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Abstract

Lithium-ion batteries are gaining importance for a variety of applications due to their price decrease and characteristics
improvement. A good energy management strategy is required in order to increase the profitability of an energy system using a
Li-ion battery for storage. The vast number of management algorithms that has been proposed to optimize the achieved profit,
with diverse computational power requirements and using models with different complexity, raise doubts about the suitability
of an algorithm and the required computation power for a particular application. The performance of three energy management
algorithms based on linear, quadratic, and dynamic programming are compared in this work. A realistic scenario of a medium-
sized PV plant with a constraint of peak shaving is used for this comparison. The results achieved by the three algorithms are
compared and the grounds of the differences are analyzed. Among the three compared algorithms, the quadratic one seems to
be the most suitable for renewable-energy applications, given the undue simplification of the battery aging required by the linear
algorithm and the discretization and computational power required by a dynamic algorithm.
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I. INTRODUCTION

Due to environmental and economical issues, renewable power plants are thriving around the World. Significant efforts
are dedicated to increase the renewable energy share in the electricity grid. Energy management is a key issue that concerns
important aspects of energy storage systems (ESSs), such as their sizing, management, degradation and profitability. Among
the available ESSs, lithium-ion batteries are an attractive option, given their outstanding power capability, high energy density
and decreasing price [1].

The energy management strategy of a Li-ion battery has a direct impact on the system profitability, given that this is the
algorithm that governs the energy dispatch to the electricity grid. On the one hand, a dispatch during the time with highest
electricity price leads to higher economic income. However, the aging phenomena of the battery depend on its power flow [2].
Therefore, the management strategy should be calculated in order to enlarge the battery lifetime. Given the increasing number
of applications in which a management strategy is required, this is currently a hot research topic. The selection of an energy
management algorithm should depend on the particular installation that needs to be governed, and should take into account
parameters such as the computation power, the battery size and the required accuracy.

The aim of this contribution is to analyze and compare various algorithms commonly used for the computing of the energy
management of a Li-ion battery. Their specific characteristics and the achieved result determine the most suitable algorithm
to be used in each particular setup or application. In order to make a realistic comparison, a scenario based on a renewable
energy power plant is used for the computation of the energy management of the ESS, as detailed in Section II. The three
studied algorithms are detailed in Section III. The first of them is based on dynamic programming, a powerful tool that deals
with non-linear problems, but with high computational requirements. The second algorithm is based on linear programming,
which requires a simple, linear model and a noticeably lower computational power. The third one is a quadratic-programming
algorithm, which tries to find the trade-of between accuracy and simplicity. The comparison between them is detailed in
Section IV, in which the three algorithms are used to compute the management strategy for the ESS in ten problems with
various battery sizes, the achieved revenue is calculated for each of them and the results are contrasted. Finally, Section V
summarizes the main conclusions of the contribution.
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Fig. 1. System diagram of the PV+ plant.

Table I
MAIN TECHNICAL SPECIFICATIONS OF THE CASE STUDY.

Characteristic Value
PV panel Yingli Solar YL250P–29b
PV peak power 117.5 kW
PV inverter Ingeteam IS 3PLAY
PV inverter rated power 100 kW
Battery converter FeCon BAT50
Battery converter power 50 kW
Feed in limitation 60% of the inverter power
Grid voltage 13.2 kV
Annual solar radiation 1,700 kWh m−2

II. THE ENERGY MANAGEMENT PROBLEM: A PV–BATTERY PLANT WITH PEAK SHAVING LIMITATION

A realistic case study is proposed in this contribution in order to accomplish the comparison between the energy management
strategies. It consists of a medium-sized PV plant with a peak power of 100 kW located in an industrial estate of Navarra, in
the north of Spain. The following subsections summarize the main data of the PV system and the Li-ion battery.

A. PV system
As shown in Figure 1, the PV system comprises the PV array and the PV inverter. The PV array is formed by the connection

of npan = 470 PV panels, each one with a peak power of Ppan = 250 Wp. Therefore, the peak power of the PV array is
Ppeak = 117.5 kWp. It is a common design strategy to slightly oversize the PV field compared to the inverter. In this case,
PPV,inv = 0.85 · Ppeak ≈ 100 kW.

The control algorithm of the PV inverter is the maximum power point tracker (MPPT). In a normal situation, the MPPT
achieves maximum PV power (PPV = P ∗

PV ). However, as the saturation of the distribution network is a concern in industrial
estates, a feed-in power limitation is considered. As an interesting limit proposed in various countries, the selected value is
60% of the inverter nominal power. Therefore, when a power higher than the maximum feed-in power (Pgrid,max) can be
injected into the grid, the inverter power is limited, as shown in Figure 1 and the extra available power is not generated
(PPV ≤ P ∗

PV ). Pgrid is assumed to be unidirectional from the plant to the grid, since regulations in most countries do not
permit the supply of grid power to the generation plant. Measured meteorological data in Spain are taken from the free-access
database Meteonavarra [3]. The mentioned technical characteristics of the case study are summarized in Table I.

B. Li-ion battery
In order to model the battery electrical performance, an equivalent circuit consisting of a voltage source dependent of the

state of charge VOC(SOC) and an internal series resistance Ri is used [4]. This model predicts the battery efficiency with
high accuracy, given that it takes into account its current and SOC dependencies. The open circuit voltage vOC is related to
the SOC, as proposed by previous research papers [5], [6]. This characteristic curve remains virtually constant for the whole
battery lifetime [7] and is included in the model as a lookup table. The internal resistance Ri also depends on the SOC, and
the expression proposed in previous studies is used to model this influence [6]. As the battery ages, this parameter is scaled
up, as detailed below. The SOC defines the stored capacity relative to the actual full capacity (C(SOH)):

SOC(t) = SOC(t0)−
∫ t

t0

ibat(t)

C(SOH)
dt (1)
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Table II
BATTERY AGING MODEL PARAMETERS FOR ∆C (FIRST COLUMN) AND ∆Ri (SECOND COLUMN), FROM [6].

Parameter Unit ∆C ∆Ri

C
al

en
d. av – 2.716 · 105 9.486 · 103

a0 V 3.1482 3.096
aT K 6976 5986

C
yc

le

b0 – 2.71·10−5 2.28·10−5

bv V−1 3.14·10−4 3.208·10−4

bv0 V 3.683 3.741
bDOD – 1.61·10−6 3.404·10−6

bI – 1.56·10−5 1.56·10−5

bexp h 1.8 1.8

Note that the negative sign before the integral term is due to the sign of the current ibat defined as battery discharging current
to be consistent with the sign of Pbat.

The battery aging has a capital importance for the energy management strategy, given that the aging phenomena are
determined by the battery use. As commonly done with Li-ion batteries, its aging effects are divided into calendar and
cycle aging, which are assumed to be independent of each other [8]. A linear time dependency of capacity fade and resistance
rise is assumed for the calendar aging, as shown in Equation 2 and Equation 3. For the cycle aging modeling, the dependence
of capacity fade and impedance rise with the number of equivalent cycles Q is assumed to be also linear:

∆C(t, Q)

C(t)
= − (αC · t+ βC ·Q) (2)

∆Ri(t, Q)

Ri(t)
= αRi · t+ βRi ·Q (3)

where t is expressed in years and Q in equivalent full cycles.
Parameters αj (j representing C and Ri) determine the calendar aging, while βj govern the cycle aging. The dependencies

of these four parameters are expressed, as proposed in [6], by the following equations:

αj =av,j · (vcell − a0,j) · exp
(
−aT,j

T

)
(4)

βi =b0,j + bv,j · (vcyc − bv0,j).2 + bDOD,j ·DOD

+bI,j · exp(bexp ·
|ibat|
C

)
(5)

Given that Li-ion batteries require the operating temperature to be controlled, the battery temperature is assumed to be
constant for this case study, being T=30oC in Equation 4. The aging model parameters, as proposed in [6], are shown in
Table II.

Considering that the battery lifetime is over when its capacity fade or impedance rise reach 20%, of the rated values, ∆SOH
is defined as follows:

∆SOH = − 1

0.2
·max

[ ∣∣∣∣∆CC
∣∣∣∣ , ∣∣∣∣∆Ri

Ri

∣∣∣∣ ] (6)

C. Economical scenario and objective function

The energy management strategies are designed to maximize the revenue of the PV–battery system. Therefore, the objective
function J is an economic revenue obtained by the inclusion of a battery in the PV plant. This revenue comes from the
combined effect of the augmented PV energy injected into the grid and the displacement of the PV generation to the time
interval with highest energy price. The battery aging costs are accounted by taking battery aging into account. This function
takes shape into the following equation:

J =

∫ t

t0

[(Pgrid,PV–bat − Pgrid,PV) · PCelec+

∆SOH · PCbat] dt (7)

The economic variables involved in this expression are PCelec, which is the price of electricity (in EUR per kWh), and PCbat,
which is the purchase price of the Li-ion battery (in EUR).

It is interesting to make the analysis under realistic, variable electricity prices. However, some grid services are not properly
remunerated, based on current market rules. Therefore, the real electricity price in Spain is scaled up to an average price of
EUR 0.14 per kWh maintaining the current variability of market prices. A price of EUR 250 per kWh for the battery system
is considered, which includes the cost of the battery bidirectional power converter.
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Fig. 2. Comparison between the non-linear model and the fittings of the linear and quadratic models: (a) linear fit of VOC(SOC), (b) linear fit of cycle
aging (βi in Equation 5), and (c) quadratic fit of cycle aging (βi in Equation 5).

III. ENERGY MANAGEMENT STRATEGIES FOR LI-ION BATTERIES

Three of the most common algorithms used by energy management systems (EMSs) are compared in this contribution. Their
main characteristics are explained in this section. Besides their features, the required adaptations of the management problem,
such as simplification or linearization of some expressions, are compiled in the subsequent subsections.

A. Dynamic programming

The dynamic programming tackles a complex, sequential optimization problem by breaking it down into several simpler sub-
problems. The main problem is solved thanks to the Bellman Principle of Optimality, which states that a decision subsequence
of the optimal decision sequence is also an optimal solution of the corresponding subproblem among the subsequences with
the same final state [9].

The dynamic programming is a suitable algorithm for EMSs, given the sequential and non-linear nature of these problems.
However, its main drawbacks are the high computational requirements and the exponential increase of the problem complexity
entailed by an increasing number of variables. In a problem such as the one studied in this contribution, with a temporal
frame imposed by the solar radiation (one day), the number of variables limit the minimum time step that can be tackled. As
a trade-off between reasonable computing time and results accuracy, a time step of one hour is chosen.

The algorithm uses the model and objective function detailed above, along with the following operational constraints:

vbat,min ≤ vbat ≤ vbat,max (8)
SOCmin ≤ SOC ≤ SOCmax (9)
ibat,min ≤ ibat ≤ ibat,max (10)

Pgrid,min ≤ Pgrid ≤ P ∗
grid (11)

PPV ≤ P ∗
PV (12)

Pbat ≤ PN,conv (13)

B. Linear programming

A lineal algorithm finds the optimal value of a linear function, subject to linear equality and inequality constraints. Its main
advantage is the reduced computational requirement. However, the linear fits required by this technique do not allow the use
of non-linear models or constraints. This issue entails concerns about the loss of accuracy of linear algorithms.

Specifically, three expressions of the model explained above need to be modified in order to use a linear algorithm:
• The relationship VOC(SOC) cannot be represented by measured data stored in a lookup table. By contrast, a linear

expression needs to be fitted. Figure 2 (a) shows this fit, which provides a value of R2 = 0.977.
• The efficiency of the battery cannot be modeled by the internal resistance, Ri, since a resistance implies power losses

proportional to the square of the current: Ploss = Ri · I2bat. For a linear algorithm to be applied, the power losses need to
be considered as a constant value.

• The cycle aging term βi (see Equation 5) has an exponential term, which needs to be linearized. As represented in Figure 2
(b), a linear expression cannot properly fit this exponential trend of the cycle aging for a wide current range. Therefore,
the linearization needs to be performed by taking the battery current into account. Three linear fits are shown in this
figure, considering battery current rates below 0.5 C, below 1 C and below 1.5 C. Given that the time step considered
in this contribution is 1 h, the maximum battery current that can be calculated is 1 C. Therefore, this is the chosen fit,
which provides a value of R2 = 0.90. The actual implication of this linearization is that the dependency of cycle aging
on the battery power cannot be taken into account by a linear model, as detailed below.
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Fig. 3. Flow diagram of the comparison between the three algorithms, represented in different colors, based on uniform database and revenue calculation.

C. Quadratic programming

A quadratic optimization algorithm deals with quadratic objective functions, even though the constraints need to be linear.
Given that the constraints of the studied problem are already linear equations, this algorithm requires lower simplifications
of the model than a linear algorithm. Specifically, an internal resistance Ri can be modeled by means of a quadratic model,
even though its dependency with SOC cannot be taken into account. This improves the simplification of a constant battery
efficiency, including its dependency on the managed power. Another improvement of a quadratic objective function, compared
to a linear one, is the inclusion of the dependency of cycle aging (parameter βi of Equation 5) on battery current. Additionally,
the relationship VOC(SOC) shown in Figure 2 (a) can be fitted by a second-order polynomial expression, as shown in Figure 2
(c). These three improvements make the quadratic model more realistic than a linear one.

Among these three enhancements, the most relevant one is the aging modeling, which can be seen by comparing Figure 2 (b)
and (c). The coefficient of determination of these two fits for currents lower than 1 C are R2

linear = 0.90 and R2
quadratic = 0.99.

IV. PERFORMANCE COMPARISON OF ENERGY MANAGEMENT STRATEGIES

We present in this section a comparison between the algorithms explained above, used to calculate the energy management
of a Li-ion battery. Special attention is devoted to:

• Computation requirements.
• Applied battery model (the most accurate available, its linear fit, or the quadratic fit).
• Computed management strategy and achieved revenue.
• Problem characteristics such as time step and maximum battery power.
A flow diagram of this comparison is shown in Figure 3. The input data for the optimization problem are the renewable

power generated by the plant during a whole year, the hourly price offered in the electricity market and the battery size.
The three algorithms explained in the previous section, along with the appropriate model, are used to calculate three different
management strategies for the year. As explained above, the most accurate model available for the system has a number of
non-linear relationships. Therefore, it needs to be simplified in order to be used by the quadratic and linear algorithms. The
economic income and aging of the battery after the year of operation following the three management strategies are calculated
by means of the non-linear, accurate model. Finally, the revenue obtained by each algorithm is computed by the subtraction of
the battery aging cost from the economic input achieved by selling electricity. For better comparison, the revenue is provided
as relative values, normalized with the revenue obtained by the dynamic algorithm as follows:

Relative revenue =
Studied revenue

Dynamic algorithm revenue
(14)

Given that the ratio between the battery and the plant size determine the variable discretization required for the dynamic
algorithm, ten problems with battery sizes ranging from 0.10 kWh/kWp to 2.6 kWh/kWp are solved using each algorithm.
The battery size is defined as follows:

kWh / kWp =
Battery capacity (kWh)
PV peak power (kWp)

(15)

For the sake of comparability, the optimization problem in all the cases is reduced to one day, which requires the imposition of
a battery SOC at the beginning and at the end of each day. Then, 365 problems are solved in order to compute the management
strategy for the whole year.

The comparison between the dynamic and the linear algorithms is shown in Figure 4. Figure 4 (a) shows the battery state of
charge. Even though both algorithms calculate similar strategies, based on a battery charge using a surplus of PV power and
battery discharge during the evening, there is an interesting difference. While the dynamic algorithm schedules a soft battery
discharge during the whole evening, even though the electricity price has slight variations, the linear algorithm schedules a
high-current battery discharge during the hour with highest electricity price. This is due to the linear fit of the aging model,
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(a) (b)

Fig. 4. Performance of the linear algorithm compared to the dynamic algorithm: (a) energy dispatch calculated for four days, with battery SOC on the top
and system powers on the bottom, and (b) relative revenue between the linear and the dynamic algorithms.

(a) (b)

Fig. 5. Performance of the quadratic algorithm compared to the dynamic algorithm: (a) energy dispatch calculated for four days, with battery SOC on the
top and system powers on the bottom, and (b) relative revenue between the quadratic and the dynamic algorithms.

explained in the previous section, that prevents the inclusion of the battery current as an input variable. However, this strategy
leads to a faster battery aging, which reduces the obtained revenue. This is the reason why the relative revenue shown in
Figure 4 (b) is lower than 100% for most of the battery sizes, giving an average value of 80% for the ten sizes analyzed in
this contribution. The linear algorithm has a lower performance for installations with small batteries, providing a revenue as
low as 50% of that obtained by a dynamic program. This is due to the repetitive power peaks scheduled by the linear model.
It is noteworthy that the linear algorithm achieves better results than the dynamic for large batteries. This effect is due to
the combination of two issues. On the one hand, the system is not able to manage the required power to induce fast battery
charges and discharges, thereby mitigating the main drawback of the linear algorithm. On the other hand, the step size of the
discrete variables required for a dynamic optimizer increases as the battery is enlarged, reducing the accuracy of the dynamic
algorithm.

A summary of this comparison is provided in Table III. The second column is related to the dynamic algorithm, while the
third one concerns the linear optimizer. Specially remarkable from this table is the row of computation time. The time required
by a typical desktop computer to calculate the dispatch plan for a year is reduced from 2514 s used by the dynamic optimizer
to 10.9 s required by the linear algorithm. This reduced complexity leads to the following row, in which the minimum time
step that can be managed by each algorithm in order to solve one-day problems is provided. The shorter the time step, the
larger the number of variables and, therefore, the higher the computation requirements. A linear algorithm can solve problems
with a 30 s time step, while the dynamic algorithm is unable to solve the problem if the time step is shorter than 1 h.

Analogously, Figure 5 shows the comparison between the dynamic and quadratic algorithms. It can be seen in Figure 5
(a) that the schedule computed by both algorithms is similar. The most notorious difference is that the quadratic algorithm
schedules a slower charging process than that of the dynamic program. This leads to enhanced calendar aging, given its
dependency on battery voltage, but reduced cycle aging, given its dependency on current. These two processes are similar
and their overall effect is negligible, as can be seen in Figure 5 (b). The quadratic algorithm achieves a similar revenue than
the dynamic optimizer for all battery sizes, being the average revenue a 102% compared to that obtained by the dynamic
algorithm. Similar to the previous analysis, the relative revenue increases for large battery sizes as a result of the inaccuracy
of the dynamic algorithm induced by larger discretization steps.

The forth column of Table III summarizes the main characteristics of the quadratic algorithm. It achieves a good trade-off
between accuracy and simplicity. The computation time is reduced from 2514 s required by the dynamic program to only
13.2 s for a one-year simulation. Meanwhile, the obtained revenue is similar to that achieved by the dynamic program, being
the average value even 2% higher. It is remarkable to note that the quadratic fit shown in Figure 2 is worse for higher current.
Therefore, a battery current lower than 1.5 C is required for a suitable performance of this algorithm.
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Table III
SUMMARY OF THE COMPARISON PRESENTED IN THIS CONTRIBUTION.

Characteristic Dynamic Linear Quadratic

Main sources of Discretization required, Cycle aging independent of power Ri independent of SOC
inaccuracy notorious with large Constant efficiency Joule efficiency

batteries Linear fit of VOC(SOC) Non-exponential cycle aging
Remarkable Loss of optimality because Higher current and faster aging Trade-off between accuracy
characteristics of discrete variables Poor performance for small battery and computation requirements
Computation time 2514 s 10.9 s 13.2 s
Minimum time step 1 h 30 s 30 s
Max. battery current No loss of accuracy 0.5 C 1.5 C
Average rel. revenue 100% 80% 102%
Preferred Off-line, accurate On-line, regular processor On-line, low range processor
applications battery model Limited to low power Off-line, uncritical accuracy

V. CONCLUSION

This contribution presents a comparison between algorithms proposed for the energy management of a Li-ion battery in a
renewable power plant. The main results obtained from the comparison between dynamic, linear and quadratic algorithms are
summarized in Table III. The most notorious difference among the algorithms is the computation time. A commercial PC takes
42 minutes to compute the energy dispatch during a year by means of a dynamic algorithm, while the linear and quadratic
algorithms can be run in about 10 s. This large computation time limits the applicability of dynamic algorithms in two main
aspects. Firstly, a larger number of variables entails a great increase of the problem complexity. A commercial PC is not able to
solve such problem with much more than 24 variables. Therefore, each optimization problem needs to be reduced to one day,
and the minimum time step that can be considered is 1 h. This limitation is not critical for the management of PV systems,
due to its daily profile, but can jeopardize the use of a dynamic algorithm for other systems, such as wind power plants. The
second restriction is its limitation to discrete variables. This entails a divergence between the achieved solution and the actual
optimum, which depends on the discretization step. Given that larger batteries require larger discretization steps, a dynamic
algorithm achieves solutions farther from the optimum, as shown in Figures 4 (b) and 5 (b).

By contrast, the use of linear and quadratic algorithms requires a number of simplifications in the system model, objective
function, and constraints that can entail a deviation in the optimization. The analysis herein presented quantifies the loss of
optimality for the linear algorithm in 20%. The main reason is that the current is not taken into account as an accelerator factor
for the battery aging. On the other hand, the quadratic algorithm offers a trade-off between simplicity and accuracy. The average
result for the analyzed scenarios overcomes the performance of the dynamic algorithm, and its computational requirements are
notably lower. However, the quadratic fit presented in Figure 2 (c) shows a fit loss for high currents. Therefore, worse results
are expected for the quadratic algorithm if the maximum battery current surpasses 1.5 C. Given the low current required for
the renewable-energy application analyzed in this contribution, this loss of optimality is not characterized.

To sum up, this contribution establishes a tool for the selection of a proper energy management algorithm for a particular
application. If accuracy is a main concern and the battery has a low energy capacity compared to the power, a dynamic
algorithm may be a suitable choice. However, if the energy capacity of the battery is large compared to its maximum power,
or problems with more than 24 variables need to be optimized, a quadratic algorithm may be a more clever option. Finally,
linear algorithms have been proven not to be able to properly model the battery aging, and provide an average profit 20%
lower than the maximum achievable.
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