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Abstract

We derive a convergent expansion of the generalized hypergeometric function p−1Fp
in terms of the Bessel functions 0F1 that holds uniformly with respect to the argument
in any horizontal strip of the complex plane. We further obtain a convergent expansion
of the generalized hypergeometric function pFp in terms of the confluent hypergeometric
functions 1F1 that holds uniformly in any right half-plane. For both functions, we make
a further step and give convergent expansions in terms of trigonometric, exponential
and rational functions that hold uniformly in the same domains. For all four expansions
we present explicit error bounds. The accuracy of the approximations is illustrated with
some numerical experiments.
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1 Introduction
A variety of expansions (convergent or asymptotic) of the special functions of mathematical
physics can be found in the literature. These expansions have the important property of
being given in terms of elementary functions: mostly, positive or negative powers of a certain
variable z and, sometimes, other elementary functions. However, very often, these expansions
are not simultaneously valid for small and large values of |z|. Thus, it would be interesting
to derive new convergent expansions in terms of elementary functions that hold uniformly
in z in a large region of the complex plane containing both small and large values of |z|.

In [5], [6] and [16], the authors derived new uniform convergent expansions of the incom-
plete gamma functions, the Bessel functions and the confluent hypergeometric functions,
respectively, in terms of elementary functions. The starting point of the technique used in
[5], [6] and [16] is an appropriate integral representation of these functions. The key idea is
the use of the Taylor expansion of a certain factor of the integrand that is independent of the
variable z, at an appropriate point of the integration interval, and subsequent interchange of
sum and integral. The independence of that factor of z translates into uniform convergence
of the resulting expansion in a large region of the complex z−plane. The expansions given
in [5], [6] and [16] are accompanied by error bounds and numerical experiments showing the
accuracy of the approximations.

In this work, we continue that line of investigation by considering the generalized hy-
pergeometric functions p−1Fp(a;b; z) and pFp(a;b; z). We view them as functions of the
complex variable z, and derive new convergent expansions uniformly valid in an unbounded
region of the complex z−plane that contains the point z = 0. The generalized hypergeomet-
ric function (GHF) qFp(a;b; z) is defined by means of the hypergeometric series as (see [1,
Section 2.1], [17, Section 5.1], [4, Chapter 12] or [18, eq. (16.2.1)])

qFp

(
a
b

∣∣∣∣ z) =
∞∑
k=0

(a1)k · · · (aq)k
(b1)k · · · (bp)k

zk

k!
, (1)

where a := (a1, a2, · · · , aq) and b := (b1, b2, · · · , bp), −bj /∈ N ∪ {0}, are parameter vectors
and (a)n = Γ(a + n)/Γ(a) is the Pochhammer’s symbol. In general, qFp(a;b; z) does not
exist when some bk = 0,−1,−2, . . .. Series (1) converges ∀z ∈ C if q ≤ p and inside the unit
disk if q = p + 1. In the latter case, the generalized hypergeometric function p+1Fp(a;b; z)
is defined outside the unit disk by analytic continuation to the cut plane C \ [1,∞) and the
branch defined in this way in the sector | arg(1− z)| < π, is called the principal branch (or
principal value) of p+1Fp(a;b; z).

In the remaining part of this paper we only consider q = p − 1 or q = p and <ak > 0,
k = 1, 2, 3, ..., q. In the case q = p−1 we assume that <[(b1+b2+...+bp)−(a1+a2+...+ap−1)] >
1/2. In this case our starting point is the integral representation of p−1Fp(a; b; z) originally
derived by Kiryakova [15, Chapter 4] and further discussed in [10, eq.(12)] and [11, eq.(28)]
which, when combined with the shifting property (8), takes the form:

p−1Fp

(
a
b

∣∣∣∣− z2

4

)
=

2Γ(b)√
π Γ(a)

∫ 1

0

cos(zt)Gp,0
p,p

(
t2

b− 1/2
a− 1/2, 0

)
dt, z ∈ C, (2)
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where Gp,0
p,p is a particular case of Meijer’s G function defined and further explained in (7)

below. If q = p we assume that <[(b1 + b2 + ...+ bp)− (a1 + a2 + ...+ ap)] > 0. In this case
our starting point is the integral representation of pFp(a; b; z) derived in [15, Chapter 4] and
further discussed in [10, eq.(11)],

pFp

(
a
b

∣∣∣∣− z) =
Γ(b)

Γ(a)

∫ 1

0

e−ztGp,0
p,p

(
t
b− 1
a− 1

)
dt, z ∈ C. (3)

If the above restrictions on parameters are violated the results of this paper can still be
applied by employing the decomposition [11, eq.(31)]

qFp

(
a
b

∣∣∣∣ z) =
n−1∑
k=0

(a)k
(b)kk!

zk +
(a)nz

n

(b)nn!
q+1Fp+1

(
a + n, 1

b + n, n+ 1

∣∣∣∣ z) . (4)

Indeed, we can always choose n large enough to satisfy <(a + n) > 0 and <[(b1 + b2 + ... +
bp + np+ n+ 1)− (a1 + a2 + ...+ aq + nq + 1)] > 0.

The power series expansion (1) may be obtained from (2) or (3) by replacing the factor
cos(zt) or e−zt by its Taylor series at the origin, interchanging series and integral and using
the following formula for the moments of the Gp,0

p,p function [11, eq.(16)],∫ 1

0

tmGp,0
p,p

(
t
b
a

)
dt =

Γ(a +m+ 1)

Γ(b +m+ 1)
, m ∈ N0,

The Taylor expansions for cos(zt) and e−zt converge for t ∈ [0, 1], but the convergence is
not uniform in |z|. Therefore, expansion (1) is convergent, but not uniformly in |z| as the
remainder is unbounded for large |z|.

The asymptotic expansions of p−1Fp(a;b; z) and pFp(a;b; z) for large |z| can be found in
[18, Sec. 16.11]. They are given in terms of formal series expansions in inverse powers of z
and are asymptotic for large |z|, but the remainders are unbounded for small |z| and then,
the expansions are not uniform in |z|.

As an illustration of the uniform approximations that we are going to obtain in this paper
(see Theorems 1-4 below), we derive, for example, the following one:

1F2

(
3;

7

2
, 5;−z

2

4

)
' 720z(8z4 + 105z2 − 1890)

z11
cos z+

720(z6 − 15z4 − 735z2 + 1890)

z11
sin z,

(5)
that approximates the left hand side in any horizontal strip of the complex z−plane. Note
that the limit of the right hand side of (5) as z → 0 is finite and equals 208/231. Figure 1
illustrates the accuracy and the uniform character of the above approximation for real z.

In order to derive uniformly convergent expansions of p−1Fp(a;b; z) and pFp(a;b; z), we
apply the technique proposed in [5], [6] and [16]: we consider the Taylor expansion of the
factor Gp,0

p,p(a;b; t) at t = 1 in (2) and (3). This Taylor expansion is convergent for any t
in the interval of integration and, obviously, it is independent of z. After the interchange
of the series and the integral, this independence translates into a remainder that may be
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Figure 1: Plot of the left (blue) and right (yellow) hand side of (5) in two intervals of the real
z−axis.

bounded uniformly with respect to z in a large unbounded region of the complex z−plane
that contains the point z = 0 and that we specify in Theorems 1-4 below.

This paper is organized as follows. In the preliminary Section 2, some properties of the
Meijer-Nørlund function Gp,0

p,p and Nørlund’s coefficients needed for later computations are
presented and some notation introduced. In Section 3 we consider the integral representation
(2) for p−1Fp(a;b; z). In Section 4 we consider the integral representation (3) for pFp(a;b; z).
In these two sections we first derive expansions in terms of the Bessel and the confluent
hypergeometric functions, respectively. We may consider these expansion as ”natural”, as
the Bessel function 0F1(a;b; z) and the confluent hypergeometric function 1F1(a;b; z) are
the first functions of the respective p−hierachies. Next, using the known expansions of the
Bessel and the confluent hypergeometric functions in terms of elementary functions from [6]
and [16], we proceed to derive, for both p−1Fp(a;b; z) and pFp(a;b; z), a second expansion
in terms of elementary functions. Throughout the paper we use the principal argument
arg(z) ∈ (−π, π].

2 Preliminaries on the Meijer-Nørlund function and Nør-
lund’s coefficients

We will use the standard notation N, Z and C for the sets of natural, integer and complex
numbers, respectively; N0 = N ∪ {0}. The size of a vector a := (a1, a2, ..., ap) is typically
obvious from the subscript of the corresponding hypergeometric function. Throughout the
paper, we will use the shorthand notation for products and sums:

Γ(a) := Γ(a1)Γ(a2) · · ·Γ(ap), (a)n := (a1)n(a2)n · · · (ap)n, a+µ := (a1+µ, a2+µ, . . . , ap+µ);

inequalities like <(a) > 0 and properties like −a /∈ N0 will be understood element-wise. The
symbol a[k] stands for the vector a with omitted k-th component. Given two complex vectors
a ∈ Cq, b ∈ Cp, we also define

ψ(a,b) :=

p∑
j=1

bj −
q∑
j=1

aj. (6)
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We will need the basic properties of a particular case of Meijer’s G function Gp,0
p,p studied

in detail by Nørlund in [19] using a different notation and without mentioning Meijer’s
previous work. In [12] we suggested the denomination ”Meijer-Nørlund function” for this
function defined by the Mellin-Barnes integral of the form

Gp,0
p,p

(
z

b
a

)
:=

1

2πi

∫
L

Γ(a+s)

Γ(b +s)
z−sds, z ∈ C. (7)

We omit the details regarding the choice of the contour L as the definition of (the general case
of) Meijer’s G function can be found in standard text- and reference- books [17, section 5.2],
[18, 16.17], [21, 8.2] and [4, Chapter 12]. See also our papers [11, 12, 13]. The following
shifting property is straightforward from the definition (7), but nevertheless it is very useful
(see [21, 8.2.2.15] or [18, Sec. 16.19, eq. (16.19.2)]):

zαGp,0
p,p

(
z

b
a

)
= Gp,0

p,p

(
z

b + α
a + α

)
, α ∈ C. (8)

Given two complex vectors a ∈ Cp−1, b ∈ Cp and N ∈ N, Nørlund’s coefficients gn(a;b) are
defined via the generating function [19, eq.(1.33)], [11, eq.(11)] which we present in a split
form for further reference:

Gp,0
p,p

(
1− z b

a, 0

)
=

zψ(a;b)−1

Γ(ψ(a,b))

N−1∑
n=0

gn(a;b)

(ψ(a,b))n
zn + rN(a,b; z), (9)

where

rN(a,b; z) :=
zψ(a;b)−1

Γ(ψ(a,b))

∞∑
n=N

gn(a;b)

(ψ(a,b))n
zn

and ψ(a,b) is defined by (6). These coefficients are polynomials symmetric in the compo-
nents of the vectors a = (a1, . . . , ap−1) and b = (b1, . . . , bp). They can also be defined via
the inverse factorial generating function [19, eq.(2.21)]

Γ(z + ψ(a;b))Γ(z + a)

Γ(z + b)
=
∞∑
n=0

gn(a;b)

(z + ψ(a,b))n
.

As, clearly, ψ(a + α;b + α) = ψ(a;b) + α, we have (by changing z → z + α)

Γ(z + α + ψ(a;b))Γ(z + α + a)

Γ(z + α + b)
=
∞∑
n=0

gn(a + α;b + α)

(z + ψ(a;b) + α)n
=
∞∑
n=0

gn(a;b)

(z + α + ψ(a;b))n
.

Hence, gn(a+α;b+α) = gn(a;b) for any α. Nørlund found two different recurrence relations
for gn (one in p and one in n). The simplest of them reads [19, eq.(2.7)]

gn(a, α;b, β) =
n∑
s=0

(β − α)n−s
(n− s)!

(ψ(a;b)− α + s)n−sgs(a;b), p = 1, 2, . . . , (10)
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with the initial values g0(−; b1) = 1, gn(−; b1) = 0, n ≥ 1. This recurrence was solved by
Nørlund [19, eq.(2.11)] as follows:

gn(a;b) =
∑

0≤j1≤j2≤···≤jp−2≤n

p−1∏
m=1

(ψm + jm−1)jm−jm−1

(jm − jm−1)!
(bm+1 − am)jm−jm−1 , (11a)

where ψm =
∑m

i=1(bi − ai), j0 = 0, jp−1 = n. This formula can be rewritten as:

gn(a;b) =
∑

0≤j1≤j2≤···≤jp−2≤n

p−1∏
m=1

(−jm)jm−1(bm+1 − am)jm(ψm)jm
(1 + am − bm+1)(ψm)jm−1jm!

, (11b)

where we applied

(α)n−s =
(−1)s(α)n

(1− α− n)s
, (n− s)! =

(−1)sn!

(−n)s
, (α + s)n−s =

(α)n
(α)s

.

Note that the presence of the terms (−jm)jm−1 allows extending the above sums to Np−2
0

without changing their values. The other recurrence relation for gn(a;b) discovered by Nør-
lund [19, eq.(1.28)] has order p in the variable n and coefficients polynomial in n. Details can
be found in [13, section 2.2]. The first three coefficients are given by (see [13, Theorem 3.1]
for details):

g0(a;b) = 1, g1(a;b) =

p−1∑
m=1

(bm+1 − am)ψm,

g2(a;b) =
1

2

p−1∑
m=1

(bm+1 − am)2(ψm)2 +

p−1∑
k=2

(bk+1 − ak)(ψk + 1)
k−1∑
m=1

(bm+1 − am)ψm.

For p = 2 and p = 3 and arbitrary n explicit expressions for gn(a;b) have also been found
by Nørlund, see [19, eq.(2.10)]. Defining νm :=

∑m
j=1 bj −

∑m−1
j=1 aj, we have

gn(a;b) =
(b1 − a)n(b2 − a)n

n!
for p = 2;

gn(a;b) =
(ν3 − b2)n(ν3 − b3)n

n!
3F2

(
−n, b1 − a1, b1 − a2
ν3 − b2, ν3 − b3

)
for p = 3.

(12)

The right hand side here is invariant with respect to the permutation of the elements of b.
Finally, for p = 4 we have [13, p.12]

gn(a;b) =
(ν4 − b3)n(ν4 − b4)n

n!

n∑
k=0

(−n)k(ν2 − a2)k(ν2 − a3)k
(ν4 − b3)k(ν4 − b4)k

3F2

(
−k, b1 − a1, b2 − a1
ν2 − a2, ν2 − a3

)
.

The following lemma will play an important role in proving the convergence of the ex-
pansions considered in the sequel.
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Lemma 1. Given two complex vectors a ∈ Cp−1 and b ∈ Cp, denote by −a the real part of
the rightmost pole(s) of the function s→ Γ(a+ s)/Γ(b+ s) and write r ∈ N for the maximal
multiplicity among all poles with with real part −a. Then for n ≥ 2 there exists a constant
K > 0 independent of n such that∣∣∣∣ gn(a;b)

Γ(ψ(a;b) + n)

∣∣∣∣ ≤ K logr−1(n)

na+1
. (13)

Proof. Assume first that a < 0. This implies that the rightmost pole(s) of the function
s → Γ(a + s)/Γ(b + s) coincide with the rightmost pole(s) of the function s → Γ(s)Γ(a +
s)/Γ(b + s). Define

f(w) := w1−ψ(a;b)Gp,0
p,p

(
1− w b

a, 0

)
=
∞∑
n=0

gn(a;b)

Γ(ψ(a;b) + n)
wn

by (9). It follows from the properties of the Meijer-Nørlund function Gp,0
p,p that f(w) is

analytic in the domain

∆(φ, η) := {w : |w| < 1 + η, | arg(1− w)| ≥ φ}

for some η > 0 and 0 < φ < π/2. Further, from the asymptotic properties of Gp,0
p,p(z) in the

neighborhood of z = 0 given in [11, Property 5] we conclude that

f(w) = O
(
(1− w)a logr−1(1− w)

)
as w → 1,

where a and r are as defined in the Lemma. Hence, we are in position to apply [9, Theorem 2]
stating that ∣∣∣∣ gn(a;b)

Γ(ψ(a;b) + n)

∣∣∣∣ = O
(
n−a−1 logr−1(n)

)
as n→∞.

Next, assume that a ≥ 0. Take β > 0 large enough to make the real part of the rightmost
pole(s) of the function s → Γ(a − β + s)/Γ(b − β + s) positive and denote this real part
−a′, so that a′ < 0 and we are in the situation treated above. Hence, using a′ = a − β,
gn(a− β;b− β) = gn(a;b) and ψ(a− β;b− β) = ψ(a;b)− β we get∣∣∣∣ gn(a;b)

Γ(ψ(a;b) + n)

∣∣∣∣ =

∣∣∣∣gn(a− β;b− β)Γ(ψ(a− β;b− β) + n)

Γ(ψ(a− β;b− β) + n)Γ(ψ(a;b) + n)

∣∣∣∣
≤ K1 logr−1(n)

na′+1

∣∣∣∣Γ(ψ(a;b)− β + n)

Γ(ψ(a;b) + n)

∣∣∣∣ ≤ K1 logr−1(n)

na−β+1
K2n

−β =
K1K2 logr−1(n)

na+1
.

Remark. In some situations below we will need an extended version of inequality (13) valid
for all n ≥ 0. It is straightforward to see that (13) implies that the inequality∣∣∣∣ gn(a;b)

Γ(ψ(a;b) + n+ µ)

∣∣∣∣ ≤ C
logr−1(n+ 2)

(n+ 1)a+1+µ
(14)

is true with some positive constant C for all n ≥ 0 and any µ ∈ R.
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Lemma 2. Suppose a and r retain their meaning from Lemma 1 and assume further that
a > 0. Then for x ∈ [0, 1] the remainder rN(a,b;x) in formula (9) satisfies

|rN(a,b;x)| ≤ K logr−1(N)

Na
xN+ψ(a;b)−1 (15)

for some constant K > 0 independent of N and x.

Proof. For x ∈ [0, 1], and using the previous lemma we have

|rN(a,b;x)| ≤ KxN+ψ(a;b)−1sN(a, r), sN(a, r) :=
∞∑
n=N

logr−1 n

na+1
= (−1)r−1

dr−1

dar−1

∞∑
n=N

1

na+1
.

Then

sN(a, r) = (−1)r−1
dr−1

dar−1
ζ(a+ 1, N)

=
dr−1

dar−1
(−1)r−1

Γ(a+ 1)

∫ ∞
0

tae−Nt

1− e−t
dt ≤

r−1∑
k=0

ck(a, r)

∫ ∞
0

ta| logk t|e−Nt

1− e−t
dt,

where ζ(a+ 1, N) is the Hurwitz zeta function [18, section 25.11], whose integral representa-
tion [18, eq.(25.11.25)] was used in the second equality. Here the constants ck(a, r) > 0 are
independent of N . Further,∫ ∞

0

ta| logk t|e−Nt

1− e−t
dt ≤

∫ ∞
0

ta−1(1 + t)| logk t|e−Ntdt

=
1

Na

∫ ∞
0

ta−1
(

1 +
t

N

)
| logk

(
t

N

)
|e−tdt.

The term | logk(t/N)| is bounded by a sum of terms | logp t logqN |, with p + q = k, the
highest one corresponding to q = k = r − 1:

logr−1N

Na

∫ ∞
0

ta−1
(

1 +
t

N

)
e−tdt = O

(
logr−1N

Na

)
.

3 Expansions for the Bessel type GHF

3.1 An expansion in terms of Bessel functions

Theorem 1. For a ∈ Cp−1 with <a > 0, b ∈ Cp and z ∈ C, let a and r be the constants
defined in Lemma 1. Then, if <ψ(a;b) > 1/2, for any N ∈ N we have

p−1Fp

(
a
b

∣∣∣∣− z2

4

)
=

Γ(b)

Γ(a)

N−1∑
n=0

gn(a;b)
Jψ(a;b)+n−1(z)

(z/2)ψ(a;b)+n−1
+RN(z), (16)

8



where

|RN(z)| ≤ Ke|=z|
logr−1(N)

Na+1/2
(17)

with K > 0 independent of N and z. Therefore, (16) converges uniformly with respect to z
in any horizontal strip |=z| < Λ with arbitrary Λ > 0.

Proof. Substituting the expansion (9) into formula (2) and integrating term-wise we get

p−1Fp

(
a
b

∣∣∣∣− z2

4

)
=

Γ(b)

Γ(a)

N−1∑
n=0

gn(a;b)

Γ(ψ(a;b) + n)
0F1

(
−;ψ(a;b) + n;−z

2

4

)
+RN(z),

RN(z) :=
2Γ(b)√
πΓ(a)

∫ 1

0

cos(zu)rN(a,b; 1− u2) du,

(18)

where we used the shifting property gn(a−1/2;b−1/2) = gn(a;b) and the integral evaluation∫ 1

0

(1− u2)ψ(a;b)+n−3/2 cos(zu)du =

√
πΓ(ψ(a;b) + n− 1/2)

2Γ(ψ(a;b) + n)
0F1

(
−;ψ(a;b) + n;−z

2

4

)
,

valid for n ∈ N0 when <ψ(a;b) > 1/2. Expansion (18) can be rewritten in the form (16), in
terms of Bessel functions, in view of

Jν(z) =
(z/2)ν

Γ(ν + 1)
0F1

(
−; ν + 1;−z

2

4

)
.

From Lemma 2 we have that

|RN(z)| ≤ C e|=z|
logr−1(N)

Na

∫ 1

0

(1− u2)N+ψ(a;b)−1du ≤ Ke|=z|
logr−1(N)

Na+1/2
,

with C,K > 0 independent of z and N , which is (17).

The following picture illustrates the accuracy and uniform character of approximation
(16) for p = 2, a = 3, b = (7/2, 5) and real z.
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Figure 2: Plot of the left (blue) and right hand side of (16) on two intervals of the real axis. For
N = 1, 3, 5 (red, yellow and green, respectively) in the left picture and N = 1, 10, 20 (red, yellow
and green, respectively) in the right picture.

9



Remark. In view of the first formula in (12), expansion (16) for p = 2 takes the form

1F2

(
a

b1, b2

∣∣∣∣− z2/4) =
Γ(b1)Γ(b2)

(z/2)ψ−1Γ(a)

∞∑
n=0

(b1 − a)n(b2 − a)n
n!(z/2)n

Jn+ψ−1(z),

where ψ = b1 + b2 − a. Surprisingly, we could not find the above expansion in [20]. On the
other hand, [20, eq.(5.7.8.3)] reads (after some change of notation):

1F2

(
a

b1, b2

∣∣∣∣− z2/4) =
Γ(b2)

(z/2)b2−1

∞∑
n=0

(b1 − a)n
(b1)nn!

(z/2)nJn+b2−1(z).

As we have (b1)nn! in the denominator, for small z this series converges faster than our
expansion. However, this expansion is not uniform in z in any unbounded domain.

3.2 An expansion in terms of elementary functions

Theorem 2. For a ∈ Cp−1 with <a > 0, b ∈ Cp and z ∈ C, let a and r be the constants
defined in Lemma 1. Then, if <ψ(a;b) > 1/2, for any N ∈ N we have

p−1Fp

(
a
b

∣∣∣∣− z2

4

)
=

2Γ(b)√
πΓ(a)

N−1∑
n=0

gn(a;b)

Γ(ψ(a;b) + n− 1/2)

{
Pm(z, ψ(a;b) + n− 1)

sin z

z

−Qm(z, ψ(a;b) + n− 1) cos z

}
+RT

N(z), m := N + b<ψ(a;b)− 3/2c, (19)

where Pm(z, ν) and Qm(z, ν) are the following rational functions of z:

Pm(z, ν) :=
m∑
j=0

am,j(ν)

(−z2)j
, am,j(ν) :=

m∑
k=j

(1/2− ν)k(2k)!

k!(2(k − j))!
,

Qm(z, ν) :=
m∑
j=1

bm,j(ν)

(−z2)j
, bm,j(ν) :=

m∑
k=j

(1/2− ν)k(2k)!

k!(2(k − j) + 1)!
.

(20)

The remainder is bounded in the form

|RT
N(z)| ≤ Ke|=z|

[
1

N<ψ(a;b)−1/2
+

logr−1(N)

Na+1/2

]
, (21)

with K > 0 independent of N and z. Therefore, for <ψ(a;b) > 1/2, (19) converges uniformly
with respect to z in any horizontal strip |=z| < Λ with arbitrary Λ > 0.

Proof. From [16, eq.(9)] we have that, for m = 1, 2, . . ., the Bessel function 0F1 may be
written as
√
π

2

Γ(ν + 1/2)

Γ(ν + 1)
0F1

(
−; ν + 1;−z

2

4

)
= Pm−1(z, ν)

sin z

z
−Qm−1(z, ν) cos z + rm(z, ν) (22)

10



with Pm−1(z, ν) and Qm−1(z, ν) given in (20) and, if m > <ν − 1/2, the remainder rm(z, ν)
is bounded as follows:

|rm(z, ν)| ≤ Ke|=z|

m<ν+1/2
, (23)

with K > 0 independent of z and m. Therefore, the remainder rm(z, ν) is asymptotically
equivalent to m−<ν−1/2 as m→∞ uniformly in z in any fixed horizontal strip.

Hence, substituting (22) into (18) we obtain (19) with

RT
N(z) :=

2Γ(b)√
πΓ(a)

N−1∑
n=0

gn(a;b)

Γ(ψ(a;b) + n− 1/2)
rm(z, ψ(a;b) + n− 1) +RN(z)

with RN(z) as in Theorem 1. Here we need to choose m = m(N, n) to make
N−1∑
n=0

gn(a;b)

Γ(ψ(a;b) + n− 1/2)
rm(z, ψ(a;b) + n− 1)

converge to zero as N →∞. Using the estimates (14) and (23), with m > n+<ψ(a;b)−3/2
we get∣∣∣∣∣
N−1∑
n=0

gn(a;b)

Γ(ψ(a;b) + n− 1/2)
rm(z, ψ(a;b) + n− 1)

∣∣∣∣∣ ≤ Ce|=z|
N−1∑
n=0

logr−1(n+ 2)

(n+ 1)a+1/2mn+<ψ(a;b)−1/2 .

Then, it is sufficient to take m = N + b<ψ(a;b)− 3/2c to obtain∣∣∣∣∣
N−1∑
n=0

gn(a;b)

Γ(ψ(a;b) + n− 1/2)
rm(z, ψ(a;b) + n− 1)

∣∣∣∣∣ ≤
Ce|=z|

N<ψ(a;b)−1/2

N−1∑
n=0

logr−1(n+ 2)

(n+ 1)a+1/2Nn
≤ Ke|=z|

N<ψ(a;b)−1/2
,

with K > 0 independent of z and N and (21) follows.

Formula (5) is a particular case of (19) for N = 2. The following picture shows some
more approximations.

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

12 14 16 18 20 22 24

-0.002

-0.001

0.001

0.002

Figure 3: Plot of the left (blue) and right hand side of (19) on two intervals of the real axis. For
N = 1, 3, 5 (red, yellow and green, respectively) in the left picture and N = 1, 10, 20 (red, yellow
and green, respectively) in the right picture.
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4 Expansions for the GHF of the Kummer type

4.1 An expansion in terms of the Kummer functions

Theorem 3. Given a ∈ Cp, assume without loss of generality that <(ap) = min(<(a)) and
suppose that <(a[p]) > 0. Suppose further that b ∈ Cp, z ∈ C and denote by −α the real part
of the rightmost pole(s) of the function s→ Γ(a[p] + s)/Γ(b + s) and by r ∈ N the maximal
multiplicity among all poles with the real part −α. Then, if <(ψ(a;b)) > 0, for any N ∈ N
we have

pFp

(
a
b

∣∣∣∣− z) =
Γ(b)

Γ(a[p])

N−1∑
n=0

gn(a[p];b)

Γ(ψ(a[p];b) + n)
M(ap, ψ(a[p];b) + n,−z) +RN(z), (24)

where M(a, b, z) is the Kummer function of the first kind, and the remainder is bounded in
the form

|RN(z)| ≤ KH(z)
logr−1N

Nα
, (25)

with K > 0 independent of N and z and H(z) := max(1, e−<z). Therefore, expansion (24)
is uniformly convergent for z in any half-plane <z ≥ Λ with arbitrary Λ ∈ R.

Proof. Assume without loss of generality that <(ap) = min(<(a)) (otherwise just exchange
the indices p and argmin(a)). The integral representation [10, eq.(11)] of pFp combined with
[2, Sec. 16.19, eq. (16.19.2)] and the shifting property (8) gives

pFp

(
a
b

∣∣∣∣− z) =
Γ(b)

Γ(a)

∫ 1

0

e−ztGp,0
p,p

(
t

∣∣∣∣b− 1
a− 1

)
dt =

Γ(b)

Γ(a)

∫ 1

0

e−zttap−1Gp,0
p,p

(
t

∣∣∣∣ b′a′, 0

)
dt,

(26)
where b′ = b−ap, a′ = a[p]−ap. Then, we are in the position to apply expansion (9) to get:

pFp

(
a
b

∣∣∣∣− z) =
Γ(b)

Γ(a)

N−1∑
n=0

Γ(ap) gn(a′;b′)

Γ(ψ(a′;b′) + n)
M(ap, ψ(a′;b′) + n+ ap,−z) +RN(z),

where

RN(z) =
Γ(b)

Γ(a)

∫ 1

0

e−zttap−1(1− t)ψ(a′;b′)−1dt
∞∑
n=N

gn(a′;b′)

Γ(ψ(a′;b′) + n)
(1− t)n.

Now by the shifting property of Nørlund’s coefficients and definition (6) we have

gn(a′;b′) = gn(a[p];b) and ψ(a′;b′) = ψ(a;b),

so that we arrive at expansion (24) with the remainder given by (after termwise integration)

RN(z) =
Γ(b)

Γ(a)

∞∑
n=N

gn(a[p];b)

Γ(ψ(a;b) + n)

∫ 1

0

e−zttap−1(1− t)ψ(a;b)+n−1dt.
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In view of ψ(a;b) + ap = ψ(a[p];b), we have∣∣∣∣∫ 1

0

e−zttap−1(1− t)ψ(a;b)+n−1dt
∣∣∣∣ ≤ ∫ 1

0

e−<(z)tt<(ap)−1(1− t)<(ψ(a;b))+n−1dt

≤ H(z)
Γ(<(ap))Γ(<(ψ(a;b)) + n)

Γ(<(ψ(a[p];b)) + n)
,

where H(z) is defined in the statement of the theorem. Now, if we write −α for the real part
of the rightmost pole(s) of the function s→ Γ(a[p] + s)/Γ(b+ s) and r ∈ N for the maximal
multiplicity among all poles with the real part −α, Lemma 1 yields∣∣∣∣ gn(a[p];b)

Γ(ψ(a;b) + n)

∣∣∣∣ =

∣∣∣∣ gn(a[p];b)Γ(ψ(a[p];b) + n)

Γ(ψ(a[p];b) + n)Γ(ψ(a;b) + n)

∣∣∣∣ ≤ K1 logr−1(n)

nα+1

∣∣∣∣Γ(ψ(a;b) + ap + n)

Γ(ψ(a;b) + n)

∣∣∣∣ .
Combining these bounds we obtain

|RN(z)| ≤ KH(z)|Γ(<(ap))|
∣∣∣∣Γ(b)

Γ(a)

∣∣∣∣ ∞∑
n=N

λn
logr−1(n)

nα+1

for some positive constant K independent of n and z, and

λn :=

∣∣∣∣Γ(ψ(a[p];b) + n)

Γ(ψ(a;b) + n)

Γ(<(ψ(a;b)) + n)

Γ(<(ψ(a[p];b)) + n)

∣∣∣∣
The representation [3, eq.1.3(3)] (γ is the Euler-Mascheroni constant)

Γ(x+ iy)

Γ(x)
=

xeiγy

x+ iy

∞∏
k=1

eiγ/k

1 + iγ/(k + x)
,

valid for all x + iy ∈ C, implies that the sequence λn is bounded by a constant. Hence by
Lemma 2 we get the bound (25).

The following picture illustrates the accuracy and the uniform character of approximation
(24) for p = 2, a = (1, 3/2), b = (2, 3) and real z.
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0.4
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0.6

Figure 4: Plot of the left (blue) and right hand side of (24) for z in the real interval [0, 50]. For
N = 10, 20, 30 (red, yellow and green, respectively) in the left picture and N = 50, 100, 200 (red,
yellow and green, respectively) in the right picture.
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4.2 An expansion in terms of elementary functions

Theorem 4. Given a,b ∈ Cp, assume that <(a) > 0 and let α and r have the same meaning
as in Theorem 3. Then, for <ψ(a;b) > 0 for any N ∈ N we have

pFp

(
a
b

∣∣∣∣− z) =
Γ(b)

Γ(a[p])

N∑
n=0

gn(a[p];b)

Γ(ψ(a[p];b) + n)

[
m−1∑
k=0

Ak(ap, ψ(a[p];b) + n)Fk(−z)

]
+RT

N(z),

(27)

with m := N + b<ψ(a[p];b)c, and

Fn(z) :=
n!

(−z)n+1

[
en

(z
2

)
− ezen

(
−z

2

)]
, en(z) :=

n∑
k=0

zk

k!
,

An(a, b) := 2n+2−b (a+ 1− b)n
n!

Γ(b)

Γ(a)Γ(b− a)
2F1

 1− a, −n

b− a− n

∣∣∣∣∣∣− 1

 .

The remainder term is bounded in the form

∣∣RT
N(z)

∣∣ ≤ KH(z)

[
logr−1N

Nα
+

1

N<ap

]
, (28)

with K > 0 independent of z and N , H(z) := max(1, e−<z). Therefore, expansion (27) is
uniformly convergent any half plane <z ≥ Λ with arbitrary Λ ∈ R.

Proof. According to [6, (21),(28)] for each n = 1, 2 . . ., we can write the Kummer function
M(a, b; z) in the form:

M(a, b;−z) =
m−1∑
k=0

Ak(a, b)Fk(−z) + rm(a, b;−z), (29)

with Ak(a, b) and Fk(z) defined above. We also have that, for m > <(b− 1), the remainder
rm(a, b; z) is bounded in the form:

|rm(a, b;−z)| ≤ KH(z)

mβ
, β := min{<a,<(b− a)}, (30)

with K > 0 independent of z and n and H(z) = max(1, e−<z). Therefore, the remainder
rm(a, b; z) behaves as m−β as m→∞ uniformly in z in any half-plane of the form <z ≥ Λ,
Λ ∈ R.

Hence, substituting (29) into (24) we obtain (27) with

RT
N(z) :=

Γ(b)

Γ(a[p])

N−1∑
n=0

gn(a[p];b)

Γ(ψ(a[p];b) + n)
rm(ap, ψ(a[p];b) + n;−z) +RN(z).
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Next, we need to choose m = m(N, n) to make

N−1∑
n=0

gn(a[p];b)

Γ(ψ(a[p];b) + n)
rm(ap, ψ(a[p];b) + n;−z)

converge to zero as N →∞.
Assuming that m > <(ψ(a[p];b)) + n− 1, we can use the estimate (30) with β = <(ap)

in view of <(ψ(a[p];b)) > 0 and estimate (14) to get∣∣∣∣∣
N−1∑
n=0

gn(a[p];b)

Γ(ψ(a[p];b) + n)
rm(ap, ψ(a[p];b) + n;−z)

∣∣∣∣∣ ≤ CH(z)
N−1∑
n=0

logr−1(n+ 2)

(n+ 1)α+1m<ap
.

Then, it is sufficient to take m = N + b<ψ(a[p];b)c and we obtain∣∣∣∣∣
N−1∑
n=0

gn(a[p];b)

Γ(ψ(a[p];b) + n)
rm(ap, ψ(a[p];b) + n;−z)

∣∣∣∣∣ ≤ C
H(z)

N<ap

N−1∑
n=0

logr−1(n+ 2)

(n+ 1)α+1
≤ K

H(z)

N<ap
,

with C,K > 0 independent of z and N which implies (28).

The following picture illustrates the accuracy and the uniform character of approximation
(27) for p = 2, a = (1, 3/2), b = (2, 3) and real z.
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Figure 5: Plot of the left (blue) and right hand side of (27) for N = 20, 40, 80 (red, yellow and
green, respectively) for z in two different real intervals.
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