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ABSTRACT 

A high percentage of lung cancer patients progressing from conventional therapies are refractory to 

PD‐L1/PD‐1 blockade monotherapy. Here, we show that the proportion of highly differentiated (THD) 

CD4 T cell population can identify potential responders to PD-L1/PD-1 blockade therapy as quantified 

from peripheral blood samples before treatment initiation. Indeed, a baseline high proportion of CD4 

THD (>40%) is an indicator of functional systemic CD4 immunity which turned to be a differential 

factor for clinical responses. In these patients, CD4 T cells possessed significant proliferative 

capacities and low co‐expression of PD‐1/LAG‐3 following activation, and were responsive to PD‐1 

blockade ex vivo and in vivo. In addition, quantification of highly differentiated CD4 T cells in 

combination with PD‐L1 tumor positivity identified a group of patients with response rates to 

immunotherapy of about 70%. In contrast, patients with low percentages of CD4 THD (<40%) did not 

respond even though they had lung cancer‐specific T cells. Although proficient in cytokine production, 

CD4 T cells in these patients exhibited proliferative dysfunctionality, strongly co‐upregulated PD‐

1/LAG‐3 and were largely refractory to PD‐1 monoblockade. Systemic CD8 immunity only recovered 

by PD-L1/PD-1 blockade therapy in patients who had baseline functional CD4 immunity. In contrast, 

baseline systemic T cell proliferative dysfunctionality in patients refractory to PD-1/PD-L1 

monoblockade strategies could be reverted by PD‐1/LAG‐3 co‐blockade confirming that PD-1/LAG-

3 co-expression was a contributor to T cell dysfunctionality. These results provide a strong rationale 

for the combination of PD-L1/PD-1 and LAG-3 blockade therapies in patients exhibiting baseline CD4 

T cell dysfunctionality. 
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RESUMEN 

Un alto porcentaje de pacientes con cáncer de pulmón resistentes a terapias convencionales son 

refractarios a la inmunoterapia con anticuerpos bloqueadores de la interacción PD-L1/PD-1. En la 

presente tesis doctoral se ha demostrado que la cuantificación de la proporción de linfocitos T CD4 

altamente diferenciados (THD) en sangre periférica antes de comenzar el tratamiento identifica a 

potenciales respondedores a la inmunoterapia anti-PD-L1/PD-1. En efecto, una alta proporción de CD4 

THD (>40%) pretratamiento es un indicador de la funcionalidad sistémica CD4 que resulta ser un factor 

diferencial para obtener respuestas clínicas. En estos pacientes, las células T CD4 son funcionales a 

nivel de capacidades proliferativas y presentan una baja co-expresión de PD-1/LAG-3 bajo 

estimulación, además de ser receptivos al bloqueo de PD-1 ex vivo e in vivo. Además, la cuantificación 

de los linfocitos T CD4 altamente diferenciados en combinación con la expresión positiva de PD-L1 

tumoral identifica a un grupo de pacientes con una tasa de respuesta alrededor del 70%. En cambio, 

los pacientes con porcentajes bajos de CD4 THD (<40%) antes de comenzar el tratamiento no 

respondieron al bloqueo anti-PD-L1/PD-1, a pesar de presentar linfocitos T específicos de cáncer de 

pulmón. Aunque las células T CD4 en estos pacientes son competentes a la hora de producir de 

citoquinas, son disfuncionales a nivel de proliferación, co-expresan altos niveles de PD-1/LAG-3 y 

son refractarios al monobloqueo de PD-1. Así, la inmunidad sistémica CD8 solo pudo ser revertida a 

través del bloqueo de PD-L1/PD-1 en aquellos pacientes que presentaban una inmunidad CD4 basal 

funcional.  En cambio, la disfuncionalidad proliferativa observada en las células T de pacientes 

refractarios a la inmunoterapia anti-PD-L1/PD-1 pudo revertirse a través del doble bloqueo de PD-

1/LAG‐3. De esta manera, mediante los presentes datos se ha confirmado que la co-expresión de PD-

1/LAG-3 contribuye a la disfuncionalidad de las células T en pacientes con cáncer de pulmón 

resistentes a terapias convencionales. Estos resultados proporcionan el fundamento experimental para 

la combinación de las terapias bloqueadoras de PD-L1/PD-1 y LAG-3 en pacientes que manifiestan 

una inmunidad CD4 basal disfuncional.  
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INTRODUCTION 

1. LUNG CANCER 

Cancer comprises a large group of heterogeneous diseases which have in common the transformation 

of somatic cells into cells that proliferate without control with pathological consequences. Apart from 

uncontrolled growth, malignant cancer cells acquire the capacity for invading tissues and organs 

leading to disruption of their proper functioning. Cancer cells can also induce angiogenesis, which 

facilitate the formation of tumor masses and propagation routes for metastases through the formation 

of new blood vessels.  

The malignant transformation of cancer cells is a multistage process driven by genetic and 

environmental factors, of which mutagens usually play a prominent role. This has been extensively 

reviewed elsewhere (Hanahan and Weinberg 2000). Briefly, mutagens cause genetic damage into the 

genomic DNA (mutations) that modify genes controlling the cell cycle, proliferation, survival 

pathways and apoptosis. These factors can be classified as environmental (UV radiation and oxidative 

damage), biological (certain viruses or bacteria), chemical (such as asbestos and radioactive materials) 

and lifestyle-related (diet, alcohol, tobacco). Certain inherited genetic mutations through the germline 

may also favor the development of pre-malignant lesions by dysregulating the cell cycle (familial 

retinoblastoma) or interfering with DNA repair or physiological apoptosis (mutant variants of the 

MRC1 gene for melanoma). 

The cell cycle is highly regulated and includes mechanisms to repair DNA and ensure chromosomal 

replication and stability while minimizing mutational events. Nevertheless, many mutations are in fact 

accumulated in the genomic DNA during the lifespan of an individual (Moskalev et al. 2013). Thus, 

ageing is the most important risk factor for cancer. The time-dependent accumulation of cellular 

damage can eventually lead to genomic instability, epigenetic alterations, telomere shortening, altered 

metabolism and cellular senescence, which in turn results in a significant decline in physiological 

organ function (Aunan, Cho, and Søreide 2018). Hence, a lifespan exposure to mutagens combined 

with a less effective DNA repair machinery reinforces genomic instability, accumulation of mutations 

and malignant cell transformation if anti-oncogenes are inactivated, or if oncogenes arise from 

mutations in cell cycle-regulating genes (Jackson and Bartek 2009). Low grade chronic inflammation 

associated to aging (inflammaging) is also closely related to cancer development and progression. 

Hence, the constant production of reactive oxygen/nitrogen molecular species represents an important 

source of mutagens for DNA damage in tissues (Ohnishi et al. 2013)(Pinlaor et al. 2004). The immune 

system is also affected by aging-dependent deleterious effects, a process known as immunosenescence 
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(Fulop et al. 2010). Consequently, immune cell populations progressively lose the ability to detect and 

eradicate tumors and infections. All in all, it is not unexpected that half of cancers occur in individual 

older than 65 (Hsu 2016). 

Lung cancer is the most common neoplastic malignancy in men and the third most common in women 

worldwide, and it is the major cause of cancer-related death in developed countries. 2.1 million cases 

were diagnosed in 2018 with 1.8 million deaths, being among the worst 5-year survival cancer types 

(Vachani, Sequist, and Spira 2017). Smoking remains the main risk factor, responsible for more than 

71% of cases (Ordóñez-Mena et al. 2016). Other risk factors include exposure to asbestos, arsenic, 

radon, non-tobacco-related polycyclic compounds, and indoor air pollution (Malhotra et al. 2016). The 

average age at the time of diagnosis is around 65-70 years old, while lung cancer in young individuals 

is mainly caused by driver mutations. Lung cancer is widely classified in two types from a histological 

perspective; non-small cell lung carcinoma (NSCLC) and small-cell lung carcinoma (SCLC).  

2. NON-SMALL CELL LUNG CARCINOMA 

2.1. PATHOLOGY AND MOLECULAR BIOLOGY  

NSCLC is the most prevalent lung cancer type, accounting from 85% to 90% of the cases. Due to the 

absence of symptoms during disease development and its metastatic nature, most patients are 

diagnosed at advanced stages when tumors are unresectable. Hence, histological diagnosis is carried 

out from small biopsy or cytology samples from the primary tumor or accessible metastases. 

Histological diagnosis is based upon the World Health Organization (WHO) classification (Travis et 

al. 2013). The main histological NSCLC subtypes are adenocarcinoma, squamous cell carcinoma, 

large cell carcinoma and sarcomatoid carcinoma (Figure 1). Adenocarcinoma and squamous cell 

carcinoma (SCC) are the most common worldwide accounting for 50% and 30% of cases, respectively. 

Lung adenocarcinomas consist of epithelial tumors with glandular differentiation and usually with 

mucin production. In contrast, SCC arises from bronchial epithelial cells with a solid nest growth 

pattern (Perez-Moreno et al. 2012). These tumors lack glandular differentiation and mucin production 

and can be further classified into keratinizing, non-keratinizing, and basaloid subtypes. However, 

morphological characterization might not be precise enough and immunohistochemistry (IHC) is 

usually required to confirm the diagnosis (Travis et al. 2013)(Travis et al. 2015). Adenocarcinoma 

cells frequently express pneumocytic markers. Thus, thyroid transcription factor 1 (TTF-1) and 

NapsinA can serve as diagnostic biomarkers and for establishing the differentiation stage 

(Mukhopadhyay and Katzenstein 2011). In contrast, SCC are generally TTF-1 negative and can be 
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differentiated by the expression of several markers such as p40, cytokeratin (CK) 5/6, CK5, and p63 

(Conde et al. 2013)(Hayashi et al. 2013). 

In addition, NSCLC can be also classified by disease stage or anatomical spreading by the TNM 

classification in four categories, stage I to IV (Lim et al. 2018). This classification considers tumor 

size (T), affected adenopathic nodes (N) and presence of metastases (M). Stage I tumors are <2 cm 

size and found exclusively within the lung, while in stage II and III the disease is locally advanced 

with or without hiliar, mediastinal and supraclavicular lymph node metastases, respectively. Stage IV 

tumors are diagnosed when further organ metastases are present. 

 

Figure 1. Classification of NSCLC tumors. Diagnosis of NSCLC is performed by different complementary 

approaches including evaluation of growth pattern by histology, expression of specific markers by IHC and 

TNM staging classification. Additional analyses of biomarker expression are also carried out for medical 

decisions on specific therapeutic interventions. Identification of mutations in EGFR, ALK and ROS1 allows 

patient selection for targeted therapies with inhibitors of EGFR and ALK tyrosine kinase receptors, while PD-

L1 tumor expression serves as a biomarker for PD-L1/PD-1 blockade immunotherapy. 

After morphological diagnosis, molecular identification of driver mutations is also of clinical routine. 

The most common driver mutation genes for NSCLC affect the endothelial growth factor receptor 

(EGFR), KRAS, BRAF, anaplastic lymphoma kinase (ALK) and ROS1 (Pao and Hutchinson 2012). 

Mutations affecting EGFR, ALK and ROS are mostly encountered in non-smoker young patients, 

although they can also be found in patients who smoke. Most of lung tumors harboring these mutations 

are adenocarcinomas. EGFR mutations are identified in 10% of lung adenocarcinomas in Western 

Europe, while ALK and ROS1 rearrangements in 5% and 1%, respectively. These serve as efficient 

biomarkers for patient selection to targeted therapies with inhibitors of EGFR, ALK and ROS1 tyrosine 

kinase receptors. As BRAF/MEK inhibitors are being widely approved, BRAF V600E mutations are 

also being evaluated as predictive biomarkers (Planchard et al. 2019). More recently, others driver 
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mutations including human epidermal growth factor receptor 2 (HER 2), MET exon 14 mutations and 

RET and neurotrophic tyrosine receptor kinase 1 (NTRK1) rearrangements are emerging as therapeutic 

targets and predictive biomarkers (Lindeman et al. 2018)(Planchard et al. 2018) 

2.2. THERAPIES FOR NSCLC 

Lung cancer has the lowest survival rate among the most frequent cancer types with an overall 5-year 

survival below 25%, which is strongly related to disease stage at diagnosis (Figure 2). For localized 

NSCLC the 5-year survival rate is about 33%, while for advanced NSCLC is around 6%. Currently, 

the therapeutic approaches to treat NSCLC patients include surgery, radiotherapy, chemotherapy and 

immunotherapy, depending on the staging at diagnosis. Surgery and radiotherapy are only beneficial 

when tumors are resectable or can be stereotactically targeted. In contrast, NSCLC patients with 

advanced disease are treated with systemic therapies such as cytotoxic platinium-based chemotherapy 

with very poor clinical outcomes and numerous side-effects. One-year survival is reached only by 33% 

of the patients (Schiller et al. 2002). Targeted therapies with kinase inhibitors have considerably 

increased survival rates for adenocarcinoma subtypes harboring the specific mutations conferring 

susceptibility for these therapies (National Comprehensive Cancer Network 2017). However, it has to 

be remarked that these patients represent a minority. Hence, there is still an urgent need for more 

clinical approaches with improved efficacy. 

 

Figure 2. Survival rates of NSCLC according to disease staging. Data from the National Cancer DataBase 

(NCDB) on 5-year survival rates as a function of staging (I-IV). Survival is strongly influenced by the stage at 

the time of diagnosis. There is a clear advantage at an early stage, while survival rates at advanced stages are 

very low (https://www.phoebehealth.com/cancer/non-small-cell-lung-cancer).  

Recently, immunotherapies based on immune checkpoint inhibitors have revolutionized oncology, 

including the treatment of NSCLC. Immune checkpoints consist on a system of receptor-ligand 

interactions that regulate immune responses in physiological conditions, especially T cell activities. 

https://www.phoebehealth.com/cancer/non-small-cell-lung-cancer
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These interactions play a key role in the induction/maintenance of immunological tolerance and in the 

restriction of collateral inflammatory damage. Cancer cells frequently utilize this strategy to inhibit 

the natural anti-tumor response of the immune system. The development of immune checkpoint 

inhibitors has radically changed the approach to NSCLC treatment due to durable responses and 

increase in survival compared to conventional cytotoxic agents (Carbone et al. 2015)(Borghaei et al. 

2015)(Rizvi, Mazières, et al. 2015)(Herbst et al. 2016)(Fehrenbacher et al. 2016)(Antonia et al. 2017). 

These inhibitors consist on recombinant antibodies that bind immune checkpoints, blocking their 

interactions and disrupting their inhibitory activities over effector immune cells. Although immune 

checkpoint inhibitors exert some adverse events (AEs), these are clinically less aggressive and severe 

than previously anticipated and certainly less toxic than conventional treatments.  

In the last years, the Food and Drug Administration (FDA) and the European Medicines Agency 

(EMA) have approved nivolumab and pembrolizumab as programmed cell death protein 1 (PD-1) 

blockers, and atezolizumab and durvalumab as programmed cell death ligand 1 (PD-L1) blockers for 

the treatment of advanced NSCLC patients progressing from cytotoxic agents (Table 1). In addition, 

the anti-PD-L1 antibody avelumab is not yet EMA or FDA-approved, but it is currently being 

evaluated in clinical trials (Gulley et al. 2017) together with several others under development.  

Pembrolizumab and nivolumab were accepted by the FDA in 2015 for advanced NSCLC patients 

progressing from platinum-based chemotherapy. Nivolumab was developed by immunizing 

humanized mice with a PD-1-Fc-PD-1 human hybrid protein. Nivolumab is an IgG4 antibody that 

interacts poorly with Fc receptors (FcγRII and FcγRIII) reducing antibody-dependent cell-mediated 

cytotoxicity with high in vivo half-life (Davies et al. 2014). Phase III clinical trials CheckMate 057 

(Borghaei et al. 2015) and CheckMate 017 (Brahmer et al. 2015) led to its approval. In contrast, 

pembrolizumab was generated by immunizing mice with human PD-1 and isolating a cDNA from an 

antibody binding PD-1. The PD-1 binding region was cloned into an IgG4-encoding-expression vector 

and produced from Chinese Hamster Ovary (CHO)-transfected cell lines. Pembrolizumab is therefore 

a humanized IgG4 anti-PD-1 antibody. It was accepted based on results from the phase III KEYNOTE 

010 clinical trial. Patients with PD-L1 tumor expression equal or superior to 50% showed most benefit. 

Pembrolizumab was also approved in 2016 for first line treatment of NSCLC based on results from 

the Phase III clinical trial KEYNOTE-024 (Reck et al. 2016), with inclusion criteria being PD-L1 

tumor expression ≥50%. In contrast, atezolizumab is a PD-L1-specific humanized IgG1 antibody with 

mutations in the Fc domain to reduce its affinity to Fc receptors, and consequently, antibody-dependent 

cell-mediated cytotoxicity and antibody-dependent cellular phagocytosis. It was approved by the FDA 

in 2016 for advanced NSCLC as a second line treatment based on results from phase II trial POPLAR 

(Fehrenbacher et al. 2016) and phase III trial OAK (Rittmeyer et al. 2017). Later in 2018, Durvalumab 
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was approved by the FDA for unresectable locally advanced (stage III) NSCLC progressing from 

platinum-based chemo-radiotherapy based on the results of the phase III PACIFIC trial (Antonia et al. 

2017).  

Table 1. Clinical trials on immune checkpoint inhibitors in NSCLC as a second line treatment 

Immunotherapy Trial Reference Pha

se  

No Histology/Line of 

treatment 

Results 

Nivolumab CheckMate 017 

 

 

CheckMate 057 

III 

 

 

III 

272 

 

 

582 

Squamous/second  

 

 

Non- 

squamous/second 

ORR vs. docetaxel: 20% vs 9% 

(P=0.008). Improvement in OS 

(median, 9.2 vs 6 months; HR, 0.59; 

p<0.001). PD-L1 expression neither 

predictive nor prognostic.  

ORR vs. docetaxel: 19% vs 12% 

(p=0.02). Improvement in OS (median, 

12.2 vs 9.4 months; HR, 0.73; p=0.002). 

PD-L1 expression associated with great 

efficacy at all levels (≥1, ≥5, ≥10).  

Pembrolizumab Keynote 010 II/ 

III 

1.034 NSCLC/second/PD-

L1 positive 

 

 

 ORR vs. docetaxel: 18% for low dose 

and 18% for high dose vs 9% (P=0.0005 

and 0.0002). Improvement in OS with 

low dose (median, 10.4 vs 8.5 months; 

HR, 0.71; p=0.0008) and high dose 

(median, 12.7 vs 8.5 months; HR, 0.61; 

p<0.001). Efficacy was greater in 

patients with PD-L1 ≥50%.  

Atezolizumab POPLAR 

 

 

OAK 

II 

 

 

III 

287 

 

 

850 

NSCLC/second 

 

 

NSCLC/second 

 

ORR vs. docetaxel: 14.6% vs 14.7. 

Improvement in OS (median, 12.6 vs 

9.7 months; HR, 0.73; P=0.04). Efficacy 

was greater in patients with highest 

levels of PD-L1 on tumor and immune 

cells. 

ORR vs. docetaxel: 14% vs 13.8. 

Improvement in OS (median, 13.8 vs 

9.6 months; HR, 0.73; P=0.0003). OS 

was improved regardless of PD-L1 

expression. Patients with tumors 

expressing high levels of PD-L1 in both 

tumor cells and immune cells exhibited 

the greatest benefit from atezolizumab. 

Durvalumab PACIFIC 

 

 

III 

 

 

709 

 

 

Stage III NSCLC with 

no disease 

progression after ≥2 

cycles of 

chemoradiotherapy/se

cond 

ORR vs. placebo: 30% vs 17.8% 

(p<0.001). Improvement in OS (median, 

66.3 vs 55.6 months; HR, 0.52; 

p=0.0001). PFS and OS benefits with 

durvalumab were observed in all 

subgroups, including PD-L1 expression 

≥25% or <25%. 

Abbreviations: ORR, overall response rate; PFS, progression free survival; OS, overall survival; NSCLC, non–

small cell lung cancer; HR, hazard ratio. 

 

4. CELLULAR AND MOLECULAR BASES OF IMMUNOTHERAPY 

The main goal of immunotherapy is to stimulate the immune system of the patients to re-activate or 

induce strong anti-tumor responses. Different types of cancer immunotherapies have been developed 
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in the last century. These therapies can be classified as passive or active depending on the degree of 

modulation and the status of the host immune system towards cancer cells (Lesterhuis, Haanen, and 

Punt 2011). Passive immunotherapies include administration of anti-tumor antibodies, adoptive 

transfer of T cells and cytokine administration to incorporate the missing anti-tumor immunity in 

patients. In contrast, active immunotherapy seeks to enhance the intrinsic anti-tumor responses 

(Papaioannou et al. 2016). These strategies include vaccines based on administration of nucleic acids, 

peptides/proteins, antigen-presenting dendritic cell (DC), oncolytic viruses, whole tumor cell-based 

vaccines, immunostimulatory monoclonal antibodies and immune checkpoint inhibitors. The efficacy 

of the latter does not only rely on the status of immune system but also in the tumor immunogenicity 

and the susceptibility of the tumor to be recognized by the host immune system.  

3.1 Immunogenicity of lung cancer cells 

NSCLC was classically considered a non-immunogenic cancer. However, the experimental evidence 

indicates that this is not quite the case (Dammeijer et al. 2016). NSCLC is most frequently caused by 

chronic exposure to carcinogens in tobacco smoke, and as a consequence NSCLC tumors possess a 

high tumor mutational burden (TMB) that increases the generation of immunogenic tumor-associated 

antigens (TAA) (Schumacher and Schreiber 2015). These TAAs can be recognized by the immune 

system, leading to T cell reactivity. Indeed, several studies have shown that the degree of tumor 

infiltration with CD8 and CD4 T cells is associated with improved survival (Kawai et al. 2008)(Suzuki 

et al. 2013)(Al-Shibli et al. 2008)(Brambilla et al. 2016)(Geng et al. 2015). Thus, the active role of the 

immune system in keeping NSCLC at bay has been confirmed by increased lung cancer rates within 

immunosuppressed individuals (Tartour and Zitvogel 2013).  

TAAs represent a large heterogeneous group of proteins produced by the tumor. These include mutated 

self-proteins, neoantigens, oncofetal proteins or tissue-specific proteins. TAAs can be originated by 

acquired mutations during oncogenesis or from aberrant expression of non-characteristic proteins for 

the tissue of origin. TAAs play a central role in triggering adaptive immunity, tumor-specific T cell 

responses and tumor cell elimination. Several immunogenic TAAs have been identified in lung cancer 

including mucin-1 (MUC-1), New York esophageal squamous cell carcinoma-1 (NY-ESO-1), 

melanoma associated antigen (MAGE-3), carcinoembryonic antigen (CEA) and human epidermal 

growth factor receptor 2 (HER-2)/neu among others. The ability of these and other TAAs as vaccines 

to stimulate autologous T lymphocytes is under investigation (Itoh et al. 2002)(Disis et al. 

2002)(Vansteenkiste et al. 2016)(Butts et al. 2005)(Butts et al. 2014). 

 



23 
 

4.2. Cancer cell recognition by the immune system  

The recognition of tumor cells and development of specific anti-tumor responses constitutes a complex 

process. Tumors are initially identified in a non-specific manner by innate immune cells including 

neutrophils, NK (natural killer) cells, γδ T cells and macrophages. These cells operate very early in 

cancer immune surveillance promoting local inflammation by secretion of pro-inflammatory cytokines 

and chemokines. Activated NK and γδ T cells secrete interferon gamma (IFN-γ), perforin and 

granzyme B which eventually kill tumor cells. These cells can also express apoptosis-inducing ligands 

such as Fas ligand (FasL) and TRAIL which cause cancer cell death after interacting with their 

receptors (Cheng et al. 2013)(Kondo et al. 2008). Eventually, tumor killing releases TAAs that are 

captured by professional antigen-presenting cells (APCs) which serve as a bridge with the adaptive 

immune system. Of these, DCs are considered the major professional APCs that can trigger anti-tumor 

responses. DCs and macrophages can also phagocytose whole necrotic cells that in the presence of 

appropriate signals induce their maturation and migration into secondary lymphoid organs such as 

draining lymph nodes. Once there, TAA-derived peptides bind to major histocompatibility complex 

molecules (MHC) forming TAA-MHC complexes which are exported to the DC surface to be 

presented to naïve CD4 and CD8 T cells. If these T cells have specific T cell receptors (TCRs) to these 

TAA-MHC complexes, they can potentially be activated in the proper immunological context (T cell 

priming) (Chen and Mellman 2013). In general terms, peptide-loaded MHC class I molecules (MHC-

I) present endogenous antigens to CD8 T cells, while MHC class II molecules (MHC-II) are loaded 

with peptides from exogenous antigens taken up by phagocytosis and presented to CD4 T cells. There 

is an additional mechanism whereby exogenous antigens captured by phagocytosis can be presented 

in the context of MHC-I molecules to CD8 T cells. This mechanism is called cross-presentation and 

plays a key role in anti-tumor immunity (Joffre et al. 2012)(Sánchez-Paulete et al. 2017). 

4.2.1. Antigen presentation and T cell priming 

Antigen presentation is highly regulated at multiple levels by cell-to-cell interactions between APCs 

and T cells to ensure proper T cell activation while preventing autoreactive responses (Figure 3). 

These interactions provide three main types of signals to the T cell that will regulate their activation, 

clonal expansion and differentiation towards effector and memory phenotypes. Signal 1 is given to the 

T cell following the binding of the TCR to the peptide-MHC (p-MHC) complex. This binding triggers 

a signaling kinase cascade (Zuazo et al. 2017). However, T cell stimulation with only signal 1 leads to 

a limited wave of T cell clonal expansion, but these T cells will fail to proliferate after a second antigen 

re-encounter. These cells are called “anergic” and represent a physiological central tolerogenic 

mechanism towards autoantigens (Crespo et al. 2013). Most TAAs can be considered quasi-

autoantigens, and in general tumor-specific T cells are frequently anergic. For T cells to be properly 
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activated at the required degree and the appropriate differentiation stage, they need to receive 

additional signals (Curtsinger, Johnson, and Mescher 2003). These signals integrate positive and 

negative co-stimulation in what is called the “signal 2”. The main co-stimulatory interaction is driven 

by CD80 on the surface of the APC binding to CD28 on the T cell. Both signals promote production 

and secretion of IL-2 by T cells, which is required to support the proliferation and survival of T cells 

during priming (Zhu, Yamane, and Paul 2010). On the other hand, negative regulatory signals 

modulate T cell activation to ensure protection against exacerbated immune responses (Nurieva et al. 

2006), and thus are physiological immune checkpoints. T cells express multiple co-inhibitory 

receptors such as PD-1, lymphocyte-activation gene 3 (LAG-3), cytotoxic T lymphocyte-associated 

protein 4 (CTLA-4) and T-cell immunoglobulin and mucin domain-containing 3 (TIM-3), especially 

after activation. These inhibitory receptors interact with their corresponding ligands on the APC to 

regulate by inhibition (or fine-tuning) either T cell activation or their effector capacities. Deletion of 

either PD-L1/PD-1 or CTLA-4 in murine models leads to spontaneous autoimmune disorders, and 

therefore a loss of central tolerance (Nishimura et al. 1999)(Tai et al. 2007). 

 

Figure 3. Three-signal model of antigen presentation in the immunological synapse. T cells get activated and 

expand exponentially after encountering antigenic peptides specific for their cognate TCRs. Antigenic peptides 

are presented by professional APCs (left) to T cells (right). There, peptide-MHC complexes bind to the TCR 

within the immunological synapse to initiate signal 1 (TCR stimulation). Co-stimulatory (CD28) or co-

inhibitory receptors (PD-1, LAG-3, CTLA-4) on T cells bind to their ligands on APCs (CD80, PD-L1, MHC-

II), representing signal 2. Integration of stimulatory and inhibitory signals determine de degree of activation of 

T cells. Furthermore, cytokine secretion (Signal 3) by APCs regulates T cell differentiation into effector T cells. 

 

Chronic stimulation with highly immunogenic antigens provokes a sustained high-level surface 

expression of immune checkpoints in T cells such as PD-1, LAG-3 or TIM-3. These chronically 

stimulated T cells sequentially lose the capacity for multi-cytokine production, and therefore their 

proliferative capacities and effector functions. This T cell stage is called exhaustion and was described 
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first in chronic viral infections (Crespo et al. 2013). This T cell inhibitory mechanism also takes place 

in highly-immunogenic cancers, particularly within the tumor microenvironment (Baitsch et al. 2011). 

Finally, T cells receive a third type of signal, or signal 3, provided by cytokine stimulation most 

frequently from the APC (Curtsinger, Lins, and Mescher 2003). This signal is important to direct T 

cell differentiation towards different effector types. This is exemplified for CD4 T cells which 

differentiate into multiple T helper (Th) subsets depending on the cytokine milieu. IFN-γ and 

interleukin (IL)-12 (IL-12) induce Th1 differentiation; IL-10 and IL-4 induce Th2 differentiation; 

Combinations of transforming growth factor beta (TGF-β), IL-17, IL-23 and IL-6 induce Th17 

differentiation; and inducible regulatory T cells (Tregs) are differentiated by IL-10 and TGF-β in the 

absence of pro-inflammatory cytokines (Luckheeram et al. 2012). CD8 T cells differentiate into 

cytotoxic T cells (CTL) in the presence of IFN-γ, IL-2 and IL-12. 

4.3. Differentiation and senescence of human T cells  

Human T cells can also be divided into functionally different subsets based on the expression of 

different combinations of cell surface receptors. The first main classification is based on membrane-

bound tyrosine phosphatase CD45RA and L-selectin CD62L expression profiles. Naïve (NA) and stem 

cell memory (SCM) T cells co-express both CD62L and CD45RA. These T cells exit the thymus and 

migrate to secondary lymphoid organs driven by CD62L (Sallusto et al. 1999).When they recognize 

an antigen in secondary lymph organs they proliferate and differentiate into effector cells which 

migrate to the infection or tumor site. Effector T cells are short-lived cells, from which following 

antigen clearance, a small proportion differentiate into long-lived memory T cells.  

Memory T cells undergo fast activation and strong effector responses upon antigen re-encounter 

(McKinstry, Strutt, and Swain 2010)(Taylor and Jenkins 2011)(Strutt et al. 2012). Memory T cells 

express high levels of CD40 ligand (CD40L) which binds to its receptor CD40 on the DC surface to 

engage rapid T cell re-expansion (Grewal and Flavell 2006)(Johnson et al. 2009). Simplifying, 

memory T cell compartments are located in secondary lymphoid organs (central memory) or in 

inflamed tissues (effector memory). Central memory (CM) T cells express CD62L but not CD45RA. 

In contrast, effector memory (EM) T cells are tissue-resident and do not need CD62L nor CD45RA. 

EM T cells express high levels of chemokine and cytokine receptors to reach inflamed tissues. 

Peripheral CD4 populations are enriched in CM T cells while in CD8 populations EM are the 

predominant subset (Taylor and Jenkins 2011). Finally, the effector population which re-expresses 

CD45RA (EMRA) is considered a terminally differentiated phenotype which accumulates during 

lifetime. Indeed, elderly individuals with a lifetime exposure to variety of infections and diseases 

present a higher proportion of memory and effector T cell subsets compared to young individuals 

(Simon, Hollander, and McMichael 2015). 
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Figure 4. T cell differentiation according to their CD27/CD28 expression profiles. Upon antigen recognition, 

T cells progressively lose CD28/CD27 expression and differentiate into poorly differentiated (CD27+ CD28+, 

TPD), intermediately differentiated (CD27negative CD28+, TID) and highly differentiated (CD27negative 

CD28low/negative, THD) T subsets during effector/memory phenotype differentiation. 

 

The second main classification is based on CD27/CD28 expression profiles. Following the initial 

antigen recognition, T cell differentiation advances through the progressive loss of CD27 and CD28 

co-stimulatory receptors (Lanna et al. 2014)(Lanna et al. 2017). Hence, human T cells can be classified 

according to their CD27/CD28 expression profiles into poorly-differentiated (CD27+ CD28+), 

intermediately-differentiated (CD27negative CD28+) and highly-differentiated (CD27negative 

CD28low/negative, THD) subsets (Figure 4) (Lanna et al. 2014)(Amyes et al. 2003). In humans, THD cells 

are largely composed of memory, effector and senescent T cells. Senescence is associated with natural 

ageing and it was first described in fibroblasts (Campisi and D’Adda Di Fagagna 2007). Age-

dependent chronic DNA damage activates signaling pathways regulating T cell senescence through 

AMPK-dependent p38 MAPK activation (Lanna et al. 2014). In addition, sestrin proteins maintain T 

cell senescence through an alternative MAPK activation pathway (Lanna et al. 2017). Senescent T 

cells are characterized by telomere shortening, low telomerase activity, loss of surface co-receptors 

and reduced proliferative capacity (Effros 2002). They also express surface inhibitory/cytotoxic 

natural killer receptors such as CD57 and lectin-like receptor subfamily G member 1 (KLRG1) which 

are involved in impaired proliferative capacities (Brenchley et al. 2003)(Henson et al. 2009). 

Nevertheless, senescent T cells maintain the ability to exhibit effector functions (Libri et al. 

2011)(Vallejo 2005).   

4.4. CD4 T cells in anti-tumor immunity 

CD8 T cells play a direct role in anti-tumor responses due to their potent cytotoxicity mediated by 

IFN-γ production, secretion of cytotoxic granules and induction of apoptosis through cell-to-cell 
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interactions (Zhang and Bevan 2011). Upon antigen recognition CD8 T cells differentiate into CTL 

that infiltrate tumors where they exert cytotoxic activities. Some of these cells will differentiate into 

memory subsets. Hence, tumors can prevent elimination by immune system down-regulating MHC-I 

expression and therefore inhibiting anti-tumor CD8 T cell recognition (Garrido, Cabrera, and Aptsiauri 

2010).  

In contrast, the importance of CD4 immunity for anti-tumor responses is less recognized due to limited 

studies. Nevertheless, there is compelling experimental evidence supporting an important role of CD4 

immunity by promoting and coordinating innate and adaptive responses in anti-tumor immunity 

(Figure 5) (Pardoll and Topalian 1998)(Blattman and Greenberg 2004)(Kennedy and Celis 

2008)(Muranski and Restifo 2009)(Hung et al. 2002). For example, CD4 Th1 cells prime and license 

CD8 T cells during antigen presentation to become tumor-specific CTLs by producing IFN-γ and IL-

2 (Bos and Sherman 2010)(Wong, Bos, and Sherman 2008). They also contribute to the maturation 

and activation of DCs in a process called “DC licensing” by engaging CD40L with CD40 on DCs  

which enhances their ability to prime naïve CD8+ T cells into CTLs in a IL-12-dependent manner 

(Schoenberger et al. 1998)(Nesbeth et al. 2010)(Baxevanis et al. 2014). Moreover, CD4 cells are 

required to generate long-lasting CD8 memory responses (Janssen et al. 2003)(Laidlaw, Craft, and 

Kaech 2016)(Sun and Bevan 2003). This CD4 T cell subset also activates innate anti-tumor responses 

by NK and type-1 anti-inflammatory macrophages (M1) (Eisel et al. 2019). The fact that mutations in 

MHC-II-restricted neoantigens are exposed to a stronger selective pressure than MHC-I-restricted 

neoantigens during tumorigenesis also support the key contribution of CD4 T cells in cancer 

immunosurveillance (Marty et al. 2018). In addition, tumor infiltration with CD4 Th1 cells was 

associated with better prognosis in patients along several cancer types including NSCLC (Fridman et 

al. 2011).  

In contrast, other CD4 T helper cells including Th2, Th17 and regulatory T cells (Tregs) have been 

generally associated with tumor progression and poor prognosis (Becht et al. 2016). For example, 

several studies support the role of Th2 effector T cells in carcinogenesis and tumor progression (Ochi 

et al. 2012); For instance, they secrete IL-4 and IL-13 which favor type-2 macrophage (M2)  

polarization that in turn produce immunosuppressive cytokines and suppress inflammation (Mantovani 

and Locati 2013). Likewise, Th17 cells have been associated with carcinogenesis, tumor progression 

and angiogenesis (Numasaki et al. 2003)(Akbay et al. 2017). Nevertheless, several studies also show 

the contrary. For example, Th2 cells may contribute to efficacious anti-tumor responses (Nishimura et 

al. 2002)(Mattes et al. 2003). Recent studies have brought evidences for the role of this effector 

population establishing long-term anti-tumor memory responses (Lorvik et al. 2016). Likewise, Th17 

responses have been reported to also induce potent anti-tumor responses (Kryczek et al. 
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2014)(Kryczek, Wei, et al. 2009)(Kryczek, Banerjee, et al. 2009)(Wilke et al. 2011)(Martin-Orozco et 

al. 2009)(Muranski et al. 2008). The duality of responses observed for these effector helper populations 

is likely context dependent. Finally, Tregs, key contributors of tolerance, exert potent suppressor 

activities towards the other immune cell populations by several means (Sasada et al. 2003)(Curiel et 

al. 2004)(Sato et al. 2005)(Bates et al. 2006), including cell-to-cell contact and production of anti-

inflammatory cytokines such as IL-10 and TGF-β (Larmonier et al. 2007)(Jarnicki et al. 2006)(Liu et 

al. 2007).  

 

Figure 5. The contribution of CD4 T helper subsets in anti-tumor immunity. The figure summarizes the well-

known roles of CD4 T helper subsets in anti-tumor responses. In the right, CD4 Th1 cells allow the correct 

priming and differentiation of naïve CD8 T into CTLs by secretion of IFN-γ and IL-2 within the secondary 

lymphoid organs. They also contribute to DC maturation and activation for correct T cell priming. CD8 CTLs 

infiltrate tumors and exert cytotoxic responses against tumor cells after TAA recognition. Within the tumors, 

CD4 Th1 cells activate NK and M1-macrophages enhancing anti-tumor innate responses. In contrast, tumor 

infiltrating CD4 Th2, Th17 and Tregs contribute mainly to tumor progression by several mechanisms including 

induction of M2-macrophages, myeloid-derived suppressor cells (MDSCs), neutrophils, and secretion of pro-

angiogenic and immunosuppressor cytokines. Yellow arrows indicate anti-tumor activities, and red arrows pro-

tumor activities. Th1, T helper 1; Th2, T helper 2; Th17, T helper 17; Treg, regulatory T; CTL, cytotoxic T 

lymphocytes; DC, dendritic cell.  

 

Besides a subset of CD4 T cells can also exert direct cytotoxic responses (Hung et al. 2002)(Pardoll 

and Topalian 1998)(Quezada et al. 2010). Both cytotoxic CD4 and CD8 T cells also express ligand of 

tumor necrosis factor (TNF) superfamily including FasL or TRAIL which binds to its death receptors 

in tumor cells and induce its death (Knutson and Disis 2005)(Cullen and Martin 2008).  
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3.5. Immunosuppressive mechanisms in cancer 

Tumors utilize a wide array of mechanisms during progression to evade the immune system and 

survive therapies. Possibly, the first one is immunoediting. This process is based on the selection of 

less immunogenic cancer cell variants that have acquired mutations or epigenetic alterations to avoid 

immunosurveillance. Immunoediting can select cancer cells with down-modulated MHC molecules to 

avoid T cell recognition (Zitvogel, Tesniere, and Kroemer 2006)(Campoli, Chang, and Ferrone 2002). 

Other mechanisms also include the selection of cancer cells with impaired interferon signaling with 

inactivating janus kinase 1 (JAK1) and 2 (JAK2) mutations, or by eliminating the expression of β-

microglobulin (Zaretsky et al. 2016)(Garcia-Diaz et al. 2017). 

A second main mechanism caused by progressing tumors is the induction of systemic immune 

dysfunctionality (tumor-induced immunosuppression), especially inactivation of T immunity through 

several direct and indirect mechanisms. Direct mechanisms include T cell exhaustion, anergy and CD3 

downmodulation (Figure 6) (Crespo et al. 2013)(Grywalska et al. 2018). Hence, continuous TCR 

stimulation ends up in sustained expression of immune checkpoint receptors by T cells, and loss of 

multi-cytokine production and proliferative capacities when stimulated. These T cells acquire an 

“exhausted” phenotype which is characterized by an altered transcriptional program involving the 

NFAT, BATF, IRF4, NR4A and TOX among others, and a unique epigenetic signature (McLane, 

Abdel-Hakeem, and Wherry 2019)(Khan et al. 2019)(Scott et al. 2019)(Seo et al. 2019)(Man et al. 

2017)(Martinez et al. 2015). Hence, the tumor microenvironment is frequently infiltrated with 

exhausted PD-1+ T cells with increased simultaneous expression of multiple inhibitory receptors 

(Ahmadzadeh et al. 2009)(Matsuzaki et al. 2010)(Fourcade et al. 2009)(Sfanos et al. 2009)(Zhang et 

al. 2010). Many tumor cells upregulate immune checkpoint ligands which bind to their receptors 

(CTLA-4, PD-1, TIM-3, and LAG-3) on tumor infiltrating T cells (TILs) leading to inhibition of T cell 

responses. For example, CTLA-4 binds to CD80 and CD86, PD-1 binds to PD-L1/PD-L2 and LAG-3 

with MHC-II molecules amongst other recently described ligands (Freeman et al. 2000)(Azuma et al. 

1993)(Huard et al. 1997).  

T cell anergy is frequently observed in cancer patients due to the low immunogenicity of most TAAs. 

Therefore, TAA-derived peptides are usually presented by APCs in the absence of positive co-

stimulation (signal-1-only stimulation), while inhibitory signals are prevalent (Schwartz 2003). These 

T cells undergo one round of expansion but lose the capacity to respond to a second antigen encounter. 

These anergic T cells are hyporesponsive, with reduced proliferative capacities and loss of IL-2 

production amongst other cytokines (Crespo et al. 2013). Anergic T cells do not constitutively express 

high surface levels of immune checkpoints. 
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Figure 6. Tumor-induced T cell dysfunctionality. The figure represents the main tumor-induced T cell 

dysfunctional states. Continuous tumor antigen recognition induces upregulation of immune checkpoint 

receptors by T cells (middle) which acquire an exhausted phenotype characterized by the loss of multi-cytokine 

production and proliferative capacities. In contrast to DCs (left), tumor cells (right) usually present TAA-

derived peptides in the absence of co-stimulatory interactions, which will cause T cell anergy. Moreover, tumor 

cells upregulate immune checkpoint ligands (right) which interact with their receptors on T cells making the 

inhibitory interactions the most prevalent and consequently inducing T cell anergy and inhibition. Anergic T 

cells are hyporesponsive with reduced proliferative capacities and loss of IL-2 production. PD-L1/PD-1 

interaction induces a sustained TCR-downmodulation and impaired T cell antigen recognition. As indicated in 

the figure, all these dysfunctional states inhibit anti-tumor CD4 and CD8 effector T cell responses allowing 

tumor cells to escape. 

 

The third direct inhibitory mechanism over T cells relies of down-modulation of CD3 molecules, 

particularly in TILs (Eleftheriadis et al. 2008). CD3 intracellular domains transduce TCR signals to 

the T cell. However, cancer-induced PD-L1/PD-1 interactions trigger TCR down-modulation with the 

consequent impairment of T cell responses (Karwacz et al. 2011). TCR down-modulation is also a 

feature associated with T cell exhaustion, anergy and apoptosis (Zhang et al. 2012)(Cornwell and 

Rogers 2010). 

T cell immunity is impaired through indirect mechanisms as well. Tumor cells deliver “instructions” 

through the secretion of soluble factors, including cytokines and chemokines, or exosomes which alter 

locally and systemically the functionality of immune cell populations to support tumor progression. 

For example, a high tumor load leads to increased systemic levels of IL-10 and TGF-β that promote 

the recruitment of suppressor immune cell populations including Tregs, macrophages and myeloid 

derived suppressor cells (MDSCs) which generate an immunosuppressive microenvironment and 

inhibit effector immune cells (Shimizu et al. 2010)(Srivastava et al. 2012). Tumors frequently secrete 

high levels of granulocyte macrophage colony stimulation factor (GM-CSF), macrophage colony 

stimulated factor (M-CSF) and IL-6, which favor the differentiation and mobilization of MDSCs from 
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the bone marrow (Gabrilovich and Nagaraj 2009). The role of MDSCs and other immunosuppressive 

myeloid cell types over T cell inhibition has been extensively addressed elsewhere (Tcyganov et al. 

2018). The tumor microenvironment can also be highly hypoxic and poor in nutrients, which 

inactivates T cells and promotes angiogenesis and tumor escape (Chang et al. 2015). 

Lung tumors are particularly enriched in Tregs which inhibit T cells, DCs and NK cells through IL-10 

secretion and promoting tolerogenic DCs (Baecher-Allan, Viglietta, and Hafler 2004)(Bettelli et al. 

2006)(Elpek et al. 2014)(Steinbrink et al. 1999). Likewise, lung tumors also produce high levels of 

TGF-β and vascular endothelial growth factor (VEGF) which promote an immature DC phenotype 

(Zong et al. 2016)(Brown et al. 2001)(Gabrilovich et al. 1998). Thus, an insufficient priming of T cells 

might also induce low immunogenicity against tumors (Fu and Jiang 2018). In addition, increased IL-

17 levels is also a characteristic of  lung tumors as an important contributor to immunosuppression  by 

supporting tumor progression and promoting angiogenesis (Chen et al. 2010)(Fridlender and Albelda 

2012). Indeed, IL-17 has been showed to correlate with advanced stage of NSCLC and overall survival 

(OS) (Zhang et al. 2014)(Xu et al. 2014). IL-17 induces the production of pro-inflammatory cytokines 

such as IL-6  from the stromal and tumor cells, and recruits tumor-associated myeloid derived 

populations including MDSCs, tumor associated macrophages (TAMs) and neutrophils which have 

been demonstrated to support lung cancer progression by nitric oxide (NO) and reactive oxygen 

species (ROS) production (Liu et al. 2012)(Li et al. 2014) (Akbay et al. 2017). Indeed, tumor high 

neutrophil/T cell ratio is associated to poor prognosis in lung cancer patients (Takahashi et al. 2016).  

4. PD-L1 / PD-1 INTERACTION, A KEY IMMUNE CHECKPOINT IN CANCER 

4.1. PD-1 structure and signal transduction 

In the last decade, PD-1 has become one of the most studied inhibitory receptors due to its clinical 

relevance in oncology. PD-1 is a type 1 transmembrane glycoprotein from the B7-CD28 superfamily. 

It is expressed on T cells after activation, but it is also expressed on B cells, myeloid-derived 

populations, DCs and NK cells. Although some studies have reported PD-1 expression by cancer cells 

(Yao et al. 2018), this remains a highly controversial issue. The structure of PD-1 consists on an 

extracellular amino-terminal variable-like immunoglobulin domain (IgV), a stalk region separating the 

IgV domain from the plasma membrane, and a transmembrane domain followed by an intracellular 

cytoplasmic tail containing tyrosine-based signaling motifs. These motifs include the immunoreceptor 

tyrosine-based inhibitory motif (ITIM) and the immunoreceptor tyrosine-based switch motif (ITSM) 

which regulate PD-1-dependent inhibitory functions (Chemnitz et al. 2014). PD-1 expression can also 
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be induced by several cytokines such as IL‐2, IL‐21, IL‐15, IL‐7, and type 1 IFN upon TCR activation 

(Wong et al. 2009). 

PD-1 engagement with its ligands interferes with TCR signal transduction by recruiting phosphatases 

containing SH2 domains (SHP1 and SHP2) to its ITIM and ITSM tyrosine-based motifs (Figure 7) 

(Neel, Gu, and Pao 2003). These phosphatases de-phosphorylate TCR-associated kinases such as 

ZAP70, PI3K, AKT, ERK and PK0 (Plas et al. 1996). Nevertheless, recent studies have brought 

evidence of CD28 as the major target of the dephosphorylating activity of PD-1, suggesting that PD-1 

inhibits T cell function by inactivating the co-stimulatory signaling (Hui et al. 2017)(Kamphorst, 

Wieland, et al. 2017). In addition, PD-1 engagement upregulates E3-ubiquitin ligases of the CBL 

family, that downregulate TCRs from the T cell surface possibly after ubiquitination of CD3 and PI3K 

(Figure 7) (Karwacz et al. 2011)(Naramura et al. 2002)(Prelaj et al. 2019)(Nurieva et al. 2006).  

 

Figure 7. PD-1-dependent T cell inhibitory mechanisms. The TCR complex including the co-stimulatory 

molecule CD28 is associated closely to PD-1, which is upregulated following antigen presentation. PD-1 

engagement induces the recruitment of SHP phosphatases into the phosphorylated ITIM and ITSM motifs in the 

cytoplasmic domain of PD-1, as shown in the figure. These proteins de-phosphorylate and inhibit kinases 

mediating TCR signal transduction including ZAP70 and PI3K (yellow arrows). The second major mechanism 

involves the transcriptional upregulation of CBL E3 ubiquitin ligases (red arrow) that trigger ubiquitination of 

CD3 and PI3K leading to TCR down-modulation. ITM, immunoreceptor tyrosine-based activation motif; ITSM, 

immunoreceptor tyrosine-based switch motif; TCR, T cell receptor; CBL, casitas B lineage lymphoma protein; 

Ubq, ubiquitination; SHPs, phosphatases containing SH2 domains. 

Moreover, PD-1 engagement causes a shift on the T cell metabolic reprogramming. As PI3K and ERK 

induce the expression of glycolytic genes, PD-1-depedent engagement inhibits these signaling axes 
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inducing the suppression of oxygen consume and aerobic glycolysis (Patsoukis et al. 2015). Therefore, 

fatty lipid oxidation become the main source of energy promoting the production of reactive oxidative 

species and creating an oxidative microenvironment (Tkachev et al. 2015). These metabolic changes 

might have an important contribution in PD-1 dependent T cell suppression in cancer (Boussiotis 

2016).  

4.2. PD-L1 structure and signal transduction 

PD-1 binds to ligands PD-L1 and PD-L2, both type-I transmembrane glycoprotein of the B7 family of 

co-stimulatory/inhibitory molecules expressed by many cell types (Freeman et al. 2000). PD-L1 is 

constitutively expressed on professional APCs and its expression increases after activation 

(Liechtenstein et al. 2012). It is also expressed in a wide variety of tissues including vascular 

endothelial cells, pancreatic islet cells, lung cells, muscle cells among others (Pauken et al. 2013)(E., 

D.V., and A. 2013). Both PD-L1 and PD-L2 are expressed by many other cell types, including in cells 

within immune-privileged tissues such as placenta and testicles supporting their important role in 

immune self-tolerance. PD-L1 consists on an immunoglobulin-like extracellular domain composed of 

an Ig variable (IgV) distal region followed by an Ig constant domain, a transmembrane domain and a 

short intracytoplasmic domain. The intracytoplasmic domains contains phylogenetically-conserved 

non-canonical intracellular motifs involved in intrinsic signaling, namely RMLDVEKC, DTSSK and 

QFEET (Gato-Cañas et al. 2017). Two of these motifs (RMLDVEKC and DTSSK) regulate the 

crosstalk with signal transduction by the type I interferon receptor (Figure 8). While RMLDVEKC 

interferes with the STAT-3 branch of the IFN pro-apoptotic pathway, the DTSSK motif and lysines 

271 and 280 act as negative regulators of PD-L1 anti-IFN functions (Gato-Cañas et al. 2017). 

Therefore, PD-L1 constitutes a functional protective barrier against IFN cytotoxicity. Recent evidence 

has shown that PD-L1 ubiquitination controls the stability and functions of PD-L1. Although the 

specific lysine residues that get ubiquitylated are currently unknown, these may be lysines 271 and 

280. Recently, the USP22 deubiquitinase has been demonstrated to bind to the QFEET motif and 

participate in the stabilization of PD-L1 (Huang et al. 2019). 

Many tumor cells upregulate PD-L1 which in turns inhibits T cell responses by engaging with PD-1 

(Saunders et al. 2005)(Pardoll 2012)(Zhang et al. 2010). PD-L1 expression can be induced by pro-

inflammatory cytokines such as type I and type II IFNs, and tumor necrosis factor alpha (TNF-α) 

secreted by TILs and other immune cell types (Garcia-Diaz et al. 2017)(Karwacz et al. 2011). In 

addition, PD-L1 expression is also regulated by oncogenic pathways including AKT-mTOR and PTEN 

(Parsa et al. 2007). 
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Figure 8. Protective function of PD-L1 intracellular signaling against IFN cytotoxicity. IFN binding to its 

receptor on cancer cells activates the JAK1/JAK2-STAT signal transduction pathways, culminating in tumor 

cell apoptosis. The figure represents the main mechanisms by which PD-L1 intracellular motifs protect tumor 

cells from IFN cytotoxicity. The RMLDVEKC motif interferes with the STAT-3 branch of the IFN pro-apoptotic 

pathway (dotted red arrow) and the DTSSK motif acts as negative regulator of PD-L1 anti-IFN functions (red 

arrow). Ig domain, Immunoglobulin-like domain; IFNAR, Interferon I and II Receptor; Casp7, Caspase 7; 

JAK1/JAK2; janus kinase 1 and 2; USP22, ubiquitin carboxyl-terminal hydrolase 22. 

4.3. PD-L1/PD-1 blockade as a strategy to recover T cells from dysfunctionality 

In 2012, Suzanne Topalian and collaborators demonstrated that PD-L1/PD-1 blockade was efficacious 

for the treatment of a wide variety of different cancers in a clinical context (Brahmer et al. 

2010)(Brahmer et al. 2012). Since then, the use of monoclonal antibodies blocking this interaction has 

revolutionized the treatments of oncological patients. These treatments have been approved by the 

FDA and EMA for many cancer types including metastatic melanoma, NSCLC, renal cell carcinoma 

(RCC), bladder cancer, head and neck cancer and Merkel carcinoma.  

The specific mechanisms supporting the efficacy of PD-L1/PD-1 blockade have not been fully 

elucidated yet. When efficacious, these therapies seem to counteract tumor-induced T cell 

dysfunctionality by interfering with PD-1 and PD-L1 signals and unleashing activating pathways 

(Topalian, Drake, and Pardoll 2015)(Anagnostou et al. 2017)(Pardoll 2012). Although most of the 

experimental evidence has been shown in chronic infection models, T cell anergy and exhaustion seem 

to be reversed using PD-L1/PD-1 inhibitors, restoring proliferative and effector T functions and 

reducing viral and tumor load (Figure 9) (Wherry and Kurachi 2015)(Pauken and Wherry 

2015)(Chinai et al. 2015)(Kamphorst, Wieland, et al. 2017). Indeed, various groups have identified 
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both systemic and intra-tumoral exhausted CD8+ PD-1+ T cell populations that experience a 

proliferative burst after PD-L1/PD-1 treatment (K. H. Kim et al. 2019)(Kamphorst, Pillai, et al. 

2017)(A. C. Huang et al. 2017)(Siddiqui et al. 2019). However, emerging studies are demonstrating 

that exhausted T cell subsets are highly heterogeneous and differ in the susceptibility to be 

reinvigorated by PD-L1/PD-1 pathway blockade. The stem cell-like and memory-like PD-1+ TCF1+ 

CD8 T cell subset seems to be the responsible for the proliferative and effector responses following 

PD-L1/PD-1 blockade (Siddiqui et al. 2019)(Miller et al. 2019)(Im et al. 2016). In contrast, epigenetic 

reprogramming of severely exhausted and terminally differentiated PD-1+ TCF- CD8 T cell subset 

derived from progenitors might not be reversible after PD-L1/PD-1 blockade therapy (Jadhav et al. 

2019)(Pauken et al. 2016). Nevertheless, since most of the studies have been mostly carried out in 

chronic infection models, further investigation using tumor models are required to deeply understand 

whether there are indeed tumor-specific progenitor TIL populations targetable by PD-L1/PD-1 

blockade. 

  

Figure 9. PD-L1/PD-1 blockade counteracts tumor-induced T cell dysfunctionality. The figure represents the 

effects of anti-PD-L1/PD-1 antibodies on the reversion of T cells from anergy and exhaustion. Consequently, T 

cells recover their capacities of exerting efficient anti-tumor effector responses. 
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4.4. Role of T cell immunity in the efficacy of PD-L1/PD-1 blockade  

Most of the experimental research supports T cells as the major target of anti-PD-L1/PD-1 

immunotherapy. However, the specific mechanisms leading to efficacious clinical responses and 

whether it is mediated by reinvigorated dysfunctional TILs or newly recruited tumor-specific T cells 

from the periphery remain incompletely understood.  

PD-1 blockade expands tumor-infiltrating CD8 memory T cells with a concurrent increase in INF-γ 

production, which positively correlates with therapeutic efficacy (Ribas et al. 2016). As mentioned 

before, recent studies have demonstrated that the proliferative burst of CD8 T cells observed after PD-

1 blockade comes exclusively from PD-1+ TCF1+ stem-like and memory-like CD8 T cell subsets (Im 

et al. 2016)(Sade-Feldman et al. 2018)(Siddiqui et al. 2019)(Miller et al. 2019). In contrast, the 

epigenetic reprogramming observed in exhausted terminally differentiated TIL seems to be preserved 

during immune checkpoint blockade (Ghoneim et al. 2017)(Pauken et al. 2016). Hence, these studies 

suggest that PD-L1/PD-1 inhibitors might only target less-differentiated memory-like T cells creating 

an effector pool of cells, rather than reinvigorating terminally differentiated exhausted T cells within 

the tumor. In contrast, several studies have demonstrated that disrupting the molecular pathways 

controlling T cell exhaustion such as TOX and IRF4 reduced the survival of exhausted TIL populations 

suggesting that PD-L1/PD-1 blockade might also induce terminal differentiation and apoptosis of 

reinvigorated exhausted T cell pools (Khan et al. 2019)(Alfei et al. 2019)(Scott et al. 2019)(Man et al. 

2017).  

Nevertheless, PD-L1/PD-1 blockade also alters the systemic dynamics of immune cell populations 

(Kamphorst, Pillai, et al. 2017)(Kamphorst, Wieland, et al. 2017)(Hui et al. 2017). Indeed, a functional 

systemic immune system was shown to be a requirement for the efficacy of treatments based on 

administration of anti-cancer cell immunoglobulins in murine models (Spitzer et al. 2017). Some 

studies in NSCLC patients have shown that PD-1+ CD8 T cells expand systemically following PD-1 

blockade therapy (Kamphorst, Pillai, et al. 2017). These cells had an effector phenotype and were 

predominantly CD28+ supporting the contribution of CD28 co-stimulation (possibly during antigen 

presentation by APCs) for reversion from dysfunctionality (Hui et al. 2017)(Kamphorst, Wieland, et 

al. 2017). The authors of these studies suggested that this expanding population might be tumor 

specific. Consistent with the previous results, a similar study with melanoma patients treated with 

pembrolizumab also identified a systemic CD8+ PD-1+ exhausted population that expanded after 

treatment. These T cell clones were equivalent to those in TILs (A. C. Huang et al. 2017). In addition, 

data published by K.E. Yost and colleagues showed that the ability of PD-1 blockade to rescue pre-
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existing TILs from exhaustion might be limited (Yost et al. 2019) and they demonstrated that T cell 

responses to checkpoint blockade were derived from novel tumor-specific T cell clones recruited from 

peripheral sources, again supporting the importance of systemic immunity for clinical responses to 

immune checkpoint blockade (Yost et al. 2019).  

Particularly, the contribution of CD4 T cell immunity to the efficacy of PD-L1/PD-1 blockade therapy 

remains poorly understood. Some pre-clinical murine models have provided evidence for their 

requirement (Spitzer et al. 2017)(Markowitz et al. 2018)(Moreno et al. 2016). The systemic expansion 

of a specific murine CD4 T cell subtype was the main correlator with efficacy following administration 

of anti-cancer cell immunoglobulins (Spitzer et al. 2017). Other studies have previously shown that 

CD4 T cells recognizing tumor neoepitopes contribute significantly to the efficacy of several types of 

immunotherapies in murine models and in cancer patients (Kreiter et al. 2015)(Knocke et al. 

2016)(Sahin et al. 2017). Therefore, the presence of functional CD4 T cell immunity might be of 

importance for the efficacy of several types of immunotherapies. 

5. RESISTANCE TO PD-L1/PD-1 BLOCKADE 

Despite all the successes, a significant proportion of patients do not benefit from PD-L1/PD-1 

blockade. Only a minority (20%-30%) of advanced NSCLC patients receiving anti-PD-1 or anti-PD-

L1 antibodies as a second line of treatment benefit from these therapies, while the remaining patients 

are intrinsically resistant. Moreover, some early responders eventually progress due to acquired 

resistance (Restifo, Smyth, and Snyder 2016)(Pitt et al. 2016)(Sharma et al. 2017). The mechanisms 

underlying primary and acquired resistances are varied and probably driven by tumor intrinsic and 

extrinsic factors (Sharma et al. 2017). 

5.1. Tumor cell-intrinsic factors contributing to resistance to PD-L1/PD-1 blockade 

Tumor-intrinsic mechanisms include genetic and epigenetic alterations which alter TMB, neoantigen 

formation, antigen processing/presentation and sensitivity to cytotoxic T cell responses. It is thought 

that elevated TMB correlates with a higher number of expressed TAAs (Schumacher and Schreiber 

2015) which in turns confers an increased degree of immunogenicity to the tumor. This would favor 

the generation of a pool of tumor-specific T cells, thought to be the main target for PD-L1/PD-1 

blockade therapy. Hence, a reduced pool of expressed TAAs will result in poorly immunogenic  

(“cold”) tumors and a failure to raise strong T cell responses by PD-L1/PD-1 blockade therapy (Gubin 
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et al. 2014). Indeed, there is a correlation between TMB and clinical response to PD-L1/PD-1 blockade 

in several tumor types (Yarchoan, Hopkins, and Jaffee 2017)(Rizvi, Hellmann, et al. 2015). 

Highly immunogenic tumors can also develop mechanisms to impair antigen presentation through 

selection of mutations that interfere with the proteasome and with other components regulating antigen 

presentation. For example, down-modulation of MHC molecules, transporters associated with antigen 

presentation (TAP) or beta-2-microglobulin (Gettinger et al. 2017)(Marincola et al. 2000)(Sucker et 

al. 2014)(Restifo et al. 1996)(Zaretsky et al. 2016). Expression of genes encoding proteins that regulate 

antigen presentation can also be altered by epigenetic changes such as histone acetylation and 

hypermethylation (Kim and Bae 2011)(Karpf and Jones 2002). Consequently, tumor cells lose the 

ability to present TAAs on their surface and become invisible to TAA-specific T cells. Moreover, 

downregulation or loss of TAA expression during PD-L1/PD-1 blockade therapy has been also 

observed. Hence, the loss of multiple TAAs during the course of treatment does take place in NSCLC 

patients, with an eventual acquired resistance to PD-L1/PD-1 blockade (Anagnostou et al. 2017).  

Inhibiting T cell trafficking and infiltration into the tumor can also contribute to resistance to PD-

L1/PD-1 blockade. Mutations in oncogenic pathways such as the MAPK (Hu-Lieskovan et al. 2015) 

and WNT/β-catenin (Spranger, Bao, and Gajewski 2015) together with PTEN loss contribute to the 

inhibition of T cell recruitment into the tumors (Peng et al. 2016). Several studies are demonstrating 

the implication of tumor dedifferentiation or stemness in resistance to immune checkpoint therapies, 

which is also linked to WNT signaling, (Hugo et al. 2016)(Mehta et al. 2018)(Zhan, Rindtorff, and 

Boutros 2017). 

Another evasion mechanism is driven by IFN-γ unresponsiveness by tumor cells. Activated TAA-

specific T cells secrete IFN-γ which causes several effects within the tumor microenvironment. IFN-γ 

binding to its receptor on cancer cells activates the JAK1/JAK2 -STATs signal transduction pathways, 

culminating in tumor cell apoptosis (Darnell, Kerr, and Stark 1994). INF-γ also induces PD-L1 

upregulation by tumor cells, making them more susceptible to anti-PD-L1/PD-1 blockade (Benci et al. 

2016)(Ribas 2015). As a result of the potent immune-selective pressure, tumor cells expressing 

mutated proteins that prevent IFN responsiveness can be selected, by avoiding tumor cell apoptosis. 

Inactivating mutations in IFN-γ-receptor 1 and 2 (IFNGR1/2), JAK1 and JAK2 and interferon 

regulatory factor 1 (IRF1) have been found in patients resistant to PD-L1/PD-1 blockade (Zaretsky et 

al. 2016)(Dunn et al. 2005)(Shin et al. 2017). Moreover, mutations in these pathways also prevent PD-

L1 upregulation, resulting in the selection of PD-L1 negative tumors which might be less likely to 

respond to anti-PD-L1/PD-1 blockade (Zaretsky et al. 2016). Despite the high levels of PD-L1 
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expression in lung tumors with EGFR mutations and ALK rearrangements, the responsiveness to PD-

L1/PD-1 blockade is very poor. This is due to low or even absence of CD8 T cell infiltration in these 

subtypes of lung tumors.  

Tumor expression of galectin-3 has been recently associated to resistance to PD-L1/PD-1 blockade in 

NSCLC patients (Capalbo et al. 2019). Galectin-3 is a pleiotropic molecule which also acts as a binding 

partner of the immune checkpoint molecule LAG-3. Hence, engagement of LAG-3 by galentin-3 on 

tumor cells may play an important compensatory mechanism by maintaining T cell 

immunosuppression during PD-L1/PD-1 blockade therapy. Finally, mutations in MDM2/MDM4, 

EGFR, ALK and STK11 genes have been associated to failure of PD-L1/PD-1 blockade therapy in 

NSCLC patients (Skoulidis et al. 2018). Indeed, mutations in EGFR and MDM2/MDM4 genes have 

been associated to accelerated tumor growth following the administration of immunotherapies, a 

phenomenon termed hyperprogressive disease (Kato et al. 2017).  

5.2. Tumor cell-extrinsic factors contributing to resistance to PD-L1/PD-1 blockade 

Tumor cell-extrinsic mechanisms include non-tumor cells or other systemic influences, such as host 

microbiota, which can support tumor progression and resistance to PD-L1/PD-1 blockade therapy. For 

example, several populations of immunosuppressive cell types such as MDSCs, M2-polarised TAMs, 

Tregs and CD4 Th2 cells strongly inhibit anti-tumor CD8 cytotoxicity and CD4 Th1 cells through the 

release of cytokines, chemokines, and other soluble mediators (Pitt et al. 2016)(Sharma et al. 2017). 

Tumors secret chemokines and chemokine receptors which allow the trafficking of these suppressive 

populations to the tumor (Highfill et al. 2014).  

A recent study has shown that TAMs can remove anti-PD-1 antibodies from the cell surface of PD-1+ 

CD8 T cells by capturing them through Fcγ receptors (Arlauckas et al. 2017). Effector T cells 

themselves can also express alternative immune checkpoint receptors such as LAG-3, TIM-3, CTLA-

4 and others as a compensatory mechanisms (Koyama et al. 2016)(Thommen et al. 2015)(Blackburn 

et al. 2009)(Pauken and Wherry 2015). Indeed, TAA-specific cells co-expressing of both PD-1 and 

LAG-3 are more impaired in effector functions (Matsuzaki et al. 2010). Hence, several studies are 

linking PD‐1/LAG‐3 co‐expression in T cells to resistance to anti‐PD‐L1/PD‐1 therapies (Mishra et 

al. 2016)(R. Y. Huang et al. 2017)(Williams et al. 2017)(Johnson et al. 2018)(Zuazo et al. 2019). A 

recent study of immune checkpoint molecule expression by multiparametric single-cell analyses of 

lung tumor TILs has uncovered that LAG-3 expression is associated to worse outcome to PD-1 

blockade (Datar et al. 2019). Simultaneous blockade of PD-1 and LAG-3 signaling axes has been 
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shown more efficient in restoring anti-tumor T cell responses and overcoming resistance to PD-L1/PD-

1 monotherapy (Woo et al. 2012)(Goding et al. 2013)(Matsuzaki et al. 2010)(Zuazo et al. 2019). LAG-

3 targeting agents are currently being evaluated in clinical trials. 

5.3. Hyperprogressive disease 

There is accumulating evidence that PD-L1/PD-1 blockade does accelerate tumor progression and 

death in a certain group of patients. This serious adverse event has been termed hyperprogressive 

disease (HPD) or hyperprogression. HPD is accompanied by dramatically reduced survival after the 

initiation of immunotherapy (Saâda-Bouzid et al. 2017)(Champiat et al. 2017)(Ferrara et al. 

2018)(Kato et al. 2017). The highest incidence is found in melanoma and NSCLC patients with a rate 

of 9% and 21%, respectively (Champiat et al. 2017). Phase III trials evaluating PD-L1/PD-1 blockade 

agents showed an early cross-over between immunotherapy and chemotherapy arms, with a tendency 

of a lower survival rate just right after the initiation for the immunotherapy arm. This dramatic drop 

of the curve strongly suggests the existence of intrinsic resistance to PD-L1/PD-1 blockade treatment 

and HPD. 

Different quantitative approaches have been proposed to identify HPD in a clinical context (Champiat 

et al. 2017)(Kato et al. 2017)(Saâda-Bouzid et al. 2017)(Ferrara et al. 2018). All of them integrate pre-

treatment tumor growth kinetics to identify growth acceleration after the initiation of immunotherapies. 

This requires radiological evaluation in the patients before their enrolment in immunotherapies. These 

procedures estimate tumor volume changes in the interval of time between radiological evaluation 

before and after PD-L1/PD-1 blockade treatment. Tumor volume is estimated using the sum of the 

largest diameter of target lesions according to Response Evaluation Criteria in Solid Tumors (RECIST 

criteria) 1.1. The most commonly used algorithms are the Tumor Growth Kinetics (TGK) (Saâda-

Bouzid et al. 2017) and the Tumor Growth Rate (TGR) (Champiat et al. 2017). TGR assumes an 

exponential tumor growth model and the evaluation is carried out in three-dimensions. In contrast, the 

TGK method uses a lineal tumor growth model, for which two-dimensional data is used. Both models 

establish a minimum cut-off value equal or superior to 2 to identify HPD. However, these approaches 

might still underestimate HPD incidence due to several reasons. First, most patients suspected from 

HPD progress too quickly before the first radiological evaluation. Therefore, no data on tumor growth 

rates is obtained. Champiat et al. proposed the first computerized tomography (CT) assessment at 

earlier time points (4-6 weeks compared to current 8-12 weeks) (S. et al. 2018). Second, RECIST 1.1 

assessment only considers target lesions without considering new lesions or non-measurable disease. 

Thus, potential hyperpogressors characterized by the surge of new lesions or growth of non-
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measurable lesions are not identified. In contrast, HPD incidence could be also overestimated when 

tumor burden is low. 

All these difficulties and the lack of cellular/molecular mechanisms explaining HPD makes it a 

controversial topic. Although several factors have been associated to HPD across different studies, 

these have not been validated. Older age (>65 years) (Champiat et al. 2017), higher number of 

metastatic sites (>2) (Ferrara et al. 2018), and MDM2 amplification and EGFR alterations (Kato et al. 

2017) have been associated with higher HPD rate. Interestingly, no association has been found between 

disease stage, ECOG status, previous treatments and blood cell counts. Garassino et al. proposed that 

M2-polarised macrophages could cause HPD upon anti-PD-1 treatment (Lo Russo et al. 2018). The 

authors suggested that there was a possible deleterious effect of the Fc region after binding to its 

receptors presented in M2-macrophages in absence of T cell immunity. Another study in gastric cancer 

uncovered the association of infiltrating FoxP3high CD45RA- CD4 Tregs with HPD. Anti-PD-1 

treatment enhanced Treg proliferation in tumors of hyperprogressors (Kamada et al. 2019). Although 

there are still few studies on the subject, all of them seem to point towards the implication of different 

immune cell populations which support T cell dysfunctionality as a driver force of the phenomena.  

No predictive biomarker for HPD risk exists so far that would allow an adequate selection of patients. 

A high-scale study with NSCLC patients treated with PD-L1/PD-1 blockade therapy showed that 

hyperprogressors had low pre-treatment frequencies of peripheral effector memory CD8 T cells (CD8+ 

CCR7-CD45RA-) and a higher frequency of exhausted CD8+ PD1+ TIGIT+ cells (C. G. Kim et al. 

2019). Therefore, the uncovering of biomarkers for HPD that could be applied to routine clinical 

practice is of paramount importance. 

6. BIOMARKERS OF RESPONSE TO PD-L1/PD-1 BLOCKADE THERAPY 

The low efficacy rates of PD-L1/PD-1 blockade and the existence of deleterious phenomena highlight 

the need for the identification of accurate predictive biomarkers for proper patient selection (Topalian 

et al. 2016). Several biomarkers have been proposed so far. The first to be evaluated was PD-L1 tumor 

expression, being the only one accepted by the FDA so far (Blank et al. 2016). However, its reliability 

as a truly predictive biomarker is still under debate, because patients with PD-L1 negative tumors can 

still benefit from the therapy (Grigg and Rizvi 2016). Other potential biomarkers under evaluation 

include TMB, TIL quantification and detection of interferon gene signature profiles within the tumor 

microenvironment (Table 2). However, these techniques require biopsies and technologies not usually 

available in standard clinical practice. The identification of non-invasive biomarkers in peripheral 
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blood or serum is also being contemplated, especially for cancers such as NSCLC for which tumor 

biopsying is a limitation. 

6.1. PD-L1 expression in tumors as a biomarker 

Quantification of PD-L1 tumor expression by IHC is the only FDA-approved biomarker for patient 

stratification in NSCLC. It is generally assumed that significant PD-L1 tumor expression confers 

susceptibility to PD-L1/PD-1 blockade, being the primary target of the therapeutic antibodies. Its 

predictive value has been assessed in several phase III clinical trials. A correlation between high PD-

L1 positivity and increased overall response rate (ORR) and OS was indeed observed (Topalian et al. 

2012)(Rosenberg et al. 2016)(Garon et al. 2015)(Reck et al. 2016)(Hellmann et al. 2018)(Borghaei et 

al. 2015)(Motzer et al. 2015)(Ferris et al. 2016). However, other studies have shown no association, 

with patients having “PD-L1-negative” tumors whom also benefit from anti-PD-L1/PD-1 agents 

(Carbone et al. 2015)(Hanna et al. 2018)(Motzer et al. 2015)(Borghaei et al. 2015). Accordingly, 

nivolumab and atezolizumab were approved for patients independently of the PD-L1 tumor expression 

status. In contrast, pembrolizumab was approved for patients with PD-L1 positive tumors. These 

apparently contradictory results have been explained by several reasons: PD-L1 detection assays are 

not standardized and utilize a variety of different antibodies, IHC platforms and threshold systems 

(Hansen AR and Siu LL 2015). PD-L1 expression is not homogeneous within the tumor, and biopsy 

sampling can introduce a strong bias (Ilie et al. 2016). PD-L1 expression is dynamic and varies during 

cancer evolution and under different treatments. For instance, chemotherapy, radiotherapy and 

exposure to TIL-derived cytokines induce PD-L1 expression (Wimberly et al. 2014)(Nguyen et al. 

2016)(Shaverdian et al. 2017). Moreover, mutations which might be acquired during tumor 

progression such as JAK-3 activating mutations increase PD-L1 expression in NSCLC (Van Allen et 

al. 2015). Interestingly, while inducible PD-L1 expression has been associated with better clinical 

outcomes, constitutive expression triggered by activation of oncogenic signaling pathways correlates 

with worse outcome (Inoue et al. 2016). Finally, several studies with mice models and patients have 

showed that PD-L1 expression in tumor infiltrating immune cells is associated with objective 

responses (Tang et al. 2018)(Lin et al. 2018)(Lau et al. 2017)(Rosenberg et al. 2016)(Herbst et al. 

2014). Hence, OAK and POPLAR clinical trials found an association between response to 

atezolizumab and PD-L1 expression in both immune cells and tumor cells (Rittmeyer et al. 

2017)(Fehrenbacher et al. 2016). In addition, a recent study has characterized the immune cell 

infiltrating populations within baseline NSCLC tumor biopsies. They have uncovered that the 

predominant myeloid population that expresses PD-L1 within the tumor are CD68+ macrophages, 

correlating with a positive clinical outcomes to PD-1/PD-L1 blockade (Liu et al. 2019). Although 
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further validation is required, these emerging studies suggest that PD-L1 expression on macrophages 

might be responsible for the predictive value of the biomarker. 

6.2. Tumor mutational burden (TMB) as a biomarker  

TMB is defined as the total number of non-synonymous somatic mutations of the encoding genome. 

Specifically, it is represented as total number of somatic mutations per DNA megabases in the tumor 

exome, mut/Mb (Frampton et al. 2013)(Yarchoan et al. 2017). Targeted Next-Generation Sequencing 

(NGS) allows the profiling of the tumor somatic mutational landscape, usually with a limited number 

of genes (Yuza et al. 2017). Several platforms exist for large NGS panel analyses including Foundation 

Medicine comprehensive gene profiling (FM-CGP) and The Memorial Sloan Kettering-Integrated 

Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT). Foundation One CDx TM and 

MSK-IMPACT have been approved or authorized by the FDA as in vitro diagnostic test for profiling 

TMB for solid tumors in a clinical setting. TMB can also be quantified by both genome-wide analysis 

(whole genome sequencing (WGS)) and covering the entire coding regions of genes in the genome 

(whole exome sequencing (WES)), but with a very high cost which makes it less feasible for standard 

clinical practice.  

Tumors with high TMB are generally more responsive to anti-PD-L1/PD-1 therapy (Topalian et al. 

2012)(McGranahan et al. 2016). It is thought that these tumors are more immunogenic and induce a 

higher number or variety of TAA-specific T cells which would be reinvigorated after PD-L1/PD-1 

blockade. Nevertheless, there is a high variability in TMB between different tumor types (Lawrence 

et al. 2013). NSCLC tumors have usually high TMB due to the chronic exposure to tobacco smoke 

(Pfeifer et al. 2002). Several studies have evaluated TMB as a potential biomarker for PD-L1/PD-1 

blockade in NSCLC patients. Rizvi et al. showed for the first time an association between high TMB 

and increased ORR, longer median progression free survival (mPFS) and grater durable clinical 

responses to pembrolizumab (Rizvi, Hellmann, et al. 2015). Interestingly, mutations in genes involved 

in DNA mismatch repair (MMR) such as POLE, POLDI and MSH2 were identified in three responder 

patients high TMB (Rizvi, Hellmann, et al. 2015). These mutations likely increase TMB and possibly 

neoantigen load. Moreover, patients with high TMB and a homogeneous clonal mutational landscape 

showed benefit to therapy (McGranahan et al. 2016). In contrast, heterogeneous tumors with subclonal 

mutations could be more resistant to PD-L1/PD-1 blockade therapy due to the possibility of selection 

of resistant variants. Goodman et al. also confirmed the positive association between high TMB and 

good outcomes to PD-L1/PD-1 blockade therapy in NSCLC patients (Goodman et al. 2017).  



44 
 

Several WES studies in phase III clinical trials support the correlation between high TMB and response 

to PD-L1/PD-1 inhibitors. CheckMate 026 phase III trial included a post-hoc TMB analysis which 

uncovered that high TMB (>243 mutations) patients treated with nivolumab showed favorable clinical 

responses. In contrast, patients with medium (100–242 mutations) and low (0–100 mutations) TMB 

did not benefit from treatment. Although no association was found between PD-L1 tumor expression 

and TMB, patients with tumors exhibiting high TMB and PD-L1≥50% showed the highest ORR 

(Carbone et al. 2017). Another exploratory study of data from CheckMate 026 also showed an 

increased benefit in patients with high TMB (≥ 13 mutation/Mb) treated with nivolumab (Peters et al. 

2017). Similar results were obtained in CheckMate 568 phase II trial evaluating the combination of 

nivolumab and ipilimumab as a first line treatment where TMB was evaluated by Foundation One 

CDxTM with a cut-off value for TMB of 10 mutation/Mb (Ready et al. 2019). A retrospective analysis 

of POPLAL phase II trial data highlighted the association of high TMB evaluated by Foundation One 

CDxTM and increased of ORR, duration of response, and mPFS with atezolizumab (Marcin Kowanetz 

et al. 2017). Finally, a recently reported exploratory study of NSCLC patients treated with anti-PD-

L1/PD-1 agents showed a good correlation between TMB quantification with NSG (MSK-IMPACT) 

and WES techniques on improved mPFS and ORR with high TMB (Rizvi et al. 2018).  

Although pre-treatment TMB has demonstrated to be relatively efficient predicting responses to PD-

L1/PD-1 blockade therapy, validation datasets are required. Nevertheless, TMB quantification has also 

several drawbacks, including the high cost, standardization of TMB quantification assays to be 

comparable across studies and the requirement of relatively large biopsies from NSCLC patients.  

6.3. Quantification of tumor infiltrating lymphocytes (TILs) as a biomarker 

Highly immunogenic tumors (“hot”) usually recruit a variety of immune cell populations including 

CD8 and CD4 effector T cells, Tregs, DCs and macrophages. The degree of CD8 T cell infiltration is 

usually a good prognostic factor in several tumor types, correlating with better survival (Fridman et al. 

2017). PD-L1/PD-1 blockade therapy reinvigorates TIL effector functions and anti-tumor immunity 

(Riaz et al. 2017)(Tumeh et al. 2014)(Topalian et al. 2015). Activated TILs produce and secrete 

effector cytotoxic mediators such as IFN-γ and granzymes. However, these mediators also trigger 

negative feedback mechanisms to dampen inflammation. For example, IFN-γ induces tumor PD-L1 

upregulation to inhibit T cell responses and induce apoptosis of TILs (Dong et al. 2002)(Spranger et 

al. 2013)(Schalper et al. 2017). In agreement with this, a direct correlation between the degree of TIL 

infiltration and tumor PD-L1 expression occurs in several tumor types such as lung, breast and ovarian 

cancer (Kitano et al. 2017)(Lin et al. 2017)(Webb et al. 2016). This phenomenon in turn can favor 

susceptibility to PD-L1/PD-1 blockade. Thus, both TIL infiltration and PD-L1 quantification are 
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considered reliable biomarkers of tumor immunogenicity and potentially predictive of anti-PD-L1/PD-

1 responses.  

In malignant melanoma, CD8 infiltration often correlates with better response to anti-PD-1 treatment 

(Tumeh et al. 2014)(Nishino et al. 2017). Single-cell RNA sequencing of baseline CD8+ TILs 

uncovered that responders were enriched in transcripts related to memory cell differentiation and cell 

survival, while CD8+ TILs from non-responders were enriched in genes related to exhaustion (Sade-

Feldman et al. 2018). The impact of TILs in PD-L1/PD-1 blockade efficacy has been poorly reported 

for NSCLC due to technical difficulties. Even so, TILs seem to have a prognostic value in lung cancer 

treated with chemotherapy. Patients with highly-infiltrated tumors showed increased OS (Brambilla et 

al. 2016). Both high CD8 and CD4 T cell infiltration in the tumor stroma and nest are associated with 

better OS (Al-Shibli et al. 2008)(Geng et al. 2015)(Kawai et al. 2008)(Donnem et al. 2015)(Schalper 

et al. 2015). In contrast, the degree of tumor infiltration with Tregs correlate with lower PFS (Tao et 

al. 2012)(Liu et al. 2017)(Kose et al. 2016). All these evidences strongly support the association 

between the degree of TIL infiltration and anti-tumor responses in NSCLC. 

A limited number of studies have evaluated the predictive value of TILs in NSCLC treated with PD-

L1/PD-1 therapy. A prospective study of 65 NSCLC patients uncovered that baseline PD-L1 

expression in the tumor stroma and T cell (CD3, CD4 and CD8 T cells) infiltration assessed by IHC 

predicted response to nivolumab (S. et al. 2017). Another study showed that TIL density superior to 

5% correlated with increased PFS and ORR (Gataa et al. 2017). Three subtypes of CD8 TIL subsets 

with differential PD-1 expression levels were identified in NSCLC patients treated with PD-L1/PD-1 

blockade (Thommen et al. 2018). Only the subset with highest PD-1 expression developed efficient 

responses against autologous cancer cells in vitro. Moreover, baseline PD-1high CD8 TILs levels were 

strongly associated with anti-PD-1 responses in vivo. This specific population might be enriched in 

tumor-specific T cells reinvigorated by PD-L1/PD-1 therapy. Indeed, the study of lung tumor TIL 

repertoire might be another indicator of tumor immunogenicity and responses to immune checkpoint 

inhibitors. A small scale study with NSCLC patients using NGS for TCR sequencing uncovered that 

early clonal T cell expansion within the tumor and in PBMCs was associated with response to anti-

PD-1 treatment (Olugbile et al. 2017).  

In addition, decreasing levels of CD4+ FOXP3+ PD-1high Treg population in tumors and peripheral 

blood of NSCLC patients treated with anti-PD-1 has been associated with improved OS (Zappasodi et 

al. 2018). High infiltration of LAG-3 expressing TILs was a predictor of lack of responses to anti-PD-

1 treatment (Datar et al. 2017). These results were further supported by a recent study using 
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multiparametric single-cell analyses where immune checkpoint molecule expression in TILs was 

evaluated within several NSCLC patient cohorts. Patients with LAG-3 expressing TILs showed worse 

clinical outcome to PD-1 blockade monotherapy compared to LAG-3 negative, PD-1 and TIM-3 

positive TILs tumors (Datar et al. 2019). 

6.4. Tumor immune gene signatures as a biomarker 

Microarray technology can be applied to provide an assessment of multiple gene expression from the 

tumor microenvironment from relatively small tumor samples. Several gene signatures with prognostic 

and predictive value have been found for NSCLC treated with chemotherapy (Tang et al. 2017)(Chen 

et al. 2007). Identification of specific pre-treatment tumor immune gene signatures can predict clinical 

response in melanoma patients treated with ipilimumab (Ji et al. 2012). Although limited data are 

available for NSCLC, an exploratory analysis from the phase II POPLAR trial uncovered that patients 

with tumors showing baseline T effector IFN-γ gene signatures had increased OS after atezolizumab 

treatment (L. et al. 2016). Supporting these data, high IFN-γ mRNA expression indicated improved 

response to nivolumab in a small cohort of NSCLC patients, without differences in OS (Karachaliou 

et al. 2018). 

6.5. Blood cell counts in routine clinical practice 

A dominant neutrophil infiltration inversely correlates with the degree of TILs infiltration in NSCLC 

(Kargl et al. 2017). In vivo studies show that increased tumor-associated neutrophilia correlates with 

poor efficacy to anti-PD-1 therapy efficacy (Akbay et al. 2017). Absolute neutrophil count (ANC), the 

classical prognostic neutrophil-to-lymphocyte ratio (NLR), and the derived NLR (dNRL; absolute 

neutrophil count/ white blood cell count-absolute neutrophil count) have been extensively assessed 

because they are easily to implement in clinical routine. In a cohort of advanced NSCLC patients 

treated with nivolumab, a baseline ANC≥ 7500/ul correlated with worse PFS and OS (Tanizaki et al. 

2018). A pre-treatment NLR≥ 5 significantly correlated with worse PFS and OS in patients treated 

with nivolumab as a second line therapy (Bagley et al. 2017). NLR changes were monitored during 

treatment, and NLR values above 5 after 6 weeks of treatment were associated with poor PFS and OS 

(K.J. et al. 2018). The dNRL seems to be more consistent as a biomarker, as considers monocytes and 

other granulocyte populations. High dNRL (>3) was associated with worse OS in NSCLC patients 

treated with anti-PD-1 agents. dNRL greater than 3 together with lactate dehydrogenase (LDH) values 

greater than the upper limit of normal (ULN) can be integrated into a parameter termed “lung immune 

prognostic index”. This parameter efficiently identifies 3 groups of patients with good (0 factor), 
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intermediate (1 factor), and poor survival (2 factors) under PD-L1/PD-1 blockade therapy (Mezquita 

et al. 2018). Thus, it might serve to identity patients unlikely to benefit from immunotherapies. 

The baseline absolute lymphocyte count (ALC) ≥ 1000/ul was significantly associated with PFS and 

OS in nivolumab-treated NSCLC patients (Tanizaki et al. 2018). Platelet-to-lymphocyte ratio (PLR) 

has also been used for NSCLC patients treated with nivolumab. Elevated pre-treatment PLR and 6 

weeks-PLR ≥ 169 were associated with longer OS (Akbay et al. 2017)(K.J. et al. 2018). Finally, the 

prognostic value of circulating monocytes has also been evaluated. A pre-treatment ratio ≥ 3.68 

correlated with worse OS in nivolumab-treated NSCLC patients (Hu et al. 2014). Baseline absolute 

eosinophil count (AEC) ≥ 150/ul was associated with PFS and OS in patients treated with nivolumab 

(Tanizaki et al. 2018). No data are available on the impact of baseline absolute-monocytic count 

(AMC) in anti-PD-L1/PD-1 outcome.  

Nevertheless, parameters such as ANC, NLR, dNLR and AMC calculated in standard clinical practice 

do not accurately differentiate the wide ranges of myeloid-derived populations at different activation 

stages in peripheral blood which may play differential roles in therapy. For example, high levels of 

classical and non-classical HLA-DR+ monocytes positively correlate with better response to 

ipilimumab in melanoma, while this association was inverse with high AMC (Romano et al. 2015).The 

elevated AMC values might have corresponded to increased monocytic MDSC populations which are 

identified as monocytes in classical analytical data (Prelaj et al. 2019). 

6.6. Monitoring the dynamics of specific immune cell populations in peripheral blood 

Monitoring of peripheral immune populations is a promising non-invasive method to find biomarkers 

of response to PD-L1/PD-1 therapy. Several circulating cell types have been put forward as 

biomarkers, but these studies will require large-scale validation studies (Havel, Chowell, and Chan 

2019). 

A recent study evaluating peripheral blood samples of NSCLC patients treated with anti-PD-1 agents 

demonstrated that early expansion of peripheral PD-1+ CD8 T cells was associated with efficacy 

(Kamphorst, Pillai, et al. 2017). These expanded cell subsets expressed CD28 and other activation and 

effector markers, suggesting that CD28 co-stimulation could be a requirement for anti-PD-1 therapy 

efficacy (Kamphorst, Pillai, et al. 2017)(Kamphorst, Wieland, et al. 2017). Another study with two 

independent NSCLC patient cohorts also correlated the expansion of peripheral PD1+ CD8+ T cells, 

measured as the fold-change in the percentage of Ki67+ cells after the first week of treatment, with 

durable clinical benefit to anti-PD-1 treatment (K. H. Kim et al. 2019). Early clonal T cell expansion 

as evaluated by genome-wide sequencing was positively associated with clinical responses in NSCLC 
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under anti-PD-1 treatments (Olugbile et al. 2017). Moreover, TCR clonal expansion and loss of 

corresponding TAAs could be used for monitoring the response to immunotherapy and acquisition of 

resistances (Anagnostou et al. 2017)(Olugbile et al. 2017). A high proportion monocytic MDSCs (M-

MDSCs) and granulocytic MDSCs (PMN-MDSCs) in NSCLC patients has been correlated with poor 

responses to chemotherapy (Feng et al. 2012)(Vetsika et al. 2014)(Koinis et al. 2016)(Liu et al. 2010). 

Few studies have evaluated the role of MDSCs and their predictive value for PD-L1/PD-1 blockade. 

Thus, a low baseline proportion of circulating M-MDSCs was associated to positive clinical outcomes 

in melanoma patients treated with ipilimumab (Meyer et al. 2014).  

Mass cytometry allows the identification of immune peripheral blood cell populations in a highly 

specific manner due to its capacity to detect multiple markers. Increased baseline peripheral CD14+ 

and CD16- HLA-DRhigh monocytes correlated with high response rates in melanoma patients under 

anti-PD-1/PD-L1 therapy (Krieg et al. 2018). Another study identified high levels of CD69+MIP-1β+ 

NK cells in responders to anti-PD-1 treatment (Subrahmanyam et al. 2018). High PD-1, PD-L1 and 

PD-L2 expression on PBMC from NSCLC patients ascertained by multi-parametric flow cytometry 

have been associated with worse OS (Arrieta and Montes-Servín 2017). 

6.7. Cytokine quantification in serum/plasma 

Cytokines are key effectors and regulators of many cell types including immune effector cells. Their 

quantification in serum or plasma is straightforward and easily implemented in clinical practice. 

Therefore, their quantification in cancer patients could most likely uncover biomarkers for response to 

PD-L1/PD-1 therapy. Indeed, cytokines present in tumor and peripheral blood can provide relevant 

information about the status of the patients and the outcome of therapies. High baseline levels of IFN-

γ, IL-6, and IL-10 correlated with objective responses in melanoma patients treated with nivolumab 

(Yamazaki et al. 2017). Analysis of NSCLC samples from the Cancer Genome Atlas (TCGA) and 

from two MD Anderson datasets identified elevated serum IL-6 and indoleamine 2,3-dioxygenase 

(IDO) in inflammatory tumors (Y. et al. 2015). A parameter based on cytokines termed the “cytoscore” 

was developed to analyze data from two phase III clinical trials in NSCLC patients treated with 

nivolumab. The “cytoscore” was generated from baseline selected cytokines quantified in sera from 

previous phase III trials and was defined as high or low based on the median cytokine cut-off values 

observed in these studies. NSCLC patients with a high cytoscore had better OS compared with those 

with low cytoscores (Borghaei et al. 2016). In addition, early changes in serum IL-8 levels after 

treatment initiation have been associated with response to anti-PD-1 therapy in NSCLC and melanoma 

patients (Sanmamed et al. 2017).  
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Table 2. Biomarkers of clinical outcomes to PD-L1/PD-1 immunotherapy in NSCLC patients 

Biomarkers Method of 

assessment 

Tissue 

type  

Association with favorable 

clinical outcome 

Validated in phase- III 

clinical trial/References 

PD-L1 tumor 

expression 

IHC 

 

Tumor  Positive PD-L1 tumor 

expression 

Yes (Topalian et al. 2012)(Rosenberg et al. 

2016)(Garon et al. 2015)(Reck et al. 

2016)(Hellmann et al. 2018)(Borghaei et al. 2015) 

(Motzer et al. 2015)(Ferris et al. 2016) 

Tumor 

mutation 

burden 

(TMB) 

NGS: Foundation 

One CDx TM and 

MSK-IMPACT 

 
WES 

Tumor 

Blood 

High mutational rate Yes (Peters et al. 2017)(Carbone et al. 

2017)(M. Kowanetz et al. 2017) 

TCR clonality Predicted 

neoantigens derived 

from WES data 

Tumor 

 

Blood 

Tumor homogeneous TCR 

clonality 

Systemic clonal expansion 

 

No 

TILs IHC, FC analyses 

and multiparametric 

single cell analyses 

(cytoff) 

Tumor CD3, CD4 and CD8 T cell 

infiltration 

TIL density>5% 

Decrease in CD4 FOXP3+ 

PD-1high T cells 

 

No 

Tumor 

immune gene 

signatures 

Microarray platform 

technology 

Tumor Baseline T effector IFN-γ 

gene signatures 

No 

Blood cell 

counts 

FC Blood Baseline ALC≥1000/ul 

Baseline ANC≥7500/ul 

Baseline NLR≥5 

6weeks NRL≥5 

Baseline dNRL>3 

Elevated baseline PLR 

6 weeks PLR≥169 

Baseline AEC≥150/ul 

 

No 

Immune cell 

population 

FC, Multiparametric 

single cell analyses 

(cytoff) 

Blood Expansion of peripheral PD-

1+ CD8 CD28 T 

Baseline CD4 THD >40% and 

tumor PD-L1 positivity 

No 

Cytokines in 

serum 

ELISA, protein 

microarray or 

enzyme-linked 

immunospot 

Blood High cytoscore 

High IL-6 and indoleamine 

2,3-dioxygenase (IDO) 

Serum IL-8 elevation after 

treatment 

No 

Liquid biopsy 

bTMB 

NGS Blood High mutational rate No 

Microbiome MiSeq and Ion 

Torrent  

Gut 

Microbi

ota 

Akkermansia muciniphila  No 

Abbreviations: IHC, Immunohistochemistry; NGS, Next generation sequencing; WES, Whole exome 

sequencing; FC, Flow cytometry; ALC, absolute lymphocyte count; ANC, Absolute neutrophil count; NLR, 
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neutrophil-to-lymphocyte ratio; dNLR, derived NLR; AEC, absolute eosinophil count; PLR, Platelet-to-

lymphocyte ratio; TCR, T cell receptor. 

 

6.8. Liquid biopsy 

Liquid biopsy is a non-invasive sampling method of circulating tumor cells (CTC), tumor DNA 

(ctDNA) and exosomes. These approaches provide information on genetic alterations within the tumor 

throughout treatments. This method is particularly useful for monitoring mutations associated to 

acquired resistances to therapies. Liquid biopsy is routinely used to detect the T790M resistance 

mutation in EGFR mutant NSCLC. CtDNA analyses can also be applied to quantify TMB in a non-

invasive manner. A retrospective study of ctDNA from POPLAR and OAK clinical trials evaluating 

PD-L1/PD-1 blockade in NSCLC patients demonstrated that high TMB quantified from ctDNA 

correlates with clinical benefit to atezolizumab (Gandara et al. 2018).  

Soluble PD-L1 (sPD-L1) is under evaluation as a predictive biomarker of responses as well. PD-L1 

splice variants lacking the transmembrane or the intracellular domain are secreted and can inhibit T 

cell activation by a poorly understood mechanism (Kruger et al. 2017). Although it is assumed that 

increased level of sPD-L1 might be associated with poor prognosis, a recent study has found that 

increased sPD-L1 levels were present in melanoma patients who responded to anti-PD-1 treatment 

(Yue et al. 2018).  Moreover, the presence of PD-L1 on circulating exosomes during anti-PD-1 

treatment has also been evaluated in melanoma patients, correlating with better outcomes (Chen et al. 

2018). 

6.9. The microbiome 

Gut commensal microbiota influences anti-tumor responses (Garrett 2015)(Zitvogel et al. 2016). It 

seems to strongly influence PD-L1/PD-1 blockade therapy efficacy in mice and in several human 

cancer types including NSCLC, RCC and urothelial cancer (Matson et al. 2018)(Gopalakrishnan et al. 

2018)(Routy et al. 2018). Specific bacterial strains have been identified that could be associated to 

either response or resistance to PD-L1/PD-1 blockade therapy. Fecal microbiota transplantation from 

responder patients into mice restored their susceptibility to PD-L1/PD-1 blockade therapy in 

melanoma and MCA-205 mice models (Sivan et al. 2015)(Routy et al. 2018). A recent study with a 

cohort of 60 NSCLC patients treated with anti-PD-1 therapy showed that responder microbiota was 

specially enriched in Akkermansia muciniphila (Routy et al. 2018). Nevertheless, the underlying 

mechanism by which microbiota influences immunosuppression is still under research. 
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MATERIALS AND METHODS 

7.1. Study design 

The study was approved by the Ethical Committee at the Complejo Hospitalario de Navarra. Informed 

consent was obtained from all subjects and all experiments conformed to the principles set out in the 

WMA Declaration of Helsinki and the Department of Health and Human Services Belmont Report. 

Samples were collected by the Blood and Tissue Bank of Navarre, Health Department of Navarre, 

Spain. 46 patients diagnosed with non‐squamous and 19 with squamous NSCLC were recruited at the 

Complejo Hospitalario de Navarra. Patients had all progressed to first‐line chemotherapy or concurrent 

chemo‐radiotherapy. Eligible patients were 18 years of age or older who agreed to receive PD‐L1/PD‐

1 blockade immunotherapy following the current indications. Tumor PD‐L1 expression could be 

quantified in 50 of these patients before the start of therapies. Measurable disease was not required. 

The exclusion criteria consisted of concomitant administration of chemotherapy or previous 

immunotherapy treatment. NSCLC patients had an age of 63.17 ± 8.9 (mean ± SD, N = 65). Age‐

matched healthy donors were recruited from whom written informed consent was also obtained, with 

an age of 64.5 ± 8.5 (mean ± SD, N = 40).  

Therapy with nivolumab, pembrolizumab, and atezolizumab was provided following current clinical 

indications (Herbst et al. 2016)(Horn et al. 2017)(Rittmeyer et al. 2017). 10 ml of peripheral blood 

samples were obtained prior and during immunotherapy before administration of each cycle. The 

participation of each patient in the study was concluded when a radiological evaluation confirmed 

response or progression, with the withdrawal of consent or after death of the patient. Tumor responses 

were evaluated according to RECIST 1.1 (Eisenhauer et al. 2009) and Immune‐Related Response 

Criteria (Wolchok et al. 2009). Objective responses were confirmed by at least one sequential tumor 

assessment. Hyperprogression was identified according to the radiological criteria established by 

Champiat et al. (Champiat et al. 2017). 

7.2. Cell culture and growth 

7.2.1. Cell lines 

Human embryonic kidney (HEK) 293T cells were purchased from the American Type Cell Culture 

Collection (ATCC) and were grown in Dulbecco’s Modified Eagle Medium (DMEM) (Gibco) 

supplemented with 10% fetal bovine serum (FBS) (Sigma) and 1% antibiotics PenStrep (Gibco). The 

human lung cancer adenocarcinoma A549 cell line was obtained from Prof. Ruben Pío, authenticated 

by his group and were grown in Roswell Park Memorial Institute medium (PRMI) medium (Gibco) 

supplemented with 10% FBS (Sigma) and 1% antibiotics PenStrep (Gibco). This cell line harbors 
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mutations in KRAS and CDKN2A, while it is wild type for EGFR, PIK3CA, TP53, ALK and PTEN 

genes. The A549-SC3 cell line was obtained from the A549 parental cells by transduction with a 

pDUAL lentivector (Karwacz et al. 2011) encoding a single-chain version of a membrane-bound anti-

OKT3 antibody (SC3 molecule) and blasticidin resistance following standard procedures. CHO cells 

were obtained from the ATCC and cultured in DMEM-F12 (Gibco) medium supplemented with 10% 

fetal FBS (Sigma) and 1% antibiotics PenStrep (Gibco). The CHO cell line producing an antibody 

equivalent to pembrolizumab was generated by transduction with two pDUAL lentivectors expressing 

the heavy and light chains of the published pembrolizumab sequence (Scapin et al. 2015). Jurkat E-6 

cell line was obtained from the ATCC and cultured in RPMI (Gibco) medium supplemented with 10% 

fetal FBS (Sigma) and 1% antibiotics PenStrep (Gibco). All cells were confirmed to be mycoplasma-

free by PCR using as oligonucleotides MYA (GGCGAATGGGTGAGTAACACG) and MYB 

(CGGATAACGCTTGCGACCTATG), which hybridize specifically with mycoplasma ribosomal 

genes. 

7.2.2. Peripheral blood mononuclear cells (PBMCs) 

10 ml of heparinized blood samples were obtained from patients and healthy donors. PBMCs were 

immediately isolated by FICOL gradients right after the blood extraction. Briefly, fresh blood retrieved 

from EDTA-collection tubes was diluted 1:2 with PBS. 9 ml of diluted blood were layered on top of 3 

ml FICOL solution (GE Healthcare) in 15 ml falcon tubes. Samples were then centrifuged at 800g for 

20 min which resulted on a mononuclear cell-ring layer at the interface between erythrocyte 

sedimentation on the bottom and plasma on the top. Plasma was stored at -80ºC for further analyses. 

The mononuclear cell-containing ring was collected, washed with PBS and centrifuged at 800g for 10 

min. Erythrocyte contamination was eliminated by resuspending the cell pellet in 200 µl of ACK 

solution (Ammonium-Chloride-Potassium) (Gibco) for 5 min at room temperature (RT). Samples were 

washed with PBS and centrifuged at 300g for 10 min. PBMCs were then cultured in TexMACS TM 

Medium (Miltenyi Biotech) at 37°C in a humidified 5% CO2 incubator and plated on 6‐well cell culture 

plates. Myeloid cells could adhere to the plastic cell culture plates overnight, and non‐adherent T cells 

were collected, centrifuged, and resuspended for further applications. 

7.2.3. Monocyte-derived dendritic cells (DCs) 

Monocyte derived DCs were generated from adherent mononuclear cells in the presence of 

recombinant 50 ng/ml of GM-CSF (PeproTech) and IL-4 (PeproTech) in RPMI medium (Gibco), 10% 

FBS (Sigma) and antibiotics PenStrep (Gibco) for 7 days  as described (Escors et al. 2008). 
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7.3. Lentivectors 

The pDUAL-SC3-BlastR lentivector was generated by standard DNA recombinant techniques to 

express single-chain OKT3 (scAb) antibody construct under the control of the SFFV promoter and 

blasticidin resistance from the human ubiquitin promoter in a pDUAL lentivector construct (Figure 

10A). The cDNAs encoding the variable heavy and light chains of the anti-CD3 OKT3 antibody fused 

with a G-S linker were ordered from GeneArt (Arakawa et al. 1996). The linker was introduced by 

overlap extension PCR with the primers indicated in Table 3. Then, the scAb was fused to a human 

IgG1 constant sequence followed by the transmembrane domain of the human PD-1 gene.  

The lentivector pDUAL-PembroIgL-PuroR was obtained by cloning in pDUAL vectors the published 

sequence of the light chain from the anti-PD-1 antibody pembrolizumab (Scapin et al. 2015) under the 

control of the SFFV promoter. Puromycin resistance was expressed under the control of the ubiquitin 

promoter (Figure 10B). The lentivector pDUAL-PembroIgH-BlastR was generated by cloning in 

pDUAL vectors the published sequence of the heavy chain from the anti-PD-1 antibody 

pembrolizumab (Scapin et al. 2015) under the control of the SFFV promoter. Blasticidin resistance 

was expressed under the control of the ubiquitin promoter (Figure 10B). 

 

Figure 10. Generation of SC3 single-chain antibody and anti-PD-1 equivalent to pembrolizumab by 

lectivectors. (A) Left, lentivector co‐expressing an anti‐CD3 single‐chain antibody gene (SC3) and blasticidin 

resistance for selection; and the structure of SC3 gene. The cDNAs encoding the variable heavy and light chains 

of the anti-CD3 OKT3 antibody fused with a G-S linker. Then, the sequence was fused to a human IgG1 constant 

sequence followed by the transmembrane domain of the human PD-1 gene. SFFVp, spleen focus‐forming virus 

promoter; UBIp, human ubiquitin promoter; LTR, long terminal repeat; SIN, U3‐deleted self-inactivating LTR; 

OKT3 VL, variable light chain of the single-chain OKT3; OKT3 VH, variable heavy chain of the single-chain 



54 
 

OKT3; IgG1, immunoglobulin G1; TMD, transmembrane domain. Right, molecular structure of the anti-CD3 

SC3 molecule, which is anchored to the cell membrane by a transmembrane domain as indicated. OKT3 VL, 

variable region of the light chain from the anti‐CD3 antibody OKT3; VH, variable region of the heavy chain 

from the anti‐CD3 antibody OKT3. (B) Left, lentivectors co‐expressing the light chain from the anti-PD-1 

antibody pembrolizumab (PEMBRO-IgVL) and puromycin resistance for selection; and lentivectors co‐

expressing the heavy chain from the anti-PD-1 antibody pembrolizumab (PEMBRO-IgVH) and blasticidine 

resistance for selection. SFFVp, spleen focus‐forming virus promoter; UBIp, human ubiquitin promoter; LTR, 

long terminal repeat; SIN, U3‐deleted self-inactivating LTR. Right, molecular structure of the anti-PD-1 

antibody. Pembro-VL, variable region of the light chain from the anti‐PD-1 pembrolizumab antibody; Pembro-

VH, variable region of the heavy chain from the anti‐PD-1 pembrolizumab antibody. 

Table 3. Primers used for the generation of the single-chain OKT3 

Targeted gene Oligo forward Oligo Reverse 

Variable Light OKT3-GS linker GGCGCGCCgccaccATGGATTTT

CAGGTGCAGATTTTCAGCTTC 

ccgccagagccacctccgcctgaaccgcctccac

ctgaggagacggtgaccgtggtgccGTTTAT

TTCCAACTTTGTCCCCGAGCCga

acgtgaa 

GS-linker-Variable Heavy OKT3 Ggcggttcaggcggaggtggctctggcggtgg

cggatcgggcggcggcggctcgcaggtccag

ctgcagcagtctggggc 

GGATCCTGAGGAGACTGTGAG

AGTGGTGCC 

Single chain OKT3 GGCGCGCCgccaccATGGATTTT

CAGGTGCAGATTTTCAGCTTC 

GGATCCTGAGGAGACTGTGAG

AGTGGTGCC 

 

7.4. Lentivector production and cell transduction 

Lentivector stocks were produced by the three-plasmid co-transfection system into HEK 293T cells, 

following published procedures (Karwacz et al. 2011). Cells were transduced with the required 

lentivectors (or combination of lentivectors) for 24-48 hours. To select transduced cells, the 

appropriate antibiotics at lethal concentrations were added to eliminate non-transduced cells. 

7.5. T cell activation assay 

Primary human T cells were stimulated by three different procedures. The first procedure was based 

on CD3/CD28-stimulation by coating 24 well-plates for 2h at 37ºC with 0.1 µg/ml functional grade 

OKT3 anti-CD3 monoclonal antibody (eBioescience TM 16-0037-85) and functional grade anti-CD28 

monoclonal antibody (CD28.2, eBioescience TM 16-0289-85) diluted in PBS. Wells were washed and 

T cells added to coated wells in RPMI medium (Gibco) supplemented with 10% FBS (Sigma) and 1% 

antibiotics PenStrep (Gibco). T cells were stimulated for 3 days. The second procedure was based on 

activation by co-culture with A549-SC3 cells grown in 6 well-plaques. Primary human T cells were 

added to A549-SC3 cultures in a 1:1 ratio for 3 days. The third procedure was based on incubation 

with DCs loaded with A549 cell protein extracts. A549 cell extracts were obtained by freezing and 

thawing following by sonication. DCs were incubated with A549 cell extracts overnight and maturated 
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with 10 ng/ml of IFN-γ (PeproTech) overnight. Human T cells were then added to the activated 

antigen-loaded DC cultures in a 1:10 ratio and co-cultured during 7 days as described (Escors et al. 

2008). 

7.6. Flow cytometry  

T cells isolated from fresh blood samples and stimulated T cells were collected from the culture 

supernatant, centrifuged and resuspended in PBS for surface and intracellular flow cytometry staining 

procedures. The antibodies indicated in Table 4 were used in a final volume of 50 µl and surface 

staining was performed for 10 min in ice. Cells were washed and resuspended in 300 µl PBS and 

analyzed immediately using a BD FACS Canto II (BD Biosciences). 

For intracellular cytokine staining, Golgi-plug Protein Transport Inhibitor (BD Bioesciences) was 

added to T cell culture 5 hours before surface/intracellular staining procedures, following the 

recommendations of the manufacturer. For intracellular staining, T cells that had been stained for 

surface molecules were fixed 20 min in ice using 200 µl Fixation/Permeabilization solution (BS 

Bioescience) and washed twice with 500 ul Perm/Wash™ Buffer (10x) solution (BD Biosciences). To 

stain nuclear proteins such as Ki67, a similar protocol was performed using Transcription factor set 

(BD Biosciences). 

Table 4. Antibodies used for flow cytometry analyses 

Antibody Reference Clone Dilution Producer 

CD3-APC 130-113-135 clone 

REA613 

1:50 Miltenyi 

Biotech 

CD3-violet fluor 450 75-0036-T100 Clon SK3 1:50 TONBO 

CD3-PercP-Cy5 65-0037-T100 Clone 

OKT3 

1:50 TONBO 

CD4-FITC 130-080-501 clone M-

T466 

1:50 Miltenyi 

Biotech 

CD4-APC-Vio770 130-100-455 clone M-

T466 

1:50 Miltenyi 

Biotech 

CD4-PECy7 4129769, clone SK3 1:50 BD Biosciences 

CD8-APC-Cy7 A15448 clone RFT-8 1:50 Molecular probes by Life technologies 

CD8-FITC 344703 clone SDK1 1:50 Biolegend 

CD28-PECy7 302926 clone 

CD28.2 

1:50 Biolegend 

CD28-FITC 302906 clone 

CD28.2 

1:50 Biolegend 

CD27-PE reference 130-093-

185 

clone M-

T271 

1:50 Miltenyi 

Biotech 
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CD27-APC 130-097-922 clone M-

T271 

1:50 Miltenyi 

Biotec 

PD-1-PE 339905 clone 

EH12.2H7 

1:50 Biolegend 

LAG-3-PercP-Cy5.5 369312 Clone 

11C3C65 

1:50 Biolegend 

CD62L-APC 130-099-252 Clone 

MEL14-

H2.100 

1:50 Miltenyi 

Biotec 

CD45RA-FITC 130-098-183 Clone 

T6D11 

1:50 Miltenyi 

Biotec 

CD57-PE 322311 clone 

HCD57 

1:50 Biolegend 

H2AX-FITC 613403 clone 2F3 1:100 Biolegend 

CD14-VF450 75-0149-T100 clone 61D3 1:500 TONBO 

IL-2 Alexa Fluor 647 500315 clone MQ1-

17H12 

1:100 Biolegend 

IFN-γ-FITC 502506 clone 4S.B3 1:100 Biolegend 

IL-10-APC 130-096-042 Clone JES3-

9D7 

1:100 Miltenyi 

Biotech 

IL4-PE 130-091-647 Clone 7A3-

3 

1:100 Miltenyi 

Biotech 

IL-17A-BV421 512321 BL168 1:100 Biolegend 

IL-17A-Violet 667 130-120-554 clone CZ8-

23G1 

1:100 Miltenyi 

Biotech 

 

7.7. Anti-PD-1 antibody production and purification 

Supernatants from CHO-Pembrolizumab cultures were collected and antibodies purified by affinity 

chromatography following standard procedures. Purified antibodies were quantified by Nanodrop, and 

their binding activities confirmed by flow cytometry over Jurkat cells and primary T cells. 

7.8. PD-1 and LAG-3 blockade assays 

PD-1 (clone EH12.2H7, BioLegend) and LAG-3 (clone 17B4, BioLegend) blocking antibodies were 

added for 3 days to A549-SC3/T cell co-cultures at a final concentration of 5 µl/ml.  

7.9. Cytokine arrays 

Baseline plasma samples from patients and healthy donors were retrieved from storage at -80ºC and 

serum-derived cytokine profile analysis was performed using a dot-blot protein array (Abcam). 

Membranes with 80 cytokine antibodies were blocked with blocking buffer at RT for 30 min. Then, 
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membranes were incubated overnight at 4ºC with 1 ml sera diluted 1:4 in blocking buffer. After 

washing, membranes were incubated with 500 µl biotinylated anti-cytokine antibody mix overnight at 

4ºC. After washing, the membranes were incubated with HRP-conjugated streptavidin overnight at 

4ºC. Membranes were then exposed to developing solution and revealed by ChemiDoc imaging 

system. Signals were quantified by ImageLab software (BioRad) and normalized to the positive control 

signal. Perseus (1.5.6) software was used for statistical analysis.  

7.10. ELISA assays 

 

Baseline plasma samples from patients were retrieved from storage at -80ºC. Cytokines fms-related 

tyrosine kinase 3 ligand (FLT3LG), brain-derived neurotrophic factor (BDNF), macrophage-derived 

chemokine (MDC) and vascular endothelial growth factor (VEGF) were quantified by ELISAs 

according to the indications of the manufacturer (human BDNF Elisa Kit ab99978, human MDC Elisa 

Kit ab100591, human FTL3-Ligand ab100521, VEGF-A Human ELISA Kit BMS277-2). All samples 

were analyzed in triplicates and cytokine levels quantified with an Epoch detection system (Biotek). 

Standard curves were obtained for each cytokine and concentrations expressed as pg/ml and µl/ml.  

7.11. Data collection and Statistics 

T cell percentages were quantified using Flowjo (Lanna et al. 2014)(Lanna et al. 2017). The percentage 

of CD4/CD8 THD (CD27- CD28low/neg) and non-THD T cells (CD28+ CD27+) were quantified prior to 

therapy (baseline), and before administration of each cycle of therapy within CD4 and CD8 cells. Gates 

in flow cytometry density plots were established taking CD27+ CD28+ T cells as a reference. Data was 

recorded and independently analyzed thrice by two different individuals. Cohen´s kappa coefficient 

was utilized to test the inter-rater agreement in classification of immunological profiles (=0.939).  

The mode of action, pharmacokinetics, adverse events and efficacies of the three PD-L1/PD-1 blocking 

agents are comparable in NSCLC, which act through the interference with the inhibitory interaction 

between PD-L1 and PD-1 (Herbst et al. 2016)(Horn et al. 2017)(Rittmeyer et al. 2017). Treatments 

administered to the patients were allocated strictly based on their current indications, and 

independently of any variable under study. All data was pre-specified to be pooled to enhance 

statistical power, and thereby reducing type I errors from testing the hypotheses after ad hoc 

subgrouping into specific PD-L1/PD-1 blockers. The number of patients assured statistical power for 

Fisher´s exact test of 0.95 and superior for Student t and Mann-Whitney tests (G*Power 

calculator)(Faul et al. 2009), taking into account that the expected proportion of responders is around 

25% to 35% without stratification (Herbst et al. 2016)(Horn et al. 2017)(Rittmeyer et al. 2017). Two 

pre-specified subgroup analyses in the study were contemplated. The first, baseline T cell values; the 
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second, post-first cycle T cell changes from baseline. The study protocol contemplated the correlation 

of these values with responses using Fisher´s exact test, paired Student t tests/repeated measures 

ANOVA (if normally distributed) or U of Mann-Whitney/Kruskal-Wallis (if not normally distributed, 

or data with intrinsic high variability). Two-tailed tests were applied with the indicated exceptions (see 

below).  

The percentage of T cell subsets in untreated cancer patients was normally distributed (Kolmogorov-

Smirnov normality test), but not in age-matched healthy donors. Hence, to compare T cell values 

between two independent cancer patient groups, two-tailed unpaired Student t tests were used, while 

comparisons between healthy subjects and cancer patients were carried out with the U of Mann-

Whitney. Percentages of T cell populations in treated patients were not normally distributed, so 

response groups were compared with either Mann-Whitney (comparisons between two independent 

groups) or Kruskal-Wallis for multi-comparison tests if required. Two-tailed paired t tests were carried 

out to compare changes in the proportion of CD28+ CD8 T cells between baseline and post-therapy 

paired groups, and to compare Ki67 expression in T cell subsets activated with A549-SC3 cells 

subjected to PD-1 or LAG-3 blockade. For comparison of paired samples with anti-PD1-/anti-LAG-3 

combinations, two-way ANOVA tests with a random criterium (subjects) were used. Fisher´s exact 

test was used to assess the association of the baseline values of THD cells with clinical responses. The 

same tests were performed to assess associations between G1/G2 groups with well-established 

prognostic variables as indicated in the text.   

Progression free survival (PFS) was defined as the time from the starting date of therapy to the date of 

disease progression or the date of death by any cause, whichever occurred first. PFS was censored on 

the date of the last tumor assessment demonstrating absence of progressive disease in progression-free 

and alive patients. PFS rates at 12 and 28-weeks was estimated as the proportion of patients who were 

free-of-disease progression and alive at 12 and 28 weeks after the initiation of immunotherapies. 

Patients who dropped out for worsening of disease and did not have a 28-week tumor assessment were 

considered as having progressive disease. Overall survival (OS) was defined as the time from the 

starting date of therapy to the date of death due to the disease or unrelated causes. Response rate (ORR) 

was the proportion of patients who achieved best overall response of complete or partial responses.  

PFS and OS were represented by Kaplan-Meier plots and long-rank tests utilized to compare cohorts. 

Hazard ratios were estimated by Cox regression models. Receiver operating characteristic (ROC) 



59 
 

analysis was performed with baseline THD numbers and response/no response as a binary output. 

Statistical tests were performed with GraphPad Prism 5 and SPSS statistical packages.   
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RESULTS 

8. IDENTIFICATION OF SYSTEMIC PREDICTIVE BIOMARKERS FOR CLINICAL 

RESPONSES TO PD-L1/PD-1 BLOCKADE THERAPY 

 

8.1. Baseline CD4 THD cell profile separates NSCLC patients into two groups with differential 

clinical outcomes to anti-PD-L1/PD-1 immunotherapy 

Changes in specific peripheral T cell populations during anti-PD-L1/PD-1 immunotherapy treatment 

have been previously correlated with objective clinical responses in NSCLC patients (Kamphorst, 

Pillai, et al. 2017)(K. H. Kim et al. 2019). However, none of those studies identified immunological 

profiles before treatment initiation which could reliably predict clinical outcomes for PD-L1/PD-1 

blockade therapies.  

To identify whether there was a correlation between specific systemic T cell subsets and responses to 

anti-PD-L1/PD-1 immunotherapy in NSCLC patients, a prospective study was carried out in a cohort 

of 65 patients who were enrolled to be treated with PD-L1/PD-1 inhibitors following their current 

clinical indications. The baseline characteristics of the cohort under study are shown in Table 5. These 

patients had all progressed to conventional cytotoxic therapies and received immune checkpoint 

inhibitors (13.8% pembrolizumab, 46.2% nivolumab and 40% atezolizumab) as part of their second- 

and third-line treatments. 80% of the patients presented an ECOG of 0-1, 69.2% with at least three 

affected organs and 24.6% with liver metastases (Table 5).  

As a first approach, the percentages of CD4 T cell differentiation subsets according to CD27/CD28 

expression profiles were quantified within total CD4 T cells in patients before the start of 

immunotherapies (baseline), which have been previously shown to discriminate T cells in distinct 

differentiation stage (Lanna et al. 2014)(Lanna et al. 2017). Accordingly, human T cells are classified 

according to CD27/CD28 profiles into poorly differentiated (CD27+ CD28+), intermediately 

differentiated (CD27neg CD28+) and highly differentiated (CD27neg CD28low/neg, or THD) subsets. T cell 

quantification was performed from fresh peripheral blood samples and compared to healthy age-

matched donors (N=40) (63.17±8.9 vs 64.5±8.5 years, mean±standard deviation, (SD)). As freezing 

and storage significantly altered surface expression markers in T cells, T cell subsets were directly 

analyzed from fresh blood samples. 
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Table 5. Baseline patient characteristics 

Variable All patients (N=65) (%) 

Sex   

        Female 17 (26,2) 

        Male 48 (73,8) 

Age  

      <60 17 (26,2) 

       ≥60 48 (73,8) 

Histology  

       Squamous 19 (29,2) 

       Non- Squamous 46 (70,8) 

Inmunotherapy treatment  

        Pembrolizumab 9 (13,8) 

        Nivolumab 30 (46,2) 

        Atezolizumab                                     26 (40) 

PDL1 status   

        0% 23 (35,4) 

        1-4% 5 (7,6) 

        5-49% 12 (18,5) 

        ≥ 50% 10 (15,4) 

        Undetermined 15 (23,1) 

Mutation status  

        No      63 (97) 

        EGFR  1 (1,5) 

        ROS1  1 (1,5) 

Smoking status  

        Smoker 59 (90,8) 

        Non-smoker 6 (9,2) 

Treatment line  

        2nd 46 (70,8) 

        3th 16 (24,6) 

        4th or higher 3 (4,6) 

Previous systemic therapies (previous 3 months)  

        Platinium-based therapy 20 (30,8) 

        Non-platinium based therapy 23 (35,4) 

        No 22 (33,8) 

ECOG  

        0-1 52 (80) 

        2-4 13 (20) 

GRImScore  

        0-1 36 (55,4) 

        2-3 15 (23,1) 

        Undetermined 14 (21,5) 

Liver metastases  

        No 49 (75,4) 

        Yes 16 (24,6) 

Number of sites involved   

        ≤2 20 (30,8) 

        ≥3 45 (69,2) 

CD4 THD Profiling  

        G1 profile 31 (47,7) 

        G2 profile 34 (52,3) 

Responses   

        Partial response  15 (23,1) 

        Progression disease 41 (63,1) 

        Stable disease 9 (13,8) 
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Figure 11. Baseline profiling of CD4 T cell differentiation subsets stratifies clinical responses to PD-L1/PD-

1 blockade. (A) Percentage of circulating highly differentiated CD4 T cells (CD4 THD) within CD4 cells in age-

matched healthy donors (N=40) or NSCLC patients (N=65) before undergoing immunotherapies. G1 and G2, 

groups of patients classified according to high CD4 THD cells (G1, >40% CD4 THD cells) and low CD4 THD cells 

(G2, <40% CD4 THD cells). Relevant statistical comparisons are shown by the test of Mann-Whitney. In green, 

objective responders (OR). In red, no OR. Below the graph, correlation of objective responses to G1 and G2 

groups by the Fisher´s exact test. (B) Waterfall plot of change in lesion size in patients with measurable disease 

(N=54) classified as having a G1 (blue) or G2 (red) CD4 THD cell baseline profile. Dotted line represents the 

limit to define significant progression (increase>20%, upper line) or significant regression (decrease >30%, 
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lower line). Patients starting therapy with a G1 and G2 CD4 THD profile had an overall response rate (ORR) of 

48.4%, and 0% respectively. (C) ROC curve and optimal cut-off value of CD4 THD baseline percentage for 

predicting objective clinical responses to immunotherapies. (D) Kaplan-Meier plot for progression free survival 

(PFS) in patients treated with immunotherapies stratified only by G1 (blue) and G2 (red) CD4 THD cell profiles. 

In the gray square, median mPFS and 12-weeks PFS are indicated for G1 and G2 cohorts. Statistical 

comparison is shown by the long-rank test. (E) Same as (D) for overall survival (OS). *, **, *** in the figures 

indicate significant (P<0.05), very significant (P<0.01) and highly significant (P<0.001) statistical differences. 

 

Overall, cancer patients showed a significantly higher baseline percentage of CD4 THD cells 

(43.12±22.19 %, N=65) than healthy controls (25.97±12.69 %, N=40) (P<0.0001) (Figure 11A). 

Furthermore, patients were separated in two groups by an approximate cut-off value of 40% CD4 THD 

cells (Figure 11A); we denominated “G1 cohort” to patients with more than 40% CD4 THD cells 

(62.04±13.22 %, N=31), and “G2 cohort” to patients with less than 40% (25.22±10.08 %, N=34). 

Differences between G1 and G2 cohorts were also highly significant (P<0.0001) (Figure 11A). 

Accordingly, the G1 cohort showed very significantly lower numbers of CD28+ CD27+ CD4 T (CD4 

non-THD) cells compared to the G2 cohort, in whom this subset represented the majority.  

All the patients were evaluated for response based on RECIST 1.1 criteria. The overall response rate 

(ORR) in the cohort was 23.1% consistent with the published efficacies for these agents (Herbst et al. 

2016)(Rittmeyer et al. 2017)(Horn et al. 2017). Interestingly, in our study objective responders were 

found only within the G1 cohort (P=0.0001) which included all patients that showed significant tumor 

regression (Figure 11A-B). Accordingly, ROC analysis demonstrated a highly significant association 

of CD4 THD baseline percentage with objective clinical responses (AUC 0.82, 95% C.I., 0.72–0.92; 

P=0.0001), and confirmed the cut-off value of >40% to identify objective responders with 100% 

sensitivity and 68% specificity (Figure 11C). In contrast, clinical outcomes of patients with G2 

profiles were significantly associated with tumor progression (p=0.0001), with an ORR of 0% (Figure 

11A-B). In agreement with these results, the G1 patient cohort had a significantly longer progression-

free survival (PFS) compared to the G2 cohort. The median PFS (mPFS) of G2 patients was only 6 

weeks (95% C.I., 5.4-6.6) compared to 23 weeks for G1 patients (95% C.I., 0-46.42; P<0.0001) 

(Figure 11D). 86% of G2 profile patients experienced progression or death by week 12. A comparison 

of G2 versus G1 baseline profiles showed hazard ratios for disease progression or death that favored 

the latter [3.15 (95% C.I., 1.71-5.78); P < 0.0001]. In addition, the G1 cohort also exhibited a 

significant benefit in overall survival (OS) compared to the G2 cohort. Median OS (mOS) for the G2 

cohort was 34 weeks (95% C.I., 8.7-59.3) while the corresponding for G1 patients was not reached yet 

at the present time (P=0.004) (Figure 11E). 

In contrast to CD4 THD cells, the relative percentage of circulating baseline CD8 THD cells within the 

CD8 population did not significantly differ from age-matched healthy donors (Figure 12A). Moreover, 
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ROC analysis demonstrated the lack of significant discriminating value of CD8 THD cell baseline 

percentage for objective clinical responses (AUC 0.63, 95% C.I., 0.48–0.79; P=0.12) (Figure 12B).  

 

Figure 12. Baseline profiling of CD8 T cell differentiation subsets according to CD27/CD28 expression does 

not stratify clinical responses to PD-L1/PD-1 blockade. (A) Percentage of circulating CD8 THD within CD8 T 

cells in age-matched healthy donors (N=40) or NSCLC patients (N=65) before undergoing immunotherapies. 

In green, objective responders (OR). In red, no OR. Relevant statistical comparisons are shown by the test of 

Mann-Whitney. Below the graph, correlation of objective responses to G1 and G2 groups by the Fisher´s exact 

test. Ns, no significant differences (P<0.05). (B) ROC curve of CD8 THD cell quantification for predicting 

objective clinical responses.  

 

Hyperprogressors represent a subgroup of patients that exhibit fast worsening of clinical conditions 

following immunotherapy, with fatal consequences. The identification of hyperprogressors is a critical 

issue in clinical oncology, as the causes of hyperprogressive disease are currently unclear. Therefore, 

hyperprogressors were identified within our cohort of patients following the radiological criteria 

established by Champiat et al., which applies an exponential tumor growth model to estimate tumor 

growth rates (TGR) before and after the start of immunotherapy. In this model, the TGR estimated 

during previous treatments is compared to the TGR calculated after the first follow-up CT scan 

evaluation. A threshold of TGR increase equal or superior to 2 is frequently considered to identify 

hyperprogressors (Champiat et al. 2017). 

TGR could not be evaluated in 44.7% of the patients due to unmeasurable tumor burden by RECIST 

criteria, or unavailable CT scan evaluation from previous treatments. Ten patients were identified as 

radiological hyperprogressors, representing the 15.4% of our cohort (Figure 13A), similar to other 

studies in NSCLC (S. et al. 2018). All of them experienced early progression of disease with a mPFS 

of 6 weeks (95% C.I., 4.9-7.1) compared to 8.1 weeks for the rest of progressors (95% C.I., 5.1-11.2; 

P=0.01) (Figure 13B). Hazard ratios for disease progression or death favored the latter over 

hyperprogressors [2.61 (95% C.I., 1.17-5.82); P = 0.002]. Moreover, 90% of identified 
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hyperprogressors had a G2 baseline profile.  We found a significant association between G2 profiles 

and incidence of hyperprogression (P=0.01) (Figure 13A). However, no association was found 

between hyperprogression and other variables including age (P=0.246), gender (P=0.89), performance 

status (ECOG score) (P=0.154), immunotherapy drug (P=0.235), tumor histology (P=0.589), PD-L1 

tumor expression (P=0.48), tumor load (P=0.583), number of liver metastases (P=0.677) or GRIm 

score (P=0.965). 

 

Figure 13. Baseline G2 T cell profile is associated with risk of hyperprogression. (A) Scatter plot of baseline 

percentage of circulating CD4 THD cells as a function of tumor growth rate (TGR) in patients with measurable 

TGR (N=47). Dotted line shows the 40% CD4 THD cut-off value separating G1 and G2 cohorts. The dotted 

square includes patients with TGR>2 identified as hyperprogressors by radiological criteria in our cohort of 

patients. In green, objective responders (OR). In red, no OR. In purple, hyperprogressors (HP). Below the 

graph, correlation of hyperprogressive disease to G2 profiles by the Fisher´s exact test. (B) Kaplan-Meier plot 

for PFS in patients treated with immunotherapies with measurable TGR stratified as non-hyperprogressive 

progressors (non-HP) (red) and hyperprogressors (HP) (purple). Statistical comparison is shown by the long-

rank test. *, **, *** in the figures indicate significant (P<0.05), very significant (P<0.01) and highly significant 

(P<0.001) statistical differences. 

 

These results showed that the baseline relative percentage of circulating CD4 THD cells separates 

NSCLC patients before initiation of immunotherapies in two groups with distinct clinical outcomes to 

PD-L1/PD-1 blockade therapy. A cut-off value of >40% CD4 THD identified a group of patients 

containing the objective responders. In contrast, <40% CD4 THD values were strongly linked to disease 

progression and risk of developing hyperprogressive disease. Although independent validation studies 

are required, it represents a promising non-invasive blood-based predictive biomarker of clinical 

responses to PD-L1/PD-1 blockade therapy in advanced NSCLC patients. 
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8.2. CD4 THD cell profiling has no significant prognostic value in NSCLC patients 

To assess whether CD4 THD profiling had prognostic instead of a predictive value, the time elapsed 

from diagnosis to the start of immunotherapies was compared between G1 and G2 patient cohorts. 

Longer recruitment times would be associated to good prognosis, and this approach has been 

previously used for immunotherapies in a clinical context (Le et al. 2015). No significant differences 

were observed between G1 and G2 cohorts, indicating that G1/G2 classification did not have 

prognostic value (Figure 14). This was supported by no association between G1/G2 patient cohorts 

with several well-stablished prognostic variables including ECOG score (P=0.33) (Table 6), liver 

metastases (P=0.15) (Table 7), tumor load (P=0.18) (Table 8) or with the Gustave-Roussy immune 

score (GRIm) (P=0.54) (Table 9) which englobes three classical prognostic variables; serum LDH 

levels, serum albumin concentration and NLR ratio (Bigot et al. 2017). The hazard ratio for progression 

or death of G2 patients maintained its statistical significance by multivariate analyses (HR 9.739; 95% 

C.I., 2.501 to 37.929) when adjusted for tumor histology, age, gender, smoking habit, liver 

metastases, number of organs affected, PD-L1 tumor expression, NLR, serum LDH and albumin. 

Hence, we concluded that CD4 THD profiling has no significant prognostic value. 

 

Figure 14. Baseline CD4 THD profiling does not have significant prognostic value. Kaplan–Meier plot of 

relative time elapsed from diagnosis to the start of immunotherapy for G1 (blue) and G2 (red) patient cohorts, 

as indicated. Statistical comparison is shown by the long-rank test. Ns, no significant differences (P>0.05). 

 

Table 6. Association of CD4 T cell profiles with ECOG score 

 CD4 THD profiles Clinical responses 

ECOG score G1 G2 Objective 
responders 

 
Progressors 

0-1 22 31 10             43 

2-4 9 3 5              7 

  

Association, P 0.05 ns 0.13 ns 
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Table 7. Association of CD4 T cell profiles with liver metastases 

 CD4 THD profiles Clinical responses 

Liver metastases G1 G2 Objective  
responders 

Progressors 

Yes 5 11 3             13 

No 26 23 12             37 

  

Association, P 0.16 ns 0.74 ns 

 

Table 8. Association of CD4 T cell profiles with tumor load 

 CD4 THD profiles Clinical responses 

Affected organs G1 G2 Objective 
 responders 

Progressors 

</= 2 12 8 8 12 

>/= 3 19 26 7 38 

  

Association, P 0.28 ns 0.05ns 

 

Table 9. Association of CD4 T cell profiles with GRIm score 

 CD4 THD profiles Clinical responses 

GRImScore G1 G2 Objective  
responders 

Progressors 

0-1 18 18 10             26 

2-3 6 9 1             14 

  

Association, P  0.55 ns  0.14 ns 

 

8.3. Combination of CD4 THD profiling and tumor PD-L1 positivity accurately identifies 

objective responders 

Even though a baseline G1 CD4 THD cell profile was associated to objective responses to 

immunotherapy in our cohort of patients, ORR within G1 patients was still about 50%. PD-L1 tumor 

expression is the only approved biomarker available in clinical practice, and high PD-L1 scoring is 

associated with benefit from PD-L1/PD-1 blockade therapies in NSCLC patients (Borghaei et al. 

2015). Therefore, we wondered whether there was an association between PD-L1 tumor expression 

and clinical responses in G1 and G2 patient cohorts for whom PD-L1 tumor expression values were 

available (N=50). Interestingly, the ORR in G1 patients with PD-L1 tumor positivity >5% increased 

up to 65%, with a 12-week PFS of 67% (Figure 15A). Moreover, the mPFS was significantly longer 

compared to the remaining patients, which also included G1 patients with PD-L1<5% and all G2 

patients regardless of their PD-L1 status (P=0.001) (Figure 15A). The same benefit was observed 



68 
 

when the stratification was extended to include patients with unknown PD-L1 tumor status in our 

cohort (Figure 15B). In addition, G1 patients with the highest PD-L1 scores (PDL1>50%) showed an 

ORR of 75% and a 12-week PFS of 88% compared to the G1 cohort alone and G1 patients with PD-

L1≤5% (Figure 11D, 15A and 15C). Moreover, mPFS was significantly longer compared to the 

remaining patients (P=0.003) (Figure 15C). Again, the same benefit was observed when patients with 

unknown PD-L1 tumor status were included in our cohort (Figure 15D). In conclusion, within the G1 

cohort tumor PD-L1 positivity identifies objective responders to anti-PD-L1/PD-1 immunotherapy 

more accurately. 

 

Figure 15. Objective responders to anti-PD-L1/PD-1 immunotherapy are found within G1 patients with PD-

L1+ tumors. (A) Kaplan-Meier plot of PFS in patients undergoing immune checkpoint inhibitor therapies 

stratified by G1/PD-L1> 5% tumors (blue) and remaining patients including G1 patients with PD-L1 low or 

negative tumors, and G2 patients with either PD-L1+ or PD-L1 negative tumors (red). In the gray square, 

mPFS and 12-week PFS values are shown. Long-rank test was used to test for statistical significance. (B) Same 

as in (A) but including all patients in the study cohort. Remaining patients (red) also included patients with 

unknown PD-L1 tumor status. (C) Same as (A) but in patients stratified by G1/PD-L1>50% tumors (blue) and 

remaining patients including G1 patients with PD-L1 low or negative tumors, and G2 patients with either PD-

L1+ or PD-L1 negative tumors (red). (D) Same as in (C) but including all patients in the study cohort. 
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Remaining patients (red) also included patients with unknown PD-L1 tumor status. *, **, *** in the figures 

indicate significant (P<0.05), very significant (P<0.01) and highly significant (P<0.001) statistical differences. 

 

8.4. Baseline systemic cytokine profiles as potential discriminating factors between responders 

and progressors in our discovery cohort 

Even though tumor PD-L1 positivity in combination with baseline CD4 THD cell profile identified most 

of the objective responders, determination of tumor PD-L1 expression in lung cancer patients is often 

inaccessible in clinical practice. In our cohort, we could not assess PD-L1 tumor expression in 23% of 

our patients. To look for other systemic markers that could be used in a simple way, systemic cytokine 

and chemokine profiles were analyzed in baseline sera from a selection of responders, progressors and 

healthy donors by a cytokine array panel of 80 immune-related cytokines and chemokines. A 

comparison between three independent responders and progressors uncovered four potentially 

differential cytokines including Fms-related tyrosine kinase 3 ligand (FLT3LG), brain-derived 

neurotrophic factor (BDNF), macrophage-derived chemokine (MDC) and vascular endothelial growth 

factor (VEGF). While FLT3LG (P=0.016) and VEGF (P=0.038) were significantly increased in 

baseline sera from responders, BDNF (P=0.024) and MDC (P=0.045) were increased in progressors 

(Figure 16A-C). 

 

Figure 16. Differential systemic cytokine/chemokine profiles identified in baseline sera. (A) Volcano plot 

representing the fold-change of identified cytokine/chemokine expression between 3 responders and 3 

progressors with associated p-values. In blue, cytokines exhibiting significant changes (-log p-value>1.2). The 

vertical dotted line separates increased and decreased cytokines. (B) Heat map representation of the relative 

expression levels of the differential cytokines between responders and progressors, as indicated. In red, 

increased levels. In green, decreased levels. (C) Column graphs representing the fold change of the indicated 

cytokines differentially expressed in responders versus progressors. In green, changes specific for responders 

and in red for progressors.  

Results were validated by ELISA from sera of the entire patient cohort. Only FLT3LG and BDNF 

differentiated responders from progressors (Figure 17A). In contrast to results in the cytokine array, 
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VEGF tended to be increased in progressors compared to responders. We then hypothesized that G1 

responders could be identified from progressors by quantification of FTL3LG and BDNF serum 

values. To that end, two validation studies were performed using independent lung cancer cohorts from 

Universidad Clínica de Navarra (Figure 17B) and the Gustave-Roussy Hospital (Figure 17C). These 

results could not be validated using samples from these institutions (Figure 17B-C). In conclusion, 

although FLT3LG and BDNF are not useful as predictive biomarkers of PD-L1/PD-1 blockade 

responses, they might still play a role influencing systemic T cell immunity in lung cancer. 

 

Figure 17. Validation studies of FTL3LG and BDNF serum values in independent patient cohorts. (A) 

Column graphs representing the concentrations of FLT3LG (pg/ml), BDNF (ng/ml), VEGF (pg/ml), and MDC 

(pg/ml) in our patient cohort. Error bars correspond to standard deviations, from 28 biological replicates 

(patients). In green, objective responders (OR). In blue, G1 no responders. In red, G2 patients. Relevant 

statistical comparisons are shown within the graphs by the test of Kruskal–Wallis. Ns, no significant differences 

(P<0.05). (B) Same as in (A) but representing the concentration of FLT3LG (pg/ml) and BDNF (ng/ml) within 

the cohort of patients from Clínica Universidad de Navarra (N=45). (C) Same as in (B) but in the cohort of 

patients from the Gustave-Roussy Cancer Center (N=40). *, **, *** in the figures indicate significant (P<0.05), 

very significant (P<0.01) and highly significant (P<0.001) statistical differences. Ns, no significant differences 

(P<0.05). 
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9. FUNCTIONAL SYSTEMIC T CELL IMMUNITY IS REQUIRED FOR EFFICACY OF PD-

L1/PD-1 BLOCKADE THERAPY IN NSCLC PATIENTS PROGRESSING FROM 

CONVENTIONAL THERAPIES 

9.1. Functionality of systemic CD4 immunity before the start of immunotherapy discriminates 

clinical responses to PD-L1/PD-1 blockade therapy 

We hypothesized that the relative percentage of CD4 THD cells was a biomarker for functional 

differences in systemic CD4 immunity between the two patient cohorts before the start of 

immunotherapies. To find out if this was the case, we first evaluated PD-1 expression in non-stimulated 

CD4 T cells directly after blood sampling. However, no differences were observed between G1 and 

G2 patient cohorts, or even with healthy age-matched donors (Figure 18). We then tested if there were 

differences in PD-1 upregulation after ex vivo stimulation with lung cancer cells. As we did lack viable 

samples of autologous tumor cells from our patients, we decided to set up an in vitro assay that could 

replicate tumor antigen recognition by T cells. To this end, we engineered a T cell-stimulator cell line 

by expressing a membrane-bound anti-CD3 single-chain antibody in the surface of A549 human lung 

adenocarcinoma cells (A549-SC3 cells) using lentivectors. This genetically modified cell line 

stimulated T cells in co-cultures with the same affinity and specificity (given by the anti-CD3 single 

chain) while preserving other inhibitory interactions such as PD-L1/PD-1 or MHC II-LAG-3 (Figure 

19A-B). This ensured the same standard assay for cancer cell-T cell recognition for each patient.  

 

Figure 18. Circulating non-stimulated CD4 T cells from healthy donors and lung cancer patients express 

low levels of PD-1. Scatter plot graph with the percentage of PD-1+ CD4 circulating T cells from healthy donors 

(black), G1 (blue) and G2 (red) lung cancer patient cohorts. Relevant statistical comparisons are shown within 

the graphs by the test of Kruskal–Wallis. Ns, no significant differences (P>0.05). 
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Figure 19. Ex vivo human lung adenocarcinoma T cell recognition system. (A) Top, lentivector co‐expressing 

an anti‐CD3 single‐chain antibody gene (SC3) and blasticidin resistance for selection. SFFVp, spleen focus‐

forming virus promoter; UBIp, human ubiquitin promoter; LTR, long terminal repeat; SIN, U3‐deleted self-

inactivating LTR. Bottom predicted molecular structure of the anti-CD3 SC3 molecule, which is anchored to 

the cell membrane by a transmembrane domain as indicated. OKT3 VL, variable region of the light chain from 

the anti‐CD3 antibody OKT3; VH, variable region of the heavy chain from the anti‐CD3 antibody OKT3. (B) 

Scheme of the cell‐to‐cell interactions mediated by the lentivector‐modified A549 cell and T cells including 

SC3/CD3, PD‐L1/PD‐1, and MHC-II/LAG‐3 interactions as indicated. (C and D) Representative flow 

cytometry density plots with the upregulation of PD‐1 expression in CD4(C) and CD8 T cells (D) from NSCLC 

patients following co‐incubation with A549‐SC3 cell as indicated (right graph), or with unmodified A549 

control (left graph). Dotted squares enclose PD‐1+ T cells which percentages are shown within the graphs. 

 

CD4 T cells from NSCLC patients significantly upregulated PD-1 compared to cells from age-matched 

healthy donors after incubation with A549-SC3 cells (P<0.001) (Figure 19C and 20A). However, no 

differences were found between T cells obtained from patients of G1 and G2 cohorts. PD-1 and LAG-

3 co-expression has been previously suggested to identify dysfunctional tumor-infiltrating 

lymphocytes in NSCLC (He et al. 2017). Interestingly, G2 donors presented a significantly higher 

percentage of CD4 T cells co-expressing both markers than G1 donors after stimulation of T cells with 

A549-SC3 cells (Figure 20B). To test if there were also differences in proliferation, the percentage of 

Ki67+ cells was compared after stimulation with A549-SC3 cells. Accordingly, CD4 T cells from G2 

patients were remarkably impaired in proliferation after ex vivo activation with A549-SC3 cells 

compared to T cells from G1 patients (Figure 20C and 20D). As we had observed that G1 and G2 
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patient cohorts differed in baseline percentages of CD4 THD cells (Figure 11A), we tested if this subset 

was responsive to activation by A549-SC3 cells. Interestingly, CD4 THD cells strongly proliferated in 

all patients, although they constituted a minority in the G2 patient cohort (Figure 20D). 

 

Figure 20. Functional differences in systemic CD4 immunity between the G1 and G2 patient cohorts. (A) 

The scatter plot shows PD-1 expression after co-culture of CD4 T cells from healthy donors (n=9) or NSCLC 

patients (n=14), as indicated, with A549-SC3 lung cancer cells. Relevant statistical comparisons with the test 

of Mann–Whitney are indicated. (B) Upper graphs, flow cytometry density plots of PD-1 and LAG-3 co-

expression in CD4 T cells from healthy donors, a G1 responder (G1R), a G1 non-responder (G1NR), and a G2 

non-responder as indicated, following stimulation with A549-SC3 cells. Percentages of PD-1, LAG-3 and PD-

1/LAG-3 expressing cells are indicated within each quadrant. Us, unstained control. Below, same as in the 

upper graphs but as a scatter plot of the percentage of CD4 T cells that simultaneously co-express PD-1 and 

LAG-3 in healthy donors (n=10), G1 (n=10) and G2 (n=10) patients. Relevant statistical comparisons are 

shown with the test of Mann–Whitney. (C) Upper flow cytometry histograms of Ki67 expression in CD4 T cells 

from the representative subjects as indicated on the left, after stimulation with A549-SC3 cells. Vertical dotted 

line indicates the cut-off value of positive versus negative Ki67 expression. The percentage of Ki67-expressing 

CD4 T cells is shown within the histograms. Below, same data represented as a scatter plot from a sample of 

healthy, G1 and G2 donors as indicated, with relevant statistical comparisons with the test of Mann–Whitney 

(n=7–10). (D) Flow cytometry density plots of proliferation marker Ki67 expression together with CD28 

expression in CD4 T cells stimulated by A549-SC3 cells from healthy donor and the indicated patient groups. 

Percentages of cells within each quadrant are shown. *, **, *** in the figures indicate significant (P<0.05), 

very significant (P<0.01) and highly significant (P<0.001) statistical differences. Ns, no significant differences 

(P>0.05). 
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The strong proliferative capacities of CD4 THD cells indicated that these were not exhausted, anergic 

or senescent subsets, but probably highly differentiated memory subsets. To test this, their baseline 

phenotype according to CD62L/CD45RA surface expression was assessed in a sample of patients. The 

majority of CD4 THD cells were central-memory (CD45RAnegative CD62L+) and effector-memory 

(CD45RAnegative CD62Lnegative) cells, without differences between G1 and G2 cohorts (Figure 21A). 

Increased genotoxic damage is strongly associated to T cell senescence and can be evaluated by H2AX 

expression (Lanna et al. 2014). Interestingly, NSCLC CD4 T cells exhibited extensive genotoxic 

damage in both THD and non-THD subsets without differences between G1 and G2 patient cohorts, 

unlike T cells from age-matched healthy donors (Figure 21B). Therefore, genotoxic damage did not 

identify senescent T cells in patients that had been treated with conventional therapies. Then, the 

expression of the replicative senescence marker CD57 was used to identify bona fide senescent T cells, 

which accounted to 30% of THD cells in healthy age-matched donors, and about 15% in NSCLC 

patients (Figure 21C). Our results strongly suggested that circulating CD4 THD cells in our cohort of 

NSCLC patients mostly corresponded to non-senescent, non-exhausted memory subsets. 

 

Figure 21. CD4 THD cells in NSCLC patients are mainly non-senescent memory subsets. (A) Scatter plot 

graph of percentage of memory phenotypes in baseline CD4 THD cells according to CD62L-CD45RA expression 

(% CD45RA negative CD62L+ central-memory + % CD45RA negative CD42L negative effector memory) in a sample of 

healthy donors (N=18), G1 (N=12) and G2 (N=19) patients. Relevant statistical comparisons are shown by 

one-way ANOVA followed by Tukey´s pairwise tests. (B and C) Expression of (B) the genotoxic damage marker 

H2AX and (C) replicative senescent marker CD57 by flow cytometry in CD4 T cell subsets from an aged-

matched healthy donor, and NSCLC G1 and G2 patients as indicated. Percentage of positivity and mean 

fluorescent intensities are indicated for each population. Top, histogram analysis within CD27+ CD28+ (non-

THD) CD4 T cells, and bottom, CD27 negative CD28 low/negative (THD) counterparts as indicated. Us, unstained 

control. *, **, *** in the figures indicate significant (P<0.05), very significant (P<0.01) and highly significant 

(P<0.001) statistical differences. Ns, no significant differences (P>0.05). 

CD4 T cells of G2 patients strongly co-upregulated PD-1/LAG-3 after stimulation with A549-SC3 and 

exhibited impaired proliferative capacities. We wondered if lack of clinical responses in G2 patients 
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could be explained by resistance to single blockade of PD-1, which could be likely caused by the co-

expression of both immune checkpoints. Hence, proliferation of baseline CD4 T cells activated with 

A549-SC3 in the presence of an anti-PD-1 antibody equivalent to pembrolizumab was assessed 

(Scapin et al. 2015) (Figure 22A). As expected, PD-1 blockade increased proliferation of non-THD and 

THD CD4 T cells in patients from the G1 cohort. In contrast, their G2 counterparts were largely 

refractory. To find out if CD4 T cells from G2 patients remained unresponsive to PD-1 blockade in 

vivo, cells were obtained from patients after at least three cycles of therapy and tested for their 

proliferative capacities. Systemic CD4 T cells from G2 patients remained poorly proliferative during 

immunotherapy (Figure 22B). In contrast, T cells from G1 patients, particularly from objective 

responders, maintained or even increased proliferative capacities during treatment (Figure 22B). 

 

Figure 22. T cells of patients from the G2 cohort are refractory to PD-1 blockade ex vivo and in vivo. (A) 

Proliferation of CD4 T cells stimulated by A549-SC3 cells from the indicated patient groups in the presence of 

an isotype control antibody or an anti-PD-1 antibody with the equivalent sequence to pembrolizumab. The 

effects on CD4 T cells from a G1 and a G2 patients are shown, divided into CD28+ or CD28 low/negative subsets 

as indicated. Relevant statistical comparisons are shown with paired Student’s t-test. (B) Top, flow cytometry 

density plots of Ki67 expression in CD4 T cells from representative G1 or G2 patients after three cycles of 

therapy, activated by incubation with A549-SC3 cells. Below, same as above but as a dot-plot graph (n=7–10). 

A comparison between proliferating CD4 T cells before and after therapy is shown in unpaired patient samples 

from G1 and G2 patients. G1 R, G1 objective responder patient. G2 NR, G2 patient with no objective responses. 

In green, objective responders (OR). In red, no OR. Statistical comparisons were performed with the test of 

Mann–Whitney. *, **, *** in the figures indicate significant (P<0.05), very significant (P<0.01) and highly 

significant (P<0.001) statistical differences. Ns, no significant differences (P>0.05). 

All together, these results indicated that pre-treatment functional systemic CD4 immunity observed in 

G1 cohort patients is required to achieve clinical responses to PD-L1/PD-1 blockade immunotherapy. 

In contrast, CD4 T cell dysfunctionality observed in G2 patients, which was reflected as high co-
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expression of PD-1/LAG-3 immune-checkpoint molecules and strongly impaired proliferative 

capacities after stimulation, resulted in a resistance to ex vivo and in vivo PD-L1/PD-1 blockade 

therapy.  

9.2. Absence of lung cancer-specific CD4 T cells or systemic T cell exhaustion is not responsible 

for the lack of objective clinical responses to PD-L1/PD-1 blockade therapy 

Then we thought that G2 patients could be refractory to anti-PD-1 immunotherapy by not having 

systemic cancer-specific CD4 T cells. To this end, we quantified CD4 T cells reactive to lung 

adenocarcinoma antigens using IFN-γ-activated autologous monocyte-derived DCs as antigen 

presenting cells, as described (Escors et al. 2008). DCs were loaded with A549 cell lysate, as these 

cells contain numerous common lung adenocarcinoma antigens (Madoz-Gúrpide et al. 2008). We used 

this approach as we lacked enough biopsy material to obtain tumor antigens or tumor-infiltrating T 

cells from patients. CD4 T cells reactive to A549 cell antigens were identified by IFN-γ upregulation. 

Interestingly, lung cancer specific CD4 T cells were present at varying proportions before the start of 

immunotherapy in both G1 and G2 patients (Figure 23A). Indeed, percentages of lung cancer specific 

CD4 T cells did not differ significantly between G1 (responders and non-responders) and G2 patients. 

These T cells consisted of both THD and non-THD subsets, without significant differences in relative 

percentages between G1 and G2 cohorts in our cohort (Figure 23B). These results suggested that poor 

responses in G2 patients were not caused by lack of tumor specific CD4 T cells but rather by having 

dysfunctional T cells. 

 

Figure 23. Lung cancer antigen specific CD4 T cells in NSCLC patients. (A) Scatter plot graph with the 

percentage of lung cancer-specific systemic CD4 T cells quantified by an autologous DC-based antigen 

presentation assay in a sample of healthy donors (n = 5), G1 (n = 11) and G2 (n = 13) patients, as indicated. 

Objective responders (OR) are shown in green. In red, patients with no OR. Relevant statistical comparisons 

are shown within the graphs with the test of Mann–Whitney. Ns, no significant differences (P<0.05). (B) The 

scatter plot graph on the left represents the percentage of CD4 THD cells within lung cancer specific CD4 T cells 

in a sample of patients from the indicated G1 and G2 groups. On the right, same as left but representing the 
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percentage of non-THD (CD28+) CD4 T cells within lung cancer specific CD4 T cells. Objective responders 

(OR) are shown in green. In red, patients with no OR. 

To get further insight into the dysfunctional status of systemic CD4 T cells in G2 patients, we evaluated 

PD-1 and LAG-3 surface expression directly after blood sampling, as constitutive high-level co-

expression of these markers is a frequent characteristic of T cell exhaustion. Low PD-1/LAG-3 co-

expression levels were observed in circulating non-stimulated CD4 T cells from both patient groups 

in either non-THD or THD subsets (Figure 24). Moreover, no differences were found between age-

matched healthy donors and G1/G2 patient cohorts (Figure 24). Nevertheless, the defining hallmark 

of T cell exhaustion is the loss of cytokine production following stimulation, particularly multi-

cytokine expression (Crawford et al. 2014). Interestingly, CD4 T cells from both G1 and G2 patient 

cohorts were as proficient in IFN-γ, IL-4, IL-10 and IL-2 expression as T cells from healthy donors 

independently of their CD28 expression (Figure 25A). Indeed, CD4 cells (total, non-THD and THD 

subsets) in both G1 and G2 patient cohorts were significantly skewed towards IL-17 responses 

compared to age-matched healthy donors (Figure 25A). Importantly, only a minority of CD4 T cells 

from either G1 or G2 patient groups were single-cytokine producers (Figure 25B) while most of the 

non-THD CD4 T cells were very proficient in multiple cytokine production with a preference for IL-

17-expressing subsets (Figure 25C-D). These results indicated that the majority of CD4 T cells from 

G2 patients were not exhausted according to our current understanding (Hashimoto et al. 2018). 

Indeed, they responded to stimulation by producing cytokines although with strong co-upregulation of 

PD-1/LAG-3 associated with markedly diminished proliferative capacities. 

 

Figure 24. Circulating unstimulated CD4 T cells from healthy donors and lung cancer patients co-express 

low levels of PD-1 and LAG-3 molecules. Scatter plot graph with the percentage of PD-1+/LAG-3+ co-

expressing CD4 circulating T cells from healthy donors (black), G1 (blue) and G2 (red) patients divided into 

CD28+ or CD28 low/negative subsets. Relevant statistical comparisons are shown within the graphs by the test of 

Kruskal–Wallis. Ns, no significant differences (P<0.05). 
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Figure 25. Systemic circulating CD4 T cells in NSCLC patients are proficient in cytokine production with an 

overall Th17 profile. (A)Column graphs representing the percentage of CD4 T cells from NSCLC patients (G1 

in blue, G2 in red) or age-matched healthy donors (in black) as represented in the graph, expressing the 

indicated cytokines after T cell stimulation with anti-CD3/anti-CD28 antibodies. Data on total CD4 (left graph), 

CD28+ subsets (center graph) and CD28- subsets (right graph) are shown. Error bars correspond to standard 

deviations, and bars represent means from 9 independent biological replicates (healthy donors) and 6 

independent replicates (patients). Relevant statistical comparisons are shown within the graphs by the test of 

Kruskal–Wallis. (B)(C)(D) Same as in (A) but representing CD4 T cells expressing only one cytokine (B), two 

(C) or three cytokines simultaneously (D). Error bars correspond to standard deviations, and bars represent 
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means from 6 independent biological replicates (patients). Relevant statistical comparisons are shown within 

the graphs by the test of Kruskal–Wallis. *, **, *** in the figures indicate significant (P<0.05), very significant 

(P<0.01) and highly significant (P<0.001) statistical differences. 

9.3. Systemic CD8 immunity recovers in objective responder patients from the G1 cohort 

undergoing PD-L1/PD-1 immunotherapy 

Interestingly, CD8 T cells from both G1 and G2 patient cohorts obtained before the start of 

immunotherapies failed to proliferate after stimulation by A549-SC3 cells (Figure 26A). To test if 

anti-PD-1 therapy could recover CD8 dysfunctionality in vivo, the proliferative capacities of CD8 T 

cells from G1 and G2 patients obtained after at least 3 cycles of treatment were evaluated in vivo by 

stimulation with A549-SC3 cells. CD8 T cells from G1 responders had recovered significant 

proliferative capacities, while only limited enhancements were observed in G2 patients (Figure 26B). 

Similarly to CD4 cells, systemic CD8 T cells specific for lung adenocarcinoma antigens were 

quantified in G1 and G2 patients, and found to be comparable (Figure 26C) and distributed within 

non-THD and THD subsets (Figure 26D). 
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Figure 26. CD8 dysfunctionality recovers in G1 patients undergoing anti-PD-L1/PD-1 immunotherapy. (A) 

Upper flow cytometry histograms, expression of the proliferation marker Ki67 in CD8 T cells from the indicated 

patients or healthy donor before the start of immunotherapy, stimulated ex vivo by A549-SC3 cells. Numbers 

indicate mean fluorescence intensities. G1R and G1NR, responder and non-responder G1 patient, respectively; 

G2NR, non-responder G2 patient. US, unstained control. Below, same as above but as a dot plot graph with 

percentage of proliferating Ki67+CD8 T cells from the indicated groups (n=7–10). Relevant statistical 

comparisons are shown with the test of Mann–Whitney. (B) Upper flow cytometry density plots, expression of 

Ki67 in ex vivo-stimulated CD8T cells from the indicated patients before and after the start of immunotherapies. 

NR, non-responder patient; R, responder patient. Below, dot-plots of the percentage of Ki67+ proliferating CD8 

T cells after ex vivo activation by A549-SC3 cells. CD8 T cells were obtained from samples of G1 or G2 patients 

before immunotherapy and after three cycles of anti-PD-1 therapy (n=7–10). Relevant statistical comparisons 

are shown with the test of Mann–Whitney. Green, objective responders (OR) and red, no ORs. (C) Dot‐plot of 

lung cancer antigen‐specific CD8 T cells obtained before the start of immunotherapies and stimulated with 

A549‐loaded autologous DCs in healthy donors (n = 5), G1 (n = 11) and G2 (n = 13) patients, as indicated. 

Relevant statistical comparisons are indicated by the test of Kruskal–Wallis. Ns, no significant differences 

(P>0.05). (D) Left dot‐plot, percentage of CD28‐negative CD8 T cells within TAA‐specific CD8 subsets in G1 

(n = 11) and G2 (n = 13) patients, as indicated. Right dot‐plot, same as left but with CD28‐positive subsets. 

Green, objective responders (OR). Red, no OR. *, **, *** in the figures indicate significant (P<0.05), very 

significant (P<0.01) and highly significant (P<0.001) statistical differences. 

 

To find out whether CD8 T cells in G1 patients in contrast to those from G2 patients were more 

susceptible to PD-1 blockade ex vivo, baseline samples of CD8 T cells from G1 and G2 patients were 

activated with A549-SC3 cells in the presence of an anti-PD-1 antibody (molecularly equivalent to 

pembrolizumab) or an isotype control. In agreement with the in vivo results, ex vivo PD-1 blockade 

improved significantly the proliferation of CD8 T cells from G1 patients, and especially non-THD 

subsets (Figure 27A). Recent studies have demonstrated the requirement of CD28 co-stimulation for 

effective responses to anti-PD-L1/PD-1 therapy. Particularly, in vivo expansion of CD28+ CD8 T cells 

in murine models correlate with anti-PD-1 efficacy (Kamphorst, Wieland, et al. 2017). To confirm this 

observation in our cohort of patients, the changes in the relative abundance of CD8+ CD28+ T cells 

were compared in G1 and G2 patients from baseline to post-anti-PD-L1/PD-1 therapy. Accordingly, 

the CD28+ CD8 T cell compartment significantly expanded (P<0.001) only in G1 patients (Figure 

27B). 
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Figure 27. CD28+ CD8 T cell subset significantly expanded ex vivo and in vivo after anti-PD-L1/PD-1 therapy 

in objective responders. (A) Proliferation of CD8 T cells stimulated by A549-SC3 cells from the indicated 

patient groups in the presence of an isotype control antibody or an anti-PD-1 antibody with the equivalent 

primary sequence to pembrolizumab. The effects on CD8 T cells from a G1 and a G2 patients are shown, divided 

into CD28+ or CD28 low/negative subsets as indicated. Relevant statistical comparisons are shown with paired 

Student’s t-test. (B) Change in percentage of CD28+ CD8 T cells from baseline to post-therapy in G1 patients 

(left) or in G2 patients (right). Statistical comparisons were carried out with paired Student’s t-test. *, **, *** 

in the figures indicate significant (P<0.05), very significant (P<0.01) and highly significant (P<0.001) 

statistical differences. Ns, no significant differences (P>0.05). 

 

We wondered whether proliferative dysfunctionality and resistance to anti-PD-1 monotherapy 

observed in baseline CD8 T cells from G2 patients correlated with high PD-1/LAG-3 co-upregulation 

after activation, as we had found for CD4 T cells. PD-1/LAG-3 co-expression was tested ex vivo after 

stimulation with A549-SC3 cells, and G2 patients presented a significantly higher proportion of PD-

1/LAG-3 co-expressing CD8 T cells in both THD and non-THD subsets compared to G1 counterparts 

(Figure 28A). Indeed, PD-1/LAG-3 co-upregulation in CD8 T cells was associated with resistance to 

ex vivo and in vivo anti-PD-L1/PD-1 blockade therapy. Moreover, as for CD4 T cells, CD8 T cells 

from both G1 and G2 patient cohorts were as proficient in IFN-γ and IL-2 cytokine production after 

stimulation as T cells from healthy donors independently of their CD28 expression, indicating that 

they were neither exhausted nor anergic (Figure 28B-C). Hence, CD8 T cells from G2 patients 

responded to stimulation by producing cytokines although with strong co-upregulation of PD-1/LAG-

3 associated with resistance to anti-PD-L1/PD-1 monotherapy.  

All together, these results indicated that baseline CD8 proliferative dysfunctionality observed in both 

patient groups was only recovered by PD-L1/PD-1 blockade therapy in G1 patients if their baseline 

CD4 T cell immunity was functional in proliferation. 
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Figure 28. Systemic CD8 T cells from G2 patients are proficient in IFN-γ and IL-2 cytokine production after 

stimulation with strong co-upregulation of PD-1/LAG-3. (A) Scatter plots of the percentage of PD-1/LAG-3 

co-expressing CD8 T cells within CD8 cells after activation by A549-SC3 cells in a sample of G1 (n=9) and G2 

(n=7) patients, in CD28+ and CD28- populations as indicated in the figure. Relevant statistical comparisons 

are shown with the test of Kruskal-Wallis. (B) Column graphs representing the percentage of CD8 T cells from 

G1 (in blue) and G2 (in red) NSCLC patients or age-matched healthy donors (in black) as shown in the graph, 

expressing the indicated cytokines after T cell stimulation with anti-CD3/anti-CD28 antibodies. Data on total 

CD8 (left graph), CD28+ subsets (center graph) and CD28- subsets (right graph) are shown. Error bars 

correspond to standard deviations, and bars represent means from 9 independent biological replicates (healthy 

donors) and 6 independent replicates (patients). Relevant statistical comparisons are shown within the graphs 

by the test of Kruskal–Wallis. (C) Same as in (B) but representing CD8 T cells expressing IFN-γ and IL-2 

cytokines simultaneously. Error bars correspond to standard deviations, and bars represent means from 6 

independent biological replicates (patients). Relevant statistical comparisons are shown by the test of Kruskal–

Wallis. *, **, *** in the figures indicate significant (P<0.05), very significant (P<0.01) and highly significant 

(P<0.001) statistical differences. 

 

9.4. Proliferative dysfunctionality of CD4 and CD8 T cells from G2 patients is partially reversible 

ex vivo after PD-1/LAG-3 dual blockade 

Overall, our data indicated that PD-1/LAG-3 co-upregulation was contributing to proliferative 

dysfunctionality in both CD4 and CD8 populations and possibly to resistance to anti-PD-L1/PD-1 

blockade monotherapy. We hypothesized that blocking both signalling axes might restore T cell 

dysfunctionality, and potentially the resistance to anti-PD-L1/PD-1 therapy observed in G2 patients. 

To test if this was the case, baseline samples of CD4 and CD8 T cells from G2 patients were co-

incubated ex vivo with A549-SC3 cells in the presence of an isotype antibody control, anti-PD-1, anti-

LAG-3 or anti-PD-1/anti-LAG-3 antibodies simultaneously. We confirmed that each antibody was 
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specifically blocking PD-1, LAG-3 or both in our assays by epitope masking using flow cytometry 

(Figure 29A). Only co-blockade of PD-1 and LAG-3 in both CD4 (Figure 29B) and CD8 T cells 

(Figure 29C) from G2 patients significantly increased proliferation independently of CD28 

expression. These results confirmed that PD-1/LAG-3 co-upregulation contributed to keeping 

systemic CD4 and CD8 T cells from G2 patients in a proliferative dysfunctional state following 

stimulation, and that this T cell dysfunctionality can be reverted by co-blockade of both immune 

checkpoints. 

 

Figure 29. PD-1/LAG-3 co-blockade recovers proliferative capacities of CD4 and CD8 T cells from G2 

patients. (A) Flow cytometry density plots of PD-1, LAG-3 and PD-1/LAG-3 co-expression in T cells from a 

selected NSCLC patient following stimulation with A549-SC3 cells in the presence of irrelevant isotype, anti-

PD-1, anti-LAG-3 and the anti-PD-1/anti-LAG-3 combination (dual). Percentage of expressing cells is 

indicated within each quadrant. (B)(C) Dot-plot representing the percentage of proliferating (B) CD4 T cells 

and (C) CD8 T cells from a sample of G2 patients before starting immunotherapy, activated ex vivo by A549-

SC3 cells in the presence of the indicated antibodies. Data from CD28+ and CD28 low/negative subsets are shown 

as indicated. Appropriate statistical comparisons are shown within the graph with two-way paired ANOVA, 

followed by Tukey´s a posteriori pairwise tests. 
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DISCUSSION AND FUTURE PERSPECTIVES 

In the last decade, PD-L1/PD-1 blockade immunotherapy in advanced NSCLC patients has 

significantly improved duration of responses and long-term survival with limited adverse effects 

compared to conventional cytotoxic treatments. Unlike the latter, PD-L1/PD-1 inhibitors target both 

tumor and the host immune system by interfering with immunosuppressive interactions which prevent 

immune system recognition of cancer cells and their efficient elimination. However, the complex and 

often individual-dependent crosstalk between tumor and the immune system results in heterogeneous 

clinical responses among patients and cancer types. In the case of NSCLC patients progressing from 

cytotoxic agents, there is still a high percentage of patients intrinsically refractory to anti-PD-L1/PD-

1 antibodies with a high risk of developing HPD. In addition, the high costs of these treatments 

reinforce the urgent need for patient selection. To overcome all these limitations, extensive efforts are 

being put into the identification of predictive biomarkers for an adequate patient selection, coupled to 

better understanding of the mechanisms of resistance. Tumor PD-L1 expression is the only approved 

predictive biomarker but its utility is frequently under question. So far not a single factor has been 

associated with objective responses or progression. This is not surprising due to the wide range of 

tumor-intrinsic and extrinsic mechanisms which might be influencing clinical responses to PD-L1/PD-

1 blockade immunotherapy (Sharma et al. 2017).  

Most of the research is centered on the immunological status of the tumor microenvironment as a major 

driving force for the efficacy of PD-L1/PD-1 blockade. Investigation into tumor mutational and 

neoantigen burden, TAA-specific TIL repertoire, presence of effector T cell responses and immune 

suppressive mechanisms are pursued to identify tumors susceptible to anti-PD-L1/PD-1 treatments. 

However, such studies require expensive techniques which are not currently present in clinical 

practice, while large biopsy materials can be difficult to obtain for many tumor types. Moreover, it is 

often ignored the fact that PD-L1/PD-1 inhibitors are systemically administrated and consequently 

they have an important impact on systemic immunity. Indeed, several studies have demonstrated that 

these therapies cause systemic changes in immune cell populations which can be correlated with 

clinical efficacy (Kamphorst, Pillai, et al. 2017)(Krieg et al. 2018)(K. H. Kim et al. 2019). Therefore, 

systemic responses unleashed by immunotherapy probably have a significant anti-tumor effect. A 

growing number of studies are analyzing baseline immunological characteristics and their impact on 

immunotherapy efficacy. However, results are most of the times difficult to interpret possibly due to 

the high complexity and variety of systemic immune variables. Here, we analyzed systemic T cell 

profiles before PD-L1/PD-1 treatment initiation in a cohort of advanced NSCLC patients progressing 
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from cytotoxic treatments. In contrast to other similar studies, the analyses were carried out from fresh 

blood samples because we observed that freezing PBMCs led to altered expression patterns of immune 

cell surface markers. Hence, sample manipulation had a significant impact on our results, which 

limited our study to prospective data. We found that baseline relative percentages of CD4 THD cells in 

our cohort stratified patients into two groups with differential clinical outcomes. ROC analysis 

provided a cut‐off value of > 40% CD4 THD to predict responses to PD-L1/PD-1 blockade. Indeed, 

patients with baseline CD4 THD > 40% (G1 cohort) contained all the objective responses, while no 

objective responders and hyperprogressors were found in patients with baseline CD4 THD < 40% (G2 

cohort) within our cohort study. In addition, when PD-L1 high tumor positivity was combined with 

CD4 THD values, G1 patients with high PD‐L1‐tumor expression exhibited response rates of 75%. 

Apart from providing a potential predictive biomarker, our results strongly suggested that pre-

treatment systemic CD4 T cell immunity might be playing a crucial role in the efficacy of PD-L1/PD-

1 blockade in lung cancer patients. Nevertheless, it has to be stressed that our cohort under study was 

restricted to patients heavily pre-treated before starting immunotherapies and not to immunotherapies 

as first line treatment. 

Although several blood-based potential predictive biomarkers of responses to PD-L1/PD-1 blockade 

therapy are constantly emerging, most of them are either difficult to validate and implement in clinical 

routine or have rather a prognostic value (Krieg et al. 2018)(Takahashi et al. 2016). Therefore, the 

baseline quantification of CD4 THD cells from routine small blood samples represents a promising non-

invasive biomarker. This biomarker could be used to identify patients with primary resistance to PD-

L1/PD-1 blockade and high risk of developing hyperprogressive disease. On the other hand, potential 

responders in combination to tumor PD-L1 expression can be accurately identified. Hence, its strong 

predictive value demonstrated by the ROC analysis together with the low-cost and easy applicability 

in clinical practice makes it a very promising potential predictive biomarker. However, independent 

validation studies will be required with proper protocol standardization to guarantee its reliability.  

Our data already suggested that baseline systemic CD4 immunity could have a significant impact on 

PD-L1/PD-1 blockade therapy efficacy. CD27- CD28low/negative CD4 T cells are usually described as 

terminally differentiated replicative senescent T cells. Interestingly, in our study CD4 THD cells from 

patients corresponded to central and effector memory subsets with highly proliferative capacities 

which did not express classical markers for replicative senescence. This opens the question of whether 

the reduced expression of CD27 and CD28 is a true hallmark of T cell senescence, at least in the 

context of cancer. Moreover, this subset probably represents a pre-existing repertoire of antigen-



86 
 

specific memory T cells with potential anti-tumor capacities. However, we did not find major baseline 

differences in the proportion of these T cells between responders and non‐responders at least in our 

cohort. Therefore, the experimental evidence pointed to the baseline intrinsic functionality of CD4 

immunity as the most influential factor in our study. 

In agreement with our hypothesis, we found that proliferative functionality of systemic CD4 immunity 

was the baseline differential factor between objective responders and non-responders to PD-L1/PD-1 

blockade therapy. Patients from the G1 cohort thus had a high degree of functionality in baseline 

systemic CD4 T cells, while G2 patients exhibited a strong baseline CD4 T cell dysfunctionality. Such 

dysfunctionality was reflected as strongly impaired proliferation capacities after stimulation, high co‐

expression of LAG‐3/PD‐1, and resistance to ex vivo and in vivo PD‐1 monoblockade. Surprisingly, it 

was not a consequence of tumor-induced exhaustion or anergy as systemic CD28+ CD4 T cells in G2 

or in G1 patients were not truly exhausted or bona fide anergic T cells. No constitutive high‐level co-

expression of PD‐1 and LAG‐3 was observed unless stimulated, and T cells were proficient in multi‐

cytokine expression following stimulation but skewed toward Th17‐expressing phenotypes compared 

to healthy donors. All these characteristics were indicators of systemic CD4 T cell proliferative 

dysfunctionality in G2 patients. Thus, the lower proportion of systemic CD4 THD observed in G2 

patients might be a direct consequence of the intrinsic CD4 proliferative dysfunctionality which might 

prevent the expansion of memory subsets after antigen re-encounter.  

PD-L1/PD-1  therapy aims to recover CD8 cytotoxic responses (Ahmadzadeh et al. 2009). To our 

surprise, all lung cancer patients in our cohort showed dysfunctional CD8 immunity as assessed by the 

same techniques described above for CD4 T cells. Nevertheless, the proliferative capacities of CD8 T 

cells were recovered during immunotherapy but only in patients with functional proliferative CD4 

immunity. This was reflected by an expansion of CD28+ CD8 cells in agreement with previous 

published data in murine models (Kamphorst, Wieland, et al. 2017). The requirement of functional 

systemic immunity has been previously demonstrated in murine models for the efficacy of other 

immunotherapy approaches (Spitzer et al. 2017) as well as the importance of CD4 T cells for anti-PD-

1 immunotherapy (Markowitz et al. 2018). These evidences together with our data in human patients 

strongly support the need for proficient systemic CD4 immunity to achieve efficacious clinical 

responses. Hence, CD4 T cells might be coordinating the reversion of CD8 T dysfunctionality by PD-

L1/PD-1 blockade therapy. In addition, CD8 dysfunctionality in G2 patients was again correlated with 

a higher proportion of CD8 T cells co-expressing PD‐1/LAG‐3. An increasing number of studies are 

linking PD‐1/LAG‐3 co‐expression in T cells to resistance to anti‐PD‐L1/PD‐1 therapies (Mishra et 
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al. 2016)(R. Y. Huang et al. 2017)(Williams et al. 2017)(Johnson et al. 2018). Hence, both CD4 and 

CD8 proliferative dysfunctionality in G2 patients were reversible ex vivo by PD‐1/LAG‐3 co‐

blockade, confirming that PD-1/LAG-3 co-expression was a contributor to T cell dysfunctionality in 

G2 patient cohort. These results provide a strong rationale for the combination of PD-L1/PD-1 and 

LAG-3 blockade therapies in patients exhibiting baseline CD4 T cell dysfunctionality. 

Nevertheless, the restoration of CD8 proliferative capacities in G1 patients was not linked to PD-

1/LAG-3 co-expression, as these cells also showed high expression levels of these two immune 

checkpoints. This result suggests that other factors affect CD8 immunity in lung cancer patients. 

Indeed, accumulation of DNA damage on systemic T cells, most likely due to previous cytotoxic 

treatments, was a factor shared by all patients compared to healthy individuals which might have an 

impact. Moreover, prevalent Th17 phenotypes observed in lung cancer patients may keep a systemic 

immunosuppressive environment through the promotion of PD-L1+ suppressive immune populations 

(Akbay et al. 2017). Moreover, not all patients from the G1 cohort responded to therapy supporting 

the existence of other compensatory mechanisms preventing the development of efficient anti-tumor 

responses most likely within the tumor microenvironment. That was supported by the fact that further 

stratification of patients according to high PD-L1 tumor positivity increased ORR in the selected 

population. 

It has been previously demonstrated that the post-treatment systemic expansion of a specific subset of 

CD28+ CD8 effector T cells also present in the CD8 TIL population correlate with clinical responses 

to anti-PD-1 agents (Kamphorst, Wieland, et al. 2017). Moreover, a recent study uncovered that tumor-

specific TILs after anti-PD-1 treatment did not express the TCRs identified in the pre-treated tumor, 

suggesting that these cells are recruited de novo from the periphery (Yost et al. 2019). Indeed, the 

authors confirmed that a proportion of novel intratumor T cell clones post-therapy were already present 

in the pre-treatment peripheral blood. These evidences in combination with our data suggest that, first, 

the recovery of CD8 T cell responses after therapy may be orchestrated by CD4 T cells in the periphery 

where CD28 co-stimulation by professional APCs is predominant (Figure 30); and second, restored 

peripheral CD8 populations may come from pre-existing tumor-specific T cell pools that are newly 

recruited to the tumor after systemic expansion (Figure 30). Indeed, we have confirmed that patients 

can have a large systemic lung cancer-specific T cell pool. Nevertheless, PD-L1/PD-1 blockade 

therapy has a direct impact within the tumor environment. In this thesis we have set up a cancer cell 

culture-based model that resembles antigen recognition by T cells in a cancer-cell context, which has 

largely facilitated the study of systemic T cell responses. In our system, CD8 responses also get 
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reinvigorated after in vitro PD-1 blockade suggesting that PD-L1/PD-1 blockade also plays a 

fundamental role within the tumor microenvironment. This is supported by recent evidence showing 

an association of baseline CD4 memory TILs with response to PD-L1/PD-1 blockade (Datar et al. 

2017). Based on several emerging studies claiming that the epigenetic reprogramming experienced by 

TILs is irreversible (Pauken et al. 2016), it might be the case that PD-L1/PD-1 inhibitors cannot revert 

the pre-existing exhausted TILs. Other studies disagree with this hypothesis and propose that 

exhaustion protects TILs from overstimulation and cell death (Scott et al. 2019). Therefore, PD-

L1/PD-1 blockade would induce activation induced cell-death of the exhausted TIL populations after 

reinvigoration. Nevertheless, emerging studies are showing that PD-L1/PD-1 blockade differentially 

targets exhausted TIL populations depending on the severity of the exhaustion (Jadhav et al. 

2019)(Miller et al. 2019)(Siddiqui et al. 2019). While these agents might not revert terminally 

differentiated exhausted TIL populations, they seem to exclusively target stem-cell memory-like 

progenitor subsets and induce their differentiation towards effector pools. Although the role of PD-

L1/PD-1 blockade within the TIL populations is still controversial, the work presented here 

demonstrates the key contribution of systemic T immunity for clinical responses to PD-L1/PD-1 in 

lung cancer patients.  

Many of the above-mentioned questions are being under investigation in our group, as a follow-up 

from the results of the present PhD. First, the identification of the molecular pathways regulated by 

simultaneous activation of PD-1/LAG-3 axes driving T cell proliferative dysfunctionality. An elegant 

work recently carried out in our group has found that constitutive activation of both PD-1 and LAG-3 

signaling axes on Jurkat cells induces a unique transcriptional and epigenetic reprogramming of T cells 

affecting the cell cycle amongst other functional pathways. These observations will be further extended 

to T cells from lung cancer patients. The capacities of PD-L1/PD-1/LAG-3 blockade to revert these 

transcriptional/epigenetic signatures will be tested. A second question that we are addressing as a 

continuation is the underlying cause for strong PD-1/LAG-3 co-expression in G2 patients following T 

cell activation. As we did not identify major differences in the clinical characteristics of both patient 

cohorts, we speculated that underlying distinct tumor characteristics may influence systemic T cell 

immunity. Indeed, it has been demonstrated in murine lung cancer models that the presence of IL-17 

can induce the upregulation of  PD-1 and Tim-3 in CD8 T cells preventing them from activation 

(Akbay et al. 2017). IL-17 together with other soluble cytokines produced by tumors could be 

influencing the systemic immunity through a variety of mechanisms. Sequencing of tumor biopsies 

from both patient cohorts will provide us with insight on potential tumor-induced mechanisms. In 

addition, here we found that FTL3LG and BDNF were differentially upregulated in the baseline sera 
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of responders and non-responders within our discovery cohort, respectively. Although this data could 

not be validated using two independent patient cohorts from different institutions, these cytokines 

might be playing an important role influencing systemic T cell immunity of lung cancer patients. 

Nevertheless, the different sample handling, processing and storage protocols implemented in each 

institution might have affected the quality of the patient sera, and consequently, introduce strong bias. 

Additional validation studies with more homogeneous patient sera samples might provide more 

reliable results.   

 

Figure 30. Working model. Proliferative functionality of systemic CD4 immunity is required for clinical 

responses to PD-L1/PD-1 blockade therapy. CD8 T cell dysfunctionality can be recovered by PD-L1/PD-1 

inhibitors when systemic CD4 responses are functional. The recovery of CD8 T cell responses after therapy 

may be orchestrated by CD4 T in the periphery where CD28 co-stimulation by professional APCs is present. 

The reinvigorated CD8 populations may harbor pre-existing tumor-specific T cell pools that are newly recruited 
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to the tumor site after systemic expansion where they undergo cytotoxic anti-tumor responses after antigen 

encountering.  

PD-L1/PD-1 blockade therapies will soon be preferentially applied as first line therapies in lung 

cancer. Indeed, pembrolizumab is given to NSCLC patients with tumor PD-L1 expression >50, and 

the rest of the PD-L1/PD-1 blockers are already under evaluation as first-line therapies (Reck et al. 

2016)(Carbone et al. 2017)(H. et al. 2017). Therefore, we are currently evaluating CD4 systemic 

functionality in the context of first-line immunotherapies. Immunological profiling of treatment-naive 

NSCLC patients is ongoing to answer this question. However, we anticipate that proficiency of T cell 

immunity in treatment-naive patients strongly differs from heavily pre-treated patients. Indeed, PD-

L1/PD-1 monotherapies are more efficacious as first-line therapies, supporting our hypothesis. The 

role that PD-1/LAG-3 co-expression in T cells from these patients may play in efficacy is currently 

under investigation in our group. 

Finally, the wide-range of immunosuppressor and escape mechanisms present in cancer patients such 

as the presence of myeloid suppressor populations, the lack of tumor-specific T cell subsets or the 

genetic modifications by tumor cells among others, constitute a persistent barrier for immunotherapies. 

Hence, the identification of escape mechanisms compromising T cell functionality is providing new 

insights for combination of immune checkpoint blockade with other therapies that may show synergy. 

Indeed, many clinical trials are investigating the potential synergic effects of immune modulators, 

oncolytic viruses, vaccines, stimulatory antibodies, chemotherapy, radiotherapy, targeted therapies, 

angiogenic therapies among others, in combination with immune checkpoint inhibitors. All these 

therapeutic strategies are moving the near future of oncology towards personalized immunotherapies 

based on immune and molecular/genetic profiling.  
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CONCLUSIONS 

1- Profiling of CD4 T cell subsets from routine blood sampling before treatment initiation can 

identify potential responders to PD-L1/PD-1 blockade therapy, especially in combination with 

PD-L1 tumor expression. 

2- Proliferative functionality of systemic CD4 immunity is required for clinical responses to PD-

L1/PD-1 blockade therapy. CD8 T cell dysfunctionality is recovered by PD-L1/PD-1 inhibitors 

when systemic baseline CD4 responses are functional. 

3- In our cohort, CD4 and CD8 proliferative dysfunctionality correlates with co-expression of 

PD-1 and LAG-3, which can confer resistance to PD-L1/PD-1 monoblockade. 

4- Our study provides the rational for clinical evaluation of PD‐1/LAG‐3 dual‐blockade strategies 

in patients with baseline CD4 dysfunctionality. 
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CONCLUSIONES 

1-La caracterización de las subpoblaciones de células T CD4 a través de muestras de sangre de 

analíticas rutinarias antes de comenzar el tratamiento puede identificar a potenciales respondedores a 

las terapias anti-PD-L1/PD-1, especialmente en combinación con la expresión de PD-L1 tumoral. 

2- Poseer una inmunidad proliferativa funcional CD4 sistémica es un requisito para obtener respuestas 

clínicas a la inmunoterapia anti-PD-L1/PD-1. La disfuncionalidad CD8 sistémica es reversible a través 

de inhibidores de PD-L1/PD-1 cuando las respuestas sistémicas CD4 son funcionales.  

3-En nuestra cohorte, la disfuncionalidad CD4 y CD8 sistémica se correlaciona con la co-expresión de 

PD-1/LAG-3, que confiere resistencia al bloqueo único con inhibidores de PD-L1/PD-1. 

4-Este trabajo proporciona evidencia experimental que apoya la combinación de las terapias 

bloqueadoras de PD-L1/PD-1 y LAG-3 en pacientes que manifiestan una inmunidad CD4 basal 

disfuncional. 
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Functional systemic CD4 immunity is required for
clinical responses to PD-L1/PD-1 blockade therapy
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Abstract

The majority of lung cancer patients progressing from conven-
tional therapies are refractory to PD-L1/PD-1 blockade monother-
apy. Here, we show that baseline systemic CD4 immunity is a
differential factor for clinical responses. Patients with functional
systemic CD4 T cells included all objective responders and could be
identified before the start of therapy by having a high proportion
of memory CD4 T cells. In these patients, CD4 T cells possessed
significant proliferative capacities, low co-expression of PD-1/LAG-
3 and were responsive to PD-1 blockade ex vivo and in vivo. In
contrast, patients with dysfunctional systemic CD4 immunity did
not respond even though they had lung cancer-specific T cells.
Although proficient in cytokine production, CD4 T cells in these
patients proliferated very poorly, strongly co-upregulated PD-1/
LAG-3, and were largely refractory to PD-1 monoblockade. CD8
immunity only recovered in patients with functional CD4 immu-
nity. T-cell proliferative dysfunctionality could be reverted by PD-
1/LAG-3 co-blockade. Patients with functional CD4 immunity and
PD-L1 tumor positivity exhibited response rates of 70%, highlight-
ing the contribution of CD4 immunity for efficacious PD-L1/PD-1
blockade therapy.
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Introduction

PD-L1/PD-1 blockade is demonstrating remarkable clinical

outcomes since its first clinical application in human therapy

(Brahmer et al, 2012; Topalian et al, 2012). These therapies inter-

fere with immunosuppressive PD-L1/PD-1 interactions by systemic

administration of blocking antibodies. PD-L1 is overexpressed by

many tumor types and generally correlates with progression and

resistance to pro-apoptotic stimuli (Azuma et al, 2008; Gato-Canas

et al, 2017; Juneja et al, 2017). PD-1 is expressed in antigen-experi-

enced T cells and interferes with T-cell activation when engaged

with PD-L1 (Chemnitz et al, 2004; Karwacz et al, 2011). The major-

ity of advanced non-small-cell lung cancer (NSCLC) patients

progressing from conventional cytotoxic therapies who receive PD-

L1/PD-1 blockade therapy do not respond. The causes for these

distinct clinical outcomes are a subject for intense research

(Topalian et al, 2016). Emerging studies indicate that PD-L1/PD-1

blockade therapy does not only affect the tumor microenvironment,

but also alters the systemic dynamics of immune cell populations

(Hui et al, 2017; Kamphorst et al, 2017a,b; Krieg et al, 2018). Some

of these changes do correlate with responses and could be used for

real-time monitoring of therapeutic efficacy. For example, PD-1+

CD8 T cells expand systemically after PD-1 blockade therapy in lung

cancer patients (Kamphorst et al, 2017a). As CD8 T cells are the

main direct effectors of responses through cytotoxicity over cancer

cells, these changes are thought to be the consequence of efficacious

anti-tumor immunity. Indeed, CD8 T-cell infiltration of tumors

correlates with good outcomes (Daud et al, 2016). However, the

role of CD4 immunity in patients undergoing PD-L1/PD-1 blockade

therapy remains poorly understood although extensive pre-clinical

data link CD4 responses to anti-tumor immunity. Hence, CD4 T cells

recognizing tumor neoepitopes contribute significantly to the effi-

cacy of several types of immunotherapies in murine models and in

cancer patients (Kreiter et al, 2015; Knocke et al, 2016; Sahin et al,

2017).

Human T cells undergo a natural differentiation process follow-

ing the initial antigen recognition, characterized by the progressive

loss of CD27 and CD28 surface expression, and acquisition of
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memory and effector functions (Lanna et al, 2014, 2017). Hence,

human T cells can be classified according to their CD27/CD28

expression profiles into poorly differentiated (CD27+ CD28+), inter-

mediately differentiated (CD27negative CD28+), and highly differenti-

ated (CD27negative CD28low/negative, THD) subsets (Lanna et al, 2014).

Highly differentiated T cells in humans are composed of memory,

effector, and senescent T cells, all of which could modulate anti-

cancer immunity in patients and alter susceptibility to immune

checkpoint inhibitors. To understand the impact of systemic CD4

and CD8 T-cell immunity before the start of immunotherapies, we

carried out a discovery study in a cohort sample of 51 NSCLC

patients undergoing PD-1/PD-L1 immune checkpoint blockade ther-

apy after progression to platinum-based chemotherapy. Our results

indicate that baseline functional systemic CD4 immunity is required

for objective clinical responses to PD-L1/PD-1 blockade therapies.

Results

The baseline percentage of systemic CD4 THD cells within CD4
cells separates NSCLC patients into two groups with distinct
clinical outcomes

To study whether there was a correlation between specific systemic

T-cell subsets and responses to anti-PD-L1/PD-1 immunotherapy in

NSCLC patients, a prospective study was carried out in a cohort of

51 patients treated with PD-L1/PD-1 inhibitors (Table EV1). These

patients had all progressed to conventional cytotoxic therapies and

received immunotherapies as part of their treatments. 78.4%

presented an ECOG of 0–1, 70.6% with at least three affected

organs, and 25.5% with liver metastases (Table EV1).

First, the percentages of CD4 T-cell differentiation subsets

according to CD27/CD28 expression profiles were quantified within

total CD4 cells in patients before the start of immunotherapies

(baseline) from fresh peripheral blood samples and compared to

healthy age-matched donors. Overall, cancer patients showed a

significantly higher baseline percentage of CD4 THD cells than

healthy controls (P < 0.001; Fig 1A). Furthermore, patients were

separated into two groups by an approximate cut-off value of 40%

CD4 THD cells (Fig 1A); we thus denominated “G1 cohort” to

patients with more than 40% THD cells (63.25 � 13.5%, N = 23)

and “G2 cohort” to patients with less than 40% (27.05 � 10.6%,

N = 28). Differences between G1 and G2 cohorts were also highly

significant (Fig 1A).

Objective responders were found only within the G1 cohort

(P = 0.0001), which included all patients that showed significant

tumor regression (Fig 1A and B). Accordingly, ROC analysis demon-

strated a highly significant association of the CD4 THD cell baseline

percentage with objective responses (P = 0.0003) and confirmed the

cut-off value of > 40% to identify objective responders with 100%

specificity and 70% sensitivity (Fig 1C).

A validation dataset from 32 patients was performed by parallel

independent double-blind sample handling, staining, data collection,

and analyses (Fig EV1). While in the discovery cohort T cells were

directly analyzed from peripheral blood samples within the same

day, validation samples were processed very differently. Briefly, an

overnight depletion step of myeloid cells by adherence to plastic

was included before T-cell analyses from non-adherent cells. Hence,

relative percentages of CD4 THD cells varied between the discovery

and validation cohorts. Even so, there was a significant agreement

between the two datasets on patient classification as demonstrated

by Cohen’s kappa coefficient (j = 0.932). The highly significant

association between G1 patients and objective responses in the vali-

dation set was confirmed (P = 0.0006), albeit with a cut-off value of

20% in the validation dataset which was corroborated by ROC

analysis (Fig EV1).

In agreement with these results, the G1 patient cohort had a

significantly longer progression-free survival (PFS) compared to the

G2 cohort. The median PFS (mPFS) of G2 patients was only

6.1 weeks (95% C.I., 5.7–6.6) compared to 23.7 weeks for G1

patients (95% C.I., 0–51.7; P = 0.001; Fig 1D). A comparison of G2

versus G1 baseline profiles showed hazard ratios for disease

progression or death that favored the latter [3.1 (1.5–6.4; 95% C.I.)

P = 0.002].

To assess whether CD4 T-cell profiling had prognostic value, the

time elapsed from diagnosis to the start of immunotherapies was

compared between G1 and G2 patient cohorts, as described (Le

et al, 2015). No significant differences were observed, indicating

that G1/G2 classification did not have prognostic value (Fig EV2).

This was supported by no association between G1/G2 patient

cohorts and baseline ECOG score (P = 0.6), with liver metastases

(P = 0.88), with tumor load (P = 0.19), or with the Gustave-Roussy

immune score (GRIm; P = 0.14, Table EV2; Bigot et al, 2017). The

hazard ratio for progression or death of G2 patients maintained its

statistical significance by multivariate analyses (HR 9.739; 95% CI

2.501–37.929) when adjusted for tumor histology, age, gender,

smoking habit, liver metastases, number of organs affected, PD-L1

tumor expression, NLR, serum LDH, and albumin.

Functionality of systemic CD4 immunity defines clinical
outcomes and susceptibility to PD-L1/PD-1 blockade

We hypothesized that the relative percentage of CD4 THD cells was a

biomarker for functional differences in systemic CD4 immunity

between the two cohorts before the start of immunotherapy. To find

out whether this was the case, we first evaluated PD-1 expression in

unstimulated CD4 T cells. However, no differences were observed

between G1 and G2 patient cohorts or even with healthy age-

matched donors (not shown). We then tested whether there were

differences in PD-1 upregulation after ex vivo stimulation with lung

cancer cells. To this end, we engineered a T-cell stimulator cell line

by expressing a membrane-bound anti-CD3 single-chain antibody in

A549 human lung adenocarcinoma cells (A549-SC3 cells). This cell

line stimulated T cells in co-cultures with the same affinity and

specificity while preserving other inhibitory interactions such as PD-

L1/PD-1 or MHC II-LAG-3 (Fig EV3A and B). This ensured the same

standard assay for cancer cell T-cell recognition for each patient

(Fig EV3B–D). CD4 T cells from NSCLC patients significantly upreg-

ulated PD-1 compared to cells from age-matched healthy donors

after incubation with A549-SC3 cells (P < 0.001; Figs EV3C and 2A).

However, no differences were found between G1 and G2 patient

cohorts. Coexpression of PD-1 and LAG-3 has been suggested to

identify dysfunctional tumor-infiltrating lymphocytes in NSCLC (He

et al, 2017). Interestingly, G2 donors presented a significantly

higher percentage of CD4 T cells co-expressing both markers than

G1 donors after stimulation (Fig 2B). To test whether there were
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also differences in proliferation, the percentage of Ki67+ cells was

compared (Fig 2C and D). Accordingly, CD4 T cells from G2 patients

were remarkably impaired in proliferation after ex vivo activation

with A549-SC3 cells compared to T cells from G1 patients. As we

had observed that G1 and G2 patient cohorts differed in baseline

percentages of CD4 THD cells (Fig 1A), we tested whether this subset

A B

C D

Figure 1. Baseline profiling of CD4 T-cell differentiation subsets stratifies clinical responses to PD-L1/PD-1 blockade.

A Percentage of circulating highly differentiated CD4 T cells within CD4 cells in age-matched healthy donors (N = 40) or NSCLC patients (N = 51) or NSCLC patients
before undergoing immunotherapies. G1 and G2, groups of patients classified according to high THD cells (G1, > 40% CD4 THD cells) and low THD cells (G2, < 40% CD4
THD cells). Relevant statistical comparisons are shown by the test of Mann–Whitney. In green, objective responders (OR). In red, no OR. Below the graph, correlation of
objective responses to G1 and G2 groups by Fisher’s exact test.

B Waterfall plot of change in lesion size in patients with measurable disease classified as having a G1 (blue) or G2 (red) profile. Dotted lines represent the limit to define
significant progression (upper line) or significant regression (lower line).

C ROC analysis of baseline CD4 THD quantification as a function of objective clinical responses.
D Kaplan–Meier plot for PFS in patients treated with immunotherapies stratified only by G1 (green) and G2 (red) CD4 T-cell profiles. Patients starting therapy with a G2

profile had an overall response rate (ORR) of 0 and 82% of them experienced progression or death by week 9. ORR was 44.8% for G1 patients, and the 12-week PFS
was 50.2%.

Source data are available online for this figure.

ª 2019 The Authors EMBO Molecular Medicine e10293 | 2019 3 of 14

Miren Zuazo et al EMBO Molecular Medicine



A B

C

D

E
F

Figure 2.

4 of 14 EMBO Molecular Medicine e10293 | 2019 ª 2019 The Authors

EMBO Molecular Medicine Miren Zuazo et al



was responsive to activation by A549-SC3 cells (Fig 2D). Interest-

ingly, CD4 THD cells strongly proliferated in all patients, although

they constituted a minority in the G2 patient cohort.

The strong proliferative capacities of CD4 THD cells indicated

that these were not exhausted, anergic, or senescent subsets, but

probably highly differentiated memory subsets. To test this, their

baseline phenotype according to CD62L/CD45RA surface expres-

sion was assessed in a sample of patients (Fig EV4A). The majority

of CD4 THD cells were central-memory (CD45RAnegative CD62L+)

and effector-memory (CD45RAnegative CD62Lnegative) cells, without

differences between G1 and G2 cohorts. Increased genotoxic

damage is strongly associated with T-cell senescence and can be

evaluated by H2AX expression (Lanna et al, 2017). Interestingly,

NSCLC CD4 T cells exhibited extensive genotoxic damage in both

THD and non-THD subsets without differences between G1 and G2

patient cohorts, unlike T cells from age-matched healthy donors

(Fig EV4B). Therefore, genotoxic damage did not identify senescent

T cells in patients that had been treated with conventional thera-

pies. Then, the expression of the replicative senescence marker

CD57 was used to identify bona fide senescent T cells, which

accounted to 30% of THD cells in healthy age-matched donors, and

about 10% in NSCLC patients (Fig EV4C). Our results strongly

suggested that circulating CD4 THD cells in our cohort of NSCLC

patients mostly corresponded to non-senescent, non-exhausted

memory subsets.

CD4 T cells of G2 patients strongly co-upregulated PD-1/LAG-3

after stimulation. We wondered if lack of clinical responses in G2

patients could be explained by resistance to single blockade of PD-1.

Hence, proliferation of CD4 T cells activated with A549-SC3 in the

presence of an anti-PD-1 antibody equivalent to pembrolizumab

was assessed (Scapin et al, 2015; Fig 2E). As expected, PD-1 block-

ade increased proliferation of THD and non-THD CD4 T cells in

patients from the G1 cohort. In contrast, their G2 counterparts were

largely refractory. To find out whether CD4 T cells from G2 patients

remained unresponsive to PD-1 blockade in vivo, cells were

obtained from patients after at least three cycles of therapy and

tested for their proliferative capacities (Fig 2F). Systemic CD4 T

cells from G2 patients remained poorly proliferative during

immunotherapy.

Absence of cancer-specific CD4 T cells or systemic T-cell
exhaustion is not behind the lack of objective clinical responses
to PD-L1/PD-1 blockade therapies

Then, we thought that G2 patients could be refractory to anti-PD-1

immunotherapy by not having systemic cancer-specific CD4 T cells.

To this end, we quantified CD4 T cells reactive to lung adenocarci-

noma antigens using IFN-c-activated autologous monocyte-derived

DCs as antigen presenting cells, as described (Escors et al, 2008).

DCs were loaded with A549 cell lysate, as these cells contain numer-

ous common lung adenocarcinoma antigens (Madoz-Gurpide et al,

2008). We used this approach as we lacked sufficient biopsy mate-

rial to get tumor antigens or tumor-infiltrating T cells. CD4 T cells

reactive to A549 cell antigens were identified by IFN-c upregulation.

Interestingly, lung cancer-specific CD4 T cells were present at vary-

ing proportions before the start of immunotherapy in both G1 and

G2 patients (Fig 3A). Indeed, although the average percentages of

circulating lung cancer-specific CD4 T cells were low, these did not

differ significantly between G1 (responders and non-responders)

and G2 patients. These T cells consisted of both THD and non-THD

subsets, without significant differences in relative percentages

between G1 and G2 cohorts (Fig 3B). These results suggested that

poor responses in G2 patients were not caused by lack of tumor-

specific CD4 T cells but rather by having dysfunctional T cells.

To further study the dysfunctional status of systemic CD4 T cells

in G2 patients, we evaluated PD-1 and LAG-3 surface expression

directly after blood sampling, as constitutive high-level expression of

these markers is a frequent characteristic of T-cell exhaustion.

However, no differences were found between age-matched healthy

donors and G1/G2 patient cohorts in either THD or non-THD subsets

(not shown). Nevertheless, the defining hallmark of T-cell exhaus-

tion is the loss of cytokine production following stimulation, particu-

larly multi-cytokine expression (Crawford et al, 2014). Interestingly,

CD4 T cells from both G1 and G2 patient cohorts were as proficient

in IFN-c, IL-4, IL-10, and IL-2 expression as T cells from healthy

donors independently of their CD28 expression (Fig 4A) or whether

these were T cells from G1 responders or non-responders

(Appendix Fig S1). Indeed, CD4 cells (total, THD, and non-THD

subsets) in both G1 and G2 patient cohorts were significantly skewed

◀ Figure 2. Differential systemic CD4 immunity and responses to PD-1/PD-L1 blockade in NSCLC patients.

A The scatter plot shows PD-1 expression after co-culture of CD4 T cells from healthy donors (n = 9) or NSCLC patients (n = 14), as indicated, with A459-SC3 lung
cancer cells. Relevant statistical comparisons with the test of Mann–Whitney are indicated.

B Upper graphs, flow cytometry density plots of PD-1 and LAG-3 co-expression in CD4 T cells from healthy donors, a G1 responder (G1 R), a G1 non-responder (G1 NR),
and a G2 non-responder as indicated, following stimulation with A549-SC3 cells. Percentage of expressing cells are indicated within each quadrant. Below, same as in
the upper graphs but as a scatter plot of the percentage of CD4 T cells that simultaneously co-express PD-1 and LAG-3 that simultaneously co-express PD-1 and LAG-
3 in G1 healthy donors (n = 10), G1 (n = 10) and G2 (n = 10) patients. Relevant statistical comparisons are shown with the test of Mann–Whitney.

C Upper flow cytometry histograms of Ki67 expression in CD4 T cells from the representative subjects as indicated on the right, after stimulation with A549-SC3 cells.
Vertical dotted line indicates the cut-off value of positive versus negative Ki67 expression. The percentage of Ki67-expressing CD4 T cells is shown within the
histograms. Below, same data represented as a scatter plot from a sample of G1 and G2 donors as indicated, with relevant statistical comparisons with the test of
Mann–Whitney (n = 7–10).

D Proliferation of CD4 T cells stimulated by A549-SC3 cells from the indicated patient groups. CD28 expression is shown together with the proliferation marker Ki67.
Percentages of cells within each quadrant are shown.

E Same as in (D) but in the presence of an isotype control antibody or an anti-PD-1 antibody with the equivalent sequence to pembrolizumab. The effects on CD4 T
cells from a G1 and a G2 patient are shown, divided into CD28 high or low/negative subsets as indicated. Relevant statistical comparisons are shown with paired
Student’s t-test.

F Top, flow cytometry density plots of Ki67 expression in CD4 T cells from representative G1 or G2 patients after three cycles of therapy, activated by incubation with
A549-SC3 cells. Below, same as above but as a dot-plot graph (n = 7–10). A comparison between proliferating CD4 T cells before and after therapy is shown in
unpaired patient samples. G1 R, G1 objective responder patient. G2 NR, G2 patient with no objective responses; green, objective responders (OR) and red, no OR; Iso,
treatment with an isotype antibody control; and a-PD-1, treatment with anti-PD-1 antibody. Statistical comparisons were performed with the test of Mann–Whitney.
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toward IL-17 responses compared to age-matched healthy donors

(Fig 4A). Importantly, only a minority of CD4 T cells from either G1

or G2 patient groups were single-cytokine producers (Fig 4B) while

most of the non-THD CD4 T cells were very proficient in multiple

cytokine production with a preference for IL-17-expressing subsets

(Fig 4C and D). These results indicated that CD4 T cells from G2

patients were not exhausted according to our current understanding

(Hashimoto et al, 2018). Indeed, they responded to stimulation by

producing cytokines although with strong co-upregulation of PD-1/

LAG-3 associated with markedly diminished proliferative capacities.

Systemic CD8 immunity recovers in G1 responder patients
following immunotherapy

In contrast to CD4 THD cells, the relative percentage of CD8 THD cells

within the CD8 population did not significantly differ from age-

matched healthy donors, nor could be used to identify objective

responders (Fig EV5A and B). Interestingly, CD8 cells from both G1

and G2 patient cohorts obtained before the start of immunotherapies

did fail to proliferate after stimulation by A549-SC3 cells (Fig 5A).

To test whether anti-PD-1 therapy could recover CD8 dysfunctional-

ity in vivo, the proliferative capacities of CD8 T cells from G1 and

G2 patients obtained after at least three cycles of treatment were

evaluated by stimulation with A549-SC3 cells. CD8 T cells from G1

responders had recovered significant proliferative capacities, while

only limited enhancements were observed in G2 patients (Fig 5B).

Similarly to CD4 cells, systemic CD8 T cells specific for lung adeno-

carcinoma antigens were quantified in G1 and G2 patients and

found to be comparable (Fig EV5C) and distributed within non-THD

and THD subsets (Fig EV5D).

To find out whether CD8 T cells in G1 patients were especially

susceptible to PD-1 blockade ex vivo, baseline samples of CD8 T cells

from G1 and G2 patients were activated with A549-SC3 cells in the

presence of an anti-PD-1 antibody or an isotype control. In agree-

ment with the in vivo results, ex vivo PD-1 blockade improved signifi-

cantly the proliferation of CD8 T cells from G1 patients and specially

non-THD (CD28+) subsets (Fig 5C). In vivo expansion of CD28+ CD8

T cells in murine models correlate with anti-PD-1 efficacy (Kam-

phorst et al, 2017b). To confirm this observation in our cohort of

patients, the changes in the relative abundance of CD8 CD28+ T cells

were compared in G1 and G2 patients from baseline to post-anti-PD-

1 therapy (Fig 5D). Accordingly, the CD28+ CD8 T-cell compartment

significantly expanded (P < 0.001) only in G1 patients.

Proliferative dysfunctionality of CD4 and CD8 T cells from G2
patients is reversible after PD-1/LAG-3 dual blockade

As we found that CD4 proliferative dysfunctionality in G2 patients

correlated with high PD-1/LAG-3 co-upregulation after activation,

we tested if this was also the case for CD8 T cells. PD-1/LAG-3

co-expression was tested ex vivo after stimulation with A549-SC3

cells, and G2 patients presented a significantly higher proportion

of PD-1/LAG-3 co-expressing CD8 T cells compared to G1 counter-

parts (Fig 6A). Overall, our data indicated that PD-1/LAG-3 co-

upregulation was contributing to proliferative dysfunctionality. To

test whether this was the case, baseline samples of CD4 and CD8

T cells from G2 patients were co-incubated ex vivo with A549-SC3

cells in the presence of an isotype antibody control, anti-PD-1,

anti-LAG-3, or anti-PD-1/anti-LAG-3 antibodies. We confirmed that

each antibody was specifically blocking PD-1, LAG-3, or both in

our assays by epitope masking using flow cytometry (not shown).

Only co-blockade of PD-1 and LAG-3 in both CD4 (Fig 6B) and

CD8 T cells (Fig 6C) from G2 patients significantly increased

proliferation independently of CD28 expression. These results

A B

Figure 3. Lung cancer antigen-specific CD4 T cells in NSCLC patients.

A Scatter plot graph with the percentage of lung cancer-specific systemic CD4 T cells quantified by an autologous DC-based antigen presentation assay (see Materials
and Methods), in a sample of G1 and G2 patients as indicated. Objective responses (OR) are shown in green. In red, patients with no OR.

B The scatter plot graph on the left represents the percentage of CD4 THD cells within lung cancer-specific CD4 T cells in a sample of patients from the indicated G1/G2
groups. On the right, same as left but representing the percentage of CD28+ CD4 T cells within lung cancer-specific CD4 T cells. Objective responders (OR) are shown
in green. In red, patients with no OR.

Data information: Relevant statistical comparisons are shown within the graphs with the test of Mann–Whitney. N, number of biological replicates (independent
patients); Ns, no significant differences (P < 0.05).
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A

B

C

D

Figure 4. Systemic circulating CD4 T cells in NSCLC patients are proficient in cytokine production with an overall Th17 profile.

A Column graphs representing the percentage of CD4 T cells from NSCLC patients or age-matched healthy donors as represented in the graph, expressing the
indicated cytokines after T-cell stimulation with anti-CD3/anti-CD28 antibodies. Data on total CD4 (left graph), CD28+ subsets (center graph) and CD28negative

subsets (right graph) are shown. Error bars correspond to standard deviations, and bars represent means from nine independent biological replicates (healthy
donors) and six independent replicates (patients).

B–D Same as in (A) but representing CD4 T cells expressing only one cytokine (B), two (C) or three cytokines simultaneously (D). Error bars correspond to standard
deviations, and bars represent means from five independent biological replicates (patients).

Data information: Relevant statistical comparisons are shown within the graphs by the test of Kruskal–Wallis.
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confirmed that PD-1/LAG-3 co-upregulation contributed to keeping

systemic CD4 and CD8 T cells from G2 patients in a proliferative

dysfunctional state following stimulation, and that this T-cell

dysfunctionality can be reverted by co-blockade of both immune

checkpoints.

Objective responders are found within G1 patients with
PD-L1-positive tumors

Objective response rates in G1 patients were about 50%. Hence,

our results indicated that functional systemic CD4 responses

A B

C D

Figure 5. CD8 dysfunctionality recovers in G1 patients undergoing immunotherapy.

A Upper flow cytometry histograms, expression of the proliferation marker Ki67 in CD8 T cells from the indicated patients or healthy donor before the start of
immunotherapy, stimulated ex vivo by A549-SC3 cells. Numbers indicate mean fluorescence intensities. G1 R and G1 NR, responder and non-responder G1 patient,
respectively; G2 NR, non-responder G2 patient. US, unstained control. Below, same as above but as a dot plot graph with percentage of proliferating Ki67+ CD8 T cells
from the indicated groups (n = 7–10). Relevant statistical comparisons are shown with the test of Mann–Whitney.

B Upper flow cytometry density plots, expression of Ki67 in ex vivo-stimulated CD8 T cells from the indicated patients before and after the start of immunotherapies.
NR, non-responder patient; R, responder patient. Below, dot-plots of the percentage of Ki67+ proliferating CD8 T cells after ex vivo activation by A549-SC3 cells. CD8
T cells were obtained from samples of G1 or G2 patients before immunotherapy and after three cycles of anti-PD-1 therapy (n = 7–10). Relevant statistical
comparisons are shown with the test of Mann–Whitney. Green, objective responders (OR) and red, no ORs.

C Same as in (A) but in the presence of an isotype control antibody or an anti-PD-1 antibody molecularly equivalent to pembrolizumab. Relevant statistical
comparisons are shown with comparisons carried out with paired Student’s t-test.

D Change in CD8 CD28+ T cells from baseline to post-therapy in G1 patients (left) or in G2 patients (right). Statistical comparisons were carried out with paired
Student’s t-test.
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were necessary but not sufficient for clinical efficacy. As NSCLC

patients with high PD-L1 tumor expression benefit from anti-PD-

L1/PD-1 blockade therapies (Borghaei et al, 2015), we assessed

PD-L1 tumor expression and its association to responses in G1

and G2 patient cohorts for whom PD-L1 tumor expression could

be determined. G1 patients with PD-L1-positive tumors had a

PFS of 70% (> 5%; P = 0.007; Fig 7A). The same benefit was

observed when the stratification was extended to include patients

with unknown PD-L1 tumor status in our cohort (Fig 7B).

Discussion

Tumor intrinsic and extrinsic factors contribute to the efficacy of

PD-L1/PD-1 blockade therapies. So far, not a single factor has been

associated with objective responses or progression, suggesting that

multiple mechanisms influence clinical responses.

Because PD-L1/PD-1 blocking antibodies are systemically

administered, these therapies cause systemic changes in immune

cell populations (Kamphorst et al, 2017a; Krieg et al, 2018). Some

of these changes may reflect the efficacy of immunotherapy in

patients and could be used for patient stratification. Several studies

have been performed to monitor systemic dynamics of immune cell

populations, some of them retrospectively and by high-throughput

techniques (Hui et al, 2017; Kamphorst et al, 2017b; Krieg et al,

2018). We evaluated responses from fresh blood samples because

freezing PBMCs led to a significant alteration in the distribution of

immune cell types, and distorted expression patterns of cell surface

markers. Hence, sample manipulation had a significant impact on

our results, which limited our study to prospective data.

A B C

Figure 6. PD-1/LAG-3 co-blockade recovers proliferative capacities of CD4 and CD8 T cells from G2 patients.

A Scatter plots of PD-1/LAG-3-expressing CD8 T cells after activation by A459-SC3 cells in a sample of G1 (n = 9) and G2 (n = 7) patients within CD28+ and
CD28negative populations as indicated in the figure. Relevant statistical comparisons are shown with the test of Kruskal-Wallis.

B, C Dot-plot representing the percentage of proliferating CD4 T cells (B) and CD8 T cells (C) from a sample of G2 patients before starting immunotherapy, activated
ex vivo by A549-SC3 cells in the presence of the indicated antibodies. “Dual” represents the addition of both anti-PD-1 and anti-LAG-3 antibodies. Appropriate
statistical comparisons are shown within the graph with two-way paired ANOVA. Data from CD28+ and CD28negative subsets are represented as indicated.

A B

Figure 7. Objective responders are found within G1 patients with PD-L1+ tumors.

A Kaplan–Meier plot for PFS in patients undergoing immune checkpoint inhibitor therapies stratified by G1/PD-L1+ tumors (blue) and remaining patients for whom
their PD-L1 tumor status is known (red).

B Same as in (A) but including all patients in the study cohort. Remaining patients (red) also included G1 patients with PD-L1 low/negative tumors, G1 patients with
unknown PD-L1 tumor status, and G2 patients with either PD-L1+ or PD-L1-negative tumors.

Source data are available online for this figure.
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Here, we found that the proliferative functionality of systemic

CD4 immunity is required for clinical responses to PD-L1/PD-1

blockade therapy. Indeed, it was a differential baseline factor in

our cohort of NSCLC patients progressing from conventional ther-

apies. Hence, patients with non-dysfunctional CD4 responses

contained all objective responders with a response rate of about

50% (G1 patients), while no objective responses were observed in

patients with dysfunctional CD4 T cells (G2 patients). CD4 T-cell

dysfunctionality in G2 patients was reflected as strongly impaired

proliferation after stimulation, high co-expression of LAG-3/PD-1,

and resistance to ex vivo and in vivo PD-1 monoblockades. As

both responders and non-responders contained comparable

proportions of lung cancer-specific CD4 and CD8 T cells in our

cohort of patients before the start of therapy, the experimental

evidence pointed to the baseline intrinsic functionality of CD4

immunity as the key factor in our study. Systemic CD28+ CD4 T

cells in G2 patients were not truly exhausted or bona fide anergic

T cells. No constitutive high-level expression of PD-1 and LAG-3

was observed unless stimulated. They were proficient in multi-

cytokine expression following stimulation. Indeed, CD4 T cells

from both G1 and G2 patient cohorts were skewed toward Th17-

expressing phenotypes compared to healthy donors. All these

characteristics were indicators of systemic CD4 T-cell proliferative

dysfunctionality in G2 patients.

Importantly, patients with functional CD4 immunity could be

easily identified by having a high proportion of circulating CD4

THD memory cells. ROC analysis provided a cut-off value of

> 40% CD4 THD to identify objective responders from freshly

analyzed blood samples. It is worth noting that the cut-off value

was reduced to 20% in a validation cohort that was independently

processed and analyzed by a very different procedure. Impor-

tantly, patient classification in G1 or G2 cohorts and their associa-

tion with clinical responses agreed independently of the protocol

utilized. We are well aware that quantification of CD4 THD cells

could be used as a baseline factor for clinical stratification. Proper

validation of CD4 T-cell profiling will require protocol standardiza-

tion for sample manipulation and analyses. In fact, G1 patients

with PD-L1-positive tumors exhibited response rates of 70%,

which strongly highlights the role of CD4 immunity in clinical

responses. However, the main goal of the current study was to

understand the contribution of systemic T-cell immunity to PD-L1/

PD-1 blockade therapies, rather than providing a predictive

biomarker.

The requirement of functional systemic immunity has been

previously demonstrated in murine models for the efficacy of other

immunotherapy approaches (Spitzer et al, 2017), as well as the

importance of CD4 T cells for anti-PD-1 immunotherapy (Markowitz

et al, 2018). These studies are in agreement with our present data in

human patients undergoing PD-L1/PD-1 blockade therapies. Indeed,

the appearance of a specific murine subtype of CD4 T cell was the

main correlator with efficacious responses by administration of anti-

cancer cell immunoglobulins (Spitzer et al, 2017). These results

together with our data strongly support the need for proficient CD4

responses to achieve efficacious responses.

Immune checkpoint inhibitor therapy aims to recover CD8 cyto-

toxic responses (Ahmadzadeh et al, 2009). To our surprise, all

systemic CD8 T cells in patients before the start of immunothera-

pies were also dysfunctional. Nevertheless, the proliferative

capacities of CD8 T cells were recovered during immunotherapy

but only in patients with functional CD4 immunity. This was

reflected by an expansion of CD28+ cells in agreement with data

in murine models (Kamphorst et al, 2017b). CD8 dysfunctionality

in G2 patients was again correlated with PD-1/LAG-3 co-upregula-

tion. Both CD4 proliferative dysfunctionality and CD8 proliferative

dysfunctionality in G2 patients were reversible ex vivo by PD-1/

LAG-3 co-blockade.

An increasing number of studies are linking PD-1/LAG-3 co-

expression in T cells to resistance to anti-PD-L1/PD-1 therapies

(Mishra et al, 2016; Huang et al, 2017; Williams et al, 2017; John-

son et al, 2018). Our study prompts the clinical evaluation of

patients with systemic CD4 T-cell dysfunctionality by PD-1/LAG-3

dual-blockade strategies.

Materials and Methods

Study design

The study was approved by the Ethics Committee at the Hospital

Complex of Navarre. Informed consent was obtained from all

subjects and all experiments conformed to the principles set out

in the WMA Declaration of Helsinki and the Department of Health

and Human Services Belmont Report. Samples were collected by

the Blood and Tissue Bank of Navarre, Health Department of

Navarre, Spain. Thirty-nine patients diagnosed with non-squa-

mous and 12 with squamous NSCLC were recruited at the Hospi-

tal Complex of Navarre (Table EV1). Patients had all progressed

to first-line chemotherapy or concurrent chemo-radiotherapy.

Eligible patients were 18 years of age or older who agreed to

receive immunotherapy targeting PD-1/PD-L1 following the

current indications (Table EV1). Tumor PD-L1 expression could

be quantified in 39 of these patients before the start of therapies.

Measurable disease was not required. The exclusion criteria

consisted of concomitant administration of chemotherapy or previ-

ous immunotherapy treatment. NSCLC patients had an age of

65 � 8.9 (N = 51). Age-matched healthy donors were recruited

from whom written informed consent was also obtained, with an

age of 68.60 � 8 (mean � SD, N = 40).

Therapy with nivolumab, pembrolizumab, and atezolizumab

was provided following current indications (Herbst et al, 2016; Horn

et al, 2017; Rittmeyer et al, 2017). 4 ml peripheral blood samples

were obtained prior and during immunotherapy before administra-

tion of each cycle. PBMCs were isolated as described (Escors et al,

2008) and T cells analyzed by flow cytometry. The participation of

each patient concluded when a radiological test confirmed response

or progression, with the withdrawal of consent or after death of the

patient. Tumor responses were evaluated according to RECIST 1.1

(Eisenhauer et al, 2009) and Immune-Related Response Criteria

(Wolchok et al, 2009). Objective responses were confirmed by at

least one sequential tumor assessment.

Flow cytometry

Surface and intracellular flow cytometry analyses were performed

as described (Karwacz et al, 2011; Gato-Canas et al, 2017). T cells

were immediately isolated and stained. 4 ml blood samples were
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collected from each patient, and PBMCs were isolated by FICOL

gradients right after the blood extraction. PBMCs were washed and

cells immediately stained with the indicated antibodies in a final

volume of 50 ll for 10 min in ice. Cells were washed twice, resus-

pended in 100 ll of PBS, and analyzed immediately. The following

fluorochrome-conjugated antibodies were used at 1:50 dilutions

unless otherwise stated: CD4-FITC (clone M-T466, reference 130-

080-501, Miltenyi Biotec), CD4-APC-Vio770 (clone M-T466, refer-

ence 130-100-455, Miltenyi Biotec), CD4-PECy7 (clone SK3, refer-

ence 4129769, BD Biosciences), CD14-VF450 (1:500 dilution, clone

61D3, TONBO), CD3-APC (clone REA613, reference 130-113-135,

Miltenyi Biotec), CD27-APC (clone M-T271, reference 130-097-922,

Miltenyi Biotec), CD27-PE (clone M-T271, reference 130-093-185,

Miltenyi Biotec), CD45RA-FITC (reference 130-098-183, Miltenyi

Biotec), CD62L-APC (reference 130-099-252, Miltenyi Biotech),

CD28-PECy7 (clone CD28.2, reference 302926, BioLegend), PD-1-PE

(clone EH12.2H7, reference 339905, BioLegend), CD8-FITC (clone

SDK1, reference 344703, BioLegend), CD8-APC-Cy7(clone RFT-8,

reference A15448, Molecular probes by Life technologies), CD57-PE

(clone HCD57, reference 322311, BioLegend), H2AX-FITC (1:100

dilution, clone 2F3, reference 613403, BioLegend), LAG-3-PE (clone

11C3C65, reference 369306, BioLegend), IL-2 Alexa Fluor 647 (1:100

dilution, clone MQ1-17H12, reference 500315, BioLegend), IFN

c-APC (1:100 dilution, clone 4S.B3, reference 50256, BioLegend),

IFN c-FITC (1:100 dilution, clone 4S.B3, reference 502506, BioLe-

gend), IL-17A-BV421 (1:100 dilution, clone BL168, reference

512322, BioLegend), IL-17A-Violet 667, clone CZ8-23G1, reference

130-120-554, Miltenyi Biotec), IL-4-PE (1:100 dilution, reference

130-091-647, Miltenyi Biotec), and IL-10-APC (1:100 dilution,

reference 130-096-042, Miltenyi Biotec).

Cell culture

Human lung adenocarcinoma A549 cells were a kind gift of Prof

Ruben Pio and authenticated by his group, and were grown in stan-

dard conditions. They were confirmed to be mycoplasma-free by

PCR. These cells were modified with a lentivector encoding a single-

chain version of a membrane-bound anti-OKT3 antibody (Arakawa

et al, 1996). The lentivector expressed the single-chain antibody

construct under the control of the SFFV promoter and puromycin

resistance from the human ubiquitin promoter in a pDUAL lentivec-

tor construct (Karwacz et al, 2011). The single-chain antibody

construct contained the variable light and heavy OKT3 immunoglob-

ulin sequences separated by a G-S linker fused to a human IgG1

constant region sequence followed by the PD-L1 transmembrane

domain.

Monocyte-derived DCs were generated from adherent mononu-

clear cells in the presence of recombinant GM-CSF and IL-4 as

described (Escors et al, 2008). DCs were loaded with A549 protein

extract obtained after three cycles of freezing/thawing. Loading was

carried out overnight, and DCs were matured with 10 ng/ml of IFN-

c before adding T cells in a 1:3 ratio as described (Escors et al,

2008).

When indicated, PD-1 (clone EH12.2H7, BioLegend) and LAG-3

(clone 17B4, BioLegend) blocking antibodies were added to cell

cultures at a final concentration of 5 lg/ml. When appropriate, T

cells were stimulated with plate-bound anti-CD3/anti-CD28 antibod-

ies as described (Liechtenstein et al, 2014).

Anti-PD-1 antibody production and purification

To generate an antibody molecularly equivalent to the published

sequence of pembrolizumab, cDNAs encoding the published amino

acid sequences of the heavy and light immunoglobulin chains

(Scapin et al, 2015) were cloned and expressed in Chinese hamster

ovary (CHO) cells. Supernatants were collected and antibodies puri-

fied by affinity chromatography following standard procedures.

Data collection and statistics

T-cell percentages were quantified using FlowJo (Lanna et al, 2014,

2017). The percentage of CD4/CD8 THD (CD28 and CD27 double-

negative) and poorly differentiated T cells (CD28+ CD27+) were

quantified prior to therapy (baseline) and before administration of

each cycle of therapy within CD4 and CD8 cells. Gates in flow

cytometry density plots were established taking CD27+ CD28+ T

cells as a reference. Data were recorded by M.Z. and separately

analyzed thrice by M.Z. and H.A. independently. Cohen’s kappa

coefficient was utilized to test the inter-rater agreement in classifi-

cation of immunological profiles (j = 0.939).

The mode of action, pharmacokinetics, adverse events, and effi-

cacies of the three PD-L1/PD-1 blocking agents are comparable in

NSCLC, which act through the interference with the inhibitory inter-

action between PD-L1 and PD-1 (Herbst et al, 2016; Horn et al,

2017; Rittmeyer et al, 2017). Treatments administered to the

patients were allocated strictly on the basis of their current indica-

tions and independently of any variable under study. All data were

pre-specified to be pooled to enhance statistical power, and thereby

reducing type I errors from testing the hypotheses after ad hoc

subgrouping into specific PD-L1/PD-1 blockers. The number of

patients assured statistical power for Fisher’s exact test of 0.95 and

superior for Student’s t and Mann–Whitney tests (G*Power calcula-

tor; Faul et al, 2009), taking into account that the expected propor-

tion of responders is around 25–35% without stratification (Herbst

et al, 2016; Horn et al, 2017; Rittmeyer et al, 2017). Two pre-speci-

fied subgroup analyses in the study were contemplated: the first,

baseline T-cell values and the second, post-first cycle T-cell changes

from baseline. The study protocol contemplated the correlation of

these values with responses using Fisher’s exact test, paired

Student’s t-tests/repeated-measures ANOVA (if normally distrib-

uted) or U of Mann–Whitney/Kruskal–Wallis (if not normally

distributed, or data with intrinsic high variability). Two-tailed tests

were applied with the indicated exceptions (see below).

The percentage of T-cell subsets in untreated cancer patients was

normally distributed (Kolmogorov–Smirnov normality test), but not

in age-matched healthy donors. Hence, to compare T-cell values

between two independent cancer patient groups, two-tailed

unpaired Student’s t-tests were used, while comparisons between

healthy subjects and cancer patients were carried out with the

Mann–Whitney U. Percentages of T-cell populations in treated

patients were not normally distributed, so response groups were

compared with either Mann–Whitney (comparisons between two

independent groups) or Kruskal–Wallis for multi-comparison tests if

required. Two-tailed paired t-tests were carried out to compare

changes in the proportion of CD28+ CD8 T cells between baseline

and post-therapy paired groups, and to compare Ki67 expression in

T-cell subsets activated with A549-SC3 cells subjected to PD-1 or
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LAG-3 blockade. For comparison of paired samples with anti-PD-1/

anti-LAG-3 combinations, two-way ANOVA tests with a random

criterium (subjects) were used. Fisher’s exact test was used to

assess the association of the baseline values of THD cells with clini-

cal responses. The same tests were performed to assess associations

between G1/G2 groups with the indicated prognostic variables.

Progression-free survival (PFS) was defined as the time from

the starting date of therapy to the date of disease progression or

the date of death by any cause, whichever occurred first. PFS

was censored on the date of the last tumor assessment demon-

strating absence of progressive disease in progression-free and

alive patients. PFS rates at 12 and 28 weeks were estimated as

the proportion of patients who were free-of-disease progression

and alive at 12 and 28 weeks after the initiation of immunothera-

pies. Patients who dropped out for worsening of disease and did

not have a 28-week tumor assessment were considered as having

progressive disease. Overall response rate (ORR) was the propor-

tion of patients who achieved best overall response of complete

or partial responses.

PFS was represented by Kaplan–Meier plots and log-rank tests

utilized to compare cohorts. Hazard ratios were estimated by Cox

regression models. Receiver operating characteristic (ROC) analysis

was performed with baseline THD numbers and response/no

response as a binary output. Statistical tests were performed with

GraphPad Prism 5 and SPSS statistical packages.

Validation dataset

Data from a set of 32 patients were validated in parallel by indepen-

dent handling, processing, staining, flow cytometry data collection,

and analysis. The validation dataset was generated by a technician

working in unrelated research themes (A.B.). A very different proto-

col was used to quantify CD4 THD cells in the validation set

compared to the discovery cohort. For the validation dataset,

isolated PBMCs were resuspended in TeXmacs serum-free medium

(Miltenyi) and plated on 6-well cell culture plates. Myeloid cells

were allowed to adhere overnight, and non-adherent cells were

collected, centrifuged, and resuspended and T cells stained with the

appropriate antibodies for flow cytometry analyses. ROC analysis

was used to establish the cut-off value for the relative percentage of

CD4 THD cells to discriminate G1 versus G2 patients in the valida-

tion cohort. Post hoc Cohen’s kappa coefficient test was used to test

the agreement between the discovery cohort versus the validation

cohort on classification of G1/G2 patients.

Expanded View for this article is available online.
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