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Abstract

Noise removal has been, and it is nowadays, an important task in com-
puter vision. Usually, it is a previous task preceding other tasks, as segmen-
tation or reconstruction. However, for most existing denoising algorithms
the noise model has to be known in advance. In this paper, we introduce a
new approach based on consensus to deal with unknown noise models. To
do this, different filtered images are obtained, then combined using multi-
fuzzy sets and averaging aggregation functions. The final decison is made
by using a penalty function to deliver the compromised image. Results show
that this approach is consistent and provides a good compromise between
filters.

Keywords: consensus, image noise removal, unknown noise, penalty
function, aggregation function, OWA operator

1. Introduction

The degradation of an image is unavoidable during acquisition. The
restoration of degraded images is an important task widely studied in com-
puter vision (Rudin et al. (1992); You et al. (1996); Molina et al. (2001);
Buades et al. (2005); La Riviere and Billmire (2005); Srinivasan and Ebenezer
(2007); Aja-Fernandez et al. (2008); Goossens et al. (2008); Borsdorf et al.
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(2008); Skiadopoulos et al. (2009); Deledalle et al. (2010)). It always re-
ceived a lot of attention from many researchers of different fields. Denoising
is one of the most fundamental image restoration techniques (Molina et al.
(2001); Buades et al. (2005); Srinivasan and Ebenezer (2007); Aja-Fernandez
et al. (2008); Goossens et al. (2008); Skiadopoulos et al. (2009); Deledalle
et al. (2010)), due to random distortions which make it difficult to perform
any required image processing. The desired goals of a denoising algorithm
are to completely remove noise, while effective information (edge, corner,
texture and contrast...) is preserved, at the same time that artifacts do not
appear.

In order to find an ideal image denoising algorithm, researchers have pro-
posed hundreds of algorithms. The most popular noise assumption is the
additive Gaussian noise (Rudin et al. (1992); You et al. (1996); Buades et al.
(2005)). However a Gaussian noise assumption is too simplistic for most
applications, specifically for medical and astronomical images (Molina et al.
(2001)). In the particular case of medical images, in computer tomography
(CT), the decay of the signal is better modelled with a Poisson distribu-
tion (Suzuki (1985); Hsieh (1998); La Riviere and Billmire (2005)). Other
medical images, as single-photon emission computed tomography (SPECT)
or positron emission tomography (PET), can also be well modelled with a
Poisson distribution (Rosenthal et al. (1995); Skiadopoulos et al. (2009)).
In the case of magnetic resonance images (MRI), a Rice distribution better
models the abnormalities in the image for a single-coil (Bernstein et al.
(1989); Aja-Fernandez et al. (2008)).

Despite different approaches that exist in order to reduce noise, all of
them fail in their performance with images owning a noise distribution for
which these algorithms are not optimal. It would be desirable to have a
denoising algorithm being able to deal with any noise distribution. However
this is a complex issue due to the different nature of the images (e.g. CT
capturing process is different from the digital camera). Therefore, this work
is focused on the fusion of a set of filtered images, through a multifuzzy set,
previously filtered from a noisy image with unknown noise distribution.
We select filters existing in the literature that are optimal for a concrete
noise. In particular, filters for impulse, Poisson, Gaussian and Rician noise
are applied. Then, the fusion is carried out using consensus via penalty
functions on a cartesian product of lattices, where the penalty function
chooses the value that minimizes the error for each pixel in accordance to
the different options.
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Figure 1: Schema consensus algorithm

Figure 1 shows graphically the proposed schema. Starting from the noisy
image IN , the first step is to build a multifuzzy set from the filtered images,
in our case (FI1, F I2, F I3, F I4), so each pixel (i, j) is represented by several
values (each value corresponds to pixel (i, j) of each filtered image). But, we
need to obtain a fused image, Iresult, with only one value for each pixel. For
this reason we continue by using averaging aggregation functions. However,
we do not know which is the best function to use. To solve this problem,
we select a set of functions. In this paper we decide to use OWA operators.
In particular, OWA operators constructed from fuzzy quantifiers, since they
provide a more flexible knowledge representation than classical logic, that
it is restricted to the use of only two quantifiers, there exists and for all
(Chiclana et al. (1998)). We select three different OWA operators, namely
‘at least half’, ‘most of them’ and ‘as many as possible’ because of their
good performance. We apply these operators to each pixel, so we obtain
three new possible values for each pixel (IOWAleast

, IOWAmost
, IOWAmany

). In
order to decide the best aggregated value among them, we use penalty
functions that take the value that minimizes the error with respect to the
filtered images, and thus, the best fused image is obtained, Iresult. Our aim
is to obtain consistent and stable results, regardless of the image nature
(e.g. CT, MRI, digital image). One of the applications of this work is with
MRI, because they present a more sophisticated noise model than a simple
Gaussian noise, it however can be applied to other images with different
nature as it is also shown.

The paper is composed as follows: Section 2.1 introduces the differ-
ent noise models and filters. In Section 2.2, multifuzzy sets are explained.
Then, Section 3 presents the idempotent functions, their properties and a
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specific case: the OWAs operators, a family of idempotent averaging func-
tions. Penalty functions and the consensus algorithm are explained in Sec-
tion 4. Finally, in Sections 5 and 6 specific results and a final conclusion
are exposed.

2. Construction of multifuzzy sets from a set of filtered images

Given an unknown noisy image, our first step consists in associating a
multifuzzy set composed by several images. Each one of these images will
be obtained by applying some filter optimized for a certain type of noise.

2.1. Noise models and filters

Many digital image devices often produce a degradation in the image
quality. This noise is mainly introduced during the image capturing (sen-
sors, amplifiers), the transmission or the recording (Morris (2003)), although
in some modalities, as CT or MRI, it can also be introduced in the recon-
struction algorithm (Aja-Fernandez et al. (2009)). This can e.g. be caused
by dust sitting on the lens, by a dissipation in the electronic components or
by electromagnetic distortions during transmission. Digital imaging tech-
niques must deal with the degradations present in the images.

Each element involved in the pipeline used to obtain the final (recons-
tructed) image (sensors, lens, A/D converter, enhancement algorithm, re-
construction algorithm...), influences the noise characteristics. Several ap-
proaches exist that deal with Gaussian or impulse noise (Rudin et al. (1992);
You et al. (1996); Buades et al. (2005); Srinivasan and Ebenezer (2007)),
although in some cases these are simple approximations compared to the
real noise that is presented. For instance, MRI, specifically MR magni-
tude image, are mainly characterized by Rician noise, although this noise
is dependent on the number of coils or the reconstruction method (Aja-
Fernandez et al. (2009)). Furthermore CT, PET, SPECT or astronomi-
cal images are identified by Poisson noise (Suzuki (1985); Rosenthal et al.
(1995); Hsieh (1998); Molina et al. (2001); La Riviere and Billmire (2005);
Skiadopoulos et al. (2009)).

Different filters are applied in this work with the aim to prove the effec-
tiveness of consensus, and how it can help to obtain a good performance.
The selected filters cover different approaches to the image denoising pro-
blem, as well as they perform better for a specific noise distribution. We
give an overview of the characteristics of these filters.
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The first approach tackles the problem of impulse noise, and uses the
DBAIN filter proposed by Srinivasan and Ebenezer (2007). The algorithm,
in a first step detects if a processed pixel is noisy or noise-free depending
on its occurrence in a corresponding window. If the pixel is determinated
as corrupted, then the pixel is replaced by the median value of the window.
Although, in case the median is considered corrupted, instead of the median,
it is replaced by the value of neighborhood pixels. This method does not
require any parameter for its performance.

Additive white Gaussian noise (AWGN) has generally been found to be
a reasonable model for noise originating from electronic amplifiers. The
considered filter to deal with white Gaussian noise has been the approach
proposed by Goossens et al. (2008). This filter is based on the non-local
means (NLmeans) filter proposed by Buades et al. (2005). This version of
NLmeans improves the original version, dealing with noise in non-repetitive
areas with a post-processing step and presenting a new acceleration tech-
nique that computes the Euclidean distance by a recursive moving average
filter. Moreover, they introduce an extension that can deal with correlated
noise. However, its performance depends on a previous configuration. The
standard deviation estimation, the searching window or the block size needs
to be defined previously. We use the configuration from the original paper
for our experiments.

The approach used to estimate Rician noise, the probability density
function that mainly characterizes MRI in single-coil systems (Bernstein
et al. (1989); Aja-Fernandez et al. (2009)), is proposed by Aja-Fernandez
et al. (2008). This filter adapts the linear minimum mean square error
(LMMSE) to Rician distributed images. Moreover, noise estimation can
be automatically calculated based on local statistics. Although the version
used in our experiments is the approach in which the standard deviation is
given as an input.

Finally, for Poisson noise, an extension of the NLmeans is proposed for
images damaged by Poisson noise. Deledalle et al. (2010) propose to adapt
the similarity criteria of NLmeans algorithm to Poisson distribution data.
For this filter, a previous configuration is required. For our experiments, the
used parameters are those suggested in the original article, as the algorithm
is tuned to obtain good results.

2.2. Multifuzzy sets

Once the set of filtered images is obtained, we represent them by means
of multifuzzy sets, in which each element is given by a set of n memberships,
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taking n as the number of filters. A unique multifuzzy set is built with all
the elements of the images.

Definition 1. (González-Jaime et al. (2012)) A multifuzzy set of dimen-
sion n ≥ 2 over a finite universe U is defined by a mapping

A : U → [0, 1]n

given by
A(u) = (A1(u), . . . , An(u))

where each of the Aj for j = 1, . . . , n is a fuzzy set Aj : U → [0, 1].

Notice that the previous definition is equivalent to the following. Take
a family of n ≥ 2 fuzzy sets Q1, . . . , Qn on the same referential set U . Then
an n-dimensional multifuzzy set on U is just the ordered combination of
these n fuzzy sets as follows:

A = {(u,A(u))|u ∈ U} given by A(u) = (Q1(u), . . . , Qn(u))

In this sense, the space of all multifuzzy sets inherits the order from the
usual fuzzy sets, which endows it with a partial, bounded order.

In this work, we will deal with two finite referential sets X = {0, 1, . . . ,
N − 1} and Y = {0, 1, . . . ,M − 1}, where N and M are the number of
rows and columns of the image, respectively. We will consider multifuzzy
sets defined on the Cartesian product X × Y .

Notice that an n-dimensional multifuzzy set can also be understood as
a type n fuzzy set, as well as an L-fuzzy set with L = [0, 1]n (Klir and Yuan
(1995)).

3. Idempotent functions: building a fuzzy set from multifuzzy sets

After the noisy image is filtered, we get a set of filtered images that
composes the multifuzzy set. So, each pixel (i, j) is represented by n va-
lues, as many as filters used. This multifuzzy set needs to be fused in one
single image, a fuzzy set. Therefore, we need functions that take n inputs
and obtain one single value satisfying one condition: if all the values are
the same, the value remains the same. For this reason we decide to use
idempotent functions.
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Definition 2. An n-dimensional idempotent function is a mapping
γ : [0, 1]n → [0, 1] such that

γ(x, . . . , x) = x

for every x ∈ [0, 1].

Example 1. Some of the idempotent functions are:

1. The mode, that is the value that occurs most frequently in a data set
or a probability distribution.

2. Smallest idempotent function

γsmallest(x1, . . . , xn) =

{

0 if ∃i, j ∈ {1, . . . , n} such that xi 6= xj ;

x1 in other case,

3. Largest idempotent function

γlargest(x1, . . . , xn) =

{

1 if ∃i, j ∈ {1, . . . , n} such that xi 6= xj ;

x1 in other case,

Remark 1. Notice, that neither of the functions from Example 1 are mono-
tone.

3.1. Construction of idempotent functions

In Proposition 1 we present a method for constructing idempotent func-
tions.

Proposition 1. (González-Jaime et al. (2012)) The mapping
γ : [0, 1]n → [0, 1] is an n-dimensional idempotent function if and only if
there exist f, g : [0, 1]n → [0, 1] such that

(i) g(x, . . . , x) 6= 0 for every x ∈ [0, 1[;

(ii) f(x, . . . , x) = x
1−x

g(x, . . . , x) for x ∈ [0, 1[, f(1, . . . , 1) = 1
and g(1, . . . , 1) = 0;

(iii) γ(x1, . . . , xn) =
f(x1,...,xn)

f(x1,...,xn)+g(x1,...,xn)

Proof. Assume that γ is an n-dimensional idempotent function. Take f = γ

and g = 1− γ. Then
7



(i) g(x, . . . , x) = 1− γ(x, . . . , x) = 1− x 6= 0 for every x ∈ [0, 1[.

(ii) x
1−x

g(x, . . . , x) = x
1−x

(1 − x) = x = γ(x, . . . , x) = f(x, . . . , x) and
f(1, . . . , 1) = γ(1, . . . , 1) = 1 and g(1, . . . , 1) = 0.

(iii) f(x1,...,xn)
f(x1,...,xn)+g(x1,...,xn)

= γ(x1, . . . , xn).

To see the converse, we only need to check the idempotency. But if γ is
defined as in the statement of the proposition, we have that γ(x, . . . , x) =

f(x,...,x)
f(x,...,x)+g(x,...,x)

=
x

1−x
g(x,...,x)

x
1−x

g(x,...,x)+g(x,...,x)
which is equal to x for every x ∈ [0, 1[.

Finally, if x = 1 then clearly γ(1, . . . , 1) = 1. �

Example 2.

• Taking f(x1, . . . , xn) =
1
n

∑n

i=1 xi and g(x1, . . . , xn) =
1
n

∑n

i=1(1 − xi)
we obtain as idempotent function the arithmetic mean,
γmean(x1, . . . , xn) =

1
n

∑n

i=1 xi

• Taking f(x1, . . . , xn) = n
√
x1 · x2 · . . . · xn and g(x1, . . . , xn) = max(1−

x1, . . . , 1− xn) we get γroot(x1, . . . , xn) =
n
√
x1·x2·...·xn

n
√
x1·x2·...·xn+max(1−x1,...,1−xn)

Notice that the definition of an idempotent function is a very general
one. In fact, we have directly the following construction result, that allows
us to obtain a kind of inductive process.

Proposition 2. Let f : [0, 1]n−1 → [0, 1] be an (n − 1)-dimensional idem-
potent function. Then the mapping:

γ(x1, . . . , xn) =
√

xn · f(x1, . . . , xn−1)

is an n-dimensional idempotent function.

Proof. Straightforward. �.
Regarding the structure of the space of n-dimensional idempotent func-

tions, we also have the following.

Proposition 3. Let γ1, γ2 : [0, 1]n → [0, 1] be two n-dimensional idempo-
tent functions. Then:

1. 1
2
(γ1 + γ2) is also an n-dimensional idempotent function;
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2.
√
γ1γ2 is also an n-dimensional idempotent function.

Proof. Straightforward. �.
It is known that a [0, 1]-automorphism ϕ is a continuous and strictly

increasing function, such that ϕ(0) = 0 and ϕ(1) = 1. We can use this
concept to build n-dimensional idempotent functions.

Theorem 1. (Pahl and Damrath (2001)) Let γ1, γ2 : [0, 1]
n → [0, 1] be two

n-dimensional idempotent functions. Let F : [0, 1]2 → [0, 1] be a mapping
such that d(x) = F (x, x) is an automorphism of [0, 1]. Then the mapping:

γ = d−1(F (γ1, γ2))

is also an n-dimensional idempotent function.

3.2. Some interesting properties

Homogeneity, shift-invariance and migrativity are properties quite used
in image processing. In fact, it is desirable that these properties are satisfied.

Definition 3. A mapping f : [0, 1]n → [0, 1] is called homogeneous of order
k ≥ 0 if for every x1, . . . , xn, α ∈ [0, 1] the identity

f(αx1, . . . , αxn) = αkf(x1, . . . , xn)

holds.

Example 3. The mapping f : [0, 1]2 → [0, 1], defined by f(x1, x2) = max(x1, x2)
is homogeneous of order 1.

Proposition 4. Every homogeneous idempotent operator is homogeneous
of order 1.

Proof. Straightforward. �.

Corollary 1. There are no idempotent operators homogeneous of order
k 6= 1.

Definition 4. A mapping f : [0, 1]n → [0, 1] is called shift-invariant if for
every x1, . . . , xn ∈ [0, 1] and for every λ ∈ [−1, 1] such that
x1 + λ, . . . , xn + λ ∈ [0, 1] the identity

f(x1 + λ, . . . , xn + λ) = f(x1, . . . , xn) + λ

holds.
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Proposition 5. An idempotent operator γ is shift-invariant over the dia-
gonal; that is, γ(x+ λ, . . . , x+ λ) = γ(x, . . . , x) + λ, for every λ ∈ [0, 1].

Proof. Straightforward. �.

Definition 5. A mapping f : [0, 1]n → [0, 1] is called migrative if for every
x1, . . . , xn, α ∈ [0, 1] the identity

f(x1, . . . , αxi, . . . , xj , . . . , xn) = f(x1, . . . , xi, . . . , αxj , . . . , xn)

holds for every i, j ∈ {1, . . . , n}.

Example 4. The mapping f : [0, 1]2 → [0, 1], defined by f(x1, x2) = x1 ·x2,
is migrative.

An idempotent operator is not necessarily migrative, homogeneous and
shift-invariant. We have the following result.

Proposition 6. Let γ be an idempotent migrative operator. Then
γ(x, 0, . . . , 0) = 0 for every x ∈ [0, 1].

Proof. Just observe that γ(x, 0, . . . , 0) = γ(x, 0·0, . . . , 0) = γ(0, 0, . . . , 0) = 0
from the migrativity with α = 0 and the homogeneity. �

Proposition 7. Let γ be an idempotent migrative operator. Then
γ(xn, 1, . . . , 1) = x for every x ∈ [0, 1].

Proof. Straightforward. �.

3.3. Idempotent aggregation functions: averaging functions

We have studied only the use of idempotent functions in order to trans-
form a multifuzzy set into a fuzzy set. Now we study monotonic non-
decreasing idempotent functions, that are a special case of aggregation func-
tions called averaging functions. With these functions we have not only
idempotence, but also the value of the function will be bounded by the
minimum and maximum of the input arguments.

Definition 6. An aggregation function of dimension n (n-ary aggregation
function) is a non-decreasing mapping f : [0, 1]n → [0, 1] such that
f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1.
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Definition 7. An aggregation function f : [0, 1]n → [0, 1] is called averag-
ing or a mean aggregation function if

min(x1, . . . , xn) ≤ f(x1, . . . , xn) ≤ max(x1, . . . , xn).

Proposition 8. (Fodor and Roubens (1994)) Idempotent monotonic non-
decreasing functions and idempotent averaging functions are the same.

Example 5. Some averaging aggregation functions are:

1. The arithmetic mean.

γmean(x1, . . . , xn) =
1

n

n
∑

i=1

xi (1)

2. The median.

γmedian(x1, . . . , xn) =

{

1
2
(xk + xk+1) if n = 2k

xk if n = 2k − 1
(2)

3. The min operator.

4. The max operator.

3.4. Specific case: OWA operators and fuzzy quantifiers

Introduced by Yager (1988), Ordered Weighted Averaging operators,
commonly called OWA operators, are a parameterized family of idempotent
averaging aggregation functions. They fill the gap between the operators
min and max. The min, max, arithmetic mean or median are particular
cases of this family.

Definition 8. (Yager (1988)) A mapping F : [0, 1]n → [0, 1] is called an
OWA operator of dimension n if there exists a weighting vector W ,

W = (w1, . . . , wn) ∈ [0, 1]n with

n
∑

i=1

wi = 1 and such that F (a1, . . . , an) =

∑n

j=1wjbj with bj the j-th largest of the ai.

A natural question in the definition of the OWA operators is how to
obtain the associated weighting vector. Our idea is to calculate the weights
for the aggregation operators using linguistic quantifiers, e.g, about 5, almost
all, a few, many, most, as many as possible, nearly half, least half. The
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(a) at least half (b) as many as possible (c) most of them

Figure 2: Proportional increasing quantifiers used to construct OWA operators

concept of a fuzzy quantifier was introduced by Zadeh (1983), offering a
more flexible tool for knowledge representation.

Zadeh also suggested that the semantic of a fuzzy quantifier can be
captured by using fuzzy sets for its representation. Two types of fuzzy
quantifiers are distinguished, absolute and proportional. Absolute quanti-
fiers are those used to represent amounts that are absolute in nature, such
as about 2 or more than 5. While proportional quantifiers, such as most,
at least half, can be represented by fuzzy sets of the unit interval. For any
r ∈ [0, 1], Q(r) indicates the degree to which the proportion r is compatible
with the meaning of the quantifier it represents.

Fuzzy quantifiers are usually of one of three types, increasing, decreasing
and unimodal. For instance, some increasing quantifiers are ‘at least half’,
‘as many as possible’ and ‘most of them’. Decreasing quantifiers are ‘few of
them’ and ‘as much k’. Yager (1988) suggested an interesting way to com-
pute the weights of the OWA aggregation operator using fuzzy quantifiers,
which, in the case of an increasing quantifier Q, is given by the expression:

Q(r) =







0 if r < a
r−a
b−a

if a ≤ r ≤ b

1 if r > b

wi = Q(
i

n
)−Q(

i− 1

n
)

Figure 2 shows examples of proportional increasing quantifiers, ‘at least
half’, ‘as many as possible’ and ‘most of them’, where the parameters (a, b)
are (0, 0.5), (0.5, 1) and (0.3, 0.8), respectively.

The OWA operators can also be studied by their properties. We use two
known measures: Disp(F) (Definition 9) and orness(F) (Definition 10). The
dispersion (or entropy) measures the degree to which we use all the aggre-
gates equally. While orness measures its behaviour or optimism. An OWA
operator F with much of the weights near the top will be an ‘orlike’ operator,
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orness(F ) ≥ 0.5. At the other extreme, when the weights are non-zero near
the bottom the OWA operator F will be ‘andlike’, orness(F ) ≤ 0.5.

Definition 9. (Yager (1993)) Let F be an OWA operator and W its weight-
ing vector. The dispersion measure of F is defined as

Disp(F ) =

n
∑

i=1

wi ln(wi).

Definition 10. (Yager (1993)) Let F be an OWA operator and W its
weighting vector. The orness measure of F is defined as

orness(F ) =
1

(n− 1)

n
∑

i=1

(n− i)wi.

In our case, we use the OWA operators over four images, n = 4. It
can be seen that the OWA ‘at least half’ is an ‘orlike’ operator with an
orness(Fleast) = 0.833 and Disp(Fleast) = 0.6931. OWA ‘most of them’,
presents an ‘andlike’ behaviour with an orness(Fmost) = 0.1667 and
Disp(Fmost) = 0.693, is the same as for the OWA ‘at least half’, be-
cause they aggregate with the same degree, although the weights are dis-
tributed differently. In our last case, for OWA ‘as many as possible’,
the orness(Fmany) = 0.433, treated as ‘orlike’ operator. Its dispersion is
Disp(Fmany) = 0.9433, contemplating almost all the weights.

4. Penalty functions and the consensus methodology

The concept of a penalty function P shown in Figure 3, is used in order to
measure the disagreement or dissimilarity between n candidates, x1, . . . , xn,
and one output of an aggregation function. Then, we rely on P to define
the Penalty-based function for a set of q aggregation functions, {y1, . . . , yq}
(Definition 11). It is the function that returns the least dissimilar output
yi from the n candidates in the sense of the penalty function P used (see
Calvo and Beliakov (2010)). We use this concept because we do not know
before hand which aggregation function is better to use, so our aim is to find
the one that minimizes the overall error with respect to the set of filtered
images.

Definition 11. (Bustince et al. (2011)) A penalty function is a mapping
P : [0, 1]n+1 → [0,∞] such that:
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Figure 3: Schematic representation of a penalty function

1. P (x, y) = 0 if xi = y for all i = {1, . . . , n};
2. P (x, y) is quasi-convex in y for any x; that is P (x, λ·y1+(1−λ)·y2) ≤

max(P (x, y1), P (x, y2)) for any λ, y1, y2 ∈ [0, 1].

Let P be a penalty function. We call penalty-based function the mapping:

f(x) = argmin
y

P (x, y),

If there exists only one point y in which P (x, ·) has a minimum, then
f(x) = y. Whereas if P (x, ·) has more than one minimum point, then from
the quasi-convexity it follows that P (x, ·) attains its minimum on the whole
interval of [a, b] and we define f(x) = a+b

2
. The quasi-convexity enforces

that one and only one of these two possibilities happens. So, the minimum
always exists, and either it is at a single point or at a whole interval.

Suppose we apply a penalty-based function considering the aggregated
values for a pixel (i, j) using the three OWA operators, (OWAleast, OWAmost,

OWAmany), on the set of the filtered images {FI1(i, j), F I2(i, j), F I3(i, j),
F I4(i, j)}. Therefore, three different penalties P (FI(i, j), ·) are computed,
namely {P (FI(i, j), yOWAleast

), P (FI(i, j), yOWAmost
), P (FI(i, j), yOWAmany

)}.
Then, we take as solution of the penalty-based function the aggregated value
yOWA for the pixel (i, j) that has a minimum penalty P .

Theorem 2. (Calvo and Beliakov (2010)) Any averaging aggregation func-
tion can be represented as a penalty-based function in the sense of Defi-
nition 11.

In Calvo and Beliakov (2010) several well-known penalty-based aggre-
gation functions are discussed in further detail.
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Patch 1 Patch 2 Patch 3 Global
γmean 261.65 278.19 294.95 285.45
γmedian 255.66 295.22 310.63 303.72

Table 1: MSE as penalty-based function calculated for the aggregation functions arith-

metic mean (Eq. (1)) and median (Eq. (2)) on patches of 40x40 and on the entire image
(512x512). The patches are extracted from the ‘Barbara image’. The starting left-corner
pixels are: Patch 1: (155, 130); Patch 2: (200, 270); Patch 3: (20, 395).

4.1. Consensus

The penalty-based function allows us to select the aggregation function
that minimizes the overall disagreement among a set of aggregation func-
tions and the considered input candidates. But if the final image is obtained
using one aggregation function for the entire image, we can just obtain the
best global result. While if the best aggregation function is considered lo-
cally, it is reasonable to find another aggregation function that works better
at pixel level. Accordingly, if the final image is built taking from the set
of aggregation functions the best ones found locally, the final global result
also improves. In Table 1 an example is shown using the well-known barbara
image that represents this phenomenon at patches level. We use the mean
square error (MSE) (Tang and Cahill (1992)) as a penalty-based function,
defined as MSE(x, y) = 1

n

∑n

i=1(xi−y)2; where n = 4, equal to the number
of filtered images from a barbara noisy image. We take as possible output
functions the γmean(x) (Eq. (1)) and γmedian(x) (Eq. (2)). Then, we calcu-
late the MSE for the entire image and over small cropped neighborhoods of
(40× 40) pixels. The results show that the function γmean presents a better
overall behaviour than γmedian, but for instance, γmedian is sometimes better
in small patches, as in Patch 1.

Therefore, the proposed consensus methodology selects for each pixel
the best aggregation function among the considered ones, instead of taking
just one aggregation function as a solution. In our case, we combine the
three different OWA operators in all their possible combinations at pixel
level. Then, the penalty for all the combinations is measured and we take
as solution the image with minimal penalty, and thus, the consensus final
image.

In other words, the consensus methodology works as follows. Starting
already from a stack of images (Figure 4(a)). For each pixel (i, j), a multi-
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A1(0, 0) A1(0, 1) . . . A1(0,M)

b

b

b

b

b

b

A2(0, 0) A2(0, 1) . . . A2(0,M)

An(0, 0) An(0, 1) . . . An(0,M)

An(1, 0) An(1, 1) . . . An(1,M)

(a)

P

(Yσ1(0, 0), Yσ2(0, 1), . . . , Yσ(N×M)
(N,M))

(A1(0, 0), A1(0, 1), . . . , A1(N,M))

(A2(0, 0), A2(0, 1), . . . , A2(N,M))

(An(0, 0), An(0, 1), . . . , An(N,M))

b

b

b

(b)

Figure 4: (a) Representation of a stack of n images of size N ×M . (b) Representation
of a consensus problem by a penalty function, where σ is the set of arrangements with
repetition of q idempotent functions taken in groups of N ×M .

fuzzy set, A(i, j) = {A1(i, j), . . . , An(i, j)} is built, where n is the number
of images. Then, we apply q different aggregation functions to A(i, j)1, i.e.
we get f1(A), . . . , fq(A) where fk is any idempotent aggregation function,
fk(A) = fk(A1, . . . , An).

Afterwards, using the obtained images f1(A), . . . , fq(A), we build a new
set of images conformed by all the possible permutations, where the best
permutation is the one which minimizes the penalty (Figure 4(b)). So,
Yσk

(i, j) is the value for the pixel (i, j) in the image σk ∈ {f1(A), . . . , fq(A)},
selected for the position k ∈ {0, 1, . . . , N × M} in the candidate image.
The consensus image is the Yσ1(0, 0), Yσ2(0, 1), . . . , Yσ(N×M)

(N,M) that is
minimum.

It can be deduced that the performance of consensus depends on the
considered penalty function, as well as the selected aggregation functions.
Moreover, from its definition, consensus is applied over all the pixels that
conforms the image as it is shown in Figure 4(b). But this approach is
demanding computationally and unmanageable calculations for a nowadays
PC. E.g. a 256x256 image considering three aggregation functions, will
need to compute 365536 possible alternatives. We consider the possibility to
apply the consensus over subgroups of pixels. In our case, square blocks
of four neighbor elements. These new considerations lead us to use penalty
functions over cartesian product of lattices.

4.2. Cartesian product of lattices

Because applying consensus over the entire image is computationally
demanding and time consuming, we propose the alternative to apply con-
sensus in small groups of pixels that makes faster the execution. As a result,
we study penalty functions over a cartesian product of lattices.

1We change the notation from A(i, j) to A to simplify the notation.
16



Definition 12. A poset (P,≤) is a set P with a relation ≤ which is re-
flexive, antisymmetric and transitive. A chain is a totally ordered set. The
length of a chain is given by the cardinality of the chain minus one.

Definition 13. A lattice L = {L,≤,∨,∧} is a poset with the partial order-
ing ≤ in L and operations ∨ and ∧ which satisfy the properties of absorption,
idempotency, commutativity, and associativity. That is, a poset such that
any two elements have a unique minimal upper bound and a unique maximal
lower bound in L.

Proposition 9. (Bustince et al. (2011)) Let L1 = {L1,≤1,∨1,∧1} and
L2 = {L2,≤2,∨2,∧2} be two lattices. The Cartesian product L1 × L2 =
{L1 × L2,≤,∨,∧} with ≤ defined componentwise by

(x1, x2) ≤ (y1, y2) if and only if x1 ≤1 y1 and x2 ≤2 y2

and
∨((x1, x2), (y1, y2)) = (∨1(x1, y1),∨2(x2, y2))

∧((x1, x2), (y1, y2)) = (∧1(x1, y1),∧2(x2, y2))

is a lattice.

4.3. Penalty functions over a cartesian product of lattices: Building method

Using a cartesian product of lattices we can build penalty functions over
it, and so we can apply the consensus technique over a small group of pixels.
In Theorem 3 we present a building method.

Theorem 3. (Bustince et al. (2011)) Let F(U) be the set of all fuzzy
sets defined on the finite referential and non-empty set U = {u1, . . . , un}
(#(U) = n). Let denote by Byq the fuzzy set over U such that all its mem-
bership values are equal to yq ∈ [0, 1]; that is, Byq(ui) = yq for all ui ∈ U .
Let Y = (y1, · · · , ym) ∈ [0, 1]m and BY = (By1, · · · , Bym) ∈ F(U)m. Let C∗

be a chain, that is a linear lattice, whose elements belong to [0, 1] and let
L∗
m be the cartesian product L∗

m = C∗ × · · · × C∗. Let Ki : R → R
+ be

convex functions with a unique minimum at Ki(0) = 0, (i = 1, · · · , m),
and take the taxi-distance between fuzzy sets in U defined as

D(A,B) =
n
∑

i=1

|A(ui)− B(ui)| (3)

17



Then the mapping P∇ : F(U)m × L∗
m → R

+ given by

P∇(A, Y ) =

m
∑

q=1

Kq(D(Aq, Byq)) =

m
∑

q=1

Kq

(

n
∑

p=1

|Aq(up)− yq|
)

(4)

satisfies

1. P∇(A, Y ) = 0 if and only if Aq = yq for every q = 1, · · · , m;

2. P∇(A, Y ) is convex in yq for every q = 1, · · · , m.

Example 6.

• From the hypothesis in Theorem 3 we take as convex functions with
unique minimum at zero the following: Kq(x) = x2 for all q ∈ {1, · · · , m},
then

P∇(A, Y ) =

m
∑

q=1

(

n
∑

p=1

|Aq(up)− yq|
)2

(5)

• If Kq(x) = x for all q ∈ {1, · · · , m}, then

P∇(A, Y ) =

m
∑

q=1

n
∑

p=1

|Aq(up)− yq| (6)

Theorem 4. (Bustince et al. (2011)) In the setting of Theorem 3, the map-
ping

F (A) = µ(argmin
Y

P∇(A, Y )) (7)

where µ is the rounding to the smallest closest element, is an averaging
aggregation function.

Proof. Just observe that

arg min
(y1,···ym)

P∇(A, (y1, · · · , ym)) = arg min
(y1,···ym)

m
∑

q=1

Kq

( n
∑

p=1

|Aq(up)− yq|
)

=

m
∑

q=1

argmin
y

Kq

( n
∑

p=1

|Aq(up)− yq|
)
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so it is enough to consider each of the quantities

argmin
y

Kq

( n
∑

p=1

|Aq(up)− yq|
)

but each of these functions is an aggregation function and sinceKq is convex,
the result follows. �

To reach a consensus in our experiments, we use the penalty-based func-
tion over a cartesian product of lattices presented in Eq. (7), as well as the
penalty function over a cartesian product of lattices from Eq. (5).

5. Results and discussion

Different experiments are carried out to illustrate the consensus behavior
facing the blind denoising task. To be able to compare the results to a
ground truth, we work with images with 256 gray levels artificially cor-
rupted with noise. Two databases are used: Live Image Quality Assessment
Database (live (2013)) and a magnitude MR T1 volumen originally noise-
free from the BrainWeb database (brainWeb (2013)). The first database is
corrupted with Gaussian and Poisson noise. While the second one is cor-
rupted with Rician noise. In both cases, the noisy images are processed
using different noise removal filters (see Section 2.1). The aggregation func-
tions used to reach a consensus are the OWA operators: ‘at least half’, ‘as
many as possible’ and ‘most of them’ (see Section 3.4). Finally, the based-
penalty function (Eq.(7)) is applied over a cartesian product of lattices in
groups of four neighbors pixels using the penalty function from Eq. (5).

To quantify the restoration performance of different methods, the PSNR
and MSE (Tang and Cahill (1992)) are calculated. These are not bounded.
A higher MSE represents worst quality, while a higher PSNR means better
quality. They are simple to calculate, have clear physical meaning, and are
mathematically convenient in the context of optimization. However it is
not very well matched to perceived visual quality. This is our motivation to
use also other quality indexes. In addition, the Mean Structural Similarity
Index (MSSIM) (Wang et al. (2004)) and the Quality Index based on Local
Variance (QILV) (Aja-Fernandez et al. (2006)) are used. Both give a mea-
sure of the structural similarity between the ground truth and the estimated
images. Nonetheless, the former is more sensitive to the level of noise in
the image and the latter to any possible blurring of the edges. This way we
are able to assess the noise cleaning and border preserving capability of the
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Filter MSE PSNR MSSIM QILV

mean std mean std mean std mean std

Noisy 382.847 23.298 22.309 0.289 0.427 0.115 0.703 0.163

Impulse 379.338 23.043 22.218 0.263 0.432 0.114 0.711 0.165

Poisson 188.827 42.166 25.459 0.926 0.584 0.100 0.903 0.085

Gaussian 73.906 39.302 29.818 2.323 0.840 0.054 0.939 0.044

Rician 119.418 39.214 27.464 1.434 0.744 0.034 0.952 0.032

OWAleast 170.218 29.878 25.730 0.708 0.640 0.084 0.947 0.044

OWAmany 170.511 31.353 25.842 0.751 0.647 0.065 0.953 0.037

OWAmost 117.657 30.864 27.542 1.075 0.700 0.059 0.965 0.021

Consensus 116.530 31.335 27.548 1.081 0.700 0.061 0.965 0.022

Table 2: Results for the database live (2013), that contains 18 images 512x512 conta-
minated with Gaussian noise with σ = 20.

different schemes. Both indexes are bounded; the closer to one, the better
the image.

A first experiment was accomplished with the 18 images from the live
(2013) database corrupted with Gaussian noise. Table 2 contains the aver-
ages and the standard deviations achieved for this experiment. The Gaus-
sian filter obtains the best results in average as expected, except for the
QILV measure. However the difference between the best QILV result and the
one obtained for the Gaussian filter is negligible. Furthermore, the reached
consensus is just behind the best, as the second better approach. We can
also observe that if we would have not applied consensus, we could have
obtained worse results. For instance, in case we would have just decided
to use a single aggregation function, because we do not know beforehand
what aggregation function is better to use. Although in this experiment the
results for the operator ‘most of them’ are similar to the proposed approach.

In a second experiment we want to analyze how the noise level affects the
consensus performance. For it, we executed several times the same database
(live (2013)) contaminated with various sigma values for Gaussian noise,
from low to a high noise level. Figure 5 presents the graphs for the different
quality measures. The image quality is affected as the noise level increases,
although not all the measures and filters are affected in the same way. For
example, the Rician filter preserves its performance for MSSIM as the noise
amount increases due to its conservative behavior around the borders; or the
Poisson filter worsens its achievement with the noise increasing. However,
the consensus performance keeps as one of the three better approaches. The
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Figure 5: Quality results for the different used filters, the OWA operators and the reached
consensus for different executions with various sigmas (σi = {5, 10, 15, 20, 25, 30}). It
represents the mean values for the 18 images contained in the database live (2013). By
order, from left to right, and from up to down: MSE, PSNR, MSSIM and QILV.

noise level affects its performance because is affected by the errors of the
used filtered and aggregated images that are also altered by noise. However,
the proposed approach still shows a good compromise.

Consensus is an approach that can be used under different noise models
without previous information. Then, in a new experiment we contaminated
the same database (live (2013)) with Poisson noise. We can recognize a
coherent and consistent behaviour in Table 3, also in line with the previous
experiments. The reached consensus obtains the best MSE, even better
than for the Poisson filter, and a MSSIM close to the best achievement by
the Poisson filter. Furthermore, we can see that consensus obtains better
results than any of the single aggregation functions. As we already mention
thanks to the reached consensus locally, the global result also improves.
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Filter MSE PSNR MSSIM QILV

mean std mean std mean std mean std

Noisy 111.974 11.221 27.665 0.424 0.666 0.099 0.926 0.068

Impulse 113.504 10.734 27.246 0.830 0.669 0.098 0.928 0.066

Poisson 49.455 33.528 32.007 2.722 0.896 0.031 0.965 0.022

Gaussian 72.211 41.597 30.005 2.540 0.820 0.076 0.871 0.100

Rician 115.462 82.705 28.101 2.275 0.792 0.069 0.879 0.091

OWAleast 78.704 16.978 28.983 0.946 0.790 0.052 0.982 0.010

OWAmany 86.148 20.770 28.884 0.992 0.769 0.052 0.974 0.015

OWAmost 53.378 12.056 30.919 0.953 0.804 0.046 0.986 0.008

Consensus 46.309 23.611 31.911 2.180 0.878 0.032 0.937 0.046

Table 3: Results for the database live (2013), which contains 18 images 512x512 conta-
minated with Poisson noise.

A last experiment was performed with a different noise model, the Ri-
cian distribution. For this experiment a MRI volumen from the brainWeb
(2013) database has been used. The volumen contains 181 images free of
noise that were contaminated with Rician noise. To avoid any bias in the
results due to the background, the quality measures are only applied to
those areas of the image that are relevant, in other words, inside of the
skull. Table 4 and Table 5 show once again that consensus is one of the
better approaches, just behind the best ones. We can also observe that the
Rician filter performs worse than the Gaussian filter. This may be due to
the contaminated image that closely approximates to the Gaussian distri-
bution than a Rayleigh or Rician distribution; or even to the conservative
nature of the Rician filter, that in case the data does not fit the model,
the filter prefers to preserve the original data. Moreover, when the noise
level increases (Table 5) the consensus works similarly to the previous case,
where achievement gets affected by noise. It is natural since consensus looks
for a cooperation between images, that also get affected by noise.

In summary, one can see that consensus does not get the best results,
however it finds a cooperation between the considered filters. It obtains al-
ways a good performance and assures a result better than the worst of the
individual solutions. Therefore, consensus is a good approach in situations
where we do not know which filter to use, or when each filter performs better
in different image regions. The main gains of this approach is the flexibil-
ity provided for an unknown noise model, where we can use several filters
randomly, and the presented methodology still gets a good compromise.
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Filter MSE PSNR MSSIM QILV

mean std mean std mean std mean std

Noisy 60.882 20.126 30.803 1.951 0.871 0.043 0.970 0.056

Impulse 60.615 20.141 30.803 1.959 0.872 0.043 0.972 0.053

Poisson 21.358 7.505 35.395 2.089 0.960 0.015 0.991 0.008

Gaussian 15.819 6.317 36.966 2.900 0.970 0.013 0.994 0.004

Rician 34.489 11.636 33.446 2.370 0.942 0.019 0.994 0.004

OWAleast 41.044 13.625 32.503 1.952 0.920 0.026 0.990 0.022

OWAmany 36.161 12.665 33.139 2.179 0.924 0.027 0.993 0.010

OWAmost 31.064 10.373 33.742 2.008 0.927 0.024 0.992 0.016

Consensus 23.878 8.403 34.980 2.342 0.957 0.014 0.995 0.003

Table 4: Results for the MR volumen, which contains 181 MR images contaminated with
Rician noise with σ = 10.

Filter MSE PSNR MSSIM QILV

mean std mean std mean std mean std

Noisy 239.592 80.229 24.866 1.986 0.720 0.089 0.826 0.154

Impulse 237.456 80.157 24.905 2.005 0.720 0.100 0.835 0.150

Poisson 120.111 39.777 27.836 1.915 0.808 0.061 0.940 0.114

Gaussian 41.602 16.145 32.629 2.483 0.927 0.030 0.970 0.021

Rician 86.739 29.130 29.310 2.156 0.873 0.040 0.973 0.032

OWAleast 126.857 40.974 27.578 1.864 0.825 0.055 0.959 0.084

OWAmany 94.412 33.743 29.012 2.318 0.854 0.052 0.977 0.029

OWAmost 76.856 26.550 29.853 2.170 0.865 0.032 0.978 0.032

Consensus 78.344 26.951 29.764 2.151 0.863 0.045 0.977 0.035

Table 5: Results for the MR volumen, which contains 181 MR images contaminated with
Rician noise with σ = 20.

Quantitative results already prove it, but it is also supported qualitatively
with the images shown in Fig. 6 to 10. We can see how the reached con-
sensus from the different images contaminated with different noise models
(Gaussian, Poisson and Rician noise) exhibit better visual quality than any
of the single filters. For instance, the Gaussian filtered images show over-
filtering and loss of details in textured areas. In Fig. 6(c) the area in the
nose is over-filtered and the areas closeby have lost details in the texture.
A similar situation occurs in Fig. 7(c) where the image is in general over-
filtered. For Fig. 8(c) the general quality looks pleasant, although the face
area is blurred, as well as some areas have lost the textures. The Gaus-
sian filtered image in the MRI approach, Fig. 9(c), presents a good quality.
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Nonetheless, the zoomed image, Fig. 10(c), shows ringing artifacts close to
the edges. A similar outcome is gotten for the Poisson filter in the Rician
case, Fig. 9(e), that also shows ringing artifacts. On the contrary, the Pois-
son filter achieves the best result for the Poisson approach, Fig. 8(e), and
comparable to the consensus image, Fig. 8(f), as discussed for the results
in Table 3. On the other hand, if we compare the remaining filtered images
to the original ones, they are noisier than the reached consensus. The im-
pulse filtered images, Fig. 6(b), 7(b), 8(b) and 9(b), are not an alternative.
Neither the Poisson filter for the Gaussian problems, Fig. 6(e) and 7(e).
Finally, in the case of the Rician filtered images, they usually keep some
noise. Although the effect could be visually pleasant for some approaches,
as the Gaussian and Rician approach, Fig.6(d), 7(d) and 9(d).

6. Conclusion

Results show that consensus presents a powerful tool for denoising with
unknown noise distribution, because the noise is not known, the noise
model does not follow the assumptions, or the image contains different noise
sources that cannot be properly modeled. Therefore, consensus is a good
alternative in situations where we do not know beforehand the best filter to
apply, or when a combination of different filters performs better than any
single filter. Consensus always brings a good final result, consistent and
stable. Although, it must be contemplated that consensus computational
time is dependent on the number of aggregation functions considered. For
instance, if the number of used aggregation functions increases, the compu-
tational cost increases exponentially. This is a drawback that needs further
research. Additionally, the results tend to the mean when the number of
idempotent functions increases. The challenge is to find a compromise on
the number of aggregation functions to obtain a good performance. Further-
more, the used penalty function also affects the final results. Nonetheless,
instead of considering it as a drawback, it can be seen as an advantage that
brings flexibility to the system. Therefore, the system can be considered
as a framework. Further research in the aggregation functions and penalty
function selection is carried out.

7. Acknowledgement

This work is supported by the European Commission under contract
no. 238819 (MIBISOC Marie Curie ITN). H. Bustince was supported by
Project TIN 2010-15055 of the Spanish Ministry of Science.

24



(a) Original (b) Impulse

(c) Gaussian (d) Rician

(e) Poisson (f) Consensus

Figure 6: Noise removal results for a Gaussian noisy image contaminated with σ = 20
using different filters (Impulse, Gaussian, Rician and Poisson) and the reached consensus
image. 25



(a) Original (b) Impulse

(c) Gaussian (d) Rician

(e) Poisson (f) Consensus

Figure 7: Noise removal results for a Gaussian noisy image contaminated with σ = 30
using different filters (Impulse, Gaussian, Rician and Poisson) and the reached consensus
image. 26



(a) Original (b) Impulse

(c) Gaussian (d) Rician

(e) Poisson (f) Consensus

Figure 8: Noise removal results for a Poisson noisy image using different filters (Impulse,
Gaussian, Rician and Poisson) and the reached consensus image.
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(a) Original (b) Impulse (c) Gaussian

(d) Rician (e) Poisson (f) Consensus

Figure 9: Noise removal results for a Rician noisy image contaminated with σ = 10
using different filters (Impulse, Gaussian, Rician and Poisson) and the reached consensus
image.

(a) Original (b) Noisy (c) Gaussian (d) Rician (e) Consensus

Figure 10: Region extracted from two MR brain images contaminated with Rician noise.
The former row is the image contaminated with σ = 10; the second row with σ = 20.
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