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Abstract

Pillared interlayered clays (PILCs) are materials that show a two-dimensional layered
porous structure with properties that could be interesting alternatives to zeolites and other
microporous solids. Some of the properties that make these materials interesting are:
specific surface area, high exchange capacity, low permeability, swelling ability,
relatively good heat-resistance stability, high acidic properties and relatively low price.
PILCs have attracted intense research among several years in relation to the possible
control of these properties and environmental applications. The current short work is
devoted to the tendencies and new insights last five years of PILCs as adsorbents and

heterogeneous catalysts. The work finishes considering the future application prospects.
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Introduction

The development of inorganic pillared interlayectys (in short PILCs) has created new
opportunities in the field of the synthesis andl&@agtions of porous clay-based solids.
These materials are prepared by exchanging thgeltmmpensating cations present in
the interlayer space of swelling clays with hydrawgtal polycations. On calcining, the
inserted polycations yield rigid, thermally stablade species, which prop apart the clay
layers and prevent their collapse. Adjusting vasiparameters involved in the synthesis
process can control all the properties related Wighstructure of these materials, giving
them characteristics similar to those of zeolifie&]f PILCs show interesting applications
such as adsorbents and heterogeneous catalystdy melated to the removal of
hazardous substances, such as heavy metals, dgesleb or pharmaceuticals, from

aquatic systems.

Pillared clay minerals as adsor bents

Adsorption on porous materials with high specificface area has been the predominant
method of treatment of wastewaters owing to the Iloiial cost of the materials,
simplicity of design, versatility, ease of operati@nd insensitivity to toxic substances
including hydrophobic organic contaminants, catdamionic dyes, heavy metal cations,
oxyanions, etc. [3]. The porous structure of PILi@ds;ombination with the abundant —
OH groups, makes these type of materials efficaglstorbents for cationic and anionic
contaminants [4] (see Figure 1), and various adsorpechanisms have been proposed.
However, adsorption implies the change of the patits from the liquid to the solid
phase, but not their degradation. Other technotogged for this purpose include ion-
exchange, chemical precipitation, reverse osmasesnbrane filtration, among others.

These methods are in general more expensive teat@n. The liquid phase adsorption



is affected by many factors such as the pH, the tyfjpadsorbent, the solubility of the
adsorbate in the solvent, the temperature, theerdration of the adsorbate, the contact
time between the adsorbent and adsorbate, etceTdmsects are usually modified in
research works to study the efficiency of the adsots against the contaminants.

The release of heavy metals into the environmeatpstential threat to water and soill
quality as well as to plant, animal and human he&leavy metals can be bioaccumulated
through food chain transfers and unlike organidytahts are not amenable to biological
degradation. Heavy metals can be introduced intb astumulated in soils through
agricultural application of sewage sludge, ferditg, and/or through land disposal of
contaminated municipal and industrial wastes. Téraval and separation of heavy
metals from wastewaters is an attractive field whpillared clays can be used as
adsorbent materials. The application of PILCs t@renmental pollution control in terms
of heavy metals removal from aqueous media hasvestecant attention in the last years
[5-10]. In general, four different mechanisms hbeen proposed for the uptake of heavy
metal cations on PILCs: cation-exchange, chemidabiption, structural incorporation
and surface precipitation, but commonly cation-exxaje has been recognized as removal
mechanism. A Romanian natural calcium bentonite wsasl by Georgescu et al. [11] to
prepare a Cr-pillared clay as adsorbent of lead foom aqueous solutions. The results
found were explained considering two aspects: bemical binding between lead ions
and surface hydroxyl groups and the electrostatidibg between lead ions and the
permanent negatively charged sites of montmoriiérihe synthesis of adsorbents based
on pillared clays for immobilization of arsenic sp@s from gold mine wastewater under
alkaline condition has been reported by Barakanfagithzadeh [12], who indicated that
there was a limited approach in alkaline mine waater because of the negative surface

charge of most adsorbents. In this regard, thehsgig of AlFe-PILCs was proposed,



obtaining a material with a specific surface area 7! nt/g after calcination at 500 °C
for 2h. The pH was a critical parameter for adsompprocesses and arsenate was the
predominant species in the alkaline wastewater. S@hnimi and Frini-Srasra [13]
suggested the application of single (Al- and Zr®3). and mixed (AlZr-, CeAl-, CeZr-
and CeAlZr-PILCs) pillared clays for the removal ©é(Il), Co(ll) and Cu(ll) under
several conditions. The experimental results inditghat the presence of Ce on the
PILCs provided better properties for the removahef metal cations.

The large use of antibiotics is causing an incredgtug levels in the environment due
to the high percentage of unmetabolized active eidignts excreted by the living
organisms (30-90%). As a result, bacteria are @aingr resistance to them; for this
reason, a large number of researchers have castedtudies on the adsorption of
antibiotics, and organic contaminants in generainfwater by using several pillared
clays [14-21]. Four types of PILCs have been evatliby Roca Jalil et al. [22] for the
removal of ciprofloxacin (&H18FN3Os) from aqueous solutions. The highest
ciprofloxacin adsorption capacities were foundSerand Fe-PILC, related to the porous
structure of the materials. Ti-PILCs have beeretkbly Gonzalez et al. [23] as adsorbents
of methylene blue (H1eCIN3S) and trimethoprim (GH18N4Os). Doping cations were
incorporated into Ti-pillared montmorillonite, euakting the changes in the structural,
textural and surface properties, and their effexctise adsorption capacity of the materials
under kinetics and equilibrium conditions.

The presence of nutrients as phosphate withoutra@ooan lead to serious water
eutrophication problems. The removal of phosphgtadsorption has been proposed by
Xia et al. [24] using a Mg/Al-pillared montmorillde loaded with La(OH) The
adsorbents were prepared from various Mg/Al moddios and investigated in batch

adsorption experiments. The results obtained censigl several parameters showed that



adsorption was spontaneous and endothermic in elafline proposed adsorption
mechanism involved ion exchange with intercalatédras and surface coordination with
the loaded hydroxides. The presence of other anésn®NQ-, NOs, CI and SGQ*

decreased the removal of phosphate.

Pillared clay minerals as heter ogeneous catalysts

The use of PILCs as catalyst and as support foreacatalytic phases is one of the most
studied topics for these materials, particularlyemvironment related reactions. The
acidity developed by PILCs is interesting for réats as alkylation, dehydrogenation,
hydrocracking and isomerization [25]. In the casemetal supported catalysts, the
selective reduction of NJ26,27], the complete oxidation of VOCs [28-33Hahe wet
hydrogen peroxide catalytic oxidation of wastewd®#,35] are the most interesting
reactions where PILCs have been applied (see FR)ure

A new strategy for the synthesis of Al-PILCs haeeibrecently reported considering the
intercalation of a montmorillonite with Keggin-4l  polycations
(Al 208Al 25(0H)s6(H20).241%") (see Figure 3) [36]. Zhu et al. [37] have develbp method
to prepare Ad-PILCs from the intercalation of a montmorillonégad a base-hydrolyzed
solution of Al(lll) chloride, where the formationf dhe Keggin-Abko polycation is
confirmed by liquid?’Al NMR analysis. The specific surface area of tleevrmaterial
increase from 259 ffy (Al1s-PILC) to 311 nd/g (Also-PILC). The oxidation of toluene
has been used to study the catalytic behavior egelmaterials [38], finding that the
presence of the new polycations into the interlafehe montmorillonite can lead more
Bronsted acid sites and stronger acid sites thaggikeAlis polycations because of the
large positive charge in each KeggireAunit. As result, the toluene conversion was

higher at lower temperature using this new catalyst



Titanium dioxide is the most widely used catalygstthe photodegradation of pollutants
because of its photoelectric properties, low aestistance to corrosion, non-toxicity and
chemical stability in a wide pH range [39]. Claynaials pillared with titanium can show
greater photoactivity than Ti(particles and thus these materials have been yvicheld
for photocatalytic removal of contaminants [40]. Mmorillonite-TiOG; nanocomposites
were prepared by Gonzalez et al. [41] using twohaads (ultrasonic and stirring) and
titanium(lV) isopropoxide as precursor. These nanguosites were considered as active
catalysts for the photodegradation of 1,24-tricbib@nzene (€H3Cls, TCB). The
degradation of this molecule was very fast, andabdgy the removal of the chlorine
atoms, also involving the dimerization of the berezeng, and the bonding to the ring of
fragments previously removed from other molecuBemzalez et al. [42,43] also reported
the photodegradation of the antibiotic trimethopunder several conditions, as in the
dark or under UV light, with or without catalystsing a Ti pillared montmorillonite
doped with C¥" or Fé*. The solid doped with G exhibited the best behavior, with
photodegradation close to 76% after 180 min oftreacThe degradation by-products
were analyzed by mass spectrometry suggestinghbanolecule broke in two halves,
related to the two existing rings: trimethoxyberzemd diaminopyridine halves (see
Figure 4). The breakage of small fragments mairdynfthe trimethoxybenzene half of
the molecule, the reaction of these fragments thighmethoxy groups of other molecules
leading to species larger than the initial molecaled the subsequent breakage to new
fragments was also possible.

Although the degradation of dyes is usually undeieby means of oxidation reactions,
a reductive approach has also been reported, Uda§H: as reducing agent for

methylene blue degradation by Pd-supported Cu-ddpedlared montmorillonite [44].



The removal of methylene blue was rapid and almostplete at room temperature, in
presence of light, after about 20 min in the presesf the catalyst.

Al/Fe-PILCs have exhibited high performance acthgthe catalytic wet peroxidation
(CWPO) in heterogeneous phase, and have thereéme bsed in the degradation of
several organic compounds present in water, inctu@imerging pollutants, phenolic
compounds, natural organic matter and various tametbio-refractory azo-dyes [34]. A
new methodological approach to obtain 10 kg scafegreparation of Al/Fe-PILC
CWPO catalysts applied to the oxidation of pherad been reported by Mufioz et al.
[45]. This procedure opens the pilot and indusstdle approaches of PILC catalysts.
Ramirez et al. [46] optimized CWPO phenol oxidatigrstatistical tools of experimental
design and multi-response surface methodologydB8 &R reactor under mild conditions.
Maximal TOC and phenol removals of 31 and 65%, eespely, under atmospheric
pressure, room temperature and neutral pH weretezbdeveral natural pillared clays
(Al/Cu- and Al/Fe-PILCs) have been used as hetereges photocatalysts for the®}-
assisted treatment of a real winery wastewateryackexrized by the presence of
polyphenolic compounds [47], finding higher catalyterformances for Al/Cu- than for
Al/Fe-PILC. A Cul/Fe-PILC catalyst efficient for theaineralization of paracetamol
through a photo-Fenton process has been presentédrtado et al. [48]. The oxidation
of tartrazine, @HoN4Naz0sS,, a model dye pollutant, in the presence of oxarkusing

a Co/AlI-PILC as catalyst, has been reported by ket al. [49].

The need to reduce greenhouse gas emissions eatrttosphere makes that the capture,
storage and utilization of GQo produce valuable chemicals has gained impogtamc
the last years. In this respect, value-added pitsdsymthesis by the hydrogenation of
CQO; reaction has attracted the attention of Marcoal.e[50], using CuFe and CuCo

supported on Al/V-PILC. A linear relationship betmethe CQ conversion and the metal



surface area of the Cu-based catalysts was fouerthavie reforming with CQs other
possible alternative to produce syngas and alsedoce the emissions of s done
by Mofrad et al. over Ni/Al-PILC [51]. The evaluati of the CQ adsorption capacity is

a previous step in this type of applications [52].

Future applications and conclusions

Despite of the achievements presented in the vibbeke are still many interesting areas
to be explored for applications of PILCs based migte The porous structure of these
materials can be designed and controlled, so tleey lwe adapted to the desired
applications. The intercalation of the layered slegn be oriented towards new structures
and towards new sources of polycations, such asettwery of industrial metal wastes.
Once PILCs have been applied as adsorbents, thas&iais can be reused as new
adsorbents or catalysts, closing the cycle of neweepts in Circular Economy. This will
give the intercalation and pillaring of clay minlsra new important role in materials

science, as they have had so far.
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Figure 1. Adsorption selective of Orange Il and MethyleneaBan Al- and Zr-PILCs
explained by the porous properties of the materi@baracterization textural by
adsorption of N2 at 77 K of PILCs: (a) ultramicropo (b) micropore and (c)

supermicropore region. (Adapted from [4]).
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Figure 2. Proposal of Al/Fe-, Al/Cu- and Al/(Fe-Cu)-PILCs the CWPO of methyl

orange. (From [34]).
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Figure 3. Structural comparison of - and Ak—PILC species.
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Figure 4. Mass spectra of the reaction solution after séwgradation times using
Cr/Ti-PILC as catalyst. From left to right, up:H) and 45 minutes; bottom 60, 120 and
150 minutes. Proposal of fragmentation of the mdbecstructure of TMP into two

substructures. (Adapted from [42]).
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