et al. (2018) observed that 



 10/27 

some species conserve their native climatic niche when they expand into new areas, which suggests that 

distribution models based on the native area of a species could be used to assess suitable habitat for 

introduction or to identify areas with high risk of encroachment (Liang et al. 2018, Song et al. 2019). Others 

have specifically focused on modeling the regeneration niche of species (Gill et al. 2017, Soto et al. 2019), 

which provides important insights for designing restoration practices or assessing invasion risk under future 

climate and disturbance regimes. 

 

In the last few years, species distribution models have been used extensively to explain the influence of 

bioclimatic variables on plant pathogen or pest distribution. For instance, (Bosso et al. 2017) characterized 

the geographical distribution of the fungus Diplodia sapinea, and projected that the range where disease can 

outbreak will expand in response to the increase in temperatures. Similarly, after defining the ecological 

niche of the pine wood nematode (Bursaphelenchus xylophilus), Ikegami and Jenkins (2018) reported that 

susceptible host species that are currently outside the area suitable for the development of the nematode may 

become susceptible in large parts of their range. Several authors have assessed the environmental variables 

that explain the distribution of the pathogen Phytophthora cinnamomi, involved in the general oak decline 

that affects large parts of Mediterranean oaks in the Iberian Peninsula (Duque-Lazo et al. 2018, Hernández-

Lambrano et al. 2019, 2018), but also those of the beetles that can act as vectors of the pathogen (Duque-

Lazo and Navarro-Cerrillo 2017). After obtaining accurate predictions for the current potential distribution 

of the pathogen, Hernandez-Lambrano et al. (2018) forecasted potential further expansion along the 

northeast and southeast Spain and central Portugal. In this regard, assessing the climatic suitability of both 

host tree and the insect populations has been revealed as a promising method to anticipate tree mortality 

episodes driven by pests and pathogens, particularly under increasingly frequent extreme climatic events 

(Jaime et al. 2019). 

 

The use of species distribution models is not yet free of methodological challenges. The takeoff of this type 

of models occurred as spatial databases of species distribution and environmental factors with global reach 

became readily available, and has continued ever since, incorporating new data sources from remote sensing 

(Jose-Silva et al. 2018, Pecchi et al. 2019). In this issue, Ruiz-Benito et al. (2020) provide an extensive 

review on the data sources available to model the impacts of climate change on forest ecosystems. Global 

databases on species presence such as GBIF are fundamental sources of information for species distribution 

models. However, they require careful monitoring to detect cases to be eliminated (due to wrong species 

identification or positioning), and also do not provide absence data. Given that the method to generate 

background or pseudo-absence locations affects model outcomes (Jarnevich et al. 2017, Liang et al. 2018), 

some authors prefer to work with data from forest inventories, which usually include real absence data 

(Booth 2018). In this regard, Mateo et al. (2018) showed that opportunistic, low-cost sampling strategies can 

provide similar accuracy than systematic sampling campaigns. 

 

Nevertheless, the main limit for the development of species distribution models was, for a long time, the 

availability of reliable climatic data at large spatial scales, so the publication of WorldClim (Hijmans et al. 

2005) represented a cornerstone in their development, to the extent that it has become a standard in the 
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discipline (Booth 2018). Availability of global soil data has lagged behind that of climatic data, but the 

situation has significantly improved with the release of the SoilGrids250m database (Hengl et al. 2017). 

However, some recent studies show that these global databases can lack an adequate coverage in some 

regions of the globe, producing misleading projections, especially in topographically complex regions 

(Bobrowski and Schickhoff 2017, Marchi et al. 2019). In the same line, Moudry et al. (2018) observed that 

using global digital elevation models led to lower predictive capacity of the species distribution models due 

to vertical bias, and argue for the use of local, high-accuracy digital elevation models (DEMs) when possible. 

 

Species distribution models still have room to grow. In recent years, a myriad of algorithms has been 

developed for the elaboration of this type of models, either regression-based (generalized linear models, 

generalized additive models, multivariate adaptive regression spline -  MARS) or based on machine learning 

(artificial neural networks - ANN, classification and regression trees - CART, random forests - RF), (see 

Pecchi et al. 2019, for an in-depth review). In particular, random forest are gaining currency due to their 

higher predictive capacity and their flexibility (see previous section). Nevertheless, the maximum entropy 

approach (MaxEnt) continues to dominate, and still represents almost 90% of the work with species 

distribution models. However, approaches based on ensembles of models (i.e. the combination of predictions 

from different algorithms) have gained ground in the last years. In general, this approach seems to improve 

the predictive capacity of species distribution models and reduces the uncertainty associated with them (Koo 

et al. 2017b), so its use is expected to become more widespread. Other studies aim at minding the gap 

between global approaches (at coarse spatial resolutions) and species distribution models built at landscape 

scales. Promising approaches in this line include the use of “hierarchical niche models” (Mateo et al. 2019), 

evolutionary algorithms (Gobeyn et al. 2019), or the use of Bayesian meta-modelling frameworks to 

integrate correlative species distribution models with physiological models (Talluto et al. 2016). 

 

5. Bringing down the barriers between scales: still a challenge? 

 

Traditionally, choosing the scale at which a model will work has been one of the very first steps in 

developing a forest model (Kimmins et al. 2010). In fact, the scale (time, space and biological level) at which 

a model will operate defines both the modelling approach and the application of such a model (Blanco 2013). 

However, it has also been recognized that for each given scale, any ecological process in a forest is 

influenced by other processes happening at smaller or bigger time, spatial and biological scales (Urban 

2005). With the increasing availability of detailed data at regional, continental and even global scales, 

modelling forests at regional or continental scales is becoming more feasible. This trend is also pushed by 

the acknowledgement that some of the most pressing issues in forest ecology occur at regional to continental, 

such as climate change, pollution or land use change, among others (Bonan and Doney 2018). 

 

As a direct consequence of such global issues, it is remarkable that one of the main drivers for regional 

modelling exercises, particularly in regions where data is scarce for many species, is still the estimation of 

biomass (and therefore carbon pools) stored in forests. This is usually done with empirical models such as 

allometric equations, which relate tree size attributes with volume, transforming it then in biomass with 
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different factors. In North America, this approach has been applied by Affleck (2019), in NW USA´s forests. 

In Europe, this approach has been followed by Correia et al. (2018) in Mediterranean pine forests, and by 

Forrester et al. (2017) in temperate forests. In Africa, some of the latest representatives of this type of 

modelling are Fayolle et al. (2018) in forests of the Congo River basin, Van der Vyven and Cowling (2019) 

for African tropical forests, or Mensah et al. (2018) in temperature South African forests. In Asia, Fu et al. 

(2017) have also followed this approach.  

 

However, not only carbon is interesting for forest modelers, and other regional issues such as fire spread are 

also important drivers for modelling. In this sense, Cardil et al. (2019b) have developed models to estimate 

the effects of fire suppression in Quebec (eastern Canada), Clements et al. (2019) have studied fire spread 

rates in Texas (SW USA), Ruffaut and Mouillot (2017) in SE France and Molina et al. (2019) in southern 

Spain. Another issue that has attracted the attention of forest modelers working at regional to continental 

scales has been regeneration processes. Indeed, Kralicek et al. (2018) has estimated seedling regeneration in 

temperate forests of NW USA, Krebs et al. (2017) has modelled cone production by conifers in the Yukon 

(NW Canada), Mathys et al. (2018) have compared seedling and mature tree distributions in British 

Columbia (western Canada) and Talucci et al. (2019) have recruitment drives also for British Columbia. In 

other regions, Vergarechea et al. (2019) have studied regeneration rates for pine species in Spain. 

 

Judging from what most of the forest modelers working at regional to continental scales seem to be doing in 

the last few years, the most suitable approach is the development of new empirical models based on large 

databases. This is so even if the linkage of process-based stand-level models with empirical regional-scale 

models has been done for several years (see the review by Lo et al. 2015). This research line is still alive, as 

there have been lately several successful attempts to link stand-level forest models with regional to 

continental simulators to upscale the outcomes of process-based models. Recent good examples are the work 

by Attia et al. (2019) using the G´Day model with inventories to estimate carbon and water flows in 

Eucalyptus plantations in Brazil, the linkage of the gap model SIBBORK with regional databases by 

Brazhsnik and Shugart (2017) to simulate size attributes of forests in Siberia, the regional-level calibration of 

the 3-PG model by Xie et al. (2017) for Larix forests in NE China, or the combination of the models 

FullCAN, 3-PG and TYF by Roxbugh et al. (2019) for Australian forests. Hence, the coexistence of 

empirical and process-based models seems to keep being fruitful to develop better understanding of 

ecological process in forests at multiple scales, although no doubt that there is always room for further work. 

 

6. Conclusions: a bright way ahead 

 

As Guest Editors of the present special issue on Modelling Forest Ecosystems, and also organizers of a 

session on forest modelling at the 22nd biennial conference of The International Society for Ecological 

Modelling (ISEM) held in Salzburg (Austria) on October 4th, 2019, we have been very pleased by the 

number and quality of the contributions submitted, particularly leaded by young researchers. Different 

approaches have been gathered in this special issue showing both traditional and groundbreaking ways to 

simulate ecological processes in forest ecosystems at multiple scales, and dealing not only with trees, but 
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also with all the other components of forest communities. Indeed, a bright way lays ahead for those who 

want to explore new technologies to acquire data, new techniques to process data, new ideas on how 

represent ecological processes in forests, or how to link such processes through scales. We hope that the 

authors and readers of this special issue have enjoyed and learned about forest models as much as the editors 

have. 

 

The Guest Editors 

Juan A. Blanco 

Aitor Ameztegui 

Francisco Rodríguez 
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Table 1. A selection of published references using forest models during the period 2017 – 2019. 

References in bold are published in this special issue. See text for the method used to identify these 

sources. 

Reference Main target 

variables 

Spatial scale Model type Forest type Region of 

application 

Correia et al. 2018 Biomass Individual trees Empirical - Allometric Mediterranean Europe 

Falloye et al. 2018 Biomass Individual trees Empirical - Allometric Tropical Africa 

Forrester et al. 2017 Biomass Individual trees Empirical - Allometric Temperate Europe 

Fu et al. 2017 Biomass Individual trees Empirical - Allometric Temperate Asia 

Mensah et al. 2018 Biomass Individual trees Empirical - Allometric Temperate Africa 

Van der Vyyer and 

Cowling 2019 Biomass Individual trees Empirical - Allometric Subtropical Africa 

Armstrong et al. 2018 Biomass Individual trees Process based Tropical Africa 

Brubaker et al. 2018 Biomass Landscape Empirical - Random Forest Temperate North America 

Corona-Nuñez et al. 

2017 Biomass Landscape Empirical - Random Forest Tropical North America 

Zhang et al. 2018 Biomass Landscape Empirical - Random Forest Boreal Asia 

Huang et al. 2018 Biomass Landscape Process based Temperate North America 

Prada et al. 2019 Biomass Stand / Gap Empirical - Others Temperate Europe 

Khan et al. 2018 Carbon pools Individual trees Empirical - Allometric Tropical Asia 

Roxburgh et el. 2019 Carbon pools Individual trees Process based Temperate Oceania 

Shi et al. 2018 Carbon pools Landscape Empirical - Random Forest Subtropical Asia 

Thom and Keeton 

2019 Carbon pools Landscape Empirical - Random Forest Temperate North America 

Phua et al. 2017 Carbon pools Regional Empirical - Remote sensing Tropical Asia 

Chen et al.2019 Carbon pools Stand / Gap 

Empirical - Machine 

learning Temperate Asia 

Chen et al. 2018 Carbon pools Stand / Gap Empirical - Remote sensing Temperate Asia 

Lo et al. 2019 Carbon pools Stand / Gap Hybrid Multiple Europe 

Miquelajáuregui et 

al. 2019 Carbon pools Stand / Gap Process based Boreal North America 

Gómez-Sanz 2019 

Density / stand 

dynamics Individual trees Empirical - Others Mediterranean Europe 

Kralicek et al. 2018 

Density / stand 

dynamics Individual trees Empirical - Others Temperate North America 

Vergarechea et al. 

2019 

Density / stand 

dynamics Individual trees Empirical - Others Mediterranean Europe 

Honkaniemi et al. 2018 

Density / stand 

dynamics Individual trees Process based Boreal Europe 

Zhu et al. 2019 

Density / stand 

dynamics Individual trees Process based Temperate Asia 

Dyderski and 

Jagodzinski 2019 

Density / stand 

dynamics Landscape 

Empirical - Machine 

learning Temperate Europe 

Gill et al. 2017 

Density / stand 

dynamics Landscape Empirical - Others Temperate North America 

Fernández-Guisuaraga 

et al. 2019 

Density / stand 

dynamics Landscape Empirical - Remote sensing Temperate Europe 

McKenzie et al. 2019 

Density / stand 

dynamics Landscape Process based Temperate North America 

Foster et al. 2019 

Density / stand 

dynamics Regional Process based Boreal North America 

Andrews et al 2018 

Density / stand 

dynamics Stand / Gap Empirical - Allometric Temperate North America 

Dïaz-Yáñez et al. 

2019 

Density / stand 

dynamics Stand / Gap 

Empirical - Machine 

learning Boreal Europe 

Pavão et al. 2019 

Density / stand 

dynamics Stand / Gap 

Empirical - Machine 

learning Temperate Europe 

Schratz et al. 2019 

Density / stand 

dynamics Stand / Gap 

Empirical - Machine 

learning Temperate Europe 

Canelles et al. 2019 

Density / stand 

dynamics Stand / Gap Empirical - Others Mediterranean Europe 
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Ma et al. 2019 

Density / stand 

dynamics Stand / Gap Empirical - Random Forest Temperate Multiple 

Valbuena et al. 2017 

Density / stand 

dynamics Stand / Gap Empirical - Remote sensing Temperate Europe 

Mathys et al. 2018 

Density / stand 

dynamics Stand / Gap Hybrid Temperate North America 

Ameztegui et al. 2017 

Density / stand 

dynamics Stand / Gap Process based Temperate Europe 

Barnes et al. 2017 Forest disturbances Individual trees Empirical - Remote sensing Temperate Europe 

Klauberg et al. 2019 Forest disturbances Individual trees 

Empirical - Remote 

sensing Temperate North America 

Navarro-Cerrillo et al. 

2019 Forest disturbances Individual trees Empirical - Remote sensing Mediterranean Europe 

Smigaj et al. 2019 Forest disturbances Individual trees Empirical - Remote sensing Temperate Europe 

Cardil et al. 2019b Forest disturbances Individual trees Process based Tropical Africa 

Cruz et al. 2018 Forest disturbances Landscape Empirical - Others Temperate Oceania 

Cardil et al. 2019a Forest disturbances Landscape Empirical - Random Forest Boreal North America 

García-Llamas et al. 

2019 Forest disturbances Landscape Empirical - Random Forest Temperate Europe 

García-Llamas et al. 

2019b Forest disturbances Landscape Empirical - Random Forest Temperate Europe 

Liang et al. 2017 Forest disturbances Landscape Empirical - Remote sensing Temperate North America 

Monedero et al. 2019 Forest disturbances Landscape 

Empirical - Remote 

sensing Temperate Europe 

Ruffaut and Mouillot 

2017 Forest disturbances Landscape Hybrid Mediterranean Europe 

Clements et al. 2019 Forest disturbances Landscape Process based Subtroprical North America 

Sherman et al. 2019 Forest disturbances Regional 

Empirical - Machine 

learning Temperate North America 

Boulanger et al. 2018 Forest disturbances Regional Empirical - Others Boreal North America 

Locatelli et al. 2016 Forest disturbances Regional Empirical - Others Temperate Europe 

Locatelli et al. 2017 Forest disturbances Regional Empirical - Others Temperate Europe 

Iacopetti et al. 2019 Forest disturbances Regional Empirical - Random Forest Mediterranean Europe 

Ying et al. 2018 Forest disturbances Regional Empirical - Random Forest Temperate Asia 

Barker et al.2019 Forest disturbances Stand / Gap Empirical - Allometric Temperate North America 

Suvanto et al. 2019 Forest disturbances Stand / Gap 

Empirical - Machine 

learning Boreal Europe 

Grayson et al. 2017 Forest disturbances Stand / Gap Empirical - Others Temperate North America 

Koch et al. 2018 Forest disturbances Stand / Gap Empirical - Others Temperate North America 

Molina et al. 2019 Forest disturbances Stand / Gap Empirical - Others Mediterranean Europe 

Talluci et al. 2019 Forest disturbances Stand / Gap Empirical - Others Boreal North America 

Leuenberger et al. 

2018 Forest disturbances Stand / Gap Empirical - Random Forest Temperate Europe 

Chen et al. 2017 Forest disturbances Stand / Gap Empirical - Remote sensing Temperate Oceania 

Savage et al. 2017 Forest disturbances Stand / Gap Empirical - Remote sensing Temperate North America 

Faeth et al. 2019 Nutrient flows Continental 

Empirical - Machine 

learning Temperate Europe 

Kamoske et al. 2019 Nutrient flows Individual trees Empirical - Remote sensing Temperate North America 

González de Andrés et 

al. 2017 Nutrient flows Stand / Gap Hybrid Mediterranean Europe 

Zheng et al. 2018 Nutrient flows Stand / Gap Hybrid Subtropical Asia 

Krebs et al. 2017 Others / multiple Individual trees Empirical - Others Boreal North America 

Li et al. 2019 Others / multiple Individual trees Empirical - Others Multiple Multiple 

Kumar et al. 2019 Others / multiple Individual trees Process based Temperate Asia 

Suárez-Muñoz et al. 

2019 Others / multiple Individual trees Process based Mediterranean Africa 

Zhao et al. 2019 Others / multiple Regional 

Empirical - Machine 

learning Temperate Asia 

Krebs et al. 2019 Others / multiple Regional Empirical - Random Forest Temperate North America 

Reise et al. 2019 Others / multiple Regional Empirical - Random Forest Temperate Europe 

Kupferschmid et al. 

2019 Others / multiple Stand / Gap Empirical - Random Forest Temperate Europe 

Affleck 2019 

Productivity (GPP 

NPP NEE) Individual trees Empirical - Allometric Temperate North America 
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Castaño-Santamaría et 

al. 2019 

Productivity (GPP 

NPP NEE) Landscape Empirical - Remote sensing Temperate Europe 

Dury et al. 2019 

Productivity (GPP 

NPP NEE) Regional Process based Tropical Africa 

Han et al. 2018 

Productivity (GPP 

NPP NEE) Regional Process based Temperate Europe 

Piponiot et al. 2018 

Productivity (GPP 

NPP NEE) Stand / Gap Empirical - Others Tropical South America 

Hawrylo and  Wezyk 

2018 

Productivity (GPP 

NPP NEE) Stand / Gap Empirical - Remote sensing Temperate Europe 

Meyer et al. 2018 

Productivity (GPP 

NPP NEE) Stand / Gap Process based Temperate North America 

Djomo and Chimi 

2017 

Size (DBH Height 

BA) Individual trees Empirical - Allometric Tropical Africa 

Resquin et al. 2018 

Size (DBH Height 

BA) Individual trees Empirical - Allometric Temperate South America 

Pascual et al. 2019 

Size (DBH Height 

BA) Individual trees 

Empirical - Random 

Forest Mediterranean Europe 

Mohan et al. 2019 

Size (DBH Height 

BA) Individual trees 

Empirical - Remote 

sensing Tropical South America 

Brazhnik et al. 2017 

Size (DBH Height 

BA) Individual trees Process based Boreal Asia 

Xie et al. 2019 

Size (DBH Height 

BA) Individual trees Process based Temperate Asia 

Sullivan et al. 2017 

Size (DBH Height 

BA) Stand / Gap Empirical - Allometric Temperate North America 

Van Vinh et al. 2019 

Size (DBH Height 

BA) Stand / Gap Empirical - Allometric Tropical Asia 

Wiggins et al. 2019 

Size (DBH Height 

BA) Stand / Gap Empirical - Remote sensing Temperate North America 

Li et al. 2018 Species distribution Continental Empirical - Others Temperate Multiple 

Thurm et al. 2018 Species distribution Continental Empirical - Others Temperate Europe 

Talluto et al. 2016 Species distribution Continental Hybrid Temperate North America 

Arieira et al. 2018 Species distribution Landscape Empirical - Others Subtropical South America 

Pecchi et al., 2019 Species distribution Regional Empirical - Others Multiple Multiple 

Pelletier et al., 2019 Species distribution Regional Empirical - Others Subtropical Africa 

Shirk et al. 2018 Species distribution Regional Empirical - Others Temperate North America 

Song et al., 2019 Species distribution Regional Empirical - Others Temperate Asia 

Srivastava et al., 2018 Species distribution Regional Empirical - Others Alpine Asia 

Koo et al., 2017b Species distribution Regional Empirical - Random Forest Temperate Asia 

Giménez et al. 2019 Water flows Stand / Gap Empirical - Others Temperate Europe 

Attia et al. 2019 Water flows Stand / Gap Process based Tropical South America 

 


