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Abstract

In the theory of aggregation, there is a trend towards the relaxation of the axiom
of monotonicity and also towards the extension of the definition to other domains
besides real numbers. In this work, we join both approaches by defining the con-
cept of directional monotonicity for functions that take values in Riesz spaces.
Additionally, we adapt this notion in order to work in certain convex sublattices
of a Riesz space, which makes it possible to define the concept of directional
monotonicity for functions whose purpose is to fuse uncertain data coming from
type-2 fuzzy sets, fuzzy multisets, n-dimensional fuzzy sets, Atanassov intuition-
istic fuzzy sets and interval-valued fuzzy sets, among others. Focusing on the
latter, we characterize directional monotonicity of interval-valued representable
functions in terms of standard directional monotonicity.

Keywords: Aggregation function; Directional monotonicity; Interval-valued
function; Riesz space; Type-2 fuzzy set

1. Introduction

The theory of aggregation functions addresses the problem of obtaining a
single number that is representative for a collection of values. This issue is
prevalent in any process that involves working with real data. Before turning
into an independent theory, there had been various works in the literature on the
topic of aggregation [20, 40, 49]. The first monograph on aggregation functions
was published [17] in 2001. Classically, an aggregation function A is a function
defined on the unit hypercube with values in the unit interval that satisfies
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certain boundary conditions and is increasing with respect to every argument.
This family of functions has been extensively used in different theoretical and
applied fields [29, 31, 45].

Various works about the state-of-the-art of the theory of aggregation func-
tions [30, 41] declare that the following are two of the major trends in the
aggregation theory:

1. To relax the monotonicity constraints in the definition of aggregation func-
tions;

2. To extend the concept of aggregation functions to be capable of handling
more scales apart from numbers.

The need of relaxing the monotonicity condition was originated due to the
existence of functions that are valid to fuse information but do not qualify as
aggregation functions because they violate the monotonicity condition. This is
the case, for example of the Lehmer mean [11]. Consequently, and pursuing the
creation of a framework of functions for fusing data, the notion of weak mono-
tonicity was introduced [52]. This concept was then generalized by directional
monotonicity [15], which studies the monotonicity of a function along a real
vector, or a ray, in Rn. Directional monotonicity was established as the new
axiom replacing standard monotonicity and this lead to the introduction of a
class of functions resembling aggregation functions but with relaxed monotonic-
ity constrictions [39]. Subsequently, new notions of monotonicity have arised
[7, 14, 48] and have been applied with success to problems of edge detection in
computer vision [14, 47] and fuzzy rule-based classification [37, 38].

Regarding the second item, the theory of aggregation has been extended to
work with posets [25, 35], with graphs [51], with infinite sequences [42, 46] and
with intervals [16, 22], among others. Furthermore, it is not unusual that there
exists a degree of uncertainty around the data to aggregate (missing inputs, mea-
surement errors, etc.) and therefore aggregation functions have been extended
to work with values coming from structures that model uncertainty. This is the
case of the different extensions of fuzzy sets, there are works in the literature de-
scribing how this type of uncertainty modeling techniques have been succesfully
applied to real problems, e.g., type-2 fuzzy sets [33, 36], n-dimensional fuzzy
sets [24], Atanassov intuitionistic fuzzy sets [21] and interval-valued fuzzy sets
[10, 12, 16], among others.

In this work we combine both trends in the theory of aggregation, and based
on the structure of Riesz spaces, we provide a framework to define directional
monotonicity for functions that handle various types of uncertain data com-
ing from different extensions of fuzzy sets. In particular, we define directional
monotonicity for fusing type-2 fuzzy values, fuzzy multiset and n-dimensional
fuzzy values, Atanassov intuitionistic fuzzy values and interval-valued fuzzy val-
ues. We also study the properites of this class of functions and, focusing on the
interval-valued setting, we show the relation between directional monotonicity
for interval-valued representable functions and standard directional monotonic-
ity presented in [15]. This relation permits to construct examples belonging to
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this class of functions on the basis of two functions defined in [0, 1] and with
values in [0, 1]. Additionally, we study the particular case when the directions of
increasingness are formed by interval values. We refer to this concept as interval
directional monotonicity (IDM).

This work is organized as follows. In Section 2 we present some preliminary
concepts and results in order to make the work self-contained. In Section 3 we
recall the notion of a Riesz space and expound some of the specific instances of
Riesz spaces that we use later in this work. In Section 4 we introduce the concept
of directional monotonicity for functions that take values in a Riesz space, as
well as some properties and how this notion can be modified in order to work in
certain sublattices of a Riesz space. In Section 5 we make use of the mentioned
sublattices to show how we can recover the concept of directional monotonicity in
order to fuse data that comes from different extensions of fuzzy sets. In Section
6 we explicitly present the notion of directional monotonicity for interval-valued
functions and give the relation between this notion for representable interval-
valued functions and standard directional monotonicity. We also propose the
concept of interval directional monotonicity, IDM, which results from restricting
the directions of increasingnes to vectors that are formed with intervals. We
finalize this work with some conclusions in Section 7.

2. Preliminaries

2.1. Aggregation functions and directional monotonicity

We recall the definition of aggregation functions [5, 18, 32].

Definition 2.1. An aggregation function is a function A : [0, 1]n → [0, 1] such
that

(i) A(0, . . . , 0) = 0;

(ii) A(1, . . . , 1) = 1;

(iii) A is increasing, i.e., if (x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n such that xi ≤ yi
for all 1 ≤ i ≤ n, then A(x1, . . . , xn) ≤ A(y1, . . . , yn).

Seeking the relaxation of the monotonicity condition, in [52] the notion of
weak monotonicity was introduced.

Definition 2.2 ([52]). Let F : [0, 1]n → [0, 1], we say that F is weakly increas-
ing (weakly decreasing), if for all c > 0 and x = (x1, . . . , xn) ∈ [0, 1]n such that
0 ≤ xi+c ≤ 1 for all 1 ≤ i ≤ n, it holds that F (x1+c, . . . , xn+c) ≥ F (x1, . . . , xn)
(F (x1 + c, . . . , xn + c) ≤ F (x1, . . . , xn)).

Weak monotonicity can be seen as monotonicity along the ray ~1 = (1, . . . , 1)
and this concept is generalized by directional monotonicity in [15].

Definition 2.3 ([15]). Let F : [0, 1]n → [0, 1] and ~r ∈ Rn, we say that F is ~r-
increasing (decreasing), if for all c > 0 and x ∈ [0, 1]n such that x + c~r ∈ [0, 1]n,
it holds that F (x + c~r) ≥ F (x) (F (x + c~r) ≤ F (x)).
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The relaxation of monotonicity in the definition of aggregation functions by
directional monotonicity has led to good results in fuzzy rule-based classification
systems [38, 39].

Let us now present two results about directionally monotone functions. The
first deals with increasingness along the convex combination of two different
directions.

Theorem 2.4 ([15]). Let ~r,~s ∈ Rn and a, b ≥ 0 such that a+ b > 0 and let us
set ~u = a~r + b~s. Let x ∈ [0, 1]n and c > 0 such that x + c~u ∈ [0, 1]n and either
x + ca~r or x + cb~s ∈ [0, 1]n. Then, if a function F : [0, 1]n → [0, 1] is both ~r-
and ~s-increasing, it is also ~u-increasing.

The second is a characterization of standard monotonicity in terms of direc-
tional monotonicity.

Theorem 2.5 ([15]). Let n ∈ N , F : [0, 1]n → [0, 1] and {~ei}ni=1 be the canonical
basis of Rn. Then, the following are equivalent

(i) F is increasing;

(ii) F is ~ei-increasing for all 1 ≤ i ≤ n.

2.2. Interval-valued aggregation functions

We call L(R) the set of closed intervals of the real numbers, i.e., L(R) =
{[x, y] | x, y ∈ R, x ≤ y}. The restriction to the intervals in the unit interval is
denoted by L([0, 1]).

The set of closed intervals L(R) = {[x, y] | x, y ∈ R, x ≤ y} and the half-
space K(R) = {(x, y) ∈ R2 | x ≤ y} of R2 are isomorphic lattices with respect
to the standard partial order of intervals ≤L defined by

[a, b] ≤L [c, d] if and only if a ≤ c and b ≤ d.

The top and bottom elements of (L([0, 1]),≤L) are 1L = [1, 1] and 0L = [0, 0],
respectively.

Thus, we can define the concept of an interval-valued (IV) aggregation func-
tion. We denote the product space as L([0, 1])n = L([0, 1])× . . .× L([0, 1]) and
the component-wise order in L([0, 1])n by ≤Ln .

Definition 2.6. Let A : L([0, 1])n → L([0, 1]). We say that A is an IV aggre-
gation function if it satisfies the following conditions.

(i) A(0L, . . . , 0L) = 0L;

(ii) A(1L, . . . , 1L) = 1L;

(iii) A is increasing with respect to ≤L.

Interval-valued aggregation operators have been, and continue to be, exten-
sively studied both from the theoretic and applied points of view [6, 26, 44].
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2.3. Fuzzy sets and generalizations

We end the preliminaries section with this subsection about different gen-
eralizations of fuzzy sets. We present the definition of the concepts that are
mentioned in this work and some remarks about their relation. The history and
main properties of the different generalizations of fuzzy sets can be found in
[13].

Let us start by recalling the concept of a fuzzy set [55].

Definition 2.7. Given a non-empty universe X, a fuzzy set A on X is a func-
tion A : X → [0, 1]. Given x ∈ X, the membership degree of x to the fuzzy set
is A(x).

We denote the set of all fuzzy sets over the universe X as FS(X). Fuzzy sets
are also known as type-1 fuzzy sets, due to the ideas presented in [56], where
some extensions of fuzzy sets were presented, the so-called type-n fuzzy sets
(TnFS).

Definition 2.8. Given a non-empty universe X and n > 1, a type-n fuzzy set
A on X is a function A : X → Tn−1FS([0, 1]).

In other words, a type-n fuzzy set is a fuzzy set in which the membership of the
elements are described by a type-(n− 1) fuzzy set.

Among these extensions, type-2 fuzzy sets have been shown to hold a promi-
nent position as they have been successfully applied in diverse fields [19, 23].
The membership of an element x ∈ X to a type-2 fuzzy set A is given by a type
one fuzzy set on the universe [0, 1], therefore a type-2 fuzzy set can be identified
with an operator A : X → [0, 1][0,1], where [0, 1][0,1] is the set of functions whose
domain and codomain is [0, 1].

An additional generalization of fuzzy sets that we discuss in this work is the
so-called fuzzy multisets, which were introduced by Yager in [53].

Definition 2.9. Let n ≥ 1 and X 6= ∅. A fuzzy multiset A on X is a function
A : X → [0, 1]n.

If in the preceding definition (Definition 2.9), if we refer to the membership
of an element x ∈ X by A(x) = (A1(x), . . . , An(x)) and it holds that A1(x) ≤
. . . ≤ An(x) for all x ∈ X, then we say that A is a n-dimensional fuzzy set [4].
In the literature one can find an extensive list of works on fuzzy multisets and
n-dimensional fuzzy sets and their application [43].

We address two more extensions of fuzzy sets in this work: intuitionistic
Atanassov fuzzy sets (AIFS) [1] and interval-valued fuzzy sets (IVFS) [56]. To
define the concept of an AIFS let us first set: D([0, 1]) = {(x, y) ∈ [0, 1]2 |
x+ y ≤ 1}.

Definition 2.10. Given a non-empty universe X, an Atanassov intuitionistic
fuzzy set A on X is a function given by A : X → D([0, 1]). For x ∈ X, we have
A(x) = (µA(x), νA(x)), where µA(x) denotes the membership of x to the AIFS
and νA(X) its non-membership.
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Finally, the concept of an interval-valued fuzzy set is defined as follows.

Definition 2.11. Given a non-empty universe X, an interval-valued fuzzy set
A on X is a function given by A : X → L([0, 1]).

From a formal point of view, the last two concepts are equivalent, as there
exists a one-to-one mapping between the set of all AIFSs on X, AIFS(X), and
the set of all IVFSs on X, IV FS(X) (see [2, 28]):

ψ : IV FS(X) → AIFS(X)
[A,A] 7→ (A, 1−A).

Moreover, IVFSs on X are n-dimensional fuzzy sets for n = 2. Hence, all
the results for n-dimensional fuzzy values are valid for intervals in L([0, 1]).

3. Riesz spaces

Although we ultimately aim at interval-valued functions, the theoretical re-
sults in this work are developed in a more general framework of which the set
of intervals is a relevant example. In particular, we deal with vector spaces and
we consider vector spaces over R instead of general fields F .

A vector space V endowed with a partial order relation ≤V is said to be
a partially ordered vector space if the order structure and the vector space
structure are compatible, that is, if the following conditions hold for any u, v ∈
V :

(i) If u ≤V v, then u+ w ≤V v + w for every w ∈ V ;

(ii) If u ≤V v, then αu ≤V αv for every real α ≥ 0.

Condition (ii) can be equivalently formulated as follows: if u ≥V 0V , then
αu ≥V 0V for every real α ≥ 0.

We denote the Cartesian product of such spaces as V n = V × . . .×V , which
is a partially ordered vector space with respect to the product order ≤V n , which
results from considering ≤V component-wise. Namely, if v = (v1, . . . , vn),u =
(u1, . . . , un) ∈ V n, we say that v ≤V n u if vi ≤V ui for 1 ≤ i ≤ n.

Furthermore, if V with the order relation forms a lattice, then V is said to
be a Riesz space (also known as vector-lattice). Note that in this case also V n

forms a Riesz space.
All instances of ordered vector spaces that we mention in this work are in

fact Riesz spaces. We provide a brief description of each in the next example.

Example 3.1. The following are various instances of Riesz spaces.

(1) The real line R with the standard linear order structure and operations is
a Riesz space.

(2) The space Rn with n ≥ 2 with the component-wise order is also a Riesz
space.
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(3) The space R2 with either the first or the second lexicographical order is a
Riesz space.

(4) Let V be the space formed from all real functions defined on a non-empty set
X with point-wise addition, scalar multiplication and order, respectively:

• (f + g)(x) = f(x) + g(x),

• (αf)(x) = αf(x),

• f ≤V g if f(x) ≤ g(x),

for all x ∈ X and α ≥ 0. Thus, V is a Riesz space.

(5) The set C(X) of continuous real functions on a topological space X with
the point-wise order and linear operations is also a Riesz space.

(6) For every 0 < p ≤ ∞, the spaces Lp, spaces of functions whose absolute
value to the p-th power is Lebesgue integrable for 0 < p <∞ and the set of
all measurable bounded functions when p = ∞, are Riesz spaces with the
almost everywhere (a.e.) point-wise order for functions. If p ≥ 1, Lp is also
a Banach space.

(7) For every 0 < p ≤ ∞, the sequence spaces `p are Riesz spaces with
component-wise order. If p ≥ 1, `p is also a Banach space.

For more insight about this examples and about partially ordered vector
spaces and Riesz spaces, see [54].

4. Weak and directional monotonicity in Riesz spaces

Let (V,≤V ) be a partially ordered vector space over R, and let us denote
by ~0 ∈ V the identity element for addition. We can define monotonicity for
functions whose inputs come from V n and have values in V as follows.

Definition 4.1. Let n ∈ N, (V,≤V ) be a partially ordered vector space over
R. We say that a function F : V n → V is increasing (decreasing) if for all
x,y ∈ V n such that x ≤V n y it holds that F (x) ≤V F (y) (F (x) ≥V F (y)).

Moreover, we can define directional monotonicity for this class of functions,
understanding that the directions are non-zero vectors from V n.

Definition 4.2. Let n ∈ N, (V,≤V ) be a partially ordered vector space over R
and let v = (v1, . . . , vn) ∈ V n such that vi 6= ~0 for some 1 ≤ i ≤ n. We say
that a function F : V n → V is v-increasing (v-decreasing) if for all x ∈ V n and
c > 0, it holds that F (x + cv) ≥V F (x) (F (x + cv) ≤V F (x)). If F is both
v-increasing and v-decreasing, we say that F is v-constant.

Analogously, driven by the concept of weak monotonicity for real valued
functions, we propose the concept of w-weak monotonicity, focusing on a fixed
~0 6= w ∈ V .
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Definition 4.3. Let n ∈ N, (V,≤V ) be a partially ordered vector space over R
and let ~0 6= w ∈ V . We say that a function F : V n → V is w-weakly increasing
(decreasing) if for all x ∈ V n and c > 0, it holds that F (x + c(w, . . . , w)) ≥V
F (x) (F (x + c(w, . . . , w)) ≤V F (x)).

Remark 4.4. Note that, in the conditions of Definition 4.3, if u = cw for some
real number c > 0, then u-weak increasingness (u-weak decreasingness) and
w-weak increasingness (w-weak decreasingness) coincide. On the other hand,
if c < 0, then u-weak increasingness (u-weak decreasingness) coincides with
w-weak decreasingness (w-weak increasingness). Observe the generalization of
the concept of weak monotonicity of real functions introduced in [52] (see also
Definition 2.2). In fact, weak increasingness is just 1-weak increasingness.

4.1. Properties

In this section we discuss some properties of directionally monotone functions
in this general setting. These properties serve as baseline and in the subsequent
sections, where we focus on less general domains, we study which ones still hold
true and which do not.

We start with a remark about the directions of increasingness for a function
F when the ordered vector space (V,≤V ) we consider is in fact a normed space.

Remark 4.5. Given v ∈ V n, for a function F : V n → V it is equivalent to be
v-increasing and to be kv-increasing for any positive constant k. Consequently,
in the cases when the space V n can be equipped with a norm ‖ · ‖, without
loss of generality we can characterize each direction v ∈ V n with the one that
satisfies ‖v‖ = 1.

Similarly, the next result shows that it is equivalent or a function F to
increase along one direction and to decrease along the opposite one. Thus,
without loss of generality, we can develop our results focusing on increasingness.

Proposition 4.6. Let n ∈ N, (V,≤V ) be a partially ordered vector space over
R and let v ∈ V n such that vi 6= ~0 for some 1 ≤ i ≤ n. A function F : V n → V
is v-increasing if and only if F is (−v)-decreasing.

Proof. Let F be v-increasing. Let x ∈ V n and c > 0, then

F (x + c(−v)) ≤V F (x + c(−v) + cv) = F (x),

and therefore F is (−v)-decreasing. The converse statement follows similarly.

Now, as in the real case with Theorem 2.4, we study whether a function
F : V n → V that is v-increasing and u-increasing is also increasing along a
linear combination of v and u.

Theorem 4.7. Let n ∈ N, (V,≤V ) be a partially ordered vector space over R
and let v,u ∈ V n be such that vi 6= ~0 for some 1 ≤ i ≤ n and uj 6= ~0 for some
1 ≤ j ≤ n. If a function F : V n → V is v-increasing and u-increasing, then F
is (av + bu)-increasing for any a, b > 0.
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Proof. Let F be v- and u-increasing, a, b > 0 and x ∈ V n. Then, if c > 0,

F (x + c(av + bu)) ≥V F (x + cbu) ≥V F (x),

where the inequalities hold due to the v- and u-increasingness of F , respectively.

The next two results deal with the directional increasingness of functions
that are v-increasing for some v ∈ V n.

Proposition 4.8. Let n ∈ N, (V,≤V ) be a partially ordered vector space over R,
v ∈ V n such that vi 6= ~0 for some 1 ≤ i ≤ n and F : V n → V be a v-increasing
function. Let ϕ : V → V be an increasing (decreasing) function. Then, the
function ϕ ◦ F is v-increasing (decreasing).

Proof. Let F be v-increasing and ϕ be increasing. Let x ∈ V n and c > 0, then

(ϕ ◦ F )(x + cv) = ϕ(F (x + cv)) ≥V ϕ(F (x)) = (ϕ ◦ F )(x).

The case in which ϕ is decreasing is analogous.

Proposition 4.9. Let n ∈ N, (V,≤V ) be a partially ordered vector space over
R, v ∈ V n such that vi 6= ~0 for some 1 ≤ i ≤ n and F1, . . . , Fk : V n → V be
v-increasing functions. Let A : V k → V be an increasing (decreasing) function.
Then, the function A(F1, . . . , Fk) is v-increasing (decreasing).

Proof. Let F1, . . . , Fk be v-increasing functions and A be increasing. Let x ∈ V n
and c > 0, then

A(F1, . . . , Fk)(x + cv) = A(F1(x + cv), . . . , Fk(x + cv))

≥V A(F1(x), . . . , Fk(x)) = A(F1, . . . , Fk)(x).

The case in which A is decreasing is analogous.

Finally, as in the case of real functions (Theorem 2.5), we can characterize
monotonicity in Riesz spaces in terms of directional monotonicity. To that end,

let us define the set V + =
{
v ∈ V | v ≥V ~0

}
.

Theorem 4.10. Let n ∈ N, (V,≤V ) be a partially ordered vector space over R.
A function F : V n → V is increasing (decreasing) if and only if F is v-increasing
(v-decreasing) for every v ∈ (V +)n such that vi 6= ~0 for some 1 ≤ i ≤ n.

Proof. Let F be increasing and let x ∈ V n. Now, given c > 0 and 0 6= v ∈
(V +)n, it holds that x <V n x + cv. Hence, since F is increasing, it also is
v-increasing.

Conversely, let F be v-increasing for every 0 6= v ∈ (V +)n. Let x,y ∈ V n
such that x ≤V n y. Since the case x = y is straight, we can assume x <V n y.
Thus, we set v = y − x. Clearly, v ∈ (V +)n and v 6= 0. Therefore, since F is
v-increasing, it holds that F (x) ≤V F (y).

9



Theorem 4.7 and Theorem 4.10 derive the following result.

Corollary 4.11. Let n ∈ N, (V,≤V ) be a partially ordered vector space over
R. Let B be the set of vectors v ∈ (V +)n that span (V +)n. Then, a function
F : V n → V is increasing (decreasing) if and only if F is v-increasing (v-
decreasing) for every v ∈ B such that vi 6= ~0 for some 1 ≤ i ≤ n.

4.2. Restriction of V to an interval sublattice

In this section we study directional monotononicity of functions as in Section
4 but whose domains and codomains are restricted. Let (V,≤V ) be a partially
ordered vector space over R and let r, s ∈ V such that r ≤V s, then we set the
following subset of V :

V sr = {v ∈ V | r ≤V v ≤V s}. (1)

V sr is a sublattice with top and bottom elements s and r, respectively. How-
ever, V sr is not a vector space and, hence, the definitions of directional and weak
monotonicity for functions F : (V sr )n → V sr need some adaptations.

Definition 4.12. Let n ∈ N, (V,≤V ) be a partially ordered vector space over
R and set V sr as in eq. (1). Let v = (v1, . . . , vn) ∈ V n such that vi 6= ~0 for
some 1 ≤ i ≤ n. We say that a function F : (V sr )n → V sr is v-increasing (v-
decreasing) if for all x ∈ (V sr )n and c > 0 such that x + cv ∈ (V sr )n, it holds
that F (x + cv) ≥V F (x) (F (x + cv) ≤V F (x)). If F is both v-increasing and
v-decreasing, we say that F is v-constant.

Note that the direction v does not necessarily belong to the restricted set
(V sr )n, but to the original vector space V n. We allow the directions to exit
the restricted space and we require the condition of monotonicity to the points
x ∈ (V sr )n such that x + cv ∈ (V sr )n. This resembles the original case ([15]),
where directional monotonicity is studied for functions F : [0, 1]n → [0, 1] and
the directions of increasingness belong to the more general Rn.

Definition 4.13. Let n ∈ N, (V,≤V ) be a partially ordered vector space over
R, V sr as in eq. (1) and let ~0 6= w ∈ V . We say that a function F : (V sr )n → V sr
is w-weakly increasing (decreasing) if for all x ∈ (V sr )n and c > 0 such that
x + c(w, . . . , w) ∈ (V sr )n, it holds that F (x + c(w, . . . , w)) ≥V F (x) (F (x +
c(w, . . . , w)) ≤V F (x)).

Real functions defined on a Cartesian product of a closed real interval with
itself and taking values in the same interval are an example of the functions
described in this section. In particular, aggregation functions can be seen as a
particular case. Recall that an aggregation function is defined as f : [0, 1]n →
[0, 1] such that f(0, . . . , 0) = 0, f(1, . . . , 1) = 1 and f is increasing with respect
to each component. Therefore, it suffices to set V sr = [0, 1] as a subset of V = R
and we recover the notion of directional monotonicity introduced in [15].

In relation to the properties that this class of functions satisfy, all the prop-
erties studied in Section 4.1 hold similarly for functions defined in V sr taking
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Definition 4.12 into account. The only result that needs an additional assump-
tion is Theorem 4.7 and the new formulation is as follows.

Theorem 4.14. Let n ∈ N, (V,≤V ) be a partially ordered vector space over R,
let V sr be as in eq. (1), let a, b > 0 and v,u ∈ V n such that vi 6= ~0 for some
1 ≤ i ≤ n and uj 6= ~0 for some 1 ≤ j ≤ n. Assume that for all x ∈ (V sr )n and
c > 0 such that x+c(av+bu) ∈ (V sr )n, then x+cav ∈ (V sr )n or x+cbu ∈ (V sr )n.
Thus, if a function F : (V sr )n → V sr is v-increasing and u-increasing, then F is
(av + bu)-increasing.

4.3. Restriction of V to a convex cone

In this section we introduce the concepts of weak and directional monotonic-
ity for functions that take values on a convex cone C of a Riesz space V . Note
that the notions presented in this section are not a particular case of the devel-
opments in Section 4 since a convex cone C is not a vector space due to the non
existence of an inverse for the addition in general.

Definition 4.15. Let V be a vector space over R. We say that a subset C ⊂ V
is a cone if for every x ∈ C and a ≥ 0 it holds that ax ∈ C. A cone C is a
convex cone if for all a, b > 0 and x, y ∈ C, it holds that ax+ by ∈ C.

Let us point out that the set of closed real intervals L(R) can be seen as a
convex cone of the vector space R2 and that, indeed, there does not exist an
inverse for the addition in general: [2, 3]− [2, 4] = [0,−1] 6∈ L(R).

We now present the concepts of usual, directional and weak monotonicity
for functions that take values on a convex cone C. These notions are also valid
for interval-valued functions setting C = L(R).

Definition 4.16. Let n ∈ N, (V,≤V ) be a partially ordered vector space over
R and let C ⊂ V be a convex cone. We say that a function F : Cn → C is
increasing (decreasing) if for all x,y ∈ Cn such that x ≤V n y it holds that
F (x) ≤V F (y) (F (x) ≥V F (y)).

Definition 4.17. Let n ∈ N, (V,≤V ) be a partially ordered vector space over
R and let C ⊂ V be a convex cone and let v = (v1, . . . , vn) ∈ V n such that
vi 6= ~0 for some 1 ≤ i ≤ n. We say that a function F : Cn → C is v-increasing
(v-decreasing) if for all x ∈ Cn and c > 0 such that x + cv ∈ Cn, it holds
that F (x + cv) ≥V F (x) (F (x + cv) ≤V F (x)). If F is both v-increasing and
v-decreasing, we say that F is v-constant.

Definition 4.18. Let n ∈ N, (V,≤V ) be a partially ordered vector space over
R and let C ⊂ V be a convex cone and let ~0 6= v ∈ V . We say that a function
F : Cn → C is v-weakly increasing (decreasing) if for all x ∈ Cn and c >
0 such that x + c(v, . . . , v) ∈ Cn, it holds that F (x + c(v, . . . , v)) ≥V F (x)
(F (x + c(v, . . . , v)) ≤V F (x)).
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The restriction of V to a cone C has not great impact in the properties
studied in Section 4.1, all the properties hold for functions F : Cn → C with
minor adjustments. Note that although a convex cone C loses the vector space
structure, it still is closed under convex combinations, and hence the adaptation
of Theorem 4.7 for this framework is straightforward. This is relevant because
the mentioned property is meaningful in the setting of directional monotonicity.
In particular, for the interval-valued case with C = L(R) and V = R2.

5. Directional monotonicity of functions to fuse data from different
fuzzy settings

In this section we present some prominent particular cases of the theoretical
developments of Section 4. We show that functions to fuse data from different
fuzzy settings can be seen as either an interval sublattice or a convex cone of
some of the Riesz spaces V presented in Example 3.1. Concretely, we study the
cases of type-2 fuzzy sets, fuzzy multisets, n-dimensional fuzzy sets, interval-
valued fuzzy sets and Atanassov intuitionistic fuzzy sets.

5.1. Type-2 fuzzy values

Let us set V as in Example 3.1 (4), the set of all real functions defined in a
set X, and let X = [0, 1]. Thus, V with the point-wise order is a Riesz space.

Now, let f0, f1 : [0, 1]→ R be the functions given by f0(x) = 0 and f1(x) = 1

for all x ∈ [0, 1], respectively. If we consider the interval sublattice V f1f0 , we

obtain that all the functions defined in [0, 1] with values in [0, 1] belong to V f1f0 ,
and due to the definition of the point-wise order, no other function belongs to
that subset. Therefore, we can see V f1f0 as [0, 1][0,1] and, hence, from Section
4.2 we can retrieve a definition and properties of directional monotonicity for
type-2 fuzzy valued functions.

5.2. Fuzzy multiset values and n-dimensional fuzzy values

Since [0, 1]n can be seen as an interval sublattice of the Riesz space Rn, the
developments in Section 4.2 are applicable to functions that are intended to fuse
information coming from fuzzy multisets.

For the case of n-dimensional fuzzy sets, the set of n-dimensional fuzzy values
is given by

Ln = {(x1, . . . , xn) ∈ Rn | 0 ≤ x1 ≤ . . . ≤ xn ≤ 1}. (2)

Clearly, Ln is the intersection of the interval sublattice [0, 1]n of the Riesz space
Rn and the convex cone {(x1, . . . , xn) | x1 ≤ . . . ≤ xn} of the same Riesz space
Rn. Therefore, we can take into account the adaptations in the definitions
and properties of directional monotonicity in Sections 4.2 and 4.3, to define
directional monotonicity for n-dimensional fuzzy valued functions.
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5.3. Interval-valued fuzzy values and Atanassov intuitionistic fuzzy values

Since interval-valued fuzzy sets are a particular instance of n-dimensional
fuzzy sets for n = 2, and since IVFSs and AIFSs are formally equivalent, the
points made in the preceding subsection are also valid for interval-valued and
Atanassov intuitionistic fuzzy sets.

However, in the following section of this work we study further the partic-
ular case of interval-valued functions, for intervals in L([0, 1]) (as is the case of
interval-valued fuzzy values), giving explicit definitions, examples and proper-
ties.

Note that although we focus on functions defined and with values in L([0, 1]),
the developments in Section 4.3 generalize the concept of directional monotonic-
ity for functions defined in L(R) as well, since L(R) can be seen as a convex
cone of the vector space R2. Indeed, it is isomorphic to the set K(R) ⊂ R2,
which is a half-space as K(R) = {(x, y) ∈ R2 | y − x ≥ 0}, and therefore K(R)
is a convex cone of R2.

6. Weak and directional monotonicity on the interval-valued setting

6.1. Restriction to intervals in L([0, 1])

In this subsection we present explicit definitions for interval-valued functions
that are defined over L([0, 1]), as they are recurrent in both theoretic and applied
works in the literature [10, 12, 16]. This type of functions can be seen as the
result of restricting the former space V to be the intersection of an interval
sublattice and a convex cone, as in Sections 4.2 and 4.3, respectively. Note that
these developments are equivalent for the case of any other closed interval, i.e.,
they are equivalent for L([a, b]).

We now present the explicit definitions for standard, directional and weak
monotonicity for functions that take values on L([0, 1]).

Definition 6.1. Let n ∈ N. We say that a function F : L([0, 1])n → L([0, 1])
is increasing (decreasing) if for all x,y ∈ L([0, 1])n such that x ≤Ln y it holds
that F (x) ≤L F (y) (F (x) ≥L F (y)).

Definition 6.2. Let n ∈ N and let v = (a1, b1, . . . , an, bn) ∈ (R2)n such that
(ai, bi) 6= ~0 for some 1 ≤ i ≤ n. We say that a function F : L([0, 1])n → L([0, 1])
is v-increasing (v-decreasing) if for all x ∈ L([0, 1])n and c > 0 such that
x + cv ∈ L([0, 1])n, it holds that F (x + cv) ≥L F (x) (F (x + cv) ≤L F (x)). If
F is both v-increasing and v-decreasing, we say that F is v-constant.

Definition 6.3. Let n ∈ N and let ~0 6= (a, b) ∈ R2. We say that a function
F : L([0, 1])n → L([0, 1]) is (a, b)-weakly increasing (decreasing) if for all x ∈
L([0, 1])n and c > 0 such that x + c(a, b, . . . , a, b) ∈ (R2)n, it holds that F (x +
c(a, b, . . . , a, b)) ≥L F (x) (F (x + c(a, b, . . . , a, b)) ≤L F (x)).

Example 6.4. The following are two examples of interval-valued functions and
their directions of increasingness in terms of some parameters.
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(1) Let F : L([0, 1])2 → L([0, 1]) be a function given by

F ([x1, x1], [x2, x2]) =

[
x1 + x2

2
,min

(
x1 + x2

2
,
x1 + x2

2

)]
.

Then, given a, b ∈ R, F is (a, b)-weakly increasing if and only if a > 0 and
a+ b ≥ 0, or a = 0 and b > 0. Indeed, it follows the fact that, given c > 0,

F (([x1, x1], [x2, x2]) + c(a, b, a, b)) = F ([x1, x1], [x2, x2]) + c

[
a,
a+ b

2

]
.

(2) Let λ ∈]0, 1[ and let Lλ : [0, 1]2 → [0, 1] be the weighted Lehmer mean [15],
which is given (with the convention 0

0 = 0) by

Lλ(x, y) =
λx2 + (1− λ)y2

λx+ (1− λ)y
.

Let F : L([0, 1])2 → L([0, 1]) be a function given by

F ([x1, x1], [x2, x2]) =

[
1

2
Lλ(x1, x2), Lλ(x1, x2)

]
,

(with the convention 0
0 = 0). F is a well-defined because 1

2Lλ(x, y) ≤
Lλ(z, t) for all x, y, z, t ∈ [0, 1] such that x ≤ z and y ≤ t.
We show in the following subsection that the function F is ((1 − λ, 1 −
λ), (λ, λ))-increasing. In fact, it only increases along that particular direc-
tion (up to positive scalar multiplication).

The next result is an adaptation of Theorem 2.5 for the interval-valued case
and succeeds to characterize regular monotonicity for interval-valued functions
with respect to the partial order ≤L. In it, we make use of the canonical basis
of (R2)n, i.e., the set of vectors {ei}2ni=1. In the case of n = 2, the vectors of the
canonical basis of (R2)2 are the following:

e1 = ((1, 0), (0, 0)) ; e2 = ((0, 1), (0, 0)) ;

e3 = ((0, 0), (1, 0)) ; e4 = ((0, 0), (0, 1)) .

Theorem 6.5. Let n ∈ N, let ≤L be the partial order on L([0, 1]), let F :
L([0, 1])n → L([0, 1]) and let {ei}2ni=1 be the canonical basis of (R2)n. Then, F
is increasing if and only if F is ei-increasing for all 1 ≤ i ≤ 2n.

Proof. Let F be increasing with respect to≤L and let x = ([x1, x1], . . . , [xn, xn]) ∈
L([0, 1])n. Now, given c > 0 such that x+cei ∈ L([0, 1])n, it is straight to check
that x ≤L x + cei. Hence, the increasingness of F ensures ei-increasingness.

Conversely, let F be ei-increasing for all 1 ≤ i ≤ 2n. Let x,y ∈ L([0, 1])n

such that [xi, xi] ≤L [yi, yi] for all 1 ≤ i ≤ n. From the definition of ≤L, it
follows that xi ≤ yi and xi ≤ yi for all 1 ≤ i ≤ n and, hence, for each i there

14



exist ai, bi ≥ 0 with ai + bi > 0 such that [yi, yi] = [xi, xi] + ai(1, 0) + bi(0, 1).
Consequently,

y = x +

n∑
i=1

aie2i−1 +

n∑
i=1

bie2i,

and by the straight adaptation of Theorem 4.14 for L([0, 1]), it holds that F is
v-increasing for v =

∑n
i=1 aie2i−1 +

∑n
i=1 bie2i. Hence, F (x) ≤L F (y).

6.2. Representable interval-valued functions

In this subsection we focus on the special class of IV functions F : L([0, 1])n →
L([0, 1]) that verifies

F (x) = F ([x1, x1], . . . , [xn, xn]) = [f(x1, . . . , xn), g(x1, . . . , xn)], (3)

for some functions f, g : [0, 1]n → [0, 1] such that f(x1, . . . , xn) ≤ g(y1, . . . , yn)
whenever xi ≤ yi for all 1 ≤ i ≤ n. This type of interval-valued functions are
said to be representable [27].

Note that Example 6.4 brings an example of a non-representable function
(see item (1)) and an example of a representable function (see item (2)).

Theorem 6.6. Let F : L([0, 1])n → L([0, 1]) be an interval-valued function sat-
isfying eq. (3) for some functions f, g : [0, 1]n → [0, 1] such that f(x1, . . . , xn) ≤
g(y1, . . . , yn) if xi ≤ yi for 1 ≤ i ≤ n. Let ~a = (a1, . . . , an) and~b = (b1, . . . , bn) ∈
Rn be vectors such that ~a,~b 6= (0, . . . , 0). Then, F is ((a1, b1), . . . , (an, bn))-

increasing if and only if f is ~a-increasing and g is ~b-increasing.

Proof. Let F be satisfy eq. (3) for f, g : [0, 1]n → [0, 1] such that they satisfy
f(x1, . . . , xn) ≤ g(y1, . . . , yn) if xi ≤ yi for 1 ≤ i ≤ n and assume that F is
((a1, b1), . . . , (an, bn))-increasing. Let us now show that f is ~a-increasing. Let
(x1, . . . , xn) ∈ [0, 1]n and c > 0 such that (x1, . . . , xn) + c~a ∈ [0, 1]n. We can
find y1, . . . , yn ∈ [0, 1] such that xi ≤ yi for all 1 ≤ i ≤ n and such that

([x1, y1], . . . , [xn, yn]) + c ((a1, b1), . . . , (an, bn)) ∈ L([0, 1])n.

Now, since F is ((a1, b1), . . . , (an, bn))-increasing, it follows that f((x1, . . . , xn)+
c~a) ≥ f(x1, . . . , xn) and, hence, f is ~a-increasing. Similarly, it can be shown

that g is ~b-increasing.
For the converse, let f and g be ~a- and ~b-increasing, respectively. Let x ∈

L([0, 1])n and c > 0 such that x + c ((a1, b1), . . . , (an, bn)) ∈ L([0, 1])n. Then,

F (x + c ((a1, b1), . . . , (an, bn))) = F ([x1, x1] + c(a1, b1), . . . , [xn, xn] + c(an, bn))

= [f(x1 + ca1, . . . , xn + can), g(x1 + cb1, . . . , xn + cbn)]

= [f((x1, . . . , xn) + c~a), g((x1, . . . , xn) + c~b)]

≥L [f((x1, . . . , xn)), g((x1, . . . , xn))]

= F (x),
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and, hence, F is ((a1, b1), . . . , (an, bn))-increasing.

As a direct consequence, we have the following corollary. Let us fix the
notation D↑(F ) to denote the set of vectors along which the function F is
directionally increasing. Of course, D↑ is a subset of the Riesz space where
the directions of F are defined. In the case of an interval-valued function F :
L([0, 1])n → L([0, 1]), it holds that D↑(F ) ⊂ (R2)n.

Corollary 6.7. Let F : L([0, 1])n → L([0, 1]) be an interval-valued function sat-
isfying eq. (3) for some functions f, g : [0, 1]n → [0, 1] such that f(x1, . . . , xn) ≤
g(y1, . . . , yn) if xi ≤ yi for 1 ≤ i ≤ n. Then, it holds that

D↑(F ) =
{

((a1, b1), . . . , (an, bn)) ∈ (R2)n | ~a ∈ D↑(f) and ~b ∈ D↑(g)
}
.

Consequently, one can define many instances of functions F that increase
along some direction. Indeed, Theorem 6.6 shows that in the case of repre-
sentable functions, the study of directions in which a function F is increasing
(decreasing) is reduced to the study of directional monotonicity of component
functions f and g. In particular, the function based on the weighted Lehmer
mean in Example 6.4 item (2) increases only along the direction ((1 − λ, 1 −
λ), (λ, λ)) because the weighted Lehmer mean Lλ is only directionally increasing
with respect to the vector (1− λ, λ), up to positive scalar multiplication.

In a similar manner, we can construct other instances of functions F and
characterize the set of vectors along which it increases.

Example 6.8. Let F : L([0, 1])n → L([0, 1]) be a function given by

F ([x1, x1], . . . , [xn, xn]) =

[
min(x1, . . . , xn),

1

n

n∑
i=1

xi

]
.

Clearly, F is a well-defined representable interval-valued function and following
the notation in eq. (3), the function f in this case is the minimum (f = min)
and the function g is the arithmetic mean (g = AM).

Now, these are the set of directions for which the minimum and the arith-
metic mean are increasing:

D↑(min) = {~r = (r1, . . . , rn) | ri ≥ 0 for all 1 ≤ i ≤ n} ,

D↑(AM) =

{
~r = (r1, . . . , rn) |

n∑
i=1

ri ≥ 0

}
.

Therefore, by Corollary 6.7, the set of directions along which the function F
is the following.

D↑(F ) =

{
((a1, b1), . . . , (an, bn)) ∈ (R2)n | ai ≥ 0 for all 1 ≤ i ≤ n, and

n∑
i=1

bi ≥ 0

}
.
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For example, one of the directions of increasingness for n = 2 is ((1, 1), (0,−1)).

Interested readers can find numerous examples of directionally monotone
functions in [7–9, 15, 52], which enable to construct directionally monotone
representable IV functions.

A remarkable example of such an IV function is the interval-valued Choquet
integral, as it has been proved to be useful in diverse applications [34].

Example 6.9. Let X = {1, . . . , n} and m : 2X → [0, 1] be a fuzzy measure (see
[50]). The discrete Choquet integral Cm : [0, 1]n → [0, 1] is defined as:

Cm(x1, . . . , xn) =

n∑
i=1

xσ(i) (m({σ(i), . . . , σ(n)})−m({σ(i+ 1), . . . , σ(n)})) ,

where σ : {1, . . . , n} → {1, . . . , n} is a permutation such that xσ(1) ≤ . . . ≤ xσ(n)
and, by convention, {xσ(n+1), xσ(n)} = ∅.

The set of vectors for which Cm directionally increases was characterized in
[15]:

D↑(Cm) =

{
(r1, . . . , rn) ∈ Rn |

n∑
i=1

ri(m({σ(i), . . . , σ(n)})

−m({σ(i+ 1), . . . , σ(n)})) ≥ 0 for all σ ∈ Sn

}
,

where Sn denotes the set of all permutations of n elements.
The definition of the discrete IV Choquet integral follows Auman’s approach

to define integrals for set-valued functions [3]. The discrete IV Choquet integral
Cm : L([0, 1])n → L([0, 1]) is given by

Cm([x1, x1], . . . , [xn, xn]) =
[
Cm(x1, . . . , xn), Cm(x1, . . . , xn)

]
.

Therefore, by Corollary 6.7, it holds that

D↑(Cm) =

{
((a1, b1), . . . , (an, bn)) ∈ (R2)n |

n∑
i=1

ai(m({σ(i), . . . , σ(n)})−m({σ(i+ 1), . . . , σ(n)})) ≥ 0 and

n∑
i=1

bi(m({σ(i), . . . , σ(n)})−m({σ(i+ 1), . . . , σ(n)})) ≥ 0, for all σ ∈ Sn

}
.

6.3. Particular case: Interval Directions

In this section we study the particular case of directional monotonicity for
functions F : L([0, 1])n → L([0, 1]) that increase along a direction formed
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by intervals, i.e., the cases in which such function F is v-increasing for v =
([a1, b1], . . . , [an, bn]) ∈ L(R)n (as opposed to v ∈ (R2)n). We refer to this
notion as interval directional monotonicity (IDM).

Definition 6.10. Let n ∈ N and let v = ([a1, b1], . . . , [an, bn]) ∈ L(R)n such
that [ai, bi] 6= 0L for all 1 ≤ i ≤ n. We say that a function F : L([0, 1])n →
L([0, 1]) is IDM v-increasing (IDM v-decreasing) if for all x ∈ L([0, 1])n and
c > 0 such that x + cv ∈ L([0, 1])n, it holds that F (x + cv) ≥L F (x) (F (x +
cv) ≤L F (x)). If F is both IDM v-increasing and IDM v-decreasing, we say
that F is IDM v-constant.

The restriction of the possible directions of increasingness from (R2)n to
L(R)n has an impact in the properties studied in Section 4.1. However, all
properties hold for functions F : L([0, 1])n → L([0, 1]) for which the vectors of
increasingness belong in L([0, 1])n, with the exception of Proposition 4.6, which
deals with the inverse of addition. Note that there is no inverse of addition
defined on L([0, 1])n. The remaining properties of Section 4.1 hold similarly
taking into account this new restriction.

Theorem 6.6 in Section 6.2 on representable interval-valued functions is also
valid for IDM with some minor modifications. Theorem 6.6 is adapted as follows.

Theorem 6.11. Let F : L(R)n → L(R) be an interval-valued function satisfying
eq. (3) for some functions f, g : Rn → R such that f(x1, . . . , xn) ≤ g(y1, . . . , yn)

if xi ≤ yi for 1 ≤ i ≤ n. Let ~a = (a1, . . . , an) and ~b = (b1, . . . , bn) ∈ Rn

be vectors such that ~a,~b 6= (0, . . . , 0) and ai ≤ bi for 1 ≤ i ≤ n. Then, F

is ([a1, b1], . . . , [an, bn])-increasing if and only if f is ~a-increasing and g is ~b-
increasing.

With respect to finding a characterization of regular monotonicity in terms
of IDM increasing functions, as in Theorem 6.5, note that in the conditions
of Theorem 6.5 vectors e2i−1 6∈ L(R)n and hence it is not possible to find a
characterization because the composition of vectors in L(R)n is not sufficient to
reach every point y ∈ L([0, 1])n from a given point x ∈ L([0, 1])n. Consequently,
even if a function is IDM increasing for every possible direction, it need not be
increasing. This fact is stated in the following remark.

Remark 6.12. A function F : L([0, 1])n → L([0, 1]) is not necessarily increas-
ing even though F is IDM v-increasing for all v ∈ L(R)n.

Indeed, let

x0 = ([0.2, 0.5], [0, 0], . . . , [0, 0]) ∈ L([0, 1])n,

y0 = ([0.4, 0.5], [0, 0], . . . , [0, 0]) ∈ L([0, 1])n.

Clearly, [0.2, 0.5] ≤L [0.4, 0.5]. However, it does not necessarily hold that
F (x0) ≤L F (y0) because there do not exist a constant c > 0 and a vector
v ∈ L(R)n such that y0 = x0 + cv.
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For example, let us define a function F : L([0, 1])n → L([0, 1]) in the follow-
ing way

F ([x1, x1], . . . , [xn, xn]) = [x1 − x1, x1 − x1].

It is straight to check that F is well-defined. Let us now consider an arbitrary
direction v = ([a1, b1], . . . , [an, bn]) ∈ L(R)n. Now, for c > 0 it holds that

F (([x1, x1], . . . , [xn, xn]) + cv) = [x1 + b1 − x1 − a1, x1 + b1 − x1 − a1]

= [x1 − x1 + b1 − a1, x1 − x1 + b1 − a1]

≥L F ([x1, x1], . . . , [xn, xn]),

because the fact that v ∈ L(R)n implies that b1 − a1 ≥ 0. Therefore, F is IDM
v-increasing for all v ∈ L(R)n.

However,
F (x0) = [0.3, 0.3] >L [0.1, 0.1] = F (y0),

and hence, F is not increasing.

Nevertherless, although it is not possible to find a characterization of regular
monotonicity, we are able to find a partial result.

Proposition 6.13. Let n ∈ N, let ≤L be the partial order. If F is increasing,
then F is IDM v-increasing for all v ∈ L([0, 1])n.

Proof. Let x = ([x1, x1], . . . , [xn, xn]) ∈ L([0, 1])n. Now, given c > 0 such that
x+cv ∈ L([0, 1])n, it is straight to check that x ≤L x+cv because the fact that
v ∈ L([0, 1])n implies that we are adding positive valued to every component.
Hence, the increasingness of F ensures v-increasingness.

7. Conclusions

Based on the concept of Riesz spaces, we have proposed a framework to han-
dle uncertain data originating from different extensions of fuzzy sets, such as
type-2 fuzzy sets, fuzzy multisets, n-dimensional fuzzy sets, Atanassov intuition-
istic fuzzy sets and interval-valued fuzzy sets. We have introduced the concept of
directional monotonicity for functions that handle this sort of uncertainty, com-
bining two of the tendencies in the research on aggregation theory, the relaxation
of the monotonicity condition and the extension of the domain. Moreover, we
have studied in depth this concept for the particular case of interval-valued func-
tions and we have characterized it in terms of standard directional monotonicity
for functions that take values in the unit interval. Thus, we have provided a
tool to construct such functions.

As a goal for future research, we intend to study the class of interval-valued
directionally monotone functions to see whether they produce as good results
as standard directionally monotone functions in classification problems.
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