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Abstract: Hyperprogressive disease (HPD) is an adverse outcome of immunotherapy consisting of an
acceleration of tumor growth associated with prompt clinical deterioration. The definitions based on
radiological evaluation present important technical limitations. No biomarkers have been identified
yet. In this study, 70 metastatic NSCLC patients treated with anti-PD-1/PD-L1 immunotherapy
after progression to platinum-based therapy were prospectively studied. Samples from peripheral
blood were obtained before the first (baseline) and second cycles of treatment. Peripheral blood
mononuclear cells (PBMCs) were isolated and differentiation stages of CD4 lymphocytes quantified
by flow cytometry and correlated with HPD as identified with radiological criteria. A strong
expansion of highly differentiated CD28− CD4 T lymphocytes (CD4 THD) between the first and
second cycle of therapy was observed in HPD patients. After normalizing, the proportion of
posttreatment/pretreatment CD4 THD was significantly higher in HPD when compared with the
rest of patients (median 1.525 vs. 0.990; p = 0.0007), and also when stratifying by HPD, non-HPD
progressors, and responders (1.525, 1.000 and 0.9700 respectively; p = 0.0025). A cut-off value of 1.3
identified HPD with 82% specificity and 70% sensitivity. An increase of CD28− CD4 T lymphocytes ≥
1.3 (CD4 THD burst) was significantly associated with HPD (p = 0.008). The tumor growth ratio (TGR)
was significantly higher in patients with expansion of CD4 THD burst compared to the rest of patients
(median 2.67 vs. 0.86, p = 0.0049), and also when considering only progressors (median 2.67 vs. 1.03,
p = 0.0126). A strong expansion of CD28− CD4 lymphocytes in peripheral blood within the first
cycle of therapy is an early differential feature of HPD in NSCLC treated with immune-checkpoint
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inhibitors. The monitoring of T cell dynamics allows the early detection of this adverse outcome in
clinical practice and complements radiological evaluation.

Keywords: hyperprogressive disease; immunotherapy; NSCLC

1. Introduction

Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer, as they have
been proven to be more efficacious and less toxic than conventional chemotherapy or targeted therapies
in several tumor types. However, some patients experience an unexpected accelerated tumor growth
during treatment associated with prompt clinical deterioration. This phenomenon has been defined
as hyperprogressive disease (HPD) [1–3]. The underlying mechanisms are still not clearly defined,
although some recent studies are shedding light upon the matter. Tumor infiltration by M2-like CD163+

CD33+ PD-L1+ macrophages was found in tumor biopsies from all non small cell lung cancer (NSCLC)
patients exhibiting hyperprogression. Tumor progression was shown to correlate with anti-PD1 Fc
interaction with Fc receptors in macrophages in a murine xenograft model [4]. A recent translational
study in gastric cancer found an increase of proliferating Ki67+ regulatory T cells (Tregs) in tumor
samples of HPD patients, and confirmed stronger immune suppressive activities of these cells in vitro
after anti-PD1 exposure [5].

Several definitions for HPD based on radiological criteria, sometimes complemented with clinical
outcomes, have been proposed so far [1,2,6,7]. Most of them quantify the change in tumor growth rates
before and after immunotherapy, and consider HPD when a predetermined cut off value of increment in
tumor growth rate is surpassed. However, due to the very nature of radiological evaluations, all criteria
face important limitations that preclude their applicability in different situations. A progression caused
by non-measurable disease or the unavailability of previous radiological tests are amongst different
drawbacks. Additional biological information that could be obtained using noninvasive techniques
includes the evaluation of the immunological status quo. This information might complement the
definition of HPD and help to improve and even anticipate its detection.

We have recently demonstrated that functional systemic CD4 T cell immunity is required for
a clinical response to immune checkpoint inhibitors in NSCLC patients who had progressed to
platinum-based chemotherapy [8]. Hence, we classified patients in two groups according to systemic
CD4 T cell functionality. G1 patients showed proficient CD4 T cell immunity before the start of
immunotherapy, characterized by good proliferative responses and low coexpression of PD-1 and
LAG-3 after activation. On the other hand, G2 patients showed highly dysfunctional CD4 responses,
with strong coexpression of PD-1 and LAG-3. While G2 patients did not respond to immunotherapy, G1
patients included objective responders who showed an expansion of the CD28+ T cell populations after
the first cycle of therapy [8], in agreement with other studies [9,10]. The expression of CD28 in T cells
is frequently used as a maker of differentiation. Thus, poorly- and intermediately-differentiated T cells
express CD28, while highly differentiated cells do not [11,12]. Indeed, G1 and G2 patients can be readily
identified by quantifying the relative percentage of CD4 THD cells within CD4 cells in peripheral blood
before starting immunotherapies. While G1 patients are characterized by having more than 40% of CD4
THD, G2 patients show less than 40% CD4 THD [8]. This classification constituted a first criterion for
the identification of non-responder versus potential responder patients. We also found that all patients
presented systemic CD4 T cells with mainly Th17 phenotypes, without differences between responders
and progressors, and without significant differences in the percentage of lung-cancer-specific CD4 or
CD8 T cells [8]. However, CD4 T cells from progressors were highly dysfunctional in proliferation but
not in cytokine production.
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While an expansion of CD28+ populations marks responders [8–10], it is likely that an expansion
of CD28- populations (highly-differentiated T cells) is a marker for failure regarding immunotherapy.
The present study furthers analyzes the immune profiles of our cohort for diagnostic markers of HPD.

2. Results

2.1. Patients and Clinical Outcomes

In the present study, a cohort of 70 lung cancer patients were included, i.e., 51 (72.9%) with
nonsquamous NSCLC and 19 (27.1%) with squamous NSCLC. Atezolizumab was the most frequently
prescribed treatment (33 patients; 47.1%), followed by nivolumab (28 patients; 40%), and pembrolizumab
(9 patients; 12.9%). The majority (50 patients; 71.4%) had received one previous line of treatment for
metastatic disease. Fifteen patients (21.4%) were of poor prognosis according to the Gustave Roussy
Immune Score (GRIm-Score) [13], while 37 (52.9%) had good prognostic characteristics. According to
the Lung Immune Prognostic Index (LIPI), 5 patients (7.1%) were of poor prognosis while 57 (81.5%)
were classified as good or intermediate prognosis. According to G1/G2 classification on systemic CD4
T cell functionality as defined by Zuazo M et al. [8], 38 patients (52.9%) presented a G1 profile (>40%
baseline CD4 THD) and 31 (44.3%) had a G2 profile (<40% baseline CD4 THD) (Table 1).

Table 1. Main characteristics of the cohort.

Variable Number of Patients (%)

Age
31–40 1 (1.4%)
41–50 2 (2.9%)
51–60 15 (21.4%)
61–70 37 (52.9%)
71–80 13 (18.6%)
>80 2 (2.9%)

Gender
Female 18 (25.7%)
Male 52 (74.3%)

ECOG Performance status
0–1 56 (80%)
2–4 14 (20%)

Smoking Habit
No 6 (8.6%)
Yes 64 (91.4%)

Tumor Histology
Non-squamous 51 (72.9%)
Squamous 19 (27.1%)

Stage
Locally Advanced 1 (1.4%)
Metastatic 69 (98.6%)

Mutational Status
No 68 (97.1%)
EGFR mutated 1 (1.4%)
ROS1 translocated 1 (1.4%)

Tumor PD-L1 expression
0% 23 (32.9%)
1–4% 7 (10%)
5–49% 13 (18.6%)
≥50% 11 (15.7%)
Non-evaluable 16 (22.9%)
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Table 1. Cont.

Variable Number of Patients (%)

Immunotherapy Drug
Atezolizumab 28 (40%)
Nivolumab 33 (47.1%)
Pembrolizumab 9 (12.9%)

Treatment Line
2nd 50 (71.4%)
3rd 16 (22.9%)
4th or further 4 (5.7%)

Number of Tumor Sites
≤2 21 (30%)
≥3 49 (70%)

Liver Metastases
No 51 (72.9%)
Yes 19 (27.1%)

Neutrophil to Lymphocyte Ratio (NLR)
≤6 51 (72.9%)
>6 19 (27.1%)

Lactate Dehydrogenase (serum)
≤ULN 14 (20%)
>ULN 24 (34.3%)
Non Available 32 (45.7%)

Albumin (serum)
≥ 3.5 g/dl 41 (58.6%)
< 3.5 g/dl 12 (17.1%)
Non Available 17 (24.3%)

GRIm Score
0–1 37 (52.9%)
2–3 15 (21.4%)
Non Evaluable 18 (25.7%)

Derived Neutrophil to Lymphocyte Ratio (dNLR)
<3 54 (77.1%)
>3 16 (22.9%)

Lung Immune Prognostic Index (LIPI)
Intermediate/Good Prognosis 57 (81.4%)
Poor prognosis 5 (7.1%)
Non evaluable 8 (11.4%)

Lymphocytes
Non-lymphopenia 48 (68.6%)
Lymphopenia 22 (31.4%)

Lymphocyte Profile
G1 37 (52.9%)
G2 31 (44.3%)
Non-evaluable 2 (2.9%)

Overall response rate (ORR) was 24%, and 9% of the patients presented stable disease (SD). Median
progression-free survival (mPFS) was 8.9 weeks, and median overall survival (mOS) was 48.1 weeks.

The incidence of HPD in our cohort study was 17.9% (95% CI 9.6 to 29.4). In HPD patients, the
mPFS was significantly lower (6 weeks; 95% CI 4.9 to 7.1) compared with all other patients (10.9
weeks; 95% CI 6.3 to 15.4) (p < 0.001) (Figure 1A), even when considering only progressors (p = 0.044)
(Figure 1B). mOS in HPD patients was 14.0 weeks (95% CI, 6.5 to 21.5) and 54.7 weeks (95% CI, 36.7 to
72.8) for all other patients (p = 0.006) (Figure 1C).
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Figure 1. Hyperprogressive disease as defined by TGR associates with worse PFS and OS. (A) Kaplan-
Meier plot for PFS in patients with measurable disease by RECIST 1.1 treated with immunotherapy, 
stratified by HPD at first radiological evaluation. (B) Kaplan-Meier plot for PFS only representing 
those patients with measurable disease by RECIST 1.1 who did not respond to immunotherapy. (C) 
Kaplan-Meier plot for OS in patients with measurable disease by RECIST 1.1 treated with 
immunotherapy, stratified by HPD at first radiological evaluation. 

Figure 1. Hyperprogressive disease as defined by TGR associates with worse PFS and OS.
(A) Kaplan-Meier plot for PFS in patients with measurable disease by RECIST 1.1 treated with
immunotherapy, stratified by HPD at first radiological evaluation. (B) Kaplan-Meier plot for PFS
only representing those patients with measurable disease by RECIST 1.1 who did not respond to
immunotherapy. (C) Kaplan-Meier plot for OS in patients with measurable disease by RECIST 1.1
treated with immunotherapy, stratified by HPD at first radiological evaluation.
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The association of HPD with G1/G2 CD4 T cell profiles was analyzed in the whole cohort of
patients (Figure 2A), as well as with other variables (Supplementary Figure S1). While objective
responders were found in G1 patients (>40% baseline CD4 THD), HPD was detected within G2 patients.
No significant association was observed with baseline CD8 THD profiles (Figure 2B). Indeed, HPD
was very significantly associated with a baseline G2-type of systemic CD4 T cell profile as defined by
Zuazo et al. (p = 0.003 by Pearson’s Chi Square test) within progressors, which identifies patients with
dysfunctional CD4 immunity before the start of immunotherapy [8]. The HPD proportion was of 3.3%
for patients with G1 profile and 37.5% for patients with G2 profile (Figure 1C). A significant correlation
was found between HPD and smoking (p = 0.035). No interaction was found between HPD and the
immunotherapy drug (p = 0.440), GRIm (p = 1) or any of its variables, i.e., LIPI of poor prognosis (p =

1.000), number of previous treatments (p = 0.151), gender (p = 1.000), age (p = 0.072), performance
status (p = 0.189), tumor histology (p = 1.000), PD-L1 tumor expression (p = 0.599), number of affected
organs (p = 0.707) or liver metastases (p = 0.707).

2.2. Systemic Expansion of CD28-Negative CD4 T Cells (THD Cells) within the First Cycle of Therapy Is
Significantly Associated with HPD

Although a significant correlation of HPD with a baseline G2 profile was observed (Figure 2), it
was not sufficient to separate G2 progressors from hyperprogressors. Along with others, we have
shown that a systemic expansion of CD28+ CD4 T cells following the start of immunotherapy is
characteristic in responder patients. Therefore, we decided to determine whether changes in the highly
differentiated CD28-negative (THD) CD4 populations from baseline to first cycle of therapy would be
an indicator to further discriminate HPD from non-HPD progressors.

We observed that 13 (46.4%) of the patients with a G2 profile presented a sharp expansion of the
highly differentiated CD4 T cell compartment which correlated with very poor outcome (Figure 3A,B).
After normalizing the data, we then compared the relative change of the percentage in CD4 THD, as
defined in materials and methods. When stratified by non-HPD and HPD using radiological criteria,
∆CD4 THD was significantly higher for the latter (median 1.525 vs. 0.990; p = 0.0007) (Figure 3C).
Interestingly, HPD patients also presented a higher ∆CD4 THD when comparing with responders and
with non-HPD progressors (median 1.525, 0.970 and 1.000 respectively; p = 0.0025), while no differences
were found between these two last groups of patients (p > 0.05 by Bonferroni’s Multiple Comparison
Test) (Figure 3D). ROC analysis provided a cut-off value of ∆CD4 THD ≥ 1.3 to identify HPD with 82%
specificity and 70% sensitivity, with an area under the curve (AUC) of 0.792 (Figure 3E). Accordingly,
an increase of ∆CD4 THD ≥ 1.3 (from now “CD4 THD burst”) was very significantly associated with
HPD (p = 0.008 by Fisher’s exact test) (Figure 3F).
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Figure 2. Hyperprogressive disease as defined by TGR associates with G2 baseline CD4 THD profiles. 
(A) Dot plot of color-coded clinical outcomes of the patients in our cohort represented by their 
baseline percentage of CD4 THD in peripheral blood and TGR. The square with dotted lines represents 
patients with TGRs higher than 2, the most commonly used cut-off value to separate progressors from 
hyperprogressors. The horizontal dotted line separates the G1 cohort (>40% CD4 THD) from the G2 
cohort (<40% CD4 THD). The association of HPD with G2 profiles including also responders is shown 
below by the Fisher´s exact test. OR, objective responses; No OR, no objective responses; HP, 
hyperprogressors. (B) As in (A) but plotting the baseline percentage of CD8 THD cells. No significant 
association with HPD is observed. (C) Contingency table representing the incidence of HPD in 
patients with measurable disease by RECIST 1.1, according to G1 or G2 lymphocyte profile as defined 
by Zuazo M. The numbers indicate the following: absolute number of patients, row percentage, and 
95% confidence interval of each percentage. 

 

Figure 2. Hyperprogressive disease as defined by TGR associates with G2 baseline CD4 THD profiles.
(A) Dot plot of color-coded clinical outcomes of the patients in our cohort represented by their
baseline percentage of CD4 THD in peripheral blood and TGR. The square with dotted lines represents
patients with TGRs higher than 2, the most commonly used cut-off value to separate progressors
from hyperprogressors. The horizontal dotted line separates the G1 cohort (>40% CD4 THD) from the
G2 cohort (<40% CD4 THD). The association of HPD with G2 profiles including also responders is
shown below by the Fisher’s exact test. OR, objective responses; No OR, no objective responses; HP,
hyperprogressors. (B) As in (A) but plotting the baseline percentage of CD8 THD cells. No significant
association with HPD is observed. (C) Contingency table representing the incidence of HPD in patients
with measurable disease by RECIST 1.1, according to G1 or G2 lymphocyte profile as defined by
Zuazo M. The numbers indicate the following: absolute number of patients, row percentage, and 95%
confidence interval of each percentage.
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Figure 3. An expansion of the CD28negative CD4 T cell compartment following the first cycle of
immunotherapy correlates with radiological HPD. (A) Example of quantification of CD4 T cells
according to CD28 and CD27 expression profiles in a HPD patient before starting immunotherapy
(left plot, baseline) and after the first cycle of treatment (right plot); CD4 THD cells are encircled and
correspond to doubly CD28/CD27-negative cells. An increase in CD4 THD cells was observed (from
5% to 30%, as indicated). (B) Same as (A) but from a G2 non-HPD progressor. No increase in CD4
THD cells was observed. (C) Bar graph representing the mean and 95% confidence interval of the CD4
THD proportion in patients who presented HPD compared with non-HPD progressors. (D) Bar graph
representing mean and 95% confidence interval of the proportion of basal and post-first cycle CD4 THD

cells in patients with partial response, stable disease, progressive disease or HPD. (E) ROC analysis of
CD4 THD proportion as a function of radiological HPD. (F) Kaplan-Meier plot for PFS in patients with
lymphocyte subpopulations quantified before and after the first cycle of immunotherapy, stratified by
the detection of CD4 THD burst (≥1.3). PR: partial response. SD: Stable disease. PD: Progressive disease.
HPD: Hyperprogressive disease. **; ***, indicate very significant (p < 0.01) and highly significant (p <

0.001) statistical differences respectively.

2.3. Association between CD4 THD Cell Expansion and Clinical Outcomes

To confirm the role of CD4 T cell dynamics in the response to immunotherapy in NSCLC, we
evaluated the correlation of CD4 THD burst with clinical outcomes. Patients presenting a CD4 THD

burst following the first cycle of PD-L1/PD-1 blockade had significantly shorter mPFS compared to the
rest of patients (6.29 vs. 9.86 weeks, p = 0.001). These patients had all progressed within 11 weeks after
the first cycle of treatment (Figure 3E). No significant differences in PFS were found when considering
only progressors (p = 0.250), although the curves were similar to those obtained by radiological
identification of HPD by TGR (Figure 4A). Likewise, a trend towards decreased mOS was observed in
the cohort of patients exhibiting a CD4 THD burst (56.1 weeks; 95% CI 30.2 to 82.1 vs. 21.9 weeks; 95%
CI 0 to 59.8. p = 0.095) (Figure 4B).
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Figure 4. The CD4 THD burst is associated with HPD, and complements radiological criteria for
its diagnosis. (A) Kaplan-Meier plot for PFS only representing patients with processed lymphocyte
subpopulations quantified before and after the first cycle of immunotherapy who did not respond to
immunotherapy, stratified by the incidence of CD4 THD burst (≥1.3). (B) Kaplan-Meier plot for OS in
patients with lymphocyte subpopulations quantified before and after the first cycle of immunotherapy,
stratified by detection of CD4 THD burst (≥1.3). (C) Left graph, box and whiskers plot (Tukey)
representing median TGR of patients with CD4 THD burst compared to the rest of patients. Box depicts
interquartile range, whiskers add up 1.5 interquartile range. Outliers are represented by dots. Right
graph, same as left but comparing median TGR of patients with CD4 THD burst compared to the patients
that presented progressive disease as best response. (D) Kaplan-Meier plot for OS in patients with
measurable disease by RECIST 1.1 and lymphocyte subpopulations quantified before and after the first
cycle of immunotherapy, stratified by the presence of both HPD by TGR and the detection of CD4 THD

burst (≥1.3). (E) Kaplan-Meier plot for PFS representing patients with measurable disease by RECIST
1.1 and lymphocyte subpopulations quantified before and after the first cycle of immunotherapy, who
presented progressive disease as best response, stratified by the presence of both HPD by TGR and the
detection of CD4 THD burst (≥1.3). *, **, indicate significant (p < 0.05) and very significant (p < 0.01)
statistical differences.

From all the variables evaluated in our study, the burst of CD4 THD cells was very significantly
associated with patients with G2 profile (46.4% vs. 0%, p < 0.0001) and with patients treated with
atezolizumab than with pembrolizumab or nivolumab (41.7% vs. 11.1% vs. 6.7% respectively, p =

0.005), and significantly associated with PD-L1 tumor expression < 5% (34.6% vs. 9.1%, p = 0.036).
The hazard ratio for progression or death of patients with CD4 THD burst maintained statistical
significance by multivariate analyses (HR 6.749, 95% CI 1.678 to 27.139; p = 0.007), when adjusted for
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gender, smoking habit, tumor histology, immunotherapy drug, line of treatment, number of organs
affected, liver metastases, NLR, serum LDH, serum albumin, GRIm Score, G2 lymphocyte profile, and
radiological HPD, as did PD-L1 expression ≥ 5%, with HR of 0.287 (95% CI 0.093 to 0.887).

To confirm that the CD4 THD burst was associated with a greater increase in tumor burden, we
compared the TGRs in non-responder patients with and without CD4 THD burst. As expected, the
TGR was significantly higher for patients with observed CD4 THD burst (1.70 vs. 0.86, p = 0.0119)
(Figure 4C). This difference was similar and kept statistical significance when only progressors were
included (median 1.70 vs. 1.03, p = 0.0126) (Figure 4C). Finally, we analyzed the value of CD28-negative
CD4 cell quantification as a complementing factor for the diagnosis of HPD in combination with
radiological criteria. Patients who presented both HPD by TGR and CD4 THD burst had significantly
lower OS when compared with the rest of patients (24-week OS 15.2% vs. 76.1%, p = 0.016) (Figure 4D)
and median PFS when considering only progressors (8.1 vs. 6 weeks, p = 0.033) (Figure 4E).

These findings support the importance of establishing an immunological profile based on
quantification of highly-differentiated CD4 populations. The dynamic changes of highly differentiated
CD4 T cell subpopulations induced by immunotherapy are associated with adverse outcomes to
PD-1/PD-L1 targeted immunotherapy, with a good correlation with radiological criteria.

3. Discussion

Immunotherapy is fast advancing to front-line therapy in NSCLC. Two studies, including our
previous one, showed that a systemic expansion of CD28+ T cell populations occurs in objective
responders to PD-L1/PD-1 blockade therapies [8,14]. Therefore, in this exploratory study, we decided
to monitor whether an increase in CD28-negative populations was a concomitant marker for failure
of PD-L1/PD-1 immunotherapy, and more specifically, to hyperprogressive disease. HPD is one of
the most serious adverse events of high clinical importance, but is the subject of intense debate. An
incidence of HPD in NSCLC between 10–25% has been previously reported [4,7,15,16], which is in
agreement with our observations. Different radiological criteria have identified HPD and its association
with markedly worse PFS and OS [1,2,6,7,15,16]. However, the intrinsic characteristics of radiological
evaluation, along with the limitations of RECIST criteria, make the diagnosis of HPD challenging, with
dramatic consequences. The patient must have at least one measurable lesion in the basal CT scan.
To detect the increase in growth of target lesions, a previous radiological control is required, which
is not always available. Importantly, tumor growth during this pre-immunotherapy period might
have been slowed down by the treatment received, and might be a confounding factor that causes an
overestimation of HPD incidence. New lesions that appear after the beginning of immunotherapy
are not considered, nor are non-measurable lesions that might significantly increase tumor burden.
As a consequence, some HPD patients will not be detected in routine clinical practice. Finally, HPD
might be underestimated when tumor burden is high, and the opposite if tumor burden is low, as
small absolute changes in diameter would entail much greater relative variations.

Several recent preclinical and clinical studies have put forward immunological mechanisms
underlying HPD of varying nature, thereby giving strength to previously published works on this
matter [4,5]. The identification of these mechanisms is of the great value. However, these studies rely
on biopsies, and it is difficult to translate their data into clinical practice. The identification of systemic
immunological biomarkers that would help in identifying HPD would also enable an earlier diagnosis
that could complement radiological evaluations.

In agreement with other studies [14], we have recently shown that CD28+ CD4 T cell populations
expand in peripheral blood in objective responders to PD-L1/PD-1 blockade therapies [8]. Systemic CD4
T cell profiling allowed us to select groups of patients who were susceptible for PD-L1/PD-1 blockade.
Therefore, here, we tested whether the concomitant expansion of CD28-negative CD4 T cells was a
biomarker for progression. We found a good association of expansion of this population in peripheral
blood with hyperprogressive disease. More specifically, a significant increase in CD28-negative CD4 T
cells between baseline and the first cycle of therapy (CD4 THD burst) was associated with HPD. In this
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study, we also quantified the relative proportions and changes of other systemic immune populations
including neutrophils, monocytes, HLA DR+ cells, and absolute T cell counts. No significant
associations were found, as corroborated also by a lack of association with neutrophil-to-lymphocyte
ratio, a typical prognostic variable.

Besides its correlation with HPD, we found that all patients with a systemic CD4 THD burst
present disease progression within two months. In fact, the CD4 THD burst was an independent
variable associated with progression by multivariate analysis. Nevertheless, our prospective study is
exploratory in nature with a limited number of HPD patients. In addition, the identification of HPD is
challenging, and not all studies follow the same criteria. Indeed, many HPD patients progress so rapidly
that they cannot be objectively diagnosed before death. Therefore, if validated, the quantification
of this systemic immunological phenomenon would lead to the interruption of treatment. To our
knowledge, this is the first study associating HPD and the systemic dynamics of CD4 T cell populations.
Furthermore, no prospective works regarding this issue have previously been published. Recently, Kim
and collaborators linked HPD with the expansion of severely exhausted PD-1+ TIGIT+ CD8+ T cells in
Asian populations [15,16]. The different immunological characteristics that have been associated with
HPD in several studies indicate that it is a complex phenomenon with different players in the immune
system. Indeed, all of these immunological phenomena may be different aspects of an otherwise a
common dysfunctional mechanism of immunotherapies leading to HPD, as T cell dysfunction seems
to be a shared consequence of all the proposed mechanisms. Although our study does not address
whether CD4 THD cells are directly involved in the onset of HPD, these cells provide a biomarker that
changes within the G2 cohort in HPD patients.

4. Materials and Methods

4.1. Study Design

The study was approved by the Ethics Committee at the Hospital Complex of Navarre (Pyto2017/49).
Informed consent was obtained from all subjects, and all experiments conformed to the principles set
out in the WMA Declaration of Helsinki and the Department of Health and Human Services Belmont
Report. Samples were collected by the Blood and Tissue Bank of Navarre, Health Department of
Navarre, Spain. Data and blood samples were prospectively collected from 70 Caucasian patients with
locally advanced or metastatic NSCLC treated with ICI (nivolumab, pembrolizumab, atezolizumab)
following current indications [17–19] at the Complejo Hospitalario de Navarra between September
2017 and May 2019.

Eligible patients were 18 years of age or older, and had all progressed to first-line platinum-based
chemotherapy or concurrent chemoradiotherapy. A basal CT scan before the beginning of
immunotherapy and a previous one were analyzed. Exclusion criteria were previous immunotherapy
treatment or the existence of synchronous neoplasms.

Four milliliters of peripheral blood samples were obtained immediately prior to the infusion of
the first cycle of immunotherapy and before the administration of the second. Follow-up concluded
with the withdrawal of consent or after death of the patient.

4.2. Sample Processing and Flow Cytometry

Surface and intracellular flow cytometry analyses were performed as described [20,21]. Four
milliliters of blood samples were collected from each patient, and PBMCs were isolated by FICOL
gradients right after the blood extraction. PBMCs were washed and cells immediately stained with the
indicated antibodies in a final volume of 50 µL for 10 min in ice. Cells were washed twice, resuspended
in 100 µL of PBS, and analyzed immediately.

The following fluorochrome-conjugated antibodies were used at 1:50 dilutions unless otherwise
stated: CD4-APC-Vio770 (clone M-T466, reference 130-100-455, Miltenyi Biotec, Bergisch Gladbach,
Germany), CD3-APC (clone REA613, reference 130-113-135, Miltenyi Biotec), CD27-PE (clone M-T271,
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reference 130-093-185, Miltenyi Biotec), CD28-PECy7 (clone CD28.2, reference 302926, BioLegend, San
Diego, CA, USA), CD8-FITC (clone SDK1, reference 344703, BioLegend).

Relative percentage of T cell differentiation subsets based on expression of these markers were
quantified using FlowJo [11,12]. The changes in the relative T cell differentiation subsets after the first
cycle of immunotherapy were normalized and expressed as a proportion of the percentage of the T cell
subset posttreatment divided by the pretreatment percentage (% CD4HD posttreatment / % CD4HD

pretreatment), hereafter referred to as ∆CD4 THD.

4.3. Radiological Evaluation

Assessment of response was performed following standard protocols, and according to common
clinical practice as decided by the treating oncologist. Tumor responses were evaluated according to
RECIST 1.1 [22] and Immune-Related Response Criteria [23]. The TGR was calculated according to
the definition by Ferté et al. [24], and measured before and after ICI treatment. HPD was defined as
Immune-Related Response Criteria progression at first radiological evaluation with a ≥2-fold increase
of the TGR after the beginning of immunotherapy, as proposed by Champiat S et al. [1].

4.4. Statistical Analyses

The association between qualitative variables was evaluated with Pearson’s Chi Squared test. The
correlation of quantitative variables was studied with a t test for independent samples/ANOVA (if
normally distributed) or U of Mann–Whitney/Kruskal–Wallis (if not normally distributed, or data
with intrinsic high variability). Two-tailed tests were applied. Survival curves were represented by
Kaplan-Meier plots, and compared between cohorts with log-rank tests. Hazard ratios were estimated
by Cox regression models. Receiver operating characteristics (ROC) analysis was performed with the
proportion that represented the changes in T cell subsets after ICI treatment.

5. Conclusions

Our results support HPD as a specific deleterious outcome of PD-1/PD-L1 targeted immunotherapy,
and imply the participation of CD4 T cells. We also confirm that the radiological criterion of HPD by
TGR calculation accurately predicted fast progression and correlated with lower OS in our cohort. A
CD4 THD burst is associated with HPD, and its combination with radiological criteria might advance
procedures used in the detection of HPD and facilitate decision making in controversial situations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/2/344/s1,
Figure S1: Kaplan-Meier plot for PFS representing immunotherapy-treated patients classified as indicated and,
stratified by the incidence of CD4 THD burst (≥1.3).

Author Contributions: H.A. conceived the project, designed and carried out experiments, collected data, analyzed
data and recruited patients. M.Z. designed and carried out experiments, collected data, and analyzed data. A.B.
carried out experiments, collected data, and analyzed data. A.B. and M.G. carried out experiments, collected
data, and analyzed data. M.M.-A., I.M., B.H., G.F. and L.T. recruited patients, collected data, and analyzed clinical
data. P.L. and N.A. evaluated radiological tests. C.H. and L.C. carried out experiments and collected data. R.V.
supervised the clinical staff, recruited patients, and analyzed clinical data. G.K. conceived the project, supervised
non-clinical researchers, analyzed data, and wrote the paper. D.E. conceived the project, supervised non-clinical
researchers, analyzed data, and wrote the paper. All authors participated in the writing of the manuscript. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by: Asociación Española Contra el Cáncer (AECC, PROYE16001ESCO);
Instituto de Salud Carlos III, Spain (FIS project grant PI17/02119); Gobierno de Navarra Biomedicine Project grant
(BMED 050-2019); TRANSPOCART (Instituto de Salud Carlos III); “Precipita” Crowdfunding grant (FECYT);
Crowdfunding grant from Sociedad Española de Inmunología (SEI); DESCARTHES project grant (Industry
department, Government of Navarre); D.E. is funded by a Miguel Servet Fellowship (ISC III, CP12/03114, Spain);
H.A. is supported by the Clinico Junior 2019 scholarship from AECC; M.Z. is supported by a scholarship from
Universidad Pública de Navarra; and M.G. is supported by a scholarship from the Government of Navarre.

Acknowledgments: We sincerely thank the patients and families that generously agreed to take part in this
study. We are thankful as well to the nursing staff of the Medical Oncology Day Care at Hospital Complex of

http://www.mdpi.com/2072-6694/12/2/344/s1


Cancers 2020, 12, 344 13 of 14

Navarre for their willful collaboration. We also thank the Blood and Tissue Bank of Navarre, Health Department
of Navarre, Spain.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Champiat, S.; Dercle, L.; Ammari, S.; Massard, C.; Hollebecque, A.; Postel-Vinay, S.; Chaput, N.; Eggermont, A.;
Marabelle, A.; Soria, J.C.; et al. Hyperprogressive Disease Is a New Pattern of Progression in Cancer Patients
Treated by Anti-PD-1/PD-L1. Clin. Cancer Res. 2017, 23, 1920–1928. [CrossRef] [PubMed]

2. Saada-Bouzid, E.; Defaucheux, C.; Karabajakian, A.; Coloma, V.P.; Servois, V.; Paoletti, X.; Even, C.; Fayette, J.;
Guigay, J.; Loirat, D.; et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent
and/or metastatic head and neck squamous cell carcinoma. Ann. Oncol. 2017, 28, 1605–1611. [CrossRef]
[PubMed]

3. Champiat, S.; Ferrara, R.; Massard, C.; Besse, B.; Marabelle, A.; Soria, J.C.; Ferte, C. Hyperprogressive disease:
Recognizing a novel pattern to improve patient management. Nat. Rev. Clin. Oncol. 2018. [CrossRef]

4. Lo Russo, G.; Moro, M.; Sommariva, M.; Cancila, V.; Boeri, M.; Centonze, G.; Ferro, S.; Ganzinelli, M.;
Gasparini, P.; Huber, V.; et al. Antibody-Fc/FcR Interaction on Macrophages as a Mechanism for
Hyperprogressive Disease in Non-small Cell Lung Cancer Subsequent to PD-1/PD-L1 Blockade. Clin.
Cancer Res. 2019, 25, 989–999. [CrossRef]

5. Kamada, T.; Togashi, Y.; Tay, C.; Ha, D.; Sasaki, A.; Nakamura, Y.; Sato, E.; Fukuoka, S.; Tada, Y.; Tanaka, A.;
et al. PD-1(+) regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc. Natl.
Acad. Sci. USA 2019, 116, 9999–10008. [CrossRef]

6. Kato, S.; Goodman, A.; Walavalkar, V.; Barkauskas, D.A.; Sharabi, A.; Kurzrock, R. Hyperprogressors after
Immunotherapy: Analysis of Genomic Alterations Associated with Accelerated Growth Rate. Clin. Cancer
Res. 2017, 23, 4242–4250. [CrossRef]

7. Ferrara, R.; Mezquita, L.; Texier, M.; Lahmar, J.; Audigier-Valette, C.; Tessonnier, L.; Mazieres, J.; Zalcman, G.;
Brosseau, S.; Le Moulec, S.; et al. Hyperprogressive Disease in Patients with Advanced Non-Small Cell Lung
Cancer Treated With PD-1/PD-L1 Inhibitors or With Single-Agent Chemotherapy. JAMA Oncol. 2018, 4,
1543–1552. [CrossRef]

8. Zuazo, M.; Arasanz, H.; Fernandez-Hinojal, G.; Garcia-Granda, M.J.; Gato, M.; Bocanegra, A.; Martinez, M.;
Hernandez, B.; Teijeira, L.; Morilla, I.; et al. Functional systemic CD4 immunity is required for clinical
responses to PD-L1/PD-1 blockade therapy. EMBO Mol. Med. 2019, 11, e10293. [CrossRef]

9. Spitzer, M.H.; Carmi, Y.; Reticker-Flynn, N.E.; Kwek, S.S.; Madhireddy, D.; Martins, M.M.; Gherardini, P.F.;
Prestwood, T.R.; Chabon, J.; Bendall, S.C.; et al. Systemic Immunity Is Required for Effective Cancer
Immunotherapy. Cell 2017, 168, 487–502.e415. [CrossRef]

10. Kamphorst, A.O.; Pillai, R.N.; Yang, S.; Nasti, T.H.; Akondy, R.S.; Wieland, A.; Sica, G.L.; Yu, K.; Koenig, L.;
Patel, N.T.; et al. Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung
cancer patients. Proc. Natl. Acad. Sci. USA 2017, 114, 4993–4998. [CrossRef]

11. Lanna, A.; Gomes, D.C.; Muller-Durovic, B.; McDonnell, T.; Escors, D.; Gilroy, D.W.; Lee, J.H.; Karin, M.;
Akbar, A.N. A sestrin-dependent Erk-Jnk-p38 MAPK activation complex inhibits immunity during aging.
Nat. Immunol. 2017, 18, 354–363. [CrossRef] [PubMed]

12. Lanna, A.; Henson, S.M.; Escors, D.; Akbar, A.N. The kinase p38 activated by the metabolic regulator AMPK
and scaffold TAB1 drives the senescence of human T cells. Nat. Immunol. 2014, 15, 965–972. [CrossRef]
[PubMed]

13. Bigot, F.; Castanon, E.; Baldini, C.; Hollebecque, A.; Carmona, A.; Postel-Vinay, S.; Angevin, E.; Armand, J.P.;
Ribrag, V.; Aspeslagh, S.; et al. Prospective validation of a prognostic score for patients in immunotherapy
phase I trials: The Gustave Roussy Immune Score (GRIm-Score). Eur. J. Cancer 2017, 84, 212–218. [CrossRef]
[PubMed]

14. Kamphorst, A.O.; Wieland, A.; Nasti, T.; Yang, S.; Zhang, R.; Barber, D.L.; Konieczny, B.T.; Daugherty, C.Z.;
Koenig, L.; Yu, K.; et al. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent.
Science 2017. [CrossRef] [PubMed]

http://dx.doi.org/10.1158/1078-0432.CCR-16-1741
http://www.ncbi.nlm.nih.gov/pubmed/27827313
http://dx.doi.org/10.1093/annonc/mdx178
http://www.ncbi.nlm.nih.gov/pubmed/28419181
http://dx.doi.org/10.1038/s41571-018-0111-2
http://dx.doi.org/10.1158/1078-0432.CCR-18-1390
http://dx.doi.org/10.1073/pnas.1822001116
http://dx.doi.org/10.1158/1078-0432.CCR-16-3133
http://dx.doi.org/10.1001/jamaoncol.2018.3676
http://dx.doi.org/10.15252/emmm.201910293
http://dx.doi.org/10.1016/j.cell.2016.12.022
http://dx.doi.org/10.1073/pnas.1705327114
http://dx.doi.org/10.1038/ni.3665
http://www.ncbi.nlm.nih.gov/pubmed/28114291
http://dx.doi.org/10.1038/ni.2981
http://www.ncbi.nlm.nih.gov/pubmed/25151490
http://dx.doi.org/10.1016/j.ejca.2017.07.027
http://www.ncbi.nlm.nih.gov/pubmed/28826074
http://dx.doi.org/10.1126/science.aaf0683
http://www.ncbi.nlm.nih.gov/pubmed/28280249


Cancers 2020, 12, 344 14 of 14

15. Kim, C.G.; Kim, K.H.; Pyo, K.H.; Xin, C.F.; Hong, M.H.; Ahn, B.C.; Kim, Y.; Choi, S.J.; Yoon, H.I.; Lee, J.G.;
et al. Hyperprogressive disease during PD-1/PD-L1 blockade in patients with non-small-cell lung cancer.
Ann. Oncol. 2019, 30, 1104–1113. [CrossRef] [PubMed]

16. Kim, J.Y.; Lee, K.H.; Kang, J.; Borcoman, E.; Saada-Bouzid, E.; Kronbichler, A.; Hong, S.H.; de Rezende, L.F.M.;
Ogino, S.; Keum, N.; et al. Hyperprogressive Disease during Anti-PD-1 (PDCD1) / PD-L1 (CD274) Therapy:
A Systematic Review and Meta-Analysis. Cancers 2019, 11, 1699. [CrossRef]

17. Horn, L.; Spigel, D.R.; Vokes, E.E.; Holgado, E.; Ready, N.; Steins, M.; Poddubskaya, E.; Borghaei, H.;
Felip, E.; Paz-Ares, L.; et al. Nivolumab Versus Docetaxel in Previously Treated Patients With Advanced
Non-Small-Cell Lung Cancer: Two-Year Outcomes From Two Randomized, Open-Label, Phase III Trials
(CheckMate 017 and CheckMate 057). J. Clin. Oncol. 2017, 35, 3924–3933. [CrossRef]

18. Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.;
Kowalski, D.M.; Dols, M.C.; et al. Atezolizumab versus docetaxel in patients with previously treated
non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet
2017, 389, 255–265. [CrossRef]

19. Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Perez-Gracia, J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.;
Ahn, M.J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced
non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550.
[CrossRef]

20. Karwacz, K.; Bricogne, C.; Macdonald, D.; Arce, F.; Bennett, C.L.; Collins, M.; Escors, D. PD-L1 co-stimulation
contributes to ligand-induced T cell receptor down-modulation on CD8(+) T cells. EMBO Mol. Med. 2011, 3,
581–592. [CrossRef]

21. Gato-Canas, M.; Zuazo, M.; Arasanz, H.; Ibanez-Vea, M.; Lorenzo, L.; Fernandez-Hinojal, G.; Vera, R.;
Smerdou, C.; Martisova, E.; Arozarena, I.; et al. PDL1 Signals through Conserved Sequence Motifs to
Overcome Interferon-Mediated Cytotoxicity. Cell Rep. 2017, 20, 1818–1829. [CrossRef] [PubMed]

22. Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.;
Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline
(version 1.1). Eur. J. Cancer 2009, 45, 228–247. [CrossRef] [PubMed]

23. Wolchok, J.D.; Hoos, A.; O’Day, S.; Weber, J.S.; Hamid, O.; Lebbe, C.; Maio, M.; Binder, M.; Bohnsack, O.;
Nichol, G.; et al. Guidelines for the evaluation of immune therapy activity in solid tumors: Immune-related
response criteria. Clin. Cancer Res. 2009, 15, 7412–7420. [CrossRef] [PubMed]

24. Ferte, C.; Fernandez, M.; Hollebecque, A.; Koscielny, S.; Levy, A.; Massard, C.; Balheda, R.; Bot, B.;
Gomez-Roca, C.; Dromain, C.; et al. Tumor growth rate is an early indicator of antitumor drug activity in
phase I clinical trials. Clin. Cancer Res. 2014, 20, 246–252. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/annonc/mdz123
http://www.ncbi.nlm.nih.gov/pubmed/30977778
http://dx.doi.org/10.3390/cancers11111699
http://dx.doi.org/10.1200/JCO.2017.74.3062
http://dx.doi.org/10.1016/S0140-6736(16)32517-X
http://dx.doi.org/10.1016/S0140-6736(15)01281-7
http://dx.doi.org/10.1002/emmm.201100165
http://dx.doi.org/10.1016/j.celrep.2017.07.075
http://www.ncbi.nlm.nih.gov/pubmed/28834746
http://dx.doi.org/10.1016/j.ejca.2008.10.026
http://www.ncbi.nlm.nih.gov/pubmed/19097774
http://dx.doi.org/10.1158/1078-0432.CCR-09-1624
http://www.ncbi.nlm.nih.gov/pubmed/19934295
http://dx.doi.org/10.1158/1078-0432.CCR-13-2098
http://www.ncbi.nlm.nih.gov/pubmed/24240109
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Patients and Clinical Outcomes 
	Systemic Expansion of CD28-Negative CD4 T Cells (THD Cells) within the First Cycle of Therapy Is Significantly Associated with HPD 
	Association between CD4 THD Cell Expansion and Clinical Outcomes 

	Discussion 
	Materials and Methods 
	Study Design 
	Sample Processing and Flow Cytometry 
	Radiological Evaluation 
	Statistical Analyses 

	Conclusions 
	References

