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ABSTRACT In Machine Learning an ensemble refers to the combination of several classifiers with the
objective of improving the performance of every one of its counterparts. To design an ensemble two main
aspects must be considered: how to create a diverse set of classifiers and how to combine their outputs. This
work focuses on the latter task. More specifically, we focus on the usage of aggregation functions based
on fuzzy measures, such as the Sugeno and Choquet integrals, since they allow to model the coalitions
and interactions among the members of the ensemble. In this scenario the challenge is how to construct a
fuzzy measure that models the relations among the members of the ensemble. We focus on unsupervised
methods for fuzzy measure construction, review existing alternatives and categorize them depending on
their features. Furthermore, we intend to address the weaknesses of previous alternatives by proposing a
new construction method that obtains the fuzzy measure directly evaluating the performance of each possible
subset of classifiers, which can be efficiently computed. To test the usefulness of the proposed fuzzy measure,
we focus on the application of ensembles for imbalanced datasets. We consider a set of 66 imbalanced

datasets and develop a complete experimental study comparing the reviewed methods and our proposal.

INDEX TERMS Fuzzy measures, Choquet integral, aggregation, ensembles, classification.

I. INTRODUCTION
Classification is one of the most well-known examples of
Machine Learning, since many real-world problems can be
formulated as classification problems [1], [2]. Specifically,
supervised classification consists of learning a classifier from
labeled data in such a way that it is able to correctly classify
new examples (also called instances) that were not taken into
consideration during the learning step [3]. This behavior is
called generalization capability, and is the most desirable
property of any learned classifier.

In the literature, many learning algorithms have been pro-
posed, e.g., Decision Trees [4], Support Vector Machines [5]
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or Fuzzy Classifiers [6]. However, it is well-known that none
of them is able to outperform the rest in every problem (see [7]
for more details). One way of improving the performance of
single classifiers is to combine several of them by learning an
ensemble of classifiers. In this context, individual classifiers
must be diverse to take advantage of the different answers
provided by the classifiers.

To construct a classifier ensemble, two main aspects needs
to be considered. Firstly, how to generate diversity among
classifiers. Bagging [8] and Boosting [9] are considered the
most popular techniques for this purpose. Secondly, how
to combine the answers provided by the classifiers into a
single output label. Several approaches can be found in the
literature for classifier combination such as weighted vot-
ing, Naive Bayes, Decision Templates or Stacking among
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others [10], [11]. Another type of combination strategy con-
sists of the usage of fuzzy integrals, such as the Choquet [12]
and Sugeno [13] integrals, which are based on an underlying
fuzzy measure that models the relations among the sources
of information to be combined, i.e., the classifiers of the
ensemble. In this paper, we focus on these approaches, where
the construction of the fuzzy measure is the key factor.

In this context, a fuzzy measure models the interactions
among every possible coalition (subset) of classifiers. The
main difficulty when constructing a fuzzy measure is the large
number of coefficients to be estimated (2¥ — 2, being N the
number of classifiers). As a consequence, traditionally in the
literature there has been two different ways for addressing this
issue. 1) Reducing the number of coefficients to be estimated
[13]; 2) Estimating the whole set of coefficients, but obtaining
them indirectly from information obtained from the individ-
ual classifiers or at most pairwise measures between them
[14]. In the field of ensemble classification, the majority of
fuzzy measure construction methods are unsupervised, in the
sense that the desired output of the fuzzy integral is unknown.
In this paper, we review the existing methods in the literature
and classify them analyzing their characteristics into different
categories. Although supervised construction methods exist
[15], their analysis is out of the scope of this paper, and we
leave the comparison between both types of approaches for
future work.

Attending to the drawbacks of existing methods, the objec-
tive of this work is to propose a new fuzzy measure construc-
tion method based on directly estimating the whole set of
coefficients. This method is named as Coalition Performance-
based Measure (CPM) and estimates each coefficient by
efficiently measuring the performance of the corresponding
coalition of classifiers. The novelty of this methodology lies
in the avoidance of both indirect measures and simplifications
of the fuzzy measure. Our hypothesis is that using the full
potential of the fuzzy measure with accurately estimated
coefficients can lead to a final improved performance of the
ensemble.

To show the usefulness of CPM, we develop an exhaustive
empirical study, where we compare the existing alternatives
for fuzzy measure construction in classifier ensembles and
our proposal. These fuzzy measures are evaluated with both
the Choquet and Sugeno integrals. Moreover, we also con-
sider other classical aggregations to complete our study and
show the benefits of fuzzy integral-based approaches. Due
to our previous experience on the topic and the fact that the
importance of aggregation is highlighted in complex prob-
lems, we focus on the challenging framework of imbalanced
datasets [16], [17] and show that the state-of-the-art perfor-
mace can be improved using fuzzy measure-based methods.

The complete experimental study is formed of the sixty six
datasets from KEEL dataset repository [18]. We consider the
UnderBagging ensemble method [19] for generating classi-
fiers and apply the Reduced Error Pruning with Geometric
Mean [20] to obtain the final ensemble. This algorithm is
chosen for being the best performer in previous studies and
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we aim to analyze whether fuzzy measure-based aggregations
are able to improve its performance. The performance of
each method will be measured by the geometric mean (GM)
of the performance over each class due to the nature of the
class imbalance problem. As suggested in the literature [21],
the results will be properly analyzed using non-parametric
stastiscal tests.

The remainder of this paper is organized as follows.
In Section II we recall the main ideas of aggregation func-
tions. Later, Section III introduces ensembles and the class
imbalance problem. In Section IV, existing unsupervised
fuzzy measure construction algorithms are reviewed. Then,
in Section V we present CPM, our proposal for construct-
ing fuzzy measures. Afterwards, we present the experimen-
tal framework in Section VI and the experimental study in
Section VII. We end this paper with the conclusions and
future research lines in Section VIII.

Il. AGGREGATION FUNCTIONS FOR INFORMATION
FUSION
Aggregation functions are known to be an important mathe-
matical tool to deal with information fusion.

Definition 1 [22]-[25]: A mapping f : [0, 1]" — [0, 1]
is called an aggregation function if it satisfies:

¢ boundary conditions: f(0,...,0)=0,f(1,...,1)=1;
« increasing monotonicity: if x; < y; foralli € {1, ..., n},
then f(x1, ..., %) <f1, ..., Yn)

One of the most prominent family of aggregation functions
are averaging aggregation functions or means. An aggre-
gation functions is said to have an averaging behavior
if min(xg,...,x;) < f(x1,...,x,) < max(xp,...,X,)
for every (x1,...,x,) € [0,1]". Recall that averaging
aggregation functions also satisfy the idempotence property,
ie., f(x,...,x) = x for every x € [0, 1]. Prototypical
examples of averaging aggregation functions are the arith-
metic mean, the geometric mean, the median, the minimum
and the maximum. In fact, the minimum and the maximum
are the lowest and greatest averaging aggregation functions,
respectively.

When we deal with real-world problems where an aggrega-
tion function must be used, it is desirable to incorporate some
sources of information in addition to the own inputs to be
aggregated. This problem can be solved by applying a certain
kind of aggregation functions, called weighted aggregation
function. The weighting vector associated to the function
allows to model the importance of individual attribute or
criterion to be fused.

Definition 2: A vector w = (w1,...,wy) is called a
weighting vector if w; € [0, 1]and Y 7, w; = L.

Example 1: The weighted arithmetic mean associated to
the weighting vector w is given by WAM (xy,...,x,) =
>, wix;. Notice that the weighted arithmetic mean is sym-
metric only if w; = % foreveryi e {1,...,n}.

A wide family of weighted aggregation functions are the
so-called OWA operators.
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Definition 3: Let w be a weighting vector. An OWA opera-
tor OWA,, associated with w is a mapping OWA,, : [0, 1]" —
[0, 1] defined by

n
OWAW(X1, ... X)) = Y wix(i 4
i=1

where x(; denotes the i-th greatest component of the input
(X1, ..., xp).

In this work we will use weighting vectors induced by
increasing quantifiers [26]. An increasing quantifier Q is a
mapping Q : [0, 1]* — [0, 1] satisfying Q(0) = 0, O(1) =1
and Q(x) > Q(y) whenever x > y. Then, given an increasing
quantifier Q, the weighting vector w induced by Q is given,
foreveryi e {l,...,n}, by

-oft)-o(5)

Example 2: The following picewise linear functions are
examples of increasing quantifiers:

2x x<0.5 0 x<0.5
Quin(x) = 1 oth. Qamap(x) = :2)6 1 oth

0 x <03
Omot(x) = {2x—-06 03 <x<038

1 oth.

In fact, these quantifiers are well-known in linguistic mod-
eling (see, for example [27]) and the corresponding OWA
operators induced by Q are known as at least half, as many
as possible and most of them, respectively.

When we deal with complex problems of information
fusion, inputs to be fused (criteria, attributes or sources of
information) may not be totally independent. This means that
we can have either positive or negative interaction among
inputs. Under these circumstances, weighted aggregation
functions are insufficient. However, a more adequate tool
to model these interactions are fuzzy (non-additive) mea-
sures [28], [29] and aggregation functions based on these
measures.

Definition 4: Let N' = {1, ..., N}. A discrete fuzzy mea-
sure is a set function m : 2V — [0, 1] satisfying boundary
conditions m(#) = 0, m(N) = 1 and monotonicity with
respect to the inclusion, i.e. m(A) < m(B) whenever A C B
forevery A, B C N.

For defining a fuzzy measure, it is necessary to define its
2V — 2 components. This may be a complex task when N
is large enough. To simplify this problem, some reformu-
lations have been given in the literature, being the Sugeno
A-measures [13] one of the most well-known examples.

Definition 5: Let . € (—1, 00). We say that m : N
[0, 1] is a Sugeno A-measure if, for every A, B € N with
ANB = @, we have that m(AUB) = m(A)+m(B)+Am(A)m(B).

The most widely used fuzzy measure-based aggregation
functions are the Choquet and the Sugeno integrals.
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Definition 6: Given a fuzzy measure m : N [0, 1],
the discrete Choquet integral is given by

N
Cu(x1, ..., xN) = Z(xn(i) — Xo(i—1)m({o (@), ..., o)}

i=1

where o : N’ — N is a permutation such that x5(1) < ... <
Xo vy and x4y = 0 for convention.

Remark 1: Notice that if m is additive, i.e. for any A, B C
N,ANB = (¥ then m(A U B) = m(A) + m(B), the Choquet
integral is the weighted arithmetic mean. If m is symmetric,
ie. forany A,B C N, m(A) = m(B) whenever |A| = |B|,
then the Choquet integral is an OWA operator. Finally, if m
is symmetric and additive, then the Choquet integral is the
arithmetic mean.

Definition 7: Given a fuzzy measure m : N [0, 1],
the discrete Sugeno integral is given by

Sp(X1. . xy) = H{:\EIIIX min{xg iy, m((o ), . ... s (NI}

where o : N’ — N is a permutation such that x5y < ... <
xﬂ(N).

IIl. ENSEMBLES AND THE CLASS IMBALANCE PROBLEM
This section introduces the concept of ensembles, the prob-
lem of class imbalance in classification and the ensembles
specifically designed for this problem.

A. CLASSIFIER ENSEMBLES

An ensemble in Machine Learning refers to a set of clas-
sifiers, which are used together to solve a problem with
the assumption that their combination will lead to better
performance than using a single classifier. One key aspect
in classifier ensembles is diversity, since there is no way to
improve the performance other than having complementary
classifiers in the ensemble. For this reason, different ways
for creating diverse classifiers out of the same original data
have been proposed [10], [17]. Once the ensemble has been
built, new examples are classified by querying all the classi-
fiers and aggregating their outputs to obtain the final output
label. Other terms used to refer to this combination step are
classifier fusion or aggregation [10]. This phase is the main
focus of this work, although we first recall the most common
ways for creating diverse ensembles before going through
their combination.

Classifier learning algorithms focus on building classifiers
with a good trade-off between accuracy and diversity. Among
them, the most well-known algorithms are AdaBoost [9] and
Bagging [8]. In both of them, classifiers are learned strate-
gically by altering the dataset used to learn each classifier.
These algorithms require the usage of a weak learner to build
the set of classifiers (a classifier in which small changes
in data produces big changes in the model). In this work,
we focus on Bagging because all the classifiers obtained are
a priori similar and hence, no specific weights are assigned
to the classifiers (as in Boosting).
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Bagging (boostrap aggregating) was proposed by
Breiman [8] as a simple but effective way to build ensem-
bles. In this method, diversity is achieved by training each
classifier with a different bootstrapped replica of the original
dataset. Hence, a new dataset is build for each classifier
by randomly drawing (with replacement) instances from the
original dataset. This resampling mechanism clearly requires
the usage of a weak learner to achieve diversity. Notice that
the original size of the dataset is usually considered for the
resampling, which results in approximately 63.2% of the
instances being present in each bag. The pseudo-code of
Bagging is shown in Algorithm 1.

Algorithm 1 Bagging
Input: S: Training set; N: Number of iterations; n: Bootstrap
size; I: Weak learner

Output: Bagged classifier:
N

1
arg Teaéc (17 ch,-(yIX)>

Class(x) =

where p(ylx) € [0,1]

1

is the probabiﬁ%y of x belonging to class y given by the
classifier c;
: fori=1toNdo
S; <— RandomSampleReplacement(n, S)
ci < 1(S))
end for

bl A

Bagging belongs to classifier fusion strategies and hence,
the outputs of all the induced classifiers are taken into account
to classify new instances. The weighted majority voting is
commonly used for aggregation, where the confidences given
by the classifier are considered. Therefore, the final class is
decided from the following formula:

1 N
Class(x) = arg max (ﬁ EpCi(y|x>) ©)

where p,(y|x) € [0, 1] corresponds to the output probability
given by classifier ¢; for class y and C is the set of classes
(the number of classes |C| will be denoted by C). Notice that
classifiers not giving probabilities as outputs but confidence
degrees in favor of each class can also be used (which would
substitute p., (y|x)). In this case, the confidence degrees given
by each classifier should be properly calibrated so that none
of them dominates the aggregation. Otherwise, if we assume
that the output probabilities are discrete (either O or 1), then
the majority voting strategy would be recovered.

The key point in this paper is that instead of using this
simple averaging formula, one could chose to substitute the
aggregation by any of the functions presented in the pre-
vious section. In fact, one can take the interactions among
classifiers into account in the aggregation phase, instead of
simply averaging their outputs. In this work, besides from
proposing a new way for constructing fuzzy measures for
classifier combination, substituting Eq. 2 by the Choquet or
Sugeno integrals, we will develop an in depth experimental
comparison of the performance of different aggregations and
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different ways of creating fuzzy measures. The experimental
framework will consider the problem of imbalanced datasets.
We focus on this scenario because the importance of aggre-
gation is highlighted in complex problems such as this one.

B. THE CLASS IMBALANCE PROBLEM

Imbalanced datasets pose a challenging scenario to classifier
learning algorithms [30]. By definition, a dataset is said to
be imbalanced whenever the number of examples from the
different classes are not nearly the same. Focusing on two-
class problems, the issue is that the class of interest is usually
under-represented in the dataset [16]. Unfortunately, standard
classifier learning algorithms tend to favor the majority class
due to their accuracy-oriented design.

To deal with this situation, four main types of approaches
are usually considered: algorithm adaptations [31], data pre-
processing [32], cost-sensitive methods [33] and ensemble-
based methods [17]. This paper focuses on the last ones,
which mainly consists of the combination of a traditional
ensemble learning method with one of the other types of
approaches, especially data preprocessing and cost-sensitives
methods. Accordingly, ensemble-based approaches can be
further divided into three main classes, depending on which
ensemble learning algorithm they are based on (Bagging,
Boosting or Hybrid). A thorough empirical analysis of these
solutions was carried out in [17], where the combination
of Bagging and random undersampling, named as Under-
Bagging, stood out. Some of these ensemble methods were
further developed in [20], where classifier pruning was con-
sidered to improve the final performance and yet Under-
Bagging (coupled with reduced error pruning) achieved the
best results. For this reason, this is the method considered
for our experimental study as it is the state-of-the-art on
ensembles for imbalanced datasets. We want to highlight this
fact because we will check whether fuzzy measure-based
aggregations are able to make a difference when consider-
ing highly optimized ensembles. Notice that the better the
ensemble and its base classifiers are, the less the margin for
improvement due to the aggregation is. Hence, different from
other works, we will study the behavior of aggregations in a
challenging scenario.

In the following, we briefly recall UnderBagging
with Reduced Error Pruning with Geometric Mean
(UnderBagging RE-GM). UnderBagging is the ensemble
learning algorithm in charge of constructing the pool of
classifiers. Since a pruning method is used afterwards (RE-
GM), more than the necessary number of classifiers are
generated. Following [34] and [20], 100 classifier are gen-
erated in this work. Notice that we will fully replicate the
experimental study in [20] so as to carry out a fair comparison
with the state-of-the-art methods. After classifier generation,
the pruning method is applied to the reduce the total number
of classifiers to 21 in this case (as recommended in [34]
and in the same way as in [20]). The two components of
UnderBagging RE-GM works as follows:
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o UnderBagging: It is a slight modification of Algo-
rithm 1, where the random sample with replacement in
line 2 is substituted by a random undersampling of the
dataset. That is, each bag is created by randomly remov-
ing majority class instances from the dataset until the
same number of majority and minority class instances
are present.

e Reduced Error Pruning with Geometric Mean
(RE-GM): Pruning in ensembles refers to the elimination
of classifiers that do not contribute to the ensemble
performance (redundant classifiers). In RE, rather than
eliminating classifiers, the final ensemble is formed
by adding classifiers from the pool one by one. First,
the classifier achieving the lowest classification error is
added. Then, in each iteration, classifiers are ordered
by the performance they achieve after being added to
the sub-ensemble. Again, the one achieving the largest
improvement is finally added. In the particular case of
RE-GM, the GM performance measure is considered to
decide which classifier is added in each iteration. This
measure is explained afterwards.

In any Machine Learning task, properly evaluating the
quality of a solution becomes a key factor. When dealing with
imbalanced datasets this is not an exception. Furthermore,
specific evaluation criteria are required, since the standard
accuracy measure is no longer valid becausse it does not
reflect the quality of the prediction over both classes. Com-
monly, the results of a classifier over a dataset are gathered in
a confusion matrix (Table 1). From this matrix, several class-
wise measure are obtained such as the True Positive Rate
(TPygte = TPE—PFN) and the True Negative Rate (TN,y =
FPTFNTN)’ which allow one to measure how well the classifier
performs in each class. However, considering them separately
easily leads to incorrect conclusions as their maximization
becomes trivial. For this reason, one usually prefers to assess
the performance of the classifier over both classes simultane-
ously. To do so, the geometric mean (GM) [31] is widely used

(Eq. (3)).

TPrate : TNrate . (3)

TABLE 1. Confusion matrix for a two-class problem.

Positive prediction

True Positive (TP)
False Positive (FP)

Negative prediction

False Negative (FN)
True Negative (TN)

Positive class
Negative class

IV. RELATED WORK ON ENSEMBLE AGGREGATION

BY THE CHOQUET INTEGRAL

In the literature it is not difficult to find a variety of data
mining and machine learning algorithms where the Cho-
quet integral plays an important role. For example, in [35]
several applications of the Choquet integral in data mining
problems are presented. However, this review does not con-
sider many other applications, e.g. classification and patter
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recognition [36], [37], bioinformatics [38], fuzzy rule-based
systems [39]-[41], preference learning [42], remote sensing
[43], or ensemble reduction [44] and ensemble construction
[45], [46], as it is the case of this paper.

The usage of the Choquet integral as an information fusion
tool necessarily requires the construction of a fuzzy measure.
We can have two main methods for constructing or learning
the associated fuzzy measure: supervised and unsupervised
learning. The former consists of estimating the coefficients
by some optimization algorithm, where target outputs of the
Choquet integral are provided and a set of restrictions must
be kept, usually monotonicity constraints. In other words,
these methods usually start from a predefined set of input vec-
tors together with their corresponding (ideal) output and the
objective consists of estimating a fuzzy measure whose corre-
sponding Choquet integral fits the given outputs provided the
input vectors. In fact, this can be seen as a regression problem
where the underlying function is the Choquet integral. The
optimization procedure to estimate the coefficients of the
fuzzy measure may vary among neural networks [47], genetic
algorithms [48], linear or quadratic programming [49], [50]
or gradient-based algorithms [51], [52].

Unsupervised learning methods are the second major pro-
cedures to deal with the estimation of the coefficients of
the fuzzy measure. In this sort of methods, there is no
ideal outputs to be fit, but generally some prior knowl-
edge about the information sources that conduct the learning
strategy.

If we restrict ourselves to the specific problem of this
paper, we recall that our aim is to combine the outputs
of an ensemble method by using a Choquet integral and
therefore, the associated fuzzy measure must be computed
to model the interactions among the classifiers in the ensem-
ble. In the literature, the mainstream methodologies for
constructing the fuzzy measure for ensemble of classifiers
are unsupervised. Then, depending on the prior knowledge
that conducts the construction, we distinguish two main
groups: 1) entropy-based construction algorithm, where the
probability distribution given by the classifiers induce the
coefficients; 2) classifiers’ knowledge-based construction
algorithms, where the fuzzy measure is induced by some per-
formance measures, that vary between accuracy, confidence
or diversity measures of the classifiers of the ensemble [53].

Aside from the information that conducts the construction
algorithm (entropy or classifiers’ knowledge), the way the
classifiers’ predictions are aggregated also influences the
estimation of the fuzzy measure. Here, we can distinguish
two different scenarios: dynamic and global (or static). In the
dynamic scenario, the instance to be classified affects, up to
some extent, the aggregation procedure, while in the global
case, the same aggregation method is applied for the whole set
of instances. Therefore, in the dynamic aggregation based on
the Choquet integral, a fuzzy measure must be constructed for
each instance. On the contrary, global aggregation requires a
single fuzzy measure for the whole classification problem.
In the next section, we will see that entropy-based methods
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are dynamic, whereas classifiers’ knowledge-based methods
can be either dynamic or global.

Remark 2: Even though many papers in the literature deal
with dynamic aggregation of classifiers using the Choquet
integral, we may argue that formally this is not a pure Choquet
integral-based procedure. In this sort of methods, the coeffi-
cients that take part in the aggregation are exclusively esti-
mated, since the rest are only necessary for a formal definition
of the fuzzy measure. However, we think that this proceeding
fits better with the name of dynamic OWA or OWA dependent
(see for example [54]-[56]) operators, rather than with the
Choquet integral. However, since these works appear in the
literature with the name of Choquet integral, we have taken
into consideration for this study.

In the next subsections, we recall the most prominent
methods we have found in the recent literature about the con-
struction of a fuzzy measure for aggregating classifiers, both
from the entropy-based approach and from the classifiers’
knowledge-based approach. In the latter, we also distinguish
between dynamic and global methods.

A. ENTROPY-BASED CONSTRUCTION ALGORITHMS

We will call entropy-based methods those whose construction
method depends on the probability distribution given by each
classifier for a specific instance of the problem, assuming that
the lower the entropy of the distribution is, the more accurate
the classifier is. The most recent proposal is given in [57],
where the proposed construction method solves several com-
plexity issues of previous entropy-based approaches, such as
[58] and [59] (see also [60]). Essentially, it starts setting the
coefficients of the singletons (sets whose cardinality is one)
to be inversely proportional to the Shannon’s entropy of the
probability distribution of the considered classifier for the
given instance. Later, the coefficients of those classifiers with
very high measure value that strongly disagree with the rest
of classifiers (those whose value is 1.5 times greater than the
average value of the singletons) are truncated, since these
classifier are treated as outliers. The rest of the coefficients
associated with any combination of classifiers are computed
in an additive way. The pseudocode of this approach is given
in Algorithm 2.

B. CLASSIFIERS’ KNOWLEDGE-BASED CONSTRUCTION
ALGORITHMS

We will denote by classifiers knowledge-based methods those
whose construction method depends on some prior knowl-
edge or heuristic about the classifiers of the ensemble, which
can be either characterized by a confidence degree, by a
measure of diversity among classifiers, or by both simulta-
neously [14].

While the entropy-based methods are inherently dynamic,
in this subcategory we can distinguish between dynamic and
global aggregation of classifiers. For this reason, for some
of the explained methods we will distinguish between its
dynamic and global version.
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Algorithm 2 EB
Input: x: instance of the problem; N: Set of classifiers;
Qutput: fuzzy measure: m : N [0, 1] associated to the
instance x.
: fori =1toNdo
m({i}) < — 3" cc Pa;1%) log(pe; (1))
end for
Mgy < max;=p, .y m({i})
: fori =1toNdo
m({i}) < mpmax — m({i})
end for
M« & 3% md{ih
0« {ilm({i}) < 1.5M}
LMy = Licomi))
: fori =1toNdo
if m({i}) > 1.5M then
m({i}) < M,
end if
. end for
: for A € N do
m(A) < ZieA m({i})
: end for
: Normalize m to have m(\N) = 1

R e A A S ol S

— s = e e e e e

1) INTERACTION-SENSITIVE FUZZY MEASURE (ISFM) [14]

In this algorithm the fuzzy measure is constructed by means
of a confidence vector collecting the confidence degree of
each individual classifier, namely x = (x1,...,xy) and a
pairwise similarity measure, namely S : N' x N — [0, 1],
whose objective is to approximate a measure of how similar
(inversely, how dissimilar) two classifiers of the ensemble
are. Then main idea under this algorithm is to construct a
fuzzy measure where the coefficients of each coalition is
given by the sum of the individual confidences weighted by
the diversity of the classifiers among the group. Thus, when
adding a new classifier to the coalition, if it is very similar to
the existing ones, the coefficients remain stables, while if the
incorporation increases diversity, the new coefficient of the
fuzzy measure also increases.

o Dynamic ISFM (D-ISFM): the dynamic behavior of
ISFM comes from the fact that, for each instance,
the specific arrangement of the probabilities to be aggre-
gated must be known in advance, thus generating dif-
ferent fuzzy measures depending on the explicit input
vector. The construction of the fuzzy measure starts with
the coefficient of the classifier predicting the highest
probability, whose value is set to its corresponding confi-
dence degree. Later, the second classifier is added to the
coalition and the corresponding coefficient is calculated.
The process is repeated until the whole set of classifiers
is considered. The pseudocode of this approach is given
in Algortithm 3.

« Global ISFM (G-ISFM): in this approach, instead of
considering the specific ordering induced by the input
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Algorithm 3 D-ISFM

Algorithm 5 D-MHM

Input: x: instance of the problem; N: Set of classifiers; «:
confidence vector; S: similarity measure.
QOutput: fuzzy measure: m : N [0, 1] associated to the
instance Xx.
1: 0 <« permutation such that pc,yx) < -
2 m({o(m)}) < Kom)
3: fori=n—-1,...,ido
4 m({o(i),...,on)}) <~ m(fo(i+ 1),...,0(n)}) +
Koy (1 —maxj_,, | S(o(i), o(k))
: end for
6: Normalize m to have m(N) = 1

= Peoy(ylx)

W

vector of probabilities, the ordering is induced by
the confidence of classifiers that are being taken into
account. This means that the classifier with the highest
confidence is the “original” classifier, and the rest of
classifiers are later added to the coalition, thus generat-
ing an additive fuzzy measure. The pseudocode of this
approach is given in Algortithm 4.

Algorithm 4 G-ISFM
Input: A: Set of classifiers; «: confidence vector; S: simi-
larity measure.

QOutput: fuzzy measure: m : N [0, 1].
1: 0 < permutation such that k5(1) < - -
2. fori=1,...,Ndo
3 m({o()}) = ko@) (1 — MaXj=g(i+1,....001) SO (D), )
4. end for

5. for each A € N do

6

7

8

= Ko@)

m(A) < 3 icq m({i})
: end for
: Normalize m to have m(N) = 1

2) MODIFIED HULLERMEIER MEASURE (MHM) [14], [61]
The measure proposed in this approach was originally given
in [62] for a modification of the K-NN algorithm using the
Choquet integral, and later adapted in [14] for the aggregation
of classifiers. This algorithm starts from a given additive
fuzzy measure m’ constructed from the confidence degree
of each classifier and transforms it into a non-additive mea-
sure by considering the diversity of classifiers. Here again,
the diversity of the coalitions controls the additivity of the
fuzzy measure by a parameter .

o Dynamic MHM (D-MHM): as in D-ISFM, the spe-
cific arrangement of the probabilities predicted for an
instance is considered. We start with the classifier
predicting the highest probability, whose correspond-
ing coefficient is inherited from the additive measure
(confidence degree). As we add new classifiers, the coef-
ficients are calculated by weighting the additive coef-
ficient (sum of confidence degrees) with a measure
of the “relative diversity” of the set of classifiers.
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Input: x: instance of the problem; N: Set of classifiers; «:
confidence vector; S: similarity measure; o € [0, 1] :

parameter.
Output: fuzzy measure: m : N [0, 1] associated to the
instance x.
Construct additive fuzzy measure m’
for A € N do
m'(A) =3 ieq ki
end for

Normalize m’ to have m'(N) = 1
ds <= max;jen S(i, j) = 1 — minjzien S(i, J)
o < permutation such that pc, ,ylx) <+ < Peyy(ylv)
m({o(n)}) < m'({o(n)})
fori=n—1,...,ido
A<« {o(i),...,on)}
div(A) < m Zi<j_eA 1 —S8G,))
12: rdiv(A) < 2 - div(A) -ds — 1
13: m(A) < m'(A)(1 + « - rdiv(A)})
14: if m(A) > m({{o(i+1),...,0()}) then

R e A A i

—_ =
_ o

15: mA) < m({o(i+1),...,0(n)})
16: end if
17: end for

18: Normalize m to have m(N) = 1

After this step, an adjustment for satisfying mono-
tonicity is performed. The pseudocode is given in
Algorithm 5.

« Global MHM (G-MHM): the static approach does not
consider any arrangement, since the whole measure must
be constructed. Therefore, an extra step for enforcing
monotonicity of the fuzzy measure must be added to the
proposal. Observe that the measure constructed by this
method is not an additive measure. The pseudocode is
given in Algorithm 6.

3) OVERLAP INDEX-BASED FUZZY MEASURE (OIFM) [63]
This algorithm was originally given in [63] for constructing
fuzzy measures for fuzzy rule-based classification systems.
However, it can be easily adapted for calculating a fuzzy
measure associated with the confidence degree of each clas-
sifier. The construction method is based on the use of overlap
indices (see [64] for more details). These indices allow to
measure the degree of overlaping between two fuzzy sets,
assuming that the higher the membership degree of an ele-
ment to both sets, the higher the overlap. For this purpose,
the overlap index tries to measure the importance of the
coalition in terms of confidence degree. Therefore, the higher
the confidences of the coalition, the higher the value of its
coefficient. This algorithm is global and we do not consider
any dynamic counterpart. Moreover, the resulting measure is
non-additive. The pseudocode can be seen in Algorithm 7.
Finally, in Figure 1 we show an schematic summarization
of Algorithms 1-6, where the taxonomy allows to visually
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Algorithm 6 G-MHM

Input: N: Setof classifiers; m’ : N [0, 1] original fuzzy
measure; S: similarity measure; o € [0, 1] : parameter.

Output: fuzzy measure: m : N [0, 1].

11 ds < max;xjen S, j) = 1 — minjzjenr S, )

2: foreachA € N do

3 if |A| < 1 then

4 div(A) < 0

5: rdiv(A) < 0

6

7

8

9

else
div(A) < ot Xicjeal = 8G.J)
rdiv(A) < 2 - div(A) -ds — 1
end if
10: m(A) < m'(A)(1 + o - rdiv(A))
11: m(A) = maxpca m(B)
12: end for
13: Normalize m to have m(N) = 1

Algorithm 7 OIFM

Input: A Set of classifiers; O : [0, 11V x [0, 1]V — [0, 1]
overlap index; k: confidence vector;
Output: fuzzy measure: m : N [0, 1].
1: Construct fuzzy set E = {(i, x;)|i = 1, ..., N} associated
to k
: foreachA € N do
Erx={G0li=1,...,N}
for eachi € A do
EA() = ki
end for
m(A) < O(E, Ey)
end for
: Normalize m so that m(N) = 1

R AR RN

Unsupervised Learning

T

Entropy-based Knowledge-based

ISFM [14] MHM [14], [61]

/\ /

Dynamic Dynamic Static Dynamic  Static Static
EB[57] D-ISFM G-ISFM D-MHM G-MHM OIFM
Alg. 2 Alg.3  Alg.4 Alg.5 Alg.6 Alg. 7

FIGURE 1. Diagram of algorithms for learning fuzzy measures in the
context of ensemble aggregation.

identify the group and behavior (dynamic or global) each
algorithm belongs to.

V. CPM: CLASSIFER PERFORMANCE-BASED MEASURE

Analyzing the fuzzy measures reviewed in the previous
section, one can observe that only G-MHM constructs a
global non-additive fuzzy measure. However, notice that in
this global measure, the interaction among classifiers is a
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mere estimation based on a heuristic considering a pair-
wise similarity measure and a confidence of each individual
classifier. The drawback is that interactions among groups
of more than two classifiers are being estimated indirectly.
Our idea is that we can measure these interactions directly
testing how well they interact. Intuitively, directly measuring
this degree of synergy should lead to a better measure.
Therefore, our main objective in this work is to propose a
methodology to construct a global non-additive fuzzy mea-
sure that is based on directly estimating the quality of each
coalition. Moreover, we want to show that the full potential
behind fuzzy measures can be successfully used, yet effi-
ciently. Our proposal is based on using classifiers’ perfor-
mance over the training set to construct the measure. In this
section, we formalize our proposal for the calculation of
the fuzzy measure, we show an illustrative example of its
behavior and analyze its computational complexity.

A. INTUITION

Our aim with this fuzzy measure is to make each coefficient
to truly reflect how well the classifiers are interacting. That
is, the combination of certain classifiers could lead to a
better solution, whereas adding a new classifier could not
always result in an increase in performance as it may be
expected from its individual performance. Although previous
approaches could perform well in practice, the fuzzy measure
constructed is mainly based on the individual confidence
(which we measure as their performance) of each classifier
and sometimes, either a pairwise measure of similarity or
diversity that is considered to reflect how well a pair of
classifiers may interact. However, they are measuring the
interactions indirectly. The main novelty of the proposed
fuzzy measure is that we are able to measure the interactions
directly from data, by measuring the performance of each
possible subset of classifiers.

The intuition for constructing the fuzzy measure is rather
simple: the value of each coefficient should be conditioned by
the performance of the specific sub-ensemble. Notice that the
performance values cannot be directly used as coefficients as
they will not probably result in a proper fuzzy measure.

For this reason, our construction method of the fuzzy
measure starts from a uniform fuzzy measure my : N
[0, 1] given for every A C AN by my(A) = %. Then,
the construction methods continues level by level (we refer to
the i-th level as every subset A C N with |A| = i). For the first
level, we take the performance of each individual classifier
and we calculate the average performance (obtained by the
arithmetic mean). The value of the fuzzy measure of those
classifiers whose performance is greater than the average
will be increased (with respect to the value of uniform fuzzy
partition). Conversely, those with lower performance will
get their value of the fuzzy measure reduced. This is again
performed for the second level, but now the performance of
each possible pair of classifiers is taken into account, as well
as the average performance of pair of each classifiers. This
process is repeated until the top level is reached.
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B. FORMAL DEFINITION OF THE FUZZY MEASURE
Formally, let A C N represent a subset of classifiers with P4
being be the performance of A in a classification problem. For
each i € {1, ..., n}, define u; as the average performance of
those B € N with |B| = i, that is,

Z Ppg,

BCN,|B|=i

pi=—

where k = () is the number of sets in the ith level of the
measure and g = 0. Let my : {1,...,n} — [0, 1] be the
uniform fuzzy measure. Then, the fuzzy measure we propose
is given by

tanh(100 - (P4 — wa)) )
2n

where tanh : (—o0, +00) — (—1, 1) is the hiperbolic tangent
function given by tanh(x) = ‘;;—z:.

Theorem 1: The mapping m : {1,...,n} — [0, 1] given
in Eq. 4 is a non-additive fuzzy measure.

Proof: Boundary conditions are clear, since Py = o
and Ppnr = uy, yielding m(#) = my(@) = 0 and m(N) =
my(N) = 1. To proof monotonicity, we have that for every
A C B C N,my(B) —my(A) > 1/n. However, due to the
construction method | tanh(100 - (P4 — f4))) — tanh(100 -
(Pg — )| < 1 and, therefore, m(B) —m(A) € [0, 1/n] and
monotonicity holds. ]

Analyzing Eq. (4), we clearly see that m = my only
if P4 = upa for every A € N, which only happens if
all the classifiers perform in the same way. It can be easily
seen that the value of the fuzzy measure associated with
a good combination of classifiers (better than the average
performance) will be increased, and those associated with
bad coalitions will be decreased with respect to the uniform
measure. In fact, we can easily prove the following result

Observe that the construction of the fuzzy measure pro-
posed in this work is not unique, in the sense that we can
generalize the method to consider any other performance
measure. For instance, one can measure the performance of
classifier by means of the accuracy rate (percentage of cor-
rectly classified examples). However, as we have mentioned
earlier, this may not be a proper measure for the imbalance
framework, where the GM may be more suitable.

Finally, in Algorithm 8 we describe the proposed CPM
construction method.

m(A) = my(A) +

C. ILLUSTRATIVE EXAMPLE
We consider a two-class problem (|C| = 2) for which an
ensemble with four classifiers (N = 4) has been learned.
We will use the Choquet integral with the fuzzy measure
obtained to show the final classification result with this mea-
sure. For illustrative purposes, we also consider the classifi-
cation with the arithmetic mean as aggregation to show that
using an adequate fuzzy measure together with the Choquet
integral can lead to better classifications.

Table 2 shows the scores obtained by each one of the
classifiers (namely, Ci, Cp, C3 and C4) for the 10 data
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Algorithm 8§ CPM

Input: A Set of classifiers; P4: accuracy of any coalition
A C N; Performance measure p

Output: fuzzy measure: m : N [0, 1].

for A € N do

AP
mo(A) = S

end for
for A C N do P4 < performance of A according to p
end for
fori=1,...,Ndo
k<)
Ii < § 2BeN.|Bl=i P8,
end for
for A € N do
m(A) _ mU(A) tanh(lOO(zf:lA—MA‘))
: end for

R A A R o S

—_ = =
N e

TABLE 2. Data.

>

Example C1 Cs Cs Cy Yy Uu  Yc
T 029 033 008 093 0 0 0
9 093 0.67 053 004 1 1 1
3 0.68 0.87 0.15 004 1 0 1
T4 058 0.10 040 09 0 1 0
5 069 070 041 019 1 0 1
6 003 0.14 011 003 0 0 0
7 046 0.61 0.76 057 1 1 1
T8 091 0.10 099 024 1 1 1
T9 071 093 025 033 1 1 1
10 096 0.18 0.52 043 1 1 1

instances (examples) in the problem, whose true labels are
given in column y (y,, and yc will be the outputs obtained
using the arithmetic mean and the Choquet integral with the
proposed measure, respectively). Each score represents the
probability of each instance belonging to class 1 (p(y = 1]x),
thus p(y = Olx) = 1 — p(y = 1|x)).

To construct the fuzzy measure, we need to iterate over all
the possible sets of classifiers and compute their performance.
To compute the performance of a set of classifiers, we will use
the arithmetic mean to combine the scores of the classifiers
in the set. Then, the class for each instance is predicted
taking the class corresponding to the largest aggregated value.
Finally, the performance is obtained by comparing the outputs
of the sub-ensemble with the true targets. Following our
example, we compute the performance of the set of classifiers
of cardinality 1, 2, 3 and 4. These performances are presented
in Table 3.

Given the data in Table 3 and Eq. 4, we are now able to
construct the fuzzy measure. To see one of the steps, consider
the value of the fuzzy measure associated with C;. We have
that

m(1) = Z_l1 n tanh(100(0.75859 0.6438))

The final coefficients of the fuzzy measure obtained follow-
ing this rule are presented in Figure 2.

= 0.3750.
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TABLE 3. GM per node and level.

Sub-ensemble GM BGM
C 0.7559 0.6438
Cs 0.8452
Cs 0.7559
Cy 0.2182
C1,Co 1.0000 0.6374
C1,C3 0.8452
C1,Cy 0.4364
Cs,Cs 0.9258
C2,Cy 0.3086
Cs3,Cy 0.3086
C1,C2,Cs 1.0000 0.6716
C1,C2,Cy 0.5345
C1,C3,Cy 0.6172
Ca,C3,Cy 0.5345
C1,C5,C3,Cy 0.6901 0.6901

FIGURE 2. Fuzzy measure obtained applying the proposed construction
method with the performances in Table 3.

Once the fuzzy measure has been constructed (see
Figure 2), we can now predict the class of each of the
instances using the Choquet integral insted of the arithmetic
mean. For example, let us show the process of the third
instance x3. Recall that the probabilities of x3 belonging to
class 1 provided by each classifier are pc, (y = 1|x3) = 0.68,
pc,(y = 1lx3) = 0.87, pc;(y = 1Ix3) = 0.15 and pc,(y =
1|x3) = 0.04. Since
pC4(y = 1lx3) < PC;(}’ = 1]x3)

< Pcl(y = 1|X3) < pCz(y = 1|X3),
the coefficients of the fuzzy measure that play role in the
classification of x3 are m({1, 2, 3, 4}), m({1, 2, 3}, m({1, 2})

and m({2}) (see blue path in Figure 2). Thus, the aggregation
of scores for class 1 is given by

Cn(0.68,0.87, 0.15, 0.04)

= 0.04-m({1,2,3,4))
+(0.15 — 0.04) - m({1, 2, 3}) + (0.68 — 0.15) - m({1, 2})
+(0.87 — 0.68) - m({2}) = 0.53875.
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As mentioned earlier, we also need to compute the aggre-
gation score for class 0. Here, the reversed order implies that
coefficients that are taken into account are m({l1, 2, 3, 4}),
m({1, 3, 4}), m({3, 4}) and m({4}) ((see red path in Figure 2).
Then,

C,n(0.32,0.13, 0.85, 0.96)
=0.13-m({1,2,3,4))
+(0.32 = 0.13) - m({1, 3, 4}) + (0.85 — 0.32) - m({3, 4})
+(0.96 — 0.85) - m({4}) = 0.46125.

Therefore, since 0.53875 > 0.46125, we predict class 1
for the third instance. Notice that in Figure 2, the coef-
ficients applied in the aggregation of class 1 and class
0 are given by the blue and red paths, respectively. Other-
wise, if we had considered the arithmetic mean, we would
had obtained w = 0.435 for class 1, and
0.3240.1340.8540.9 — (0565 for class 0. Since 0.565 > 0.435,
class 0 would had been predicted. Notice that the true class
label is 1 and hence, using CPM the correct output is predicted
as the interactions among classifiers are taken into account,
whereas using the arithmetic mean the example is incorrectly
classified.

Of course, we can perform the same process with the
rest of the examples and the results obtained are presented
in Table 2. We recall that for the aggregation of each instance,
we will consider a different set of coefficients of the fuzzy
measure, which are determined by the ordering of the proba-
bility vector. We should note that using the arithmetic mean
7 out of 10 examples are correctly classified, whereas the
Choquet integral with the proposed fuzzy measure is able
to correctly classify all the examples. Obviously, this is an
illustrative example and the benefit of Choquet-based aggre-
gations should be appropriately tested with real-world prob-
lems, which is done in the empirical study in Section VIIL.

D. COMPUTATION COMPLEXITY

Although computational capacity increases continuously,
the computational complexity of the algorithms should be
reduced to the minimum to increase their applicability. In our
case, CPM has a complexity of O(2V |X|), where |X | refers to
the number of examples in the dataset. Notice that 2V coeffi-
cients needs to be estimated (as in the rest of fuzzy measure-
based methods) and the performance should be computed
for each possible combination (complexity of |X|). However,
notice that this process is only carried out once for global
methods, whereas in dynamic ones it is performed for each
instance. Anyway, recall that for dynamic methods the whole
fuzzy measure need not be estimated. With respect to global
methods such as G-ISFM and G-MHM, complexity is the
same for larger number of classifiers (N), since |X| can
be disregarded. In the case of lower number of classifiers,
G-ISFM and G-MHM compute pairwise similarities for all
pairs of classifiers and hence, complexity is Q2N + |X|?).
Although more complex, our method takes advantage of more
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FIGURE 3. Time (s) requirements for constructing a fuzzy measure with
CPM for varying number of classifiers and dataset sizes (100, 1000 and
10000 examples).

information as described earlier. Finally, recall that in global
methods the fuzzy measure is estimated just once in the
training procedure.

In Figure 3, we provide a study of the time required for
the computation of the fuzzy measure with CPM for varying
number of classifiers (from 3 to 21) and dataset sizes (100,
1000 and 10000 examples). Code is written in Python and
only the code for computing the performance is slightly
optimized with numba (no GPU or parallel approaches have
been considered). As expected, an exponential increase in the
computational complexity is found with greater number of
classifiers, whereas complexity scales linearly with greater
number of examples. Nevertheless, we want to stand out
that all the previously proposed fuzzy measure construction
methods were tested with much less classifiers in the ensem-
ble than the number of classifiers we use in our experimen-
tal study which is 21. Additionally, one should take into
account that methods for fuzzy measure compression [49]
exist, which can help reducing the computational burden.
Moreover, estimating only the necessary coefficients would
highly improve the times required for estimating the fuzzy
measure, although the usage of these optimizations is out of
the scope of this paper.

VI. EXPERIMENTAL FRAMEWORK

In this section, we introduce the experimental framework
considered for the empirical study in the next section.
We first introduce the general details of our framework: the
datasets considered, the base classifier for the ensemble,
its parameters, performance measures and statistical tests
(Section VI-A). Then, we summarize the aggregation meth-
ods selected for the experiments and how their parameters are
obtained in Section VI-B. Finally, Section VI-C presents our
research questions and details how we aim to answer them
with the experiments carried out.

A. GENERAL SETTINGS

We have considered the set of sixty-six imbalanced datasets
from KEEL dataset [18], which is a commonly considered
benchmark for evaluating classifiers for the class imbal-
ance problem [17], [20]. For each dataset, the total number
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TABLE 4. Summary description of the imbalanced datasets
considered in this study.

No. Data-sets #Ex.  #Atts. IR No.  Data-sets #Ex.  #Atts. IR
1 glassl 214 9 1.82 34 GlassOdvs5 92 9 9.22
2 ecoli-0_vs_1 220 7 1.86 35 Ecoli0346vs5 205 7 9.25
3 wisconsin 683 9 1.86 36 Ecoli0347vs56 257 7 9.28
4 pima 768 8 1.87 37 Yeast05679vs4 528 8 9.35
5 irisO 150 4 2 38  Ecoli067vs5 220 6 10.00
6 glassO 214 9 2.06 39 Vowel0 988 13 10.10
7 yeastl 1484 8 2.46 40 Glass016vs2 192 9 10.29
11 haberman 306 3 278 41 Glass2 214 9 10.39
8 vehicle2 846 18 2.88 42 Ecoli0147vs2356 336 7 10.59
9 vehiclel 846 18 2.9 43 Led7digit02456789vs1 443 7 10.97
10 vehicle3 846 18 2.99 44 Glass06vs5 108 9 11.00
12 glass-0-1-2-3_vs_4-5-6 214 9 32 45 Ecoli0lvs5 240 6 11.00
13 vehicleO 846 18 3.25 46 Glass0146vs2 205 9 11.06
14 ecolil 336 7 336 47 Ecoli0147vs56 332 6 12.28
16 new-thyroidl 215 5 5.14 48 ClevelandOvs4 177 13 12.62
15 new-thyroid2 215 5 5.14 49 Ecoli0146vs5 280 6 13.00
17 ecoli2 336 7 5.46 50  Ecoli4 336 7 13.84
18 segment0 2308 19 6.02 51 Yeastlvs7 459 8 13.87
19 glass6 214 9 6.38 52 ShuttlecOvsc4 1829 9 13.87
20 yeast3 1484 8 8.1 53 Glass4 214 9 15.47
21 ecoli3 336 7 8.6 54 Pageblocks13vs4 472 10 15.85
22 page-blocksO 5472 10 8.79 55 Abalone9vs18 731 8 16.68
23 ecoli-0-3-4_vs_5 200 7 9 56 Glass016vs5 184 9 19.44
24 yeast-2_) 514 8 9.08 57  Shuttlec2vsc4 129 9 20.5
25 ecoli-0-6-7_vs_3-5 222 7 9.09 58 Yeastl458vs7 693 8 22.10
26 ecoli- 4_vs_S 202 7 9.1 59  Glasss 214 9 22.81
S 172 9 9.12 60 Yeast2vs8 482 8 23.10
506 8 9.12 61 Yeast4 1484 8 28.41
1004 8 9.14 62 Yeast1289vs7 947 8 30.56
- 1004 8 9.14 63 Yeast5 1484 8 3278
31 ecoli-0-4-6_ 203 6 9.15 64 Ecoli0137vs26 281 7 39.15
32 ecoli-0-1_vs_2-3-5 244 7 9.17 65 Yeast6 1484 8 39.15
33 _ecoli-0-2-6-7_vs_3-5 224 7 9.18 66 Abalonel9 4174 8 128.87

of examples, number of attributes and IR (ratio between
the majority and minority class examples) are presented
in Table 4. Two-class imbalanced problems were obtained
modifying originally multi-class problems by joining one or
more classes as positive and doing the same for the negative
one. Notice that although we restrict the experimental study
to two-class imbalanced problem, the proposed method is
also applicable to either balanced or multi-class problems.
However, a challenging scenario like this one highlights the
importance of the aggregation in ensembles.

A 5-fold cross-validation scheme has been used to obtain
the results for each method and dataset. We repeat this scheme
5 times in order to account for the randomness of the par-
titioning and the model construction. Hence, each result is
computed by averaging the results over 25 runs.

The performance of the classifiers should be properly
measured as we have already explained in Section III. Conse-
quently, we consider the GM performance measure to evalu-
ate the quality of the methods. We should notice that we have
obtained similar conclusions using the Area Under the ROC
Curve, AUC).

As recommended in the literature [21], we make use of
non-parametric statistical tests to analyze the results obtained.
When comparing a pair of methods, the Wilcoxon test is
considered, whereas the Friedman aligned-ranks test is used
when the comparison involves a group of methods. In the
latter case, when significant differences are found, a post-hoc
test should be performed to check whether the null hypothesis
of equivalence between each method and the selected control
method (the best one) is rejected. We consider Holm’s test for
this purpose.

Since we base our experimental framework on previous
works [20], we consider C4.5 decision tree [4] as base
classifier for our ensemble. With respect to UnderBag-
ging, we recall that we use the variant that performed best
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TABLE 5. Parameters for C4.5 and UnderBagging algorithm.

Algorithm Parameters
C4.5 Prune = True, Confidence level = 0.25
Minimum number of item-sets per leaf =2
Confidence = Laplace Smoothing
UnderBagging Number of final classifiers = 21

Pruning method = RE_GM
Pool of classifiers = 100

in [20], which is considered to obtain state-of-the-art results.
As explained in Section III-B, this variant is UnderBag-
ging_RE. The parameters considered for C4.5 and Under-
Bagging are summarized in Table 5.

B. SUMMARY OF AGGREGATION METHODS AND
PARAMETER ESTIMATION

Our main focus in this paper is on fuzzy measure learning
algorithms applied to classification problems. Accordingly,
we consider all the methods described in Section IV for
fuzzy measure construction, and its application with both the
Choquet and the Sugeno integrals. We do the same with CPM,
the proposed fuzzy measure construction method. Moreover,
we consider its A-measure and additive measure counterparts,
where only the coefficients for the first level (singletons)
are computed from data and the rest of the coefficients are
obtained from them.

Otherwise, we believe that it is also interesting to con-
sider classical aggregation functions in the comparison, both
weighted and unweighted ones, so that we can study whether
the usage of the more complex aggregations can signifi-
cantly improve the most commonly used ones. In these cases,
we need to detail how the parameters for weighted means and
OWA operators are obtained.

All the methods in the empirical study are summarized
in Table 6, where the family of the method, abbreviation
and description are presented. Notice that we assign each
method to a family so that we can carry out intra- and
inter-family comparisons (explained next). We also highlight
whether each method can be categorized as global (G) or
dynamic (D) and, if the method is based on learning a global
fuzzy measure, we also show if the corresponding measure is
additive (4), Sugeno A-measure (A) or non-additive (—).

The first method in Table 6, O (Original), makes reference
to the aggregation used in [20] for UnderBagging_RE. This
aggregation is similar to the AM in spirit, but only the proba-
bilities for the predicted class are summed for each classifier
(not averaged).

The setting-up of the parameters of the weighted aggrega-
tion functions shown in Table 6 is as follows. For the weighted
arithmetic mean, each weight of the corresponding weight-
ing vector is constructed from the normalized performance
obtained by each classifier in the the training dataset. For
example, if Pp, ..., Py are the performance of each of the
N classifiers, then w; = A},D" 5 foralli € {1,...,N}.

=147
Since we focus on 1mbalanced] datasets, we use the geometric
mean (GM) as performance measure in order to better model
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TABLE 6. Methods considered for the comparison.

Family Abb. Description Behavior
Unweighted O Original G
AM Arithmetic Mean G
MED Median G
GM Geometric Mean G
HM Harmonic Mean G
MIN Minimum G
MAX Maximum G
Weighted WAM Weighted Arithmetic Mean G
WGM  Weighted Geometric Mean G
WHM Weighted Harmonic Mean G
Quin OWA using Quin D
Qumap OWA using Qamap D
Qmot OWA using Qmot D
Choquet Cn Choquet using CPM G(—)
Cns Choquet using additive CPM G(+)
Cux Choquet using A-measure G(N\)

Comrm Choquet using OIFM measure G(—)
Choquet using G-ISFM measure ~ G(+)
Choquet using D-ISFM measure D

Co.1sem
Cp.1sem
Cp.mum  Choquet using D-MHM measure D

Cg.mum  Choquet using G-MHM measure  G(—)

Cgp Choquet using EB measure D
Sugeno Sm Sugeno using CPM G(—)
Sm+ Sugeno using additive CPM G(+)
S Sugeno using A-measure G(M\)
Soirm Sugeno using OIFM measure G(—)
Sgasem  Sugeno using G-ISFM measure  G(+)
Spasem  Sugeno using D-ISFM measure D
Sp-mum  Sugeno using D-MHM measure D
Sc-mum  Sugeno using G-MHM measure  G(—)
SeB Sugeno using EB measure D

the quality of each classifier. Notice that in this case, the indi-
vidual quality of each classifier is only taken into account, and
no information is added on how they interact with each other.
With respect to OWA operators, each weighting vectors are
induced by the fuzzy quantifiers shown in Example 2.

For fuzzy measure-based methods, classifier confidence
and performance are considered to be the same value and
are given by the GM value obtained in the training set.
We consider the GM as we are dealing with class imbalance
problems. This score is obtained from training set perfor-
mance as it is done for classifier pruning [20]. Notice that
further dividing the training set into two sets for training
and fuzzy measure coefficients’ estimation leads to a loss of
performance of the ensemble that cannot be recovered by the
aggregation. For CPM, we will also consider its additive and
A—measure [65], [66] counterparts. In these cases, we only
need to establish the first level of the fuzzy measure, since the
rest of the fuzzy measure can be derived from them. To have
a fair comparison, the first level of the fuzzy measure will
be obtained in the same way as in the proposed CPM fuzzy
measure.
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Cn 67.09
[ 115.82 0.0000
Cone 115.59 0.0000
- 1.0000 [ 158870
149.28 AM
[ | | 04013 | 18413 MED
1.0000 | _150.61 GM
05161 0.0699 | 20452 HM
0.1335 0.0000 | 386,50 MAX
Cossem 20250 0.7091 0.0000 | 386,50 MAX
171.32| 0.5161 0.0000 | 38650 MIN
Cowim 110600
Cowm 110500 [ 0.9971
1482.00 1679.00 532.00 1105.50
Corrm 729.00 | 0.0162 0.0002 1.0000| 1105.50
s, 10017 | 1.0000 Cm 1.0000 [ 181.86 WAM
Sen 98.46 07750 | 20138 WGM
S 99.87 1.0000 0.0000 | 26556 WHM
175.48 Qup
1.0000 |  175.48 Qupp
1.0000 | 191.23 Qpet

0.1618
0.2491
0.8400
0.8400

Sp-MHM 1072.50

S6-MHM 1138.50

Soirm

FIGURE 4. Hierarchical statistical study comparing the fusion functions in each family and the best performers of each family for each performance

measure using Friedman Aligned ranks test.

C. RESEARCH QUESTIONS AND DESCRIPTION

OF THE EXPERIMENTS

With the empirical study, we want to answer siX main
questions:

o Can global non-additive fuzzy measures outperform
its simpler counterparts? (A-measure and additive
measure).

¢ Do dynamic methods for fuzzy measure estimation per-
form better than global ones?

o Is CPM capable of improving existing alternatives?

o Which fuzzy integral performs better? (Choquet vs.
Sugeno).

« Are fuzzy measure-based methods able to significantly
improve the performance of classical aggregation func-
tions?

« Can the usage of fuzzy measures allow one to improve
the state-of-the-art results on ensembles for classifica-
tion of imbalanced data?

We will perform a hierarchical empirical analysis of the
results obtained to answer this questions one by one. Notice
that all of them are relevant questions. With the first one,
we will analyze whether the flexibility of a global non-aditive
fuzzy measure really allows for an improvement in the final
classification accuracy (Section VII-A). Similarly, we focus
on comparing global and dynamic approaches and looking for
the best existing alternative (Section VII-B). One can expect
a better performance from dynamic approaches due to their
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greater adaptability to each example. However, as already
mentioned, we believe that they are more like ‘““dynamic
OWASs” rather than fuzzy measures. Afterwards, we focus
on evaluating the quality of our proposal (Section VII-C)
and compare the two most widely used fuzzy integrals
(Section VII-D). Finally, we will test whether fuzzy measure-
based approaches are able to overcome classical aggregations
in this task, checking if they are also able to improve state-of-
the-art performance. (Section VII-E)

VII. EXPERIMENTAL STUDY

In this section, we carry out the empirical study aiming to
answer the questions raised in Section VI-C. Before going
through them one by one in the next sections, we first present
the testing performance of each method in Table 7. One key-
point in these results is that their differences are only due
to the aggregation method considered. All of them get the
same outputs from the base classifiers of UnderBaggingRE
and the only difference among them is how these outputs
are combined. This allows us to only focus on the differ-
ences of classifier aggregation, leaving apart other issues
that could be caused by random effects in the ensemble
construction. As mentioned earlier, we should notice that
the same conclusions holds using other standard metrics for
class imbalance problems such as AUC, but we focus on GM
for brevity.
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TABLE 7. Average GM score of each method for each dataset.

Unweighted Weighted Choguet Sugeno
Dataset o AM  MED  GM HM  MAX MIN  WAM WGM WHM OWAun OWAunay OWAuo C Cy Cm+  Cep  Cp-rskm Co-rsrm Co-mmm Co-mnm Corrm Sm Sa Sw+  Sep  Sp-isrm Sc-1sFv Sp-mum Sc-mum Sorrm
glass 07880 0.7834 07832 07775 07791 07451 07451 07812 07768 07809 07834 07834 07843 07812 07854 0.7854 07731 07798 07797 07809 07809 07820 07832 07887 07887 07814 07810 07845 07857 07857  0.7874
ecoli-0_vs_I 09782 09817 09767 09803 09796 09707 09707 09817 09803 09796 09817 09817 09782 09817 09824 09824 09803 09776 09708 09739 09739 09817 09767 09795 09795 09768 09783 09708 09718 09718  0.9767
wisconsin 09713 09705 09707 09695 09668 09637 09637 09705 09692 09668 09705 09705 09712 09705 09699 09699 09703 09698 09548 09701 09701 09701 09707 09703 09703 09706 09686 09546 09712 09712 09720
pima 07490 07507 07475 07514 07511 07468 07468 07516 07509 07504 07507 07507 07492 07516 07481 07481 07467 07497 07386 07488 07488 07511 07475 07506 07503 07459 07455 07413 07453 07453 0749
iris0 09897 0.9897 09897 0.9897 0.9897 0.9897 0.9897 09897 0.9897 09897 09897 09897 09897  0.9897 09897 09897 09897 09897 09897 09897 09897 09897 09897 09897 09897 09897 09897 09897 09897 09897  0.9897
glass0 08459 0.8368 0.8435 08331 0.8216 07824 07824 08391 0.8339 08220 08368 08368  0.8425  0.8370 0.8415 08415 0.8378 08345 08324 08371 08371 0.8364 08435 08469 0.8454 08377 08421 08253 08403 08403  0.8466
yeastl 07341 07282 07320 07307 0.7251 07093 07093 07286 07299 07252 07282 07282 07319 07292 07296 07296 07304 07282 07252 07294 07294 07294 07320 07321 07323 07294 07322 07253 07325 07325 07299
vehicle2 09747 09730 09749 09691 09513 09251 09251 09733 09691 09513 09730 09730 09738 09736 09725 09725 09696 09718 09582 09726 09726 09731 09749 09731 09731 09713 09739 09580 09738 09738  0.9739
vehiclel 07924 07915 07927 07899 07789 07484 07484 07924 07891 07791 07915 07915 07901 07906 07920 0.7920 0.7896 07902 07857 07896 07896 07907 07927 07917 07917 07921 07925 07829 07936 07936  0.7907
vehicle3 07917 07918 07920 07893 0.7833 07491 07491 07917 07884 07833 07918 07918 07937 07921 07934 07934 07882 07900 07878 07906 07906 07907 07920 07887 07887 07892 07915 07831 07918 07918  0.7950
haberman 06440 0.6448 0.6478 06398 0.6367 0.6287 06287 06432 0.6371 06344 06448 06448 06479  0.6481 0.6414 06414 06516 06405 06307  0.6481 06481 0.6390 06478 0.6456 0.6456 0.6569 0.6388 06331 06429  0.6429  0.6486
glass-0-1-2-3_vs_4-5-6 09327 09345 09327 09379 09313 09140 09140 09345 09379 09313 09345 09345 09346 09348 09298 09298 09391 09398 09128 09372 09372 09350 09327 09277 09271 09364 09327 09128 09284 09284 09321
vehicle 09543 09542 0.9546 09519 0.9428 09190 09190 09542 09521 09428 09542 09542 09552 09542 09527 09527 09514 09550 09387 09556 09556 09542 09546 09524 09524 09530 09570 09379 09583 09583  0.9556
ecolil 08994 09044 0.8952 09075 09107 0.9046 09046 09048 09083 09111 09044 09044 09016 09060 0.9070 09070 0.8990 09056 08934  0.9011 09011 09048 08952 09040 09040 0.8970 0.8984  0.8856 08914 08914  0.8987
new-thyroid2 09498 09589 0.9498 09620 0.9537 0.9082 09082 09589 0.9626 09543 09589 09589 09589  0.9583 09481 09481 09615 09667 09582 09586 09586 09583  0.9498 09492 09492 09596 09650 09582 09609 09609  0.9498
new-thyroid! 09476 0.9491 0.9476 09444 09435 09116 09116 09491 0.9444 09441 09491 09491 09461  0.9495 09496 09496 09444 09554 09472 09436 09436 09491  0.9476 09451 09451 09444 09519 09472 09410 09410  0.9459
ecoli2 09040 09030 0.9054 08954 0.8746 0.8382 08382 09037 0.8957 08746 09030 09030 09040 09003 0.8979 08979 08996 08967 08865 09005 09005 09013 09054 09028 09028 0.8981 08997 08830 09043 09043  0.9004
segment0 09897 09881 0.9896 09855 09806 09779 09779 09881 09855 09806 09881 09881 09883 09882 0.9887 09887 09867 09866 09868  0.9891 09891 09880 09896 0.9899 09899 09868 09893 09868 09894 09894 09895
glass6 09244 09243 09239 09233 09151 0.8464 08464 09249 09233 09162 09243 09243 09243 09249 09244 09244 09228 09181 09189 09207 09207 09259 09239 09244 09239 09238 09204 09184 09208 09208 09244
yeast3 09329 09322 09329 09322 09321 09240 09240 09322 09320 09322 09322 09322 09325 09326 09311 09311 09327 09310 09200 09321 09321 09316 09329 09305 09305 09331 09316 09193 09307 09307 09332
ecoli3 08626 0.8666 0.8633 0.8656 0.8671 0.8308 08308 0.8670 0.8629 08675 08666 08666 08670  0.8667 0.8600 0.8600 0.8650 08653 08430  0.8649  0.8649  0.8689 0.8633 08536 0.8536 0.8651 08651  0.8357 08595 08595  0.8662
page-blocks0 09640 09629 09638 09620 0.9572 09492 09492 09629 09620 09572 09629 09629 09630 09628 09627 09627 09613  0.9621 09532 09627 09627 09626 09638 09639 09639 09618 09627 09520 09629 09629 09639
ccoli-0-3-4_v: 08900 0.8853 0.8900 0.8810 0.8787 0.8152 08152 0.8865 0.8808 08777 08853  0.8853 08859  0.8865 0.8772 0.8772 0.8804 09127 08502 09067 09067 08792  0.8900 08733 0.8733 0.8810 09130  0.8500 09064 09064  0.8744
yeast-2_vs_4 09358 09376 09358 09385 09221 09120 09120 09378 09387 09223 09376 09376 09363 09381 09370 09370 09368 09398 09410 09418 09418 09378 09358 09386 09386 09374 09413 09410 09397 09397  0.9361
ecoli-0-6-7_vs_3-5 08562 0.8556 0.8562 08540 0.8586 0.8385 08385 08565 0.8538 08596 08556 08556 08570  0.8556 0.8573 08573 0.8539 08544 08311 08583 08583 08564 08562 0.8587 0.8587 08552 08503 08297 08550 08550 08582
ecoli-0-2-3-4_vs_S 08976 09016 0.8976 0.8998 0.8936 0.8178 08178 09027 09009 08952 09016 09016 09022 09027 0.8947 08947 09003 09028 08872 09044 09044 08991 08976 08725 08725 08959 08967  0.8913 09001 09001  0.8924
glass-0-1-5_vs_2 06820 07350 0.6722 07378 07104 04665 04665 07209 07358 07125 07350 07350 07245 07165 07121 07121 07394 07269 06865 07417 07338 06986 0.6722 07226 07104 07370 07065 06723 07122 07122 07032
yeast-0-3-5-9_vs_7-8 07225 07355 0.6975 07321 07271 07014 07014 07334 07308 07279 07355 07355 07318 07333 07234 07236 07300 07245 07151 07235 07235 07266 06975 07167 07169 07290 07192 07113 07144 07144 07278
yeast-0-2-5-6_vs_3-7-8-9 08103 0.8119 08094 08118 0.8062 07818 07818 08111 08124 08053 08119 08119 08092 08128 0.8099 08099 0.8072 0.8159 08050 08127 08127 08126 08094 08087 0.8098 08055 08133 08040 08115 08115 08120
yeast-0-2-5-7-9_vs_3-6-8 09137 09137 09142 09124 09028 0.8767 08767 09137 09123 09031 09137 09137 09146 09140 09135 09135 09132 09049 08950 09086 09086 09128 09142 09128 09128 09149 09058  0.8944 09076 09076 09135
ccoli-0-4-6_vs_5 09010 0.9000 0.9010 09087 0.9196 08320 0.8320 09000 0.9042 09233 09000 09000 09011 09075 0.8930 0.8930 09157 09269 08586 09247 09247 09012 09010 08799 0.8799 09054 09252  0.8569 09202 09202  0.8958
ecoli-0-1_vs_2-3-5 08972 0.8923 09003 0.8929 0.8949 0.8295 08295 08927 0.8920 08945 08923 08923 08943 08927 0.8945 0.8950 0.8900 08866 08823 08882  0.8882 08874 09003 09026 09026 08943 08904 08819 08925 08925  0.8908
ecoli-0-2-67_vs_3-5 08567 0.8553 0.8568 08525 0.8555 0.8290 08290 08558 0.8528 08555 08553 08553 08572  0.8557 08551 08551 08513 08558 08132 08563 08563 08568 0.8568 08557 08557 0.8532 08502 08233 08634 08634 08581
glass-0-4_vs_S 09939 09939 09939 0.9939 0.9939 09713 09713 09939 0.9939 09939 09939 09939 09939  0.9939 09939 09939 09939 09822 09539 09822 09822 09939 09939 09939 09939 09939 09822 09539 09822 09822  0.9939
ecoli-0-3-4-6_vs_S 08822 0.8860 0.8818 09000 0.8919 0.8054 08054 0.8865 0.8956 08936 0.8860 08860 08818  0.8867 0.8833 08833 09010 09074 08478 08975 08975 08818 0.8818 08843 08843 08960 09051 08522 09053 09053 08818
ecoli-0-3-4-7_vs_5-6 08901 0.8896 0.8905 0.8832 0.8544 0.8053 08053 0.8900 0.8837 08515 08896 08896 08908  0.8908 0.8890 0.8890 0.8875 08723 08672 08780  0.8780 08887 0.8905 0.8933 08933 0.8883 08717  0.8672 08684 08684  0.8893
yeast-0-5-6-7-9_vs_4 08133 0.8193 08152 08230 0.8253 08163 08163 08164 0.8254 08257 08193 08193 08179 08165 08220 08220 0.8182 08256 08127  0.8261 08261 08181 08152 08145 08145 08218 08278 08114 08301 08301 08159
ecoli-0-6-7_vs_5 08723 0.8777 08723 08743 0.8716 0.8285 0.8285 08781 0.8742 08726 08777 08777 08792  0.8781 0.8729 08729 08750 0.8893 08567  0.8835  0.8835 08755 0.8723 08759 0.8759 0.8777 08889  0.8519  0.8840 08840 08711
vowel0 09691 09676 09692 09650 0.9570 0.9430 09430 09678 0.9648 09570 09676 09676 09682 09682 0.9686 09686 09662 09667 09630 09672 09672 09679 09692 09696 09696 09666 09668 09630 09684 09684  0.9692
glass-0-1-6_vs_2 07061 07178 0.6766 07386 07234 05030 05030 07092 07333 07228 07178 07178  0.6984 07085 0.6919 0.6919 07147 07147 06186 07291 07291 07173 06766 0.6700 0.6676 07165 06838 06515 06950 06950  0.6982
glass2 07223 07092 07264 07104 07385 04861 04861 07109 07060 07408 07092 07092 07089 07168 07041 07041 07044 06997 07462 06996  0.6996 07129 07264 07247 07250 07053 07037 07456 07016 07016  0.7099
ecoli-0-1-4-7_vs_2-3-5-6 08698 0.8614 08729 08549 0.8262 07646 07646 08617 0.8562 08259 08614 08614 08662 08623 0.8574 08574 08538 08522 08787 08501 08501 08617 08729 08675 0.8675 08565 08542 08788 08552 08552  0.8664
led7digit-0-2-4-5-6-7-8-9_vs_I  0.8228 0.8092 0.8257 08120 08163 0.8389 0.8389 08134 08119 08168 08092 08092 08193 08104 08217 08217 08267 08186 08270 08195 08195 08190 08257 0.8271 08271 08276 08155 08288 08173 08173 08230
glass-0-6_vs_S 09919 09919 09919 09842 09319 0.8731 08731 09929 09885 09372 09919 09919 09919 09929 09939 09939 09852 09646 09529 09772 09772 09939 09919 09939 09939 09852 09243 09529 09835 09835  0.9949
ecoli-0-1_vs_5 09024 09075 09076 09071 09024 0.8271 08271 09075 09013 09034 09075 09075 09075 09075 0.8941 0.8941 09018  0.9401 0.8954 09336 09336  0.8985 09076 0.8992 08992 09018 09406 08993 09381 09381 09042
glass-0-1-4-6_vs_2 07394 07391 07321 07313 07507 05048 05048 07148 07158 07386 07391 07391 07313 07343 07026 07026 07275 07163 07293 07437 07437 07127 07321 07141 07136 07212 07139 07282 07514 07514 0.7099
ccoli-0-1-4-7_vs_5-6 08929 0.8908 0.8900 08767 0.8634 07995 07995 0.8908 0.8743 08637 08908 08908  0.8929  0.8914 0.8839 0.8839 0.8808 0.8777 08596  0.8811 08811  0.8918 08900 0.8773 08773 0.8908 0.8819 08560  0.8882  0.8882  0.8969
cleveland-0_vs_4 08448 0.8538 08459 08710 08619 07037 07037 08544 08638 08559 08538 08538 08540 08543 08170 08170 0.8839 09019 07509 08912  0.8912 08279 08459 08145 08145 08675 08833 08132 08831 08831 08276
ecoli-0-1-4-6_vs_S 08915 09008 0.8915 09097 09031 07969 07969 08959 0.9104 09090 09008 09008 08905 09019 0.8960 08960 09105 09190 09019 09227 09227 09032 08915 08927 08927 09056 09202  0.8942 09159 09159 08972
ecolid 09230 09222 09232 09302 09269 0.8231 08231 09228 09315 09273 09222 09222 09221 09218 09194 09194 09319 09294 08952 09263 09263 09237 09232 09186 09186 09324 09240 08959 09260 09260  0.9248
yeast-1_vs_7 07688 0.7844 07410 07708 0.7578 07116 07116 07829 07742 07599 07844 07844 07724  0.7888 07715 07715 07826 07597 07729 07683 07683 07760 07410 07501 07501 07749 07745 07695 07795 07795 07528
shuttle-cO-vs-c4 10000 1.0000 1.0000 1.0000 1.0000 10000 1.0000 1.0000 1.0000 10000 10000 10000 10000  1.0000 10000 1.0000 1.0000 10000 10000 10000 10000 10000 10000 10000 1.0000 10000 10000 10000 10000  1.0000 10000
glass4 08834 0.8789 0.8839 0.8840 0.8956 07110 07110 0.8804 0.8731 08972 08789 08789 08799  0.8820 0.8808 0.8808 0.8767  0.8541 08189 09060 09060  0.8810 0.8839 0.8839 08839 08771 08778 0818 08915 08915  0.8820
page-blocks-1-3_vs_4 09941 09930 0.9941 09898 0.9691 0.8684 0.8684 09932 0.9903 09693 09930 09930 09930 09932 09952 09952 09912 09751 09971 09778 09778 09941 09941 09952 09952 09921 09738 09971 09790 09790  0.9948
abaloned-18 07358 0.7353 07120 07381 0.7266 07210 07210 07369 07375 07283 07353 07353 07374 07408 07457 07457 07449 07496 07336 07464 07464 07442 07120 07287 07286 07379 07279 07268 07267 07267  0.7364
glass-0-1-6_vs_S 09684 09683 09582 09618 09511 07164 07164 09701 09636 09511 09683 09683 09683 09731 09731 09731 09690 09496 09541 09582 09582 09707 09582 09689 09683 09690 09453 09541 09545 09545 09707
shuttle-c2-vs-c4. 10000 1.0000 1.0000 1.0000 1.0000 08241 08241 1.0000 10000 1.0000 10000  1.0000 10000  1.0000 10000 1.0000 10000 09669 09883 09669 09669  1.0000 10000 1.0000 1.0000 10000 09669 09883 09669  0.9669  1.0000
yeast-1-4-5-8_ 06222 0.6345 05387 06341 0595 05433 05433 06353 0.6300 06011 06345 06345 06326  0.6422 0.6347 06347 06233 06186 06203 06325 06394 06184 05387 06103 05984 06330 06273 06170 06187 06208 06113
glasss 09781 09781 09766 09766 09508 0.8586 08586 09817 09766 09508 09781 ~ 09781 09796  0.9817 09796 09796 09796 09216 09644 09608 09608 09791 09766 09796 09791 09796 09102 09644 09224 09224 09771
yeast-2_vs_8 07357 07713 07256 07858 0.7829 07690 07690 07696 0.7842 07823 07713 07713 07348 07710 07761 07761 07626 07738 07698 07778 07778 07744 07256 07559 07559 07402 07899 07678 07814 07814  0.7465
yeastd 08580 0.8560 0.8556 0.8580 0.8495 0.8415 08415 08555 0.8577 08494 08560 08560 08525  0.8569 0.8569 0.8569 0.8543 08565 08287 08576  0.8576 08570 0.8556 08526 0.8526 0.8562 08506  0.8302 08569 08569  0.8508
yeast-1-2-8-9_vs_7 07060 0.7298 0.6787 07288 0.7059 0.6493 0.6493 0.7283 07257 07062 07298 07298 07032 07301 07330 07330 07383 07208 07130 07296 07296 07247  0.6787 07004 07003 07157 07173 06996 07239 07239 07195
yeasts 09569 0.9571 09554 09643 09630 09363 09363 09573 09644 09632 09571 09571 09580 09572 09550 09550 09609 09582 09588 09593 09593 09572 09554 09550 09550 09601 09580 09588 09587 09587  0.9566
ecoli-0-1-3-7_vs_2-6 07774 07860 07592 0.8894 0.9076 0.6093 06093 07791 0.8832 09064 07860 07860 07797 07879 07628 07628 08574 08926 07172 0.8998  0.8998 07785 07592 07585 07585 08316 08831 07060 08864 08864 07695
yeast6 0.8652 0.8644 0.8560 08561 0.8505 0.8383 08383 08650 0.8568 08507 08644 08644 08643 08646 0.8593 08593 08604 08545 08333 08586  0.8586 08622 08560 08554 08554 08619 08526 08324 08475 08475 08598
abalonel9 07108 07118 0.6987 07283 0.6925 0.6735 06735 07163 07306 06948 07118 07118 07147 07197 07188 07188 07061 07166 07172 07206 07206 07096 0.6987 07035 07033 0.6977 06946 07149 06982 06982 07078
Average 08662 0.8686 0.8618 08703 0.8634 0.8022 08022 0.8681 0.8693 08636 08686 08686 08671  0.8692 0.8655 08655 0.8694 08682 08518 08711 08711 08666 08618 0.8632 0.8628 0.8680 0.8660 08520 08681 08681  0.8650
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From the results on this table we have carried out the
corresponding statistical analysis in a hierarchical manner,
answering the different questions raised. Figure 4 depicts
this study. When the comparison involves a pair of methods,
the output of the Wilcoxon’s test is shown. In this case,
the ranks are presented near each method (the greater, the bet-
ter). In other case, Friedman aligned-ranks test is used for
the comparison (the lower the ranks, the better). In both
cases, we present the p-values (for Friedman aligned-ranks,
the ones given by Holm’s post-hoc test in case of significant
differences being found). In the next sections, we analyze
both the table of results and the outputs of the statistical
tests.

A. CPM VS. ADDITIVE AND .—MEASURES

We focus on the comparison of CPM and its simpler coun-
terparts, in which the only coefficients that are learnt are the
singletons. Looking at the average GM results, CPM-Choquet
achieves the best performance. If we focus on Sugeno integral
only, the CPM achieves worse overall performance. However,
we should drawn the conclusions from the proper statisti-
cal analysis, which is performed for Choquet and Sugeno
separately.

We performed two aligned-Friedman ranks test to compare
CPM vs. additive and A—measure (one for each integral).
In the case of Choquet, one can observe in Figure 4 that
CPM statistically outperforms the other two methods by a
large margin (obtaining very low p-values). Otherwise, for
Sugeno integral results become much more similar. No signif-
icant differences are found among different methods and the
A—measure is the one that gets the lowest number of ranks by
a small margin. It seems that Sugeno does not exploit the full
potential behind fuzzy measures for this application, although
we will analyze this fact later.

B. GLOBAL VS. DYNAMIC APPROACHES

This section is focused on the question of whether dynamic
approaches can overcome global ones. We have both ISFM
and MHM measures to answer this question, as both were
proposed in their dynamic and global versions. For this rea-
son, we compare these alternatives by pairs for both Choquet
and Sugeno integrals.

In the case of ISFM, in both Choquet and Sugeno the
dynamic variant (D-ISFM) achieves the highest number
of ranks, with significant differences. Regarding MHM,
the dynamic model performs slightly better with the Choquet
integral, whereas with Sugeno, the global model achieves a
higher number of ranks. Anyway, high p-values are obtained
in both cases, showing no significant differences between
both models.

Interestingly, although one could expect a greater benefit
from dynamic approaches due to their greater adaptability to
each example, this is only true for ISFM, where significant
differences are found, whereas in MHM there are no major
differences.
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C. CPM VS. EXISTING ALTERNATIVE

For the next comparison, we consider the winners (in term
of ranks) from the previous ones and analyze which fuzzy
measure works best in the current framework including our
proposed CPM.

Looking at Figure 4, the proposed CPM achieves the high-
est number of ranks in the Friedman aligned-ranks test when
the Choquet integral is considered as underlying aggregation.
However, no statistically significant differences are found.
Anyway, this is an interesting results as it shows that a global
estimation of the fuzzy measure (without approximations
and avoiding additivity) can give and advantage. Obviously,
as it can be concluded from Table 7 and Figure 4, a small
margin for improvement exists when only the aggregation
is considered. Anyway, there are many applications where
a small improvement in terms of numbers can lead to high
gains.

Otherwise, when the Sugeno integral is taken as aggre-
gation, EB gest the lowest number of ranks, showing an
advantage with respect to the other contenders. There is a
synergy between EB measure and Sugeno, which has not
been present with Choquet, although no statistical differences
are found when applying the Holm’s post-hoc test. Neverthe-
less, whether EB with Sugeno or CPM with Choquet works
better remains to be studied and is the focus of the next
comparison.

D. FUZZY INTEGRALS: WHICH ONE WORKS BEST?
Among fuzzy measures, CPM has been the best performer
coupled with Choquet, whereas EB has been the best with
Sugeno. As it can be extracted from the Wilcoxon test
in Figure 4, CPM with Choquet gets the highest number
of ranks by a large margin, statistically outperforming EB
with Sugeno. Hence, the greater advantage of using Choquet
can be stressed. At the same time, the synergy between the
proposed CPM and Choquet should be highlighted as it can
be considered to be the best alternative among fuzzy measure-
based aggregations.

E. FUZZY MEASURE BASED APPROACHES VS. CLASSICAL
AGGREGATIONS

Finally, we aim to study whether the usage of fuzzy measure-
based aggregations pays off in terms of performance when
compared to simpler, widely used alternatives such as classi-
cal aggregations.

First, following the same idea as before, we have per-
formed a statistical test to compare both unweighted and
weighted aggregations, respectively. Among unweighted
aggregations, we have considered O (original), which is the
way the aggregation is performed in UnderBagging_RE [20].
This will allow us to study whether more advanced aggre-
gations can help in further improving state-of-the-art perfor-
mance on ensembles for the class imbalance problem.

Observing the results of the Aligned-Friedman tests
in Figure 4, the arithmetic mean (AM) is the best performer
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among unweighted aggregations, whereas the OWA operator
at least half (Q,;,) achieved the lowest ranks among weighted
ones. In the latter case, the only statistical difference is
obtained with respect to WHM (weighted harmonic mean).
In the former case, the maximum and minimum aggregations
are also significantly outperformed by AM and the same
occurs for HM. Among the rest, differences are not signifi-
cant. Notice, however, that in terms of ranks AM performs
better than the usually considered alternative O, which does
not take the confidence or probability of the non-predicted
class into account. This may tell us that the more the informa-
tion considered for the aggregation is, the better the decision
made can be.

When AM is compared with Q;,, the Wilcoxon test returns
no winner, as both perform equally in terms of ranks. Hence,
one or the other could be considered for the final comparison
and main point of this section.

The last Wilcoxon test compares CPM with Choquet
against AM, that is, the best performer fuzzy measure-based
aggregation vs. the best classical one. Attending to the results
given by this test presented in Figure 4, CPM with Choquet
not only achieves the largest number of ranks, but also sig-
nificantly outperforms the AM. Hence, we can conclude that
one can take advantage of more sophisticated aggregations
based on fuzzy measures to obtain a significant advantage
with respect to the most widely used arithmetic mean.

VIIl. CONCLUSION

In this paper, we have studied unsupervised methods for fuzzy
measure learning applied to the combination of classifier
ensembles. We have categorized these methods depending on
what drives the learning strategy, either the probability distri-
butions provided by the classifiers or some a priori knowledge
about the classifiers of the ensemble. We further divided
these methods into dynamic or global behavior depending
on whether a measure is built for each specific instance or a
single global measure is learned and used for all the instances.
We have put our focus on global methods as dynamic ones
result in only using one single path of each fuzzy measure,
resembling dynamic OWA operators. To overcome the limi-
tations of current measures, we have proposed CPM, a global
non-additive fuzzy measure whose coefficients are directly
estimated from the performance of each possible coalition.
In thorough empirical study in the challenging framework
of imbalanced datasets, CPM has shown to be competitive.
It has been the best performer in the hierarchical statistical
study carried out, which included all the unsupervised meth-
ods for fuzzy measure learning reviewed and other classical
aggregations.

For future work, we aim to tackle one of the disadvantages
of learning a global fuzzy measure, that is, the complexity
of estimating 2V parameters, especially when N becomes
large. For this purpose, fuzzy measure compression could
be explored [49]. We want also to test CPM in other clas-
sification frameworks such as multi-class, multi-label or
multi-instance learning. Likewise, we would like to further
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analyze the behavior of the different aggregations in similar
frameworks to better understand when and why non-classical
aggregations can be improved. For example, we could only
focus on those examples whose classification can be affected
by the aggregation to better analyze the differences among
methods. Similarly, we will study other ensemble methods
whose resulting classifiers could differ more (e.g., Boosting),
increasing the importance of the aggregation phase.
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