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ABSTRACT In Machine Learning an ensemble refers to the combination of several classifiers with the
objective of improving the performance of every one of its counterparts. To design an ensemble two main
aspects must be considered: how to create a diverse set of classifiers and how to combine their outputs. This
work focuses on the latter task. More specifically, we focus on the usage of aggregation functions based
on fuzzy measures, such as the Sugeno and Choquet integrals, since they allow to model the coalitions
and interactions among the members of the ensemble. In this scenario the challenge is how to construct a
fuzzy measure that models the relations among the members of the ensemble. We focus on unsupervised
methods for fuzzy measure construction, review existing alternatives and categorize them depending on
their features. Furthermore, we intend to address the weaknesses of previous alternatives by proposing a
new construction method that obtains the fuzzy measure directly evaluating the performance of each possible
subset of classifiers, which can be efficiently computed. To test the usefulness of the proposed fuzzymeasure,
we focus on the application of ensembles for imbalanced datasets. We consider a set of 66 imbalanced
datasets and develop a complete experimental study comparing the reviewed methods and our proposal.

INDEX TERMS Fuzzy measures, Choquet integral, aggregation, ensembles, classification.

I. INTRODUCTION
Classification is one of the most well-known examples of
Machine Learning, since many real-world problems can be
formulated as classification problems [1], [2]. Specifically,
supervised classification consists of learning a classifier from
labeled data in such a way that it is able to correctly classify
new examples (also called instances) that were not taken into
consideration during the learning step [3]. This behavior is
called generalization capability, and is the most desirable
property of any learned classifier.

In the literature, many learning algorithms have been pro-
posed, e.g., Decision Trees [4], Support Vector Machines [5]
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or Fuzzy Classifiers [6]. However, it is well-known that none
of them is able to outperform the rest in every problem (see [7]
for more details). One way of improving the performance of
single classifiers is to combine several of them by learning an
ensemble of classifiers. In this context, individual classifiers
must be diverse to take advantage of the different answers
provided by the classifiers.

To construct a classifier ensemble, two main aspects needs
to be considered. Firstly, how to generate diversity among
classifiers. Bagging [8] and Boosting [9] are considered the
most popular techniques for this purpose. Secondly, how
to combine the answers provided by the classifiers into a
single output label. Several approaches can be found in the
literature for classifier combination such as weighted vot-
ing, Naive Bayes, Decision Templates or Stacking among
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others [10], [11]. Another type of combination strategy con-
sists of the usage of fuzzy integrals, such as the Choquet [12]
and Sugeno [13] integrals, which are based on an underlying
fuzzy measure that models the relations among the sources
of information to be combined, i.e., the classifiers of the
ensemble. In this paper, we focus on these approaches, where
the construction of the fuzzy measure is the key factor.

In this context, a fuzzy measure models the interactions
among every possible coalition (subset) of classifiers. The
main difficulty when constructing a fuzzymeasure is the large
number of coefficients to be estimated (2N − 2, being N the
number of classifiers). As a consequence, traditionally in the
literature there has been two different ways for addressing this
issue. 1) Reducing the number of coefficients to be estimated
[13]; 2) Estimating thewhole set of coefficients, but obtaining
them indirectly from information obtained from the individ-
ual classifiers or at most pairwise measures between them
[14]. In the field of ensemble classification, the majority of
fuzzy measure construction methods are unsupervised, in the
sense that the desired output of the fuzzy integral is unknown.
In this paper, we review the existing methods in the literature
and classify them analyzing their characteristics into different
categories. Although supervised construction methods exist
[15], their analysis is out of the scope of this paper, and we
leave the comparison between both types of approaches for
future work.

Attending to the drawbacks of existing methods, the objec-
tive of this work is to propose a new fuzzy measure construc-
tion method based on directly estimating the whole set of
coefficients. Thismethod is named as Coalition Performance-
based Measure (CPM) and estimates each coefficient by
efficiently measuring the performance of the corresponding
coalition of classifiers. The novelty of this methodology lies
in the avoidance of both indirect measures and simplifications
of the fuzzy measure. Our hypothesis is that using the full
potential of the fuzzy measure with accurately estimated
coefficients can lead to a final improved performance of the
ensemble.

To show the usefulness of CPM, we develop an exhaustive
empirical study, where we compare the existing alternatives
for fuzzy measure construction in classifier ensembles and
our proposal. These fuzzy measures are evaluated with both
the Choquet and Sugeno integrals. Moreover, we also con-
sider other classical aggregations to complete our study and
show the benefits of fuzzy integral-based approaches. Due
to our previous experience on the topic and the fact that the
importance of aggregation is highlighted in complex prob-
lems, we focus on the challenging framework of imbalanced
datasets [16], [17] and show that the state-of-the-art perfor-
mace can be improved using fuzzy measure-based methods.

The complete experimental study is formed of the sixty six
datasets from KEEL dataset repository [18]. We consider the
UnderBagging ensemble method [19] for generating classi-
fiers and apply the Reduced Error Pruning with Geometric
Mean [20] to obtain the final ensemble. This algorithm is
chosen for being the best performer in previous studies and

we aim to analyze whether fuzzymeasure-based aggregations
are able to improve its performance. The performance of
each method will be measured by the geometric mean (GM)
of the performance over each class due to the nature of the
class imbalance problem. As suggested in the literature [21],
the results will be properly analyzed using non-parametric
stastiscal tests.

The remainder of this paper is organized as follows.
In Section II we recall the main ideas of aggregation func-
tions. Later, Section III introduces ensembles and the class
imbalance problem. In Section IV, existing unsupervised
fuzzy measure construction algorithms are reviewed. Then,
in Section V we present CPM, our proposal for construct-
ing fuzzy measures. Afterwards, we present the experimen-
tal framework in Section VI and the experimental study in
Section VII. We end this paper with the conclusions and
future research lines in Section VIII.

II. AGGREGATION FUNCTIONS FOR INFORMATION
FUSION
Aggregation functions are known to be an important mathe-
matical tool to deal with information fusion.
Definition 1 [22]–[25]: A mapping f : [0, 1]n → [0, 1]

is called an aggregation function if it satisfies:

• boundary conditions: f (0, . . . , 0) = 0, f (1, . . . , 1) = 1;
• increasing monotonicity: if xi ≤ yi for all i ∈ {1, . . . , n},
then f (x1, . . . , xn) ≤ f (y1, . . . , yn).

One of the most prominent family of aggregation functions
are averaging aggregation functions or means. An aggre-
gation functions is said to have an averaging behavior
if min(x1, . . . , xn) ≤ f (x1, . . . , xn) ≤ max(x1, . . . , xn)
for every (x1, . . . , xn) ∈ [0, 1]n. Recall that averaging
aggregation functions also satisfy the idempotence property,
i.e., f (x, . . . , x) = x for every x ∈ [0, 1]. Prototypical
examples of averaging aggregation functions are the arith-
metic mean, the geometric mean, the median, the minimum
and the maximum. In fact, the minimum and the maximum
are the lowest and greatest averaging aggregation functions,
respectively.

When we deal with real-world problems where an aggrega-
tion function must be used, it is desirable to incorporate some
sources of information in addition to the own inputs to be
aggregated. This problem can be solved by applying a certain
kind of aggregation functions, called weighted aggregation
function. The weighting vector associated to the function
allows to model the importance of individual attribute or
criterion to be fused.
Definition 2: A vector w = (w1, . . . ,wn) is called a

weighting vector if wi ∈ [0, 1] and
∑n

i=1 wi = 1.
Example 1: The weighted arithmetic mean associated to

the weighting vector w is given by WAM (x1, . . . , xn) =∑n
i=1 wixi. Notice that the weighted arithmetic mean is sym-

metric only if wi = 1
n for every i ∈ {1, . . . , n}.

A wide family of weighted aggregation functions are the
so-called OWA operators.
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Definition 3: Letw be a weighting vector. AnOWAopera-
tor OWAw associated with w is a mapping OWAw : [0, 1]n→
[0, 1] defined by

OWAw(x1, . . . , xn) =
n∑
i=1

wix(i) (1)

where x(i) denotes the i-th greatest component of the input
(x1, . . . , xn).
In this work we will use weighting vectors induced by

increasing quantifiers [26]. An increasing quantifier Q is a
mapping Q : [0, 1]n → [0, 1] satisfying Q(0) = 0, Q(1) = 1
and Q(x) ≥ Q(y) whenever x > y. Then, given an increasing
quantifier Q, the weighting vector w induced by Q is given,
for every i ∈ {1, . . . , n}, by

wi = Q
(
i
n

)
− Q

(
i− 1
n

)
.

Example 2: The following picewise linear functions are
examples of increasing quantifiers:

Qalh(x) =

{
2x x ≤ 0.5
1 oth.

Qamap(x) =

{
0 x ≤ 0.5
2x − 1 oth.

Qmot (x) =


0 x ≤ 0.3
2x − 0.6 0.3 < x ≤ 0.8
1 oth.

In fact, these quantifiers are well-known in linguistic mod-
eling (see, for example [27]) and the corresponding OWA
operators induced by Q are known as at least half, as many
as possible and most of them, respectively.

When we deal with complex problems of information
fusion, inputs to be fused (criteria, attributes or sources of
information) may not be totally independent. This means that
we can have either positive or negative interaction among
inputs. Under these circumstances, weighted aggregation
functions are insufficient. However, a more adequate tool
to model these interactions are fuzzy (non-additive) mea-
sures [28], [29] and aggregation functions based on these
measures.
Definition 4: Let N = {1, . . . ,N }. A discrete fuzzy mea-

sure is a set function m : 2N → [0, 1] satisfying boundary
conditions m(∅) = 0, m(N ) = 1 and monotonicity with
respect to the inclusion, i.e. m(A) ≤ m(B) whenever A ⊂ B
for every A,B ⊆ N .
For defining a fuzzy measure, it is necessary to define its

2N − 2 components. This may be a complex task when N
is large enough. To simplify this problem, some reformu-
lations have been given in the literature, being the Sugeno
λ-measures [13] one of the most well-known examples.
Definition 5: Let λ ∈ (−1,∞). We say that m : 2N →

[0, 1] is a Sugeno λ-measure if, for every A,B ⊆ N with
A∩B = ∅, we have thatm(A∪B) = m(A)+m(B)+λm(A)m(B).
The most widely used fuzzy measure-based aggregation

functions are the Choquet and the Sugeno integrals.

Definition 6: Given a fuzzy measure m : 2N → [0, 1],
the discrete Choquet integral is given by

Cm(x1, . . . , xN ) =
N∑
i=1

(xσ (i) − xσ (i−1))m({σ (i), . . . , σ (N )})

where σ : N → N is a permutation such that xσ (1) ≤ . . . ≤
xσ (N ) and xσ (0) = 0 for convention.
Remark 1: Notice that if m is additive, i.e. for any A,B ⊂

N , A ∩ B = ∅ then m(A ∪ B) = m(A) + m(B), the Choquet
integral is the weighted arithmetic mean. If m is symmetric,
i.e. for any A,B ⊆ N , m(A) = m(B) whenever |A| = |B|,
then the Choquet integral is an OWA operator. Finally, if m
is symmetric and additive, then the Choquet integral is the
arithmetic mean.
Definition 7: Given a fuzzy measure m : 2N → [0, 1],

the discrete Sugeno integral is given by

Sm(x1, . . . , xN ) =
N

max
i=1

min{xσ (i),m({σ (i), . . . , σ (N )})}

where σ : N → N is a permutation such that xσ (1) ≤ . . . ≤
xσ (N ).

III. ENSEMBLES AND THE CLASS IMBALANCE PROBLEM
This section introduces the concept of ensembles, the prob-
lem of class imbalance in classification and the ensembles
specifically designed for this problem.

A. CLASSIFIER ENSEMBLES
An ensemble in Machine Learning refers to a set of clas-
sifiers, which are used together to solve a problem with
the assumption that their combination will lead to better
performance than using a single classifier. One key aspect
in classifier ensembles is diversity, since there is no way to
improve the performance other than having complementary
classifiers in the ensemble. For this reason, different ways
for creating diverse classifiers out of the same original data
have been proposed [10], [17]. Once the ensemble has been
built, new examples are classified by querying all the classi-
fiers and aggregating their outputs to obtain the final output
label. Other terms used to refer to this combination step are
classifier fusion or aggregation [10]. This phase is the main
focus of this work, although we first recall the most common
ways for creating diverse ensembles before going through
their combination.

Classifier learning algorithms focus on building classifiers
with a good trade-off between accuracy and diversity. Among
them, the most well-known algorithms are AdaBoost [9] and
Bagging [8]. In both of them, classifiers are learned strate-
gically by altering the dataset used to learn each classifier.
These algorithms require the usage of a weak learner to build
the set of classifiers (a classifier in which small changes
in data produces big changes in the model). In this work,
we focus on Bagging because all the classifiers obtained are
a priori similar and hence, no specific weights are assigned
to the classifiers (as in Boosting).
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Bagging (boostrap aggregating) was proposed by
Breiman [8] as a simple but effective way to build ensem-
bles. In this method, diversity is achieved by training each
classifier with a different bootstrapped replica of the original
dataset. Hence, a new dataset is build for each classifier
by randomly drawing (with replacement) instances from the
original dataset. This resampling mechanism clearly requires
the usage of a weak learner to achieve diversity. Notice that
the original size of the dataset is usually considered for the
resampling, which results in approximately 63.2% of the
instances being present in each bag. The pseudo-code of
Bagging is shown in Algorithm 1.

Algorithm 1 Bagging
Input: S: Training set;N : Number of iterations; n: Bootstrap

size; I : Weak learner
Output: Bagged classifier: Class(x) =

argmax
y∈C

(
1
N

N∑
i=1

pci (y|x)

)
where pci (y|x) ∈ [0, 1]

is the probability of x belonging to class y given by the
classifier ci

1: for i = 1 to N do
2: Si← RandomSampleReplacement(n, S)
3: ci← I(Si)
4: end for

Bagging belongs to classifier fusion strategies and hence,
the outputs of all the induced classifiers are taken into account
to classify new instances. The weighted majority voting is
commonly used for aggregation, where the confidences given
by the classifier are considered. Therefore, the final class is
decided from the following formula:

Class(x) = argmax
y∈C

(
1
N

N∑
i=1

pci (y|x)

)
(2)

where pci (y|x) ∈ [0, 1] corresponds to the output probability
given by classifier ci for class y and C is the set of classes
(the number of classes |C| will be denoted by C). Notice that
classifiers not giving probabilities as outputs but confidence
degrees in favor of each class can also be used (which would
substitute pci (y|x)). In this case, the confidence degrees given
by each classifier should be properly calibrated so that none
of them dominates the aggregation. Otherwise, if we assume
that the output probabilities are discrete (either 0 or 1), then
the majority voting strategy would be recovered.

The key point in this paper is that instead of using this
simple averaging formula, one could chose to substitute the
aggregation by any of the functions presented in the pre-
vious section. In fact, one can take the interactions among
classifiers into account in the aggregation phase, instead of
simply averaging their outputs. In this work, besides from
proposing a new way for constructing fuzzy measures for
classifier combination, substituting Eq. 2 by the Choquet or
Sugeno integrals, we will develop an in depth experimental
comparison of the performance of different aggregations and

different ways of creating fuzzy measures. The experimental
framework will consider the problem of imbalanced datasets.
We focus on this scenario because the importance of aggre-
gation is highlighted in complex problems such as this one.

B. THE CLASS IMBALANCE PROBLEM
Imbalanced datasets pose a challenging scenario to classifier
learning algorithms [30]. By definition, a dataset is said to
be imbalanced whenever the number of examples from the
different classes are not nearly the same. Focusing on two-
class problems, the issue is that the class of interest is usually
under-represented in the dataset [16]. Unfortunately, standard
classifier learning algorithms tend to favor the majority class
due to their accuracy-oriented design.

To deal with this situation, four main types of approaches
are usually considered: algorithm adaptations [31], data pre-
processing [32], cost-sensitive methods [33] and ensemble-
based methods [17]. This paper focuses on the last ones,
which mainly consists of the combination of a traditional
ensemble learning method with one of the other types of
approaches, especially data preprocessing and cost-sensitives
methods. Accordingly, ensemble-based approaches can be
further divided into three main classes, depending on which
ensemble learning algorithm they are based on (Bagging,
Boosting or Hybrid). A thorough empirical analysis of these
solutions was carried out in [17], where the combination
of Bagging and random undersampling, named as Under-
Bagging, stood out. Some of these ensemble methods were
further developed in [20], where classifier pruning was con-
sidered to improve the final performance and yet Under-
Bagging (coupled with reduced error pruning) achieved the
best results. For this reason, this is the method considered
for our experimental study as it is the state-of-the-art on
ensembles for imbalanced datasets. We want to highlight this
fact because we will check whether fuzzy measure-based
aggregations are able to make a difference when consider-
ing highly optimized ensembles. Notice that the better the
ensemble and its base classifiers are, the less the margin for
improvement due to the aggregation is. Hence, different from
other works, we will study the behavior of aggregations in a
challenging scenario.

In the following, we briefly recall UnderBagging
with Reduced Error Pruning with Geometric Mean
(UnderBagging_RE-GM). UnderBagging is the ensemble
learning algorithm in charge of constructing the pool of
classifiers. Since a pruning method is used afterwards (RE-
GM), more than the necessary number of classifiers are
generated. Following [34] and [20], 100 classifier are gen-
erated in this work. Notice that we will fully replicate the
experimental study in [20] so as to carry out a fair comparison
with the state-of-the-art methods. After classifier generation,
the pruning method is applied to the reduce the total number
of classifiers to 21 in this case (as recommended in [34]
and in the same way as in [20]). The two components of
UnderBagging_RE-GM works as follows:
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• UnderBagging: It is a slight modification of Algo-
rithm 1, where the random sample with replacement in
line 2 is substituted by a random undersampling of the
dataset. That is, each bag is created by randomly remov-
ing majority class instances from the dataset until the
same number of majority and minority class instances
are present.

• Reduced Error Pruning with Geometric Mean
(RE-GM): Pruning in ensembles refers to the elimination
of classifiers that do not contribute to the ensemble
performance (redundant classifiers). In RE, rather than
eliminating classifiers, the final ensemble is formed
by adding classifiers from the pool one by one. First,
the classifier achieving the lowest classification error is
added. Then, in each iteration, classifiers are ordered
by the performance they achieve after being added to
the sub-ensemble. Again, the one achieving the largest
improvement is finally added. In the particular case of
RE-GM, the GM performance measure is considered to
decide which classifier is added in each iteration. This
measure is explained afterwards.

In any Machine Learning task, properly evaluating the
quality of a solution becomes a key factor. When dealing with
imbalanced datasets this is not an exception. Furthermore,
specific evaluation criteria are required, since the standard
accuracy measure is no longer valid becausse it does not
reflect the quality of the prediction over both classes. Com-
monly, the results of a classifier over a dataset are gathered in
a confusion matrix (Table 1). From this matrix, several class-
wise measure are obtained such as the True Positive Rate
(TPrate = TP

TP+FN ) and the True Negative Rate (TNrate =
TN

FP+TN ), which allow one to measure how well the classifier
performs in each class. However, considering them separately
easily leads to incorrect conclusions as their maximization
becomes trivial. For this reason, one usually prefers to assess
the performance of the classifier over both classes simultane-
ously. To do so, the geometric mean (GM) [31] is widely used
(Eq. (3)).

GM =
√
TPrate ·TNrate. (3)

TABLE 1. Confusion matrix for a two-class problem.

IV. RELATED WORK ON ENSEMBLE AGGREGATION
BY THE CHOQUET INTEGRAL
In the literature it is not difficult to find a variety of data
mining and machine learning algorithms where the Cho-
quet integral plays an important role. For example, in [35]
several applications of the Choquet integral in data mining
problems are presented. However, this review does not con-
sider many other applications, e.g. classification and patter

recognition [36], [37], bioinformatics [38], fuzzy rule-based
systems [39]–[41], preference learning [42], remote sensing
[43], or ensemble reduction [44] and ensemble construction
[45], [46], as it is the case of this paper.

The usage of the Choquet integral as an information fusion
tool necessarily requires the construction of a fuzzy measure.
We can have two main methods for constructing or learning
the associated fuzzy measure: supervised and unsupervised
learning. The former consists of estimating the coefficients
by some optimization algorithm, where target outputs of the
Choquet integral are provided and a set of restrictions must
be kept, usually monotonicity constraints. In other words,
thesemethods usually start from a predefined set of input vec-
tors together with their corresponding (ideal) output and the
objective consists of estimating a fuzzymeasure whose corre-
sponding Choquet integral fits the given outputs provided the
input vectors. In fact, this can be seen as a regression problem
where the underlying function is the Choquet integral. The
optimization procedure to estimate the coefficients of the
fuzzy measure may vary among neural networks [47], genetic
algorithms [48], linear or quadratic programming [49], [50]
or gradient-based algorithms [51], [52].

Unsupervised learning methods are the second major pro-
cedures to deal with the estimation of the coefficients of
the fuzzy measure. In this sort of methods, there is no
ideal outputs to be fit, but generally some prior knowl-
edge about the information sources that conduct the learning
strategy.

If we restrict ourselves to the specific problem of this
paper, we recall that our aim is to combine the outputs
of an ensemble method by using a Choquet integral and
therefore, the associated fuzzy measure must be computed
to model the interactions among the classifiers in the ensem-
ble. In the literature, the mainstream methodologies for
constructing the fuzzy measure for ensemble of classifiers
are unsupervised. Then, depending on the prior knowledge
that conducts the construction, we distinguish two main
groups: 1) entropy-based construction algorithm, where the
probability distribution given by the classifiers induce the
coefficients; 2) classifiers’ knowledge-based construction
algorithms, where the fuzzy measure is induced by some per-
formance measures, that vary between accuracy, confidence
or diversity measures of the classifiers of the ensemble [53].

Aside from the information that conducts the construction
algorithm (entropy or classifiers’ knowledge), the way the
classifiers’ predictions are aggregated also influences the
estimation of the fuzzy measure. Here, we can distinguish
two different scenarios: dynamic and global (or static). In the
dynamic scenario, the instance to be classified affects, up to
some extent, the aggregation procedure, while in the global
case, the same aggregationmethod is applied for thewhole set
of instances. Therefore, in the dynamic aggregation based on
the Choquet integral, a fuzzymeasure must be constructed for
each instance. On the contrary, global aggregation requires a
single fuzzy measure for the whole classification problem.
In the next section, we will see that entropy-based methods
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are dynamic, whereas classifiers’ knowledge-based methods
can be either dynamic or global.
Remark 2: Even though many papers in the literature deal

with dynamic aggregation of classifiers using the Choquet
integral, wemay argue that formally this is not a pure Choquet
integral-based procedure. In this sort of methods, the coeffi-
cients that take part in the aggregation are exclusively esti-
mated, since the rest are only necessary for a formal definition
of the fuzzy measure. However, we think that this proceeding
fits better with the name of dynamic OWAor OWAdependent
(see for example [54]–[56]) operators, rather than with the
Choquet integral. However, since these works appear in the
literature with the name of Choquet integral, we have taken
into consideration for this study.

In the next subsections, we recall the most prominent
methods we have found in the recent literature about the con-
struction of a fuzzy measure for aggregating classifiers, both
from the entropy-based approach and from the classifiers’
knowledge-based approach. In the latter, we also distinguish
between dynamic and global methods.

A. ENTROPY-BASED CONSTRUCTION ALGORITHMS
Wewill call entropy-basedmethods those whose construction
method depends on the probability distribution given by each
classifier for a specific instance of the problem, assuming that
the lower the entropy of the distribution is, the more accurate
the classifier is. The most recent proposal is given in [57],
where the proposed construction method solves several com-
plexity issues of previous entropy-based approaches, such as
[58] and [59] (see also [60]). Essentially, it starts setting the
coefficients of the singletons (sets whose cardinality is one)
to be inversely proportional to the Shannon’s entropy of the
probability distribution of the considered classifier for the
given instance. Later, the coefficients of those classifiers with
very high measure value that strongly disagree with the rest
of classifiers (those whose value is 1.5 times greater than the
average value of the singletons) are truncated, since these
classifier are treated as outliers. The rest of the coefficients
associated with any combination of classifiers are computed
in an additive way. The pseudocode of this approach is given
in Algorithm 2.

B. CLASSIFIERS’ KNOWLEDGE-BASED CONSTRUCTION
ALGORITHMS
Wewill denote by classifiers knowledge-basedmethods those
whose construction method depends on some prior knowl-
edge or heuristic about the classifiers of the ensemble, which
can be either characterized by a confidence degree, by a
measure of diversity among classifiers, or by both simulta-
neously [14].

While the entropy-based methods are inherently dynamic,
in this subcategory we can distinguish between dynamic and
global aggregation of classifiers. For this reason, for some
of the explained methods we will distinguish between its
dynamic and global version.

Algorithm 2 EB
Input: x: instance of the problem; N : Set of classifiers;
Output: fuzzy measure: m : 2N → [0, 1] associated to the

instance x.
1: for i = 1 to N do
2: m({i})←−

∑
y∈C pci (y|x) log(pci (y|x))

3: end for
4: mmax ← maxi=1,...,N m({i})
5: for i = 1 to N do
6: m({i})← mmax − m({i})
7: end for
8: M ← 1

N

∑N
i=1m({i})

9: O← {i|m({i}) ≤ 1.5M}
10: Mr =

1
|O|

∑
i∈O m({i})

11: for i = 1 to N do
12: if m({i}) > 1.5M then
13: m({i})← Mr
14: end if
15: end for
16: for A ⊆ N do
17: m(A)←

∑
i∈Am({i})

18: end for
19: Normalize m to have m(N ) = 1

1) INTERACTION-SENSITIVE FUZZY MEASURE (ISFM) [14]
In this algorithm the fuzzy measure is constructed by means
of a confidence vector collecting the confidence degree of
each individual classifier, namely κ = (κ1, . . . , κN ) and a
pairwise similarity measure, namely S : N × N → [0, 1],
whose objective is to approximate a measure of how similar
(inversely, how dissimilar) two classifiers of the ensemble
are. Then main idea under this algorithm is to construct a
fuzzy measure where the coefficients of each coalition is
given by the sum of the individual confidences weighted by
the diversity of the classifiers among the group. Thus, when
adding a new classifier to the coalition, if it is very similar to
the existing ones, the coefficients remain stables, while if the
incorporation increases diversity, the new coefficient of the
fuzzy measure also increases.

• Dynamic ISFM (D-ISFM): the dynamic behavior of
ISFM comes from the fact that, for each instance,
the specific arrangement of the probabilities to be aggre-
gated must be known in advance, thus generating dif-
ferent fuzzy measures depending on the explicit input
vector. The construction of the fuzzy measure starts with
the coefficient of the classifier predicting the highest
probability, whose value is set to its corresponding confi-
dence degree. Later, the second classifier is added to the
coalition and the corresponding coefficient is calculated.
The process is repeated until the whole set of classifiers
is considered. The pseudocode of this approach is given
in Algortithm 3.

• Global ISFM (G-ISFM): in this approach, instead of
considering the specific ordering induced by the input
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Algorithm 3 D-ISFM
Input: x: instance of the problem; N : Set of classifiers; κ:

confidence vector; S: similarity measure.
Output: fuzzy measure: m : 2N → [0, 1] associated to the

instance x.
1: σ ← permutation such that pcσ (1)(y|x) ≤ · · · ≤ pcσ (1)(y|x)
2: m({σ (n)})← κσ (n)
3: for i = n− 1, . . . , i do
4: m({σ (i), . . . , σ (n)}) ← m({σ (i + 1), . . . , σ (n)}) +
κσ (i)

(
1−maxrk=i+1 S(σ (i), σ (k)

)
5: end for
6: Normalize m to have m(N ) = 1

vector of probabilities, the ordering is induced by
the confidence of classifiers that are being taken into
account. This means that the classifier with the highest
confidence is the ‘‘original’’ classifier, and the rest of
classifiers are later added to the coalition, thus generat-
ing an additive fuzzy measure. The pseudocode of this
approach is given in Algortithm 4.

Algorithm 4 G-ISFM
Input: N : Set of classifiers; κ: confidence vector; S: simi-

larity measure.
Output: fuzzy measure: m : 2N → [0, 1].
1: σ ← permutation such that κσ (1) ≤ · · · ≤ κσ (n)
2: for i = 1, . . . ,N do
3: m({σ (i)}) = κσ (i)

(
1−maxj=σ (i)+1,...,σ (n) S(σ (i), j)

)
4: end for
5: for each A ⊆ N do
6: m(A)←

∑
i∈Am({i})

7: end for
8: Normalize m to have m(N ) = 1

2) MODIFIED HÜLLERMEIER MEASURE (MHM) [14], [61]
The measure proposed in this approach was originally given
in [62] for a modification of the K -NN algorithm using the
Choquet integral, and later adapted in [14] for the aggregation
of classifiers. This algorithm starts from a given additive
fuzzy measure m′ constructed from the confidence degree
of each classifier and transforms it into a non-additive mea-
sure by considering the diversity of classifiers. Here again,
the diversity of the coalitions controls the additivity of the
fuzzy measure by a parameter α.
• Dynamic MHM (D-MHM): as in D-ISFM, the spe-
cific arrangement of the probabilities predicted for an
instance is considered. We start with the classifier
predicting the highest probability, whose correspond-
ing coefficient is inherited from the additive measure
(confidence degree). Aswe add new classifiers, the coef-
ficients are calculated by weighting the additive coef-
ficient (sum of confidence degrees) with a measure
of the ‘‘relative diversity’’ of the set of classifiers.

Algorithm 5 D-MHM
Input: x: instance of the problem; N : Set of classifiers; κ:

confidence vector; S: similarity measure; α ∈ [0, 1] :
parameter.

Output: fuzzy measure: m : 2N → [0, 1] associated to the
instance x.

1: Construct additive fuzzy measure m′

2: for A ⊆ N do
3: m′(A) =

∑
i∈A κi

4: end for
5: Normalize m′ to have m′(N ) = 1
6: ds← maxi6=j∈N S(i, j) = 1−mini6=j∈N S(i, j)
7: σ ← permutation such that pcσ (1)(y|x) ≤ · · · ≤ pcσ (1)(y|x)
8: m({σ (n)})← m′({σ (n)})
9: for i = n− 1, . . . , i do

10: A← {σ (i), . . . , σ (n)}
11: div(A)← 2

|A|2−|A|

∑
i<j∈A 1− S(i, j)

12: rdiv(A)← 2 · div(A) · ds− 1
13: m(A)← m′(A)(1+ α · rdiv(A)})
14: if m(A) > m({σ (i+ 1), . . . , σ (n)}) then
15: m(A)← m({σ (i+ 1), . . . , σ (n)})
16: end if
17: end for
18: Normalize m to have m(N ) = 1

After this step, an adjustment for satisfying mono-
tonicity is performed. The pseudocode is given in
Algorithm 5.

• Global MHM (G-MHM): the static approach does not
consider any arrangement, since thewholemeasuremust
be constructed. Therefore, an extra step for enforcing
monotonicity of the fuzzy measure must be added to the
proposal. Observe that the measure constructed by this
method is not an additive measure. The pseudocode is
given in Algorithm 6.

3) OVERLAP INDEX-BASED FUZZY MEASURE (OIFM) [63]
This algorithm was originally given in [63] for constructing
fuzzy measures for fuzzy rule-based classification systems.
However, it can be easily adapted for calculating a fuzzy
measure associated with the confidence degree of each clas-
sifier. The construction method is based on the use of overlap
indices (see [64] for more details). These indices allow to
measure the degree of overlaping between two fuzzy sets,
assuming that the higher the membership degree of an ele-
ment to both sets, the higher the overlap. For this purpose,
the overlap index tries to measure the importance of the
coalition in terms of confidence degree. Therefore, the higher
the confidences of the coalition, the higher the value of its
coefficient. This algorithm is global and we do not consider
any dynamic counterpart. Moreover, the resulting measure is
non-additive. The pseudocode can be seen in Algorithm 7.

Finally, in Figure 1 we show an schematic summarization
of Algorithms 1-6, where the taxonomy allows to visually
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Algorithm 6 G-MHM

Input: N : Set of classifiers;m′ : 2N → [0, 1] original fuzzy
measure; S: similarity measure; α ∈ [0, 1] : parameter.

Output: fuzzy measure: m : 2N → [0, 1].
1: ds← maxi6=j∈N S(i, j) = 1−mini6=j∈N S(i, j)
2: for each A ⊆ N do
3: if |A| ≤ 1 then
4: div(A)← 0
5: rdiv(A)← 0
6: else
7: div(A)← 2

|A|2−|A|

∑
i<j∈A 1− S(i, j)

8: rdiv(A)← 2 · div(A) · ds− 1
9: end if

10: m(A)← m′(A)(1+ α · rdiv(A))
11: m(A) = maxB⊆Am(B)
12: end for
13: Normalize m to have m(N ) = 1

Algorithm 7 OIFM

Input: N : Set of classifiers; O : [0, 1]N × [0, 1]N → [0, 1]
overlap index; κ: confidence vector;

Output: fuzzy measure: m : 2N → [0, 1].
1: Construct fuzzy setE = {(i, κi)|i = 1, . . . ,N } associated

to κ
2: for each A ⊆ N do
3: EA = {(i, 0)|i = 1, . . . ,N }
4: for each i ∈ A do
5: EA(i) = κi
6: end for
7: m(A)← O(E,EA)
8: end for
9: Normalize m so that m(N ) = 1

FIGURE 1. Diagram of algorithms for learning fuzzy measures in the
context of ensemble aggregation.

identify the group and behavior (dynamic or global) each
algorithm belongs to.

V. CPM: CLASSIFER PERFORMANCE-BASED MEASURE
Analyzing the fuzzy measures reviewed in the previous
section, one can observe that only G-MHM constructs a
global non-additive fuzzy measure. However, notice that in
this global measure, the interaction among classifiers is a

mere estimation based on a heuristic considering a pair-
wise similarity measure and a confidence of each individual
classifier. The drawback is that interactions among groups
of more than two classifiers are being estimated indirectly.
Our idea is that we can measure these interactions directly
testing how well they interact. Intuitively, directly measuring
this degree of synergy should lead to a better measure.

Therefore, our main objective in this work is to propose a
methodology to construct a global non-additive fuzzy mea-
sure that is based on directly estimating the quality of each
coalition. Moreover, we want to show that the full potential
behind fuzzy measures can be successfully used, yet effi-
ciently. Our proposal is based on using classifiers’ perfor-
mance over the training set to construct the measure. In this
section, we formalize our proposal for the calculation of
the fuzzy measure, we show an illustrative example of its
behavior and analyze its computational complexity.

A. INTUITION
Our aim with this fuzzy measure is to make each coefficient
to truly reflect how well the classifiers are interacting. That
is, the combination of certain classifiers could lead to a
better solution, whereas adding a new classifier could not
always result in an increase in performance as it may be
expected from its individual performance. Although previous
approaches could perform well in practice, the fuzzy measure
constructed is mainly based on the individual confidence
(which we measure as their performance) of each classifier
and sometimes, either a pairwise measure of similarity or
diversity that is considered to reflect how well a pair of
classifiers may interact. However, they are measuring the
interactions indirectly. The main novelty of the proposed
fuzzy measure is that we are able to measure the interactions
directly from data, by measuring the performance of each
possible subset of classifiers.

The intuition for constructing the fuzzy measure is rather
simple: the value of each coefficient should be conditioned by
the performance of the specific sub-ensemble. Notice that the
performance values cannot be directly used as coefficients as
they will not probably result in a proper fuzzy measure.

For this reason, our construction method of the fuzzy
measure starts from a uniform fuzzy measure mU : 2N →
[0, 1] given for every A ⊆ N by mU (A) =

|A|
N . Then,

the construction methods continues level by level (we refer to
the i-th level as every subsetA ⊆ N with |A| = i). For the first
level, we take the performance of each individual classifier
and we calculate the average performance (obtained by the
arithmetic mean). The value of the fuzzy measure of those
classifiers whose performance is greater than the average
will be increased (with respect to the value of uniform fuzzy
partition). Conversely, those with lower performance will
get their value of the fuzzy measure reduced. This is again
performed for the second level, but now the performance of
each possible pair of classifiers is taken into account, as well
as the average performance of pair of each classifiers. This
process is repeated until the top level is reached.
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B. FORMAL DEFINITION OF THE FUZZY MEASURE
Formally, let A ⊆ N represent a subset of classifiers with PA
being be the performance of A in a classification problem. For
each i ∈ {1, . . . , n}, define µi as the average performance of
those B ⊆ N with |B| = i, that is,

µi =
1
k

∑
B⊆N ,|B|=i

PB,

where k =
(n
i

)
is the number of sets in the ith level of the

measure and µ0 = 0. Let mU : {1, . . . , n} → [0, 1] be the
uniform fuzzy measure. Then, the fuzzy measure we propose
is given by

m(A) = mU (A)+
tanh(100 · (PA − µ|A|))

2n
(4)

where tanh : (−∞,+∞)→ (−1, 1) is the hiperbolic tangent
function given by tanh(x) = ex−e−x

ex+e−x .
Theorem 1: The mapping m : {1, . . . , n} → [0, 1] given

in Eq. 4 is a non-additive fuzzy measure.
Proof: Boundary conditions are clear, since P∅ = µ0

and PN = µN , yielding m(∅) = mU (∅) = 0 and m(N ) =
mU (N ) = 1. To proof monotonicity, we have that for every
A ⊂ B ⊆ N , mU (B) − mU (A) ≥ 1/n. However, due to the
construction method | tanh(100 · (PA − µ|A|)) − tanh(100 ·
(PB−µ|B|))| ≤ 1 and, therefore, m(B)−m(A) ∈ [0, 1/n] and
monotonicity holds.
Analyzing Eq. (4), we clearly see that m = mU only

if PA = µA for every A ⊆ N , which only happens if
all the classifiers perform in the same way. It can be easily
seen that the value of the fuzzy measure associated with
a good combination of classifiers (better than the average
performance) will be increased, and those associated with
bad coalitions will be decreased with respect to the uniform
measure. In fact, we can easily prove the following result

Observe that the construction of the fuzzy measure pro-
posed in this work is not unique, in the sense that we can
generalize the method to consider any other performance
measure. For instance, one can measure the performance of
classifier by means of the accuracy rate (percentage of cor-
rectly classified examples). However, as we have mentioned
earlier, this may not be a proper measure for the imbalance
framework, where the GM may be more suitable.

Finally, in Algorithm 8 we describe the proposed CPM
construction method.

C. ILLUSTRATIVE EXAMPLE
We consider a two-class problem (|C| = 2) for which an
ensemble with four classifiers (N = 4) has been learned.
We will use the Choquet integral with the fuzzy measure
obtained to show the final classification result with this mea-
sure. For illustrative purposes, we also consider the classifi-
cation with the arithmetic mean as aggregation to show that
using an adequate fuzzy measure together with the Choquet
integral can lead to better classifications.

Table 2 shows the scores obtained by each one of the
classifiers (namely, C1, C2, C3 and C4) for the 10 data

Algorithm 8 CPM
Input: N : Set of classifiers; PA: accuracy of any coalition

A ⊆ N ; Performance measure p
Output: fuzzy measure: m : 2N → [0, 1].
1: for A ⊆ N do
2: mU (A) =

∑
i∈A Pi∑n
i=1 Pi

3: end for
4: for A ⊆ N do PA← performance of A according to p
5: end for
6: for i = 1, . . . ,N do
7: k ←

(n
i

)
8: µi←

1
k

∑
B⊆N ,|B|=i PB,

9: end for
10: for A ⊆ N do
11: m(A) = mU (A)

tanh(100(PA−µ|A|))
2n

12: end for

TABLE 2. Data.

instances (examples) in the problem, whose true labels are
given in column y (ŷµ and ŷC will be the outputs obtained
using the arithmetic mean and the Choquet integral with the
proposed measure, respectively). Each score represents the
probability of each instance belonging to class 1 (p(y = 1|x),
thus p(y = 0|x) = 1− p(y = 1|x)).
To construct the fuzzy measure, we need to iterate over all

the possible sets of classifiers and compute their performance.
To compute the performance of a set of classifiers, wewill use
the arithmetic mean to combine the scores of the classifiers
in the set. Then, the class for each instance is predicted
taking the class corresponding to the largest aggregated value.
Finally, the performance is obtained by comparing the outputs
of the sub-ensemble with the true targets. Following our
example, we compute the performance of the set of classifiers
of cardinality 1, 2, 3 and 4. These performances are presented
in Table 3.

Given the data in Table 3 and Eq. 4, we are now able to
construct the fuzzy measure. To see one of the steps, consider
the value of the fuzzy measure associated with C1. We have
that

m({1}) =
1
4
+

tanh(100(0.7559− 0.6438))
8

= 0.3750.

The final coefficients of the fuzzy measure obtained follow-
ing this rule are presented in Figure 2.
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TABLE 3. GM per node and level.

FIGURE 2. Fuzzy measure obtained applying the proposed construction
method with the performances in Table 3.

Once the fuzzy measure has been constructed (see
Figure 2), we can now predict the class of each of the
instances using the Choquet integral insted of the arithmetic
mean. For example, let us show the process of the third
instance x3. Recall that the probabilities of x3 belonging to
class 1 provided by each classifier are pC1 (y = 1|x3) = 0.68,
pC2 (y = 1|x3) = 0.87, pC3 (y = 1|x3) = 0.15 and pC4 (y =
1|x3) = 0.04. Since

pC4 (y = 1|x3) < pC3 (y = 1|x3)

< pC1 (y = 1|x3) < pC2 (y = 1|x3),

the coefficients of the fuzzy measure that play role in the
classification of x3 are m({1, 2, 3, 4}), m({1, 2, 3}), m({1, 2})
and m({2}) (see blue path in Figure 2). Thus, the aggregation
of scores for class 1 is given by

Cm(0.68, 0.87, 0.15, 0.04)

= 0.04 · m({1, 2, 3, 4})

+ (0.15− 0.04) · m({1, 2, 3})+ (0.68− 0.15) · m({1, 2})

+ (0.87− 0.68) · m({2}) = 0.53875.

As mentioned earlier, we also need to compute the aggre-
gation score for class 0. Here, the reversed order implies that
coefficients that are taken into account are m({1, 2, 3, 4}),
m({1, 3, 4}), m({3, 4}) and m({4}) ((see red path in Figure 2).
Then,

Cm(0.32, 0.13, 0.85, 0.96)

= 0.13 · m({1, 2, 3, 4})

+ (0.32− 0.13) · m({1, 3, 4})+ (0.85− 0.32) · m({3, 4})

+ (0.96− 0.85) · m({4}) = 0.46125.

Therefore, since 0.53875 > 0.46125, we predict class 1
for the third instance. Notice that in Figure 2, the coef-
ficients applied in the aggregation of class 1 and class
0 are given by the blue and red paths, respectively. Other-
wise, if we had considered the arithmetic mean, we would
had obtained 0.68+0.87+0.15+0.04

4 = 0.435 for class 1, and
0.32+0.13+0.85+0.96

4 = 0.565 for class 0. Since 0.565 > 0.435,
class 0 would had been predicted. Notice that the true class
label is 1 and hence, usingCPM the correct output is predicted
as the interactions among classifiers are taken into account,
whereas using the arithmetic mean the example is incorrectly
classified.

Of course, we can perform the same process with the
rest of the examples and the results obtained are presented
in Table 2. We recall that for the aggregation of each instance,
we will consider a different set of coefficients of the fuzzy
measure, which are determined by the ordering of the proba-
bility vector. We should note that using the arithmetic mean
7 out of 10 examples are correctly classified, whereas the
Choquet integral with the proposed fuzzy measure is able
to correctly classify all the examples. Obviously, this is an
illustrative example and the benefit of Choquet-based aggre-
gations should be appropriately tested with real-world prob-
lems, which is done in the empirical study in Section VII.

D. COMPUTATION COMPLEXITY
Although computational capacity increases continuously,
the computational complexity of the algorithms should be
reduced to the minimum to increase their applicability. In our
case, CPM has a complexity ofO(2N |X |), where |X | refers to
the number of examples in the dataset. Notice that 2N coeffi-
cients needs to be estimated (as in the rest of fuzzy measure-
based methods) and the performance should be computed
for each possible combination (complexity of |X |). However,
notice that this process is only carried out once for global
methods, whereas in dynamic ones it is performed for each
instance. Anyway, recall that for dynamic methods the whole
fuzzy measure need not be estimated. With respect to global
methods such as G-ISFM and G-MHM, complexity is the
same for larger number of classifiers (N), since |X | can
be disregarded. In the case of lower number of classifiers,
G-ISFM and G-MHM compute pairwise similarities for all
pairs of classifiers and hence, complexity is O(2N + |X |2).
Althoughmore complex, ourmethod takes advantage ofmore
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FIGURE 3. Time (s) requirements for constructing a fuzzy measure with
CPM for varying number of classifiers and dataset sizes (100, 1000 and
10000 examples).

information as described earlier. Finally, recall that in global
methods the fuzzy measure is estimated just once in the
training procedure.

In Figure 3, we provide a study of the time required for
the computation of the fuzzy measure with CPM for varying
number of classifiers (from 3 to 21) and dataset sizes (100,
1000 and 10000 examples). Code is written in Python and
only the code for computing the performance is slightly
optimized with numba (no GPU or parallel approaches have
been considered). As expected, an exponential increase in the
computational complexity is found with greater number of
classifiers, whereas complexity scales linearly with greater
number of examples. Nevertheless, we want to stand out
that all the previously proposed fuzzy measure construction
methods were tested with much less classifiers in the ensem-
ble than the number of classifiers we use in our experimen-
tal study which is 21. Additionally, one should take into
account that methods for fuzzy measure compression [49]
exist, which can help reducing the computational burden.
Moreover, estimating only the necessary coefficients would
highly improve the times required for estimating the fuzzy
measure, although the usage of these optimizations is out of
the scope of this paper.

VI. EXPERIMENTAL FRAMEWORK
In this section, we introduce the experimental framework
considered for the empirical study in the next section.
We first introduce the general details of our framework: the
datasets considered, the base classifier for the ensemble,
its parameters, performance measures and statistical tests
(Section VI-A). Then, we summarize the aggregation meth-
ods selected for the experiments and how their parameters are
obtained in Section VI-B. Finally, Section VI-C presents our
research questions and details how we aim to answer them
with the experiments carried out.

A. GENERAL SETTINGS
We have considered the set of sixty-six imbalanced datasets
from KEEL dataset [18], which is a commonly considered
benchmark for evaluating classifiers for the class imbal-
ance problem [17], [20]. For each dataset, the total number

TABLE 4. Summary description of the imbalanced datasets
considered in this study.

of examples, number of attributes and IR (ratio between
the majority and minority class examples) are presented
in Table 4. Two-class imbalanced problems were obtained
modifying originally multi-class problems by joining one or
more classes as positive and doing the same for the negative
one. Notice that although we restrict the experimental study
to two-class imbalanced problem, the proposed method is
also applicable to either balanced or multi-class problems.
However, a challenging scenario like this one highlights the
importance of the aggregation in ensembles.

A 5-fold cross-validation scheme has been used to obtain
the results for eachmethod and dataset.We repeat this scheme
5 times in order to account for the randomness of the par-
titioning and the model construction. Hence, each result is
computed by averaging the results over 25 runs.

The performance of the classifiers should be properly
measured as we have already explained in Section III. Conse-
quently, we consider the GM performance measure to evalu-
ate the quality of the methods. We should notice that we have
obtained similar conclusions using the Area Under the ROC
Curve, AUC).

As recommended in the literature [21], we make use of
non-parametric statistical tests to analyze the results obtained.
When comparing a pair of methods, the Wilcoxon test is
considered, whereas the Friedman aligned-ranks test is used
when the comparison involves a group of methods. In the
latter case, when significant differences are found, a post-hoc
test should be performed to check whether the null hypothesis
of equivalence between each method and the selected control
method (the best one) is rejected. We consider Holm’s test for
this purpose.

Since we base our experimental framework on previous
works [20], we consider C4.5 decision tree [4] as base
classifier for our ensemble. With respect to UnderBag-
ging, we recall that we use the variant that performed best
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TABLE 5. Parameters for C4.5 and UnderBagging algorithm.

in [20], which is considered to obtain state-of-the-art results.
As explained in Section III-B, this variant is UnderBag-
ging_RE. The parameters considered for C4.5 and Under-
Bagging are summarized in Table 5.

B. SUMMARY OF AGGREGATION METHODS AND
PARAMETER ESTIMATION
Our main focus in this paper is on fuzzy measure learning
algorithms applied to classification problems. Accordingly,
we consider all the methods described in Section IV for
fuzzy measure construction, and its application with both the
Choquet and the Sugeno integrals.We do the samewith CPM,
the proposed fuzzy measure construction method. Moreover,
we consider its λ-measure and additive measure counterparts,
where only the coefficients for the first level (singletons)
are computed from data and the rest of the coefficients are
obtained from them.

Otherwise, we believe that it is also interesting to con-
sider classical aggregation functions in the comparison, both
weighted and unweighted ones, so that we can study whether
the usage of the more complex aggregations can signifi-
cantly improve the most commonly used ones. In these cases,
we need to detail how the parameters for weighted means and
OWA operators are obtained.

All the methods in the empirical study are summarized
in Table 6, where the family of the method, abbreviation
and description are presented. Notice that we assign each
method to a family so that we can carry out intra- and
inter-family comparisons (explained next). We also highlight
whether each method can be categorized as global (G) or
dynamic (D) and, if the method is based on learning a global
fuzzy measure, we also show if the corresponding measure is
additive (+), Sugeno λ-measure (λ) or non-additive (−).

The first method in Table 6, O (Original), makes reference
to the aggregation used in [20] for UnderBagging_RE. This
aggregation is similar to the AM in spirit, but only the proba-
bilities for the predicted class are summed for each classifier
(not averaged).

The setting-up of the parameters of the weighted aggrega-
tion functions shown in Table 6 is as follows. For theweighted
arithmetic mean, each weight of the corresponding weight-
ing vector is constructed from the normalized performance
obtained by each classifier in the the training dataset. For
example, if P1, . . . ,PN are the performance of each of the
N classifiers, then wi =

Pi∑N
j=1 Pj

for all i ∈ {1, . . . ,N }.

Since we focus on imbalanced datasets, we use the geometric
mean (GM) as performance measure in order to better model

TABLE 6. Methods considered for the comparison.

the quality of each classifier. Notice that in this case, the indi-
vidual quality of each classifier is only taken into account, and
no information is added on how they interact with each other.
With respect to OWA operators, each weighting vectors are
induced by the fuzzy quantifiers shown in Example 2.
For fuzzy measure-based methods, classifier confidence

and performance are considered to be the same value and
are given by the GM value obtained in the training set.
We consider the GM as we are dealing with class imbalance
problems. This score is obtained from training set perfor-
mance as it is done for classifier pruning [20]. Notice that
further dividing the training set into two sets for training
and fuzzy measure coefficients’ estimation leads to a loss of
performance of the ensemble that cannot be recovered by the
aggregation. For CPM, we will also consider its additive and
λ−measure [65], [66] counterparts. In these cases, we only
need to establish the first level of the fuzzy measure, since the
rest of the fuzzy measure can be derived from them. To have
a fair comparison, the first level of the fuzzy measure will
be obtained in the same way as in the proposed CPM fuzzy
measure.
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FIGURE 4. Hierarchical statistical study comparing the fusion functions in each family and the best performers of each family for each performance
measure using Friedman Aligned ranks test.

C. RESEARCH QUESTIONS AND DESCRIPTION
OF THE EXPERIMENTS
With the empirical study, we want to answer six main
questions:
• Can global non-additive fuzzy measures outperform
its simpler counterparts? (λ-measure and additive
measure).

• Do dynamic methods for fuzzy measure estimation per-
form better than global ones?

• Is CPM capable of improving existing alternatives?
• Which fuzzy integral performs better? (Choquet vs.
Sugeno).

• Are fuzzy measure-based methods able to significantly
improve the performance of classical aggregation func-
tions?

• Can the usage of fuzzy measures allow one to improve
the state-of-the-art results on ensembles for classifica-
tion of imbalanced data?

We will perform a hierarchical empirical analysis of the
results obtained to answer this questions one by one. Notice
that all of them are relevant questions. With the first one,
we will analyze whether the flexibility of a global non-aditive
fuzzy measure really allows for an improvement in the final
classification accuracy (Section VII-A). Similarly, we focus
on comparing global and dynamic approaches and looking for
the best existing alternative (Section VII-B). One can expect
a better performance from dynamic approaches due to their

greater adaptability to each example. However, as already
mentioned, we believe that they are more like ‘‘dynamic
OWAs’’ rather than fuzzy measures. Afterwards, we focus
on evaluating the quality of our proposal (Section VII-C)
and compare the two most widely used fuzzy integrals
(Section VII-D). Finally, we will test whether fuzzy measure-
based approaches are able to overcome classical aggregations
in this task, checking if they are also able to improve state-of-
the-art performance. (Section VII-E)

VII. EXPERIMENTAL STUDY
In this section, we carry out the empirical study aiming to
answer the questions raised in Section VI-C. Before going
through them one by one in the next sections, we first present
the testing performance of each method in Table 7. One key-
point in these results is that their differences are only due
to the aggregation method considered. All of them get the
same outputs from the base classifiers of UnderBagging_RE
and the only difference among them is how these outputs
are combined. This allows us to only focus on the differ-
ences of classifier aggregation, leaving apart other issues
that could be caused by random effects in the ensemble
construction. As mentioned earlier, we should notice that
the same conclusions holds using other standard metrics for
class imbalance problems such as AUC, but we focus on GM
for brevity.
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TABLE 7. Average GM score of each method for each dataset.

VOLUME 8, 2020 52301



M. Uriz et al.: Unsupervised Fuzzy Measure Learning for Classifier Ensembles From Coalitions Performance

From the results on this table we have carried out the
corresponding statistical analysis in a hierarchical manner,
answering the different questions raised. Figure 4 depicts
this study. When the comparison involves a pair of methods,
the output of the Wilcoxon’s test is shown. In this case,
the ranks are presented near each method (the greater, the bet-
ter). In other case, Friedman aligned-ranks test is used for
the comparison (the lower the ranks, the better). In both
cases, we present the p-values (for Friedman aligned-ranks,
the ones given by Holm’s post-hoc test in case of significant
differences being found). In the next sections, we analyze
both the table of results and the outputs of the statistical
tests.

A. CPM VS. ADDITIVE AND λ−MEASURES
We focus on the comparison of CPM and its simpler coun-
terparts, in which the only coefficients that are learnt are the
singletons. Looking at the averageGM results, CPM-Choquet
achieves the best performance. If we focus on Sugeno integral
only, the CPM achieves worse overall performance. However,
we should drawn the conclusions from the proper statisti-
cal analysis, which is performed for Choquet and Sugeno
separately.

We performed two aligned-Friedman ranks test to compare
CPM vs. additive and λ−measure (one for each integral).
In the case of Choquet, one can observe in Figure 4 that
CPM statistically outperforms the other two methods by a
large margin (obtaining very low p-values). Otherwise, for
Sugeno integral results becomemuchmore similar. No signif-
icant differences are found among different methods and the
λ−measure is the one that gets the lowest number of ranks by
a small margin. It seems that Sugeno does not exploit the full
potential behind fuzzymeasures for this application, although
we will analyze this fact later.

B. GLOBAL VS. DYNAMIC APPROACHES
This section is focused on the question of whether dynamic
approaches can overcome global ones. We have both ISFM
and MHM measures to answer this question, as both were
proposed in their dynamic and global versions. For this rea-
son, we compare these alternatives by pairs for both Choquet
and Sugeno integrals.

In the case of ISFM, in both Choquet and Sugeno the
dynamic variant (D-ISFM) achieves the highest number
of ranks, with significant differences. Regarding MHM,
the dynamic model performs slightly better with the Choquet
integral, whereas with Sugeno, the global model achieves a
higher number of ranks. Anyway, high p-values are obtained
in both cases, showing no significant differences between
both models.

Interestingly, although one could expect a greater benefit
from dynamic approaches due to their greater adaptability to
each example, this is only true for ISFM, where significant
differences are found, whereas in MHM there are no major
differences.

C. CPM VS. EXISTING ALTERNATIVE
For the next comparison, we consider the winners (in term
of ranks) from the previous ones and analyze which fuzzy
measure works best in the current framework including our
proposed CPM.

Looking at Figure 4, the proposed CPM achieves the high-
est number of ranks in the Friedman aligned-ranks test when
the Choquet integral is considered as underlying aggregation.
However, no statistically significant differences are found.
Anyway, this is an interesting results as it shows that a global
estimation of the fuzzy measure (without approximations
and avoiding additivity) can give and advantage. Obviously,
as it can be concluded from Table 7 and Figure 4, a small
margin for improvement exists when only the aggregation
is considered. Anyway, there are many applications where
a small improvement in terms of numbers can lead to high
gains.

Otherwise, when the Sugeno integral is taken as aggre-
gation, EB gest the lowest number of ranks, showing an
advantage with respect to the other contenders. There is a
synergy between EB measure and Sugeno, which has not
been present with Choquet, although no statistical differences
are found when applying the Holm’s post-hoc test. Neverthe-
less, whether EB with Sugeno or CPM with Choquet works
better remains to be studied and is the focus of the next
comparison.

D. FUZZY INTEGRALS: WHICH ONE WORKS BEST?
Among fuzzy measures, CPM has been the best performer
coupled with Choquet, whereas EB has been the best with
Sugeno. As it can be extracted from the Wilcoxon test
in Figure 4, CPM with Choquet gets the highest number
of ranks by a large margin, statistically outperforming EB
with Sugeno. Hence, the greater advantage of using Choquet
can be stressed. At the same time, the synergy between the
proposed CPM and Choquet should be highlighted as it can
be considered to be the best alternative among fuzzymeasure-
based aggregations.

E. FUZZY MEASURE BASED APPROACHES VS. CLASSICAL
AGGREGATIONS
Finally, we aim to study whether the usage of fuzzy measure-
based aggregations pays off in terms of performance when
compared to simpler, widely used alternatives such as classi-
cal aggregations.

First, following the same idea as before, we have per-
formed a statistical test to compare both unweighted and
weighted aggregations, respectively. Among unweighted
aggregations, we have considered O (original), which is the
way the aggregation is performed in UnderBagging_RE [20].
This will allow us to study whether more advanced aggre-
gations can help in further improving state-of-the-art perfor-
mance on ensembles for the class imbalance problem.

Observing the results of the Aligned-Friedman tests
in Figure 4, the arithmetic mean (AM) is the best performer
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among unweighted aggregations, whereas the OWA operator
at least half (Qalh) achieved the lowest ranks among weighted
ones. In the latter case, the only statistical difference is
obtained with respect to WHM (weighted harmonic mean).
In the former case, the maximum and minimum aggregations
are also significantly outperformed by AM and the same
occurs for HM. Among the rest, differences are not signifi-
cant. Notice, however, that in terms of ranks AM performs
better than the usually considered alternative O, which does
not take the confidence or probability of the non-predicted
class into account. This may tell us that the more the informa-
tion considered for the aggregation is, the better the decision
made can be.

WhenAM is comparedwithQalh, theWilcoxon test returns
no winner, as both perform equally in terms of ranks. Hence,
one or the other could be considered for the final comparison
and main point of this section.

The last Wilcoxon test compares CPM with Choquet
against AM, that is, the best performer fuzzy measure-based
aggregation vs. the best classical one. Attending to the results
given by this test presented in Figure 4, CPM with Choquet
not only achieves the largest number of ranks, but also sig-
nificantly outperforms the AM. Hence, we can conclude that
one can take advantage of more sophisticated aggregations
based on fuzzy measures to obtain a significant advantage
with respect to the most widely used arithmetic mean.

VIII. CONCLUSION
In this paper, we have studied unsupervisedmethods for fuzzy
measure learning applied to the combination of classifier
ensembles. We have categorized these methods depending on
what drives the learning strategy, either the probability distri-
butions provided by the classifiers or some a priori knowledge
about the classifiers of the ensemble. We further divided
these methods into dynamic or global behavior depending
on whether a measure is built for each specific instance or a
single global measure is learned and used for all the instances.
We have put our focus on global methods as dynamic ones
result in only using one single path of each fuzzy measure,
resembling dynamic OWA operators. To overcome the limi-
tations of current measures, we have proposed CPM, a global
non-additive fuzzy measure whose coefficients are directly
estimated from the performance of each possible coalition.
In thorough empirical study in the challenging framework
of imbalanced datasets, CPM has shown to be competitive.
It has been the best performer in the hierarchical statistical
study carried out, which included all the unsupervised meth-
ods for fuzzy measure learning reviewed and other classical
aggregations.

For future work, we aim to tackle one of the disadvantages
of learning a global fuzzy measure, that is, the complexity
of estimating 2N parameters, especially when N becomes
large. For this purpose, fuzzy measure compression could
be explored [49]. We want also to test CPM in other clas-
sification frameworks such as multi-class, multi-label or
multi-instance learning. Likewise, we would like to further

analyze the behavior of the different aggregations in similar
frameworks to better understand when and why non-classical
aggregations can be improved. For example, we could only
focus on those examples whose classification can be affected
by the aggregation to better analyze the differences among
methods. Similarly, we will study other ensemble methods
whose resulting classifiers could differ more (e.g., Boosting),
increasing the importance of the aggregation phase.
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