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Abstract. In this chapter, we show how the concepts of overlap function and
overlap index can be used to define fuzzy measures which depend on the specific
data of each considered problem.
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1 Introduction

In many problems, it is crucial to find a relation between groups of data. Such relation
can be expressed, for instance, in terms of an appropriate fuzzy measure or capacity([10,
21]) which reflects the way the different data are connected to each other [20].

In this chapter, taking into account this fact and following the developments in [8],
we introduce a method to build capacities ([20, 21]) directly from the data (inputs) of
a given problem. In order to do so, we make use of the notions of overlap function and
overlap index ([5, 12, 13, 7, 4, 14, 16]) for constructing capacities which reflect how
different data are related to each other.

This paper is organized as follows: after providing some preliminaries, we analyse,
in Section 3, some properties of overlap functions and indexes. In Sections 4 we dis-
cuss a method for constructing capacities from overlap functions and overlap indexes.
Finally, we present some conclusions and references.

2 Preliminaries

Given a referential set (or universe) U , a fuzzy set A over U is defined in terms of a
mapping µA:

µA : U → [0, 1] .
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For simplicity, we write A(i) instead of µA(i). We denote by FS(U) the space of all
fuzzy sets defined over U . We will only deal with fuzzy sets defined over a finite refer-
ential set U , so we can consider U = {1, . . . , n}. card(U) stands for the cardinality of
U .

We consider in FS(U) the usual partial order defined by Zadeh. Union and inter-
section between fuzzy sets are defined by means of the max and min, respectively. We
say that (x1, . . . , xn) ≤ (y1, . . . , yn) if and only if xi ≤ yi for every i ∈ U .

By abuse of notation, we denote by ∅ empty set (that is, the fuzzy set where the
membership values of all the elements are equal to 0), and by U the fuzzy set with all
its memberships equal to 1.

The support of a fuzzy set A ∈ FS(U) is given by:

supp(A) = {i ∈ U | A(i) 6= 0}.

We say that A is a full fuzzy set if supp(A) = U . To distinguish fuzzy sets from the
classical subsets of U , we will use the notation Ã for the latter.

Let Ã ⊆ U and t ∈ [0, 1]. By tÃ we denote the fuzzy set given by:

tÃ(i) =

{
t if i ∈ Ã ;

0 otherwise.

By abuse of notation, we write 1Ã to denote 1Ã for every Ã ⊆ U , since 1Ã equals
the characteristic function of the set Ã. Note that this definition corresponds to the basic
function b(Ã, t) introduced by Benvenuti et al. in 2002 ([2]).

Given a function F : [0, 1]k → [0, 1] (with k ∈ N) and k fuzzy sets Ak ∈ FS(U),
the symbol F (A1, . . . , Ak) denotes the fuzzy set over U whose membership function
is given by:

F (A1, . . . , Ak)(i) = F (A1(i), . . . , Ak(i)).

Definition 1. Let n ≥ 2. An n-dimensional aggregation function ([6, 1, 11, 9, 15, 17,
18]) is a mapping M : [0, 1]n → [0, 1] such that:

1. M(0, · · · , 0) = 0 and M(1, . . . , 1) = 1;
2. M is increasing.

2.1 Capacities

In the following, we recall some basic notions concerning capacities [21].

Definition 2. Let U = {1, 2, . . . , n}. A capacity (or non-additive measure) over U is a
mapping m : 2U → [0, 1] such that

1. m(∅) = 0 and m(U) = 1;
2. If Ã ⊂ B̃ then m(Ã) ≤ m(B̃).

Example 1. 1. Any probability measure yields an example of a capacity.



2. The bottom capacity is defined by

m∗(Ã) =

{
1 if Ã = U ;

0 otherwise.

3. The top capacity is defined by

m∗(Ã) =

{
0 if Ã = ∅;
1 otherwise.

Definition 3. If m is a capacity over U = {1, . . . , n}, then:

1. m is called additive if m(Ã ∪ B̃) = m(Ã) +m(B̃) whenever Ã ∩ B̃ = ∅.
2. m is called symmetric if m(Ã) = m(B̃) whenever card(Ã) = card(B̃).
3. m is called supermodular (submodular) ifm(Ã∪B̃)+m(Ã∩B̃) ≥ m(Ã)+m(B̃)

(m(Ã ∪ B̃) +m(Ã ∩ B̃) ≤ m(Ã) +m(B̃)) for every Ã, B̃ ∈ 2U .
4. m is called modular if it is supermodular and submodular.

Remark 1 Since we have m(∅) = 0 for every capacity m, additivity and modularity
are equivalent properties of capacities.

Capacities can be obtained from aggregation functions as follows.

Proposition 1. [3, 21] Let m : 2U → [0, 1] be a set function. The following items are
equivalent.

1. m is a capacity.
2. There exists an aggregation function M : [0, 1]n → [0, 1] such that, for every
Ã ∈ 2U

m(Ã) =M(1Ã) .

3 Overlap functions and overlap indexes

The concept of overlap function was extensively studied in [7]. Here we make a revision
of the most relevant definitions and results for the present work.

Definition 4. An overlap function is a mapping GO : [0, 1]2 → [0, 1] such that:

1. GO(x, y) = GO(y, x) for every x, y ∈ [0, 1];
2. GO(x, y) = 0 if and only if xy = 0;
3. GO(x, y) = 1 if and only if xy = 1;
4. GO is increasing;
5. GO is continuous.

Overlap function can be seen as a generalization of continuous t-norms without
divisors of zero. The class of all overlap functions is convex.

Overlap functions can be used to build overlap indexes by aggregating them. We
start by recalling some basic notions about the idea of an overlap index and we will
formalize the construction method in Theorem 1.



Definition 5. An overlap index is a mapping O : FS(U)× FS(U)→ [0, 1] such that

(O1) O(A,B) = 0 if and only if A and B have disjoint supports; that is, A(i)B(i) = 0
for every i ∈ U ;

(O3) O(A,B) = O(B,A);
(O4) If B j C, then O(A,B) ≤ O(A,C).

An overlap index such that

(O2’) O(A,B) = 1 if there exists i ∈ U such that A(i) = B(i) = 1

is called a normal overlap index.

Remark 2 In the original definition of overlap index [12], condition (O2) states that

O(A,B) = 1 if A(i) = 0 or B(i) = 1 or A(i)B(i) = 0

for all i ∈ U . For A = ∅ we obtain the following contradiction: (O1) implies that
O(A,A) = 0 wheereas (O2) implies O(A,A) = 1. Therefore we removed condition
(O2) from the definition of an overlap index.

Example 2. 1. The first example of overlap index in the literature is Zadeh’s consis-
tency index ([22]):

OZ(A,B) =
n

max
i=1

(min(A(i), B(i))).

Note that OZ is normal.
2. Let M : [0, 1]2 → [0, 1] be a symmetric aggregation function such that M(x, y) =

0 if and only if xy = 0. We have that

OM,Z(A,B) =
n

max
i=1

(M(A(i), B(i)))

is a normal overlap index that generalizes Zadeh’s index.

Remark 3 For each overlap index O : FS(U) × FS(U) → [0, 1], the function MO :
[0, 1]n → [0, 1] given by

MO(E) =
O(E,U)

O(U,U)

with E ∈ [0, 1]n, is an aggregation function without divisors of zero.

3.1 Modularity of overlap indexes

We are going to analyze several properties of overlap indexes that will be relevant for
the construction of capacities from them. We first introduce the idea of symmetry for
overlap indexes.

Definition 6. Let O : FS(U) × FS(U) → [0, 1] be an overlap index and let E ∈
FS(U). O is E-symmetric if for every A,B ∈ FS(U) such that card(supp(A)) =
card(supp(B)) it holds that:

O(A,E) = O(B,E).



Example 3. 1. Every overlap index O is E-symmetric if E = ∅ ∈ FS(U).
2. Consider the strongest overlap index:

Os(A,B) =

{
0 if A,B are disjoint fuzzy sets;
1 otherwise.

We have that Os is E-symmetric for every full set E.

Note that an overlap index can not be E-symmetric unless E is a full fuzzy set, as
the next result shows.

Proposition 2. If O is an overlap index which is E-symmetric with respect to some
fuzzy set E ∈ FS(U), E 6= ∅, then E is a full fuzzy set.

Proof. Assume that E is not a full fuzzy set and that

k = min(card(supp(E)), n− card(supp(E))) > 0 .

Let Ã ⊆ supp(E) and B̃ ⊆ U\supp(E) with card(Ã) = card(B̃) = k. Consider the
fuzzy sets

A = 1Ã and B = 1B̃ .

We have thatO(E,A) > 0 (sinceE andA are not mutually disjoint) whereasO(E,B) =
0. Therefore, O can not be E-symmetric. �

Now we consider the notion of modularity.

Definition 7. Let O : FS(U) × FS(U) → [0, 1] be an overlap index and let E ∈
FS(U).

1. O is calledE-supermodular ifO(E,A∩B)+O(E,A∪B) ≥ O(E,A)+O(E,B)
holds for allA,B ∈ FS(U). Similarly,O is calledE-submodular ifO(E,A∩B)+
O(E,A ∪B) ≤ O(E,A) +O(E,B) for all A,B ∈ FS(U).

2. If O is E-submodular and E-supermodular, then O is simply called E-modular.

Example 4. 1. Every overlap index O is E-modular for E = ∅ ∈ FS(U).
2. The overlap index Oπ is E-modular for every fuzzy set E.
3. OZ is E-submodular but not E-modular.

The following construction method of overlap indexes by means of aggregation
functions can be found in [13].

Theorem 1. LetM : [0, 1]n → [0, 1] be an aggregation function such thatM(x1, . . . , xn) =
0 if and only if x1 = · · · = xn = 0 and let GO : [0, 1]2 → [0, 1] be an overlap function.
The mapping O : FS(U)× FS(U)→ [0, 1] given by

O(A,B) =M(GO(A(1), B(1)), . . . , GO(A(n), B(n))) (1)

is a normal overlap index in the sense of Definition 5.
Conversely, if GO is an overlap function and M : [0, 1]n → [0, 1] is an aggregation

function such that O defined by Equation 1 is an overlap index, then M(x1, . . . , xn) =
0 if and only if x1 = · · · = xn = 0.



4 Capacities from Overlap Indexes, and Overlap Functions

In this section, we present the core of the present chapter. Taking into account the usual
construction of Bayesian conditional probabilities, we follow an analogous procedure
to build a capacity from an overlap function.

We start introducing a bit of notation. Let E ∈ FS(U) be a fixed non-empty fuzzy
set (that is, with at least one membership different from zero). Given Ã ∈ 2U , let us
define a fuzzy set EÃ induced by E as follows:

EÃ(i) =

{
E(i) if i ∈ Ã;
0 otherwise.

Observe that EÃ is the fuzzy intersection of the fuzzy set E and the crisp set Ã, since

EÃ(i) = min(1Ã(i), E(i)) .

Therefore, any aggregation function with no zero divisors could also be used instead of
the minimum in this definition for the subsequent developments.

Now we are ready to introduce our main result.

Theorem 2. If E ∈ FS(U) is a fixed, non-empty fuzzy set, then the mapping mO,E :
2U → [0, 1] given by

mO,E(Ã) =
1

O(E,E)
O(E,EÃ)

is a capacity for every overlap index O.

Proof. First of all observe thatmO,E is well defined sinceO(E,E) 6= 0 andO(E,EÃ) ≤
O(E,E). If Ã = U , then it follows that EÃ = E, so we have that mO,E(Ã) = 1.
Moreover, if Ã = ∅, then EÃ(i) = 0 for every i ∈ U . So, in particular, O(EÃ, E) = 0.
Finally, if Ã ⊂ B̃, then it follows that EÃ ⊆ EB̃ , so, in particular, O(E,EÃ) ≤
O(E,EB̃) and hence mO,E(Ã) ≤ mO,E(B̃). �

Recall that Benvenuti et al. ([3]) defined for each aggregation functionM : [0, 1]n →
[0, 1] and e ∈]0, 1] such that M(E) > 0, where E = (e, . . . , e), a capacity mM,e :
2U → [0, 1] given by

mM,e(Ã) =
M(eÃ)

M(E)

(for e = 1 see also Proposition 1). Obviously, in the terms of Theorem 2, mO,E =
mMO,e. Here MO was defined in Remark 3.

Remark 4 Observe that, for a fixed full probability measure P on U , if we consider
the overlap index OP introduced in Remark 3, we recover the definition of Bayesian
conditional probabilities, i.e., mOP ,E = PsuppE .

Of course, the question of how two of these measures relate to each other arises.



Proposition 3. Let O be an overlap index. For all full fuzzy sets E1, E2 ∈ FS(U), the
following statements are equivalent:

1. mO,E1
(Ã) ≤ mO,E2

(Ã) for every Ã ∈ 2U .

2. minÃ∈2U
O(E2,ÃE2

)

O(E1,ÃE1
)
= O(E2,E2)

O(E1,E1)

Proof. The inequality mO,E1
(Ã) ≤ mO,E2

(Ã) implies that

O(E2, E2)

O(E1, E1)
≤ O(E2, ÃE2

)

O(E1, ÃE1
)

(2)

for every Ã ∈ 2U , so (2) holds. Conversely, if (2) holds, then Equation 2 is satisfied as
well and we obtain (1). �

Corollary 1. Let E1, E2 ∈ FS(U) such that O(E1, E1) = 1. If E1 ⊆ E2, then
mO,E1

(Ã) ≤ mO,E2
(Ã) for every Ã ∈ 2U .

Proof. IfE1 ⊆ E2, then we have that 1 ≥ O(E2, E2) ≥ O(E1, E1) = 1. Consequently,

1 =
O(E2, E2)

O(E1, E1)
≤ O(E2, ÃE2

)

O(E1, ÃE1
)

for every Ã ∈ 2U , which implies that mO,E1
(Ã) ≤ mO,E2

(Ã) for every Ã ∈ 2U . �

In order to reverse the construction method and get an overlap function from a
measure, we need the concept of contraction.

Definition 8. LetE ∈ FS(U). The contraction toE (orE-contraction) is the mapping
CE : FS(U)→ FS(U) defined by:

CE(A) = {(i, E(i)A(i)) | i ∈ U}.

Remark 5 The definition of contraction can be generalized by substituting the product
with any other t-norm or even an overlap function. We postpone the analysis of the
resulting operators to future works.

Let us continue by introducing some notations. For a fixed fuzzy set E ∈ FS(U)

and for Ã ∈ 2U , we define

Cl(E, Ã) = {A ∈ FS(U) | A ⊆ EÃ and A * EB̃ for every B̃ ⊂ Ã}.

The proof of the following lemma is straightforward.

Lemma 1. Let E ∈ FS(U). Then Cl(E, Ã) = ∅ for every Ã ∈ 2U such that Ã ∩
supp(E) = ∅.

Then we can state the following.



Proposition 4. Let E be a full fuzzy set. The family (Cl(E, Ã))Ã∈2U is a partition of
the set {A ∈ FS(U) | A ⊆ E}.

Proof. For any A ⊆ E let’s take Ã = supp(A). Then, and only then A ⊆ EÃ and
for any B̃ which is a proper subset of Ã, A * EB̃ , i.e., A ∈ Cl(E, Ã). The fact that
Cl(E, Ã) ∩ Cl(E, B̃) = ∅ for Ã 6= B̃ is trivial. Hence {Cl(E, Ã)|Ã ∈ 2U} is a parti-
tion of {A ∈ FS(U) | A ⊆ E}. �

Now we can show how to recover overlap indexes from capacities.

Theorem 3. Let m be a capacity such that m(Ã) = 0 if and only if Ã = ∅. If E is a
full fuzzy set, then the function OE,m : FS(U)× FS(U)→ [0, 1] defined by:

OE,m(A,B) =

{
m(Ã) if A ∩B ∈ Cl(E, Ã);
1 otherwise

is a normal overlap index such that the capacity induced by OE,m is equal to m.

Proof. First of all, due to Proposition 4, OE,m is well defined. Let us prove that OE,m
is an overlap index.

(O1) Assume that OE,m(A,B) = 0. Since m(Ã) 6= 0 for every Ã 6= ∅, this happens if
and only if A ∩B ∈ Cl(E, ∅), i.e., if and only if A and B have disjoint supports.

(O3) Symmetry is obvious from the definition.
(O4) Let A ∈ FS(U) be arbitrary, but fixed and let B ⊆ C. If A ∩ C * E, then

OE,m(A,C) = 1 ≥ OE,m(A,B). Now let us assume that A ∩ C ⊆ E. From
Proposition 4 and the fact thatA∩B ⊆ A∩C, it follows that there exist Ã, B̃ ∈ 2U

with B̃ ⊆ Ã such that A ∩ C ∈ Cl(E, Ã) and A ∩ B ∈ Cl(E, B̃). Since m is a
capacity, we have that m(Ã) ≤ m(B̃) and therefore OE,m(A,B) ≤ OE,m(A,C).

(O2’) Note that U = U ∩ U . So if E 6= U it follows that OE,m(U,U) = 1, whereas if
E = U , we have that U ∈ Cl(U,U) and OE,m(U,U) = m(U) = 1.

Finally, note that EÃ = EÃ ∩ E ∈ Cl(E, Ã) for every Ã ∈ 2U , which concludes the
proof of the theorem since

mOE,m,E(Ã) =
1

OE,m(E,E)
OE,m(E,EÃ) = m(Ã) .

This completes the proof. �

Theorem 3 can be extended to include non-strict measures as follows.

Corollary 2. Consider a capacitym. Let Ã0 = {i ∈ U | m({i}) = 0}. Suppose thatE
is a fuzzy set such thatE(i) 6= 0 for i 6∈ Ã0. The functionO : FS(U)×FS(U)→ [0, 1]
given by

OE,m,Ã0
(A,B) =

{
m(Ã) if A ∩B ∈ Cl(E, Ã\Ã0);

1 otherwise

is an overlap index.



Proof. Symmetry and monotonicity are clear. We only need to check that (O1) holds. To
see (O1), note thatO(A,B) = 0 if and only ifA∩B ∈ Cl(E, Ã\Ã0) for some Ã ∈ 2U

such that m(Ã) = 0. But, m(Ã) = 0 if and only if Ã ⊆ Ã0, due to the monotonicity of
capacities. So, min(A(i), B(i)) = 0 if i ∈ Ã0 �

Example 5. For the bottom capacity m∗, we obtain Ã0 = {i ∈ U | m∗({i}) = 0} =
U . Thus, setting E = ∅ yields the following overlap function:

OE,m∗,U (A,B) =

{
0 if A ∩B = ∅;
1 otherwise,

which is the strongest overlap index.

Corollary 3. For every capacity m there exists a fuzzy set E and a continuous overlap
index OE,m such that the measure induced by OE,m is equal to m.

Proof. It is just a matter of using the overlap index defined by means of Theorem 3 and
Corollary 2 �

4.1 Construction of Capacities from Overlap Indexes Based on Overlap
Functions

We can make use of Theorem 1 to get capacities from overlap functions and aggregation
functions.

Proposition 5. LetM : [0, 1]n → [0, 1] be an aggregation function such thatM(x1, . . . , xn) =
0 if and only if x1 = · · · = xn = 0, let GO : [0, 1]2 → [0, 1] be an overlap function
and let E ∈ FS(U) be a non-empty fuzzy set. The mapping mE,M,GO

: 2U → [0, 1] is
given by

mE,M,GO
(Ã) =

1

M(GO(E))
M(GO(E(1), EÃ(1)), . . . , GO(E(n), EÃ(n))),

where M(GO(E)) =M(GO(E(1), E(1)), . . . , GO(E(n), E(n)) is a capacity.

Note that if we take E = U , then we have mU,M,GO
(Ã) =M(1Ã).

Proposition 6. Let M be an aggregation function as in Proposition 5. For any non-
empty fuzzy set E, we have:

1. mE,M,GO
(Ã) = 0 if and only if E(i) = 0 for every i ∈ Ã;

2. mE,M,GO
(Ã) = 1 whenever E(i) 6= 0 for every i ∈ Ã.

Proof.



1. If mE,M,GO
(Ã) = 0, then

1

M(GO(E))
M(GO(E(1), EÃ(1)), . . . , GO(E(n), EÃ(n))) = 0 .

Since M is an aggregation function, this implies that GO(E(i), EÃ(i)) = 0 for
every i = 1, . . . , n. From the definition of an overlap function, this happens only
if E(i)EÃ(i) = 0 for every i = 1, . . . , n. If EÃ(i) 6= 0 it follows that E(i) = 0,
which is impossible due to the definition ofEÃ. Therefore, we infer thatEÃ(i) = 0

for every i ∈ Ã, that is, if i ∈ Ã then E(i) = 0. The other direction follows from
the fact that E(i) = 0 for every i ∈ Ã implies that EÃ(i) = 0 for every i ∈ U .

2. If Ã is as in the statement of this property, then we obtain EÃ = E, and the result
follows from the monotonicity of aggregation and overlap functions. �

The following corollary is a straightforward consequence of the previous result.

Corollary 4. LetM be an aggregation function as in Proposition 5. For any non-empty
fuzzy set E, we have:

1. mE,M,GO
satisfies the property

mE,M,GO
(Ã) = 0 if and only if Ã = ∅

if and only if E is a full fuzzy set.
2. mE,M,GO

(supp(E)) = 1.

Theorem 4. For a fixed overlap function GO and an n-ary aggregation function M as
in Proposition 5, the following claims are equivalent:

1. For each non-empty fuzzy subset E ∈ FS(U), the measure mE,M,GO
is additive.

2. M is modular, i.e.,M(max(x, y))+M(min(x, y)) =M(x)+M(y) for all x, y ∈
[0, 1]n.

Proof. Observe first that any modular aggregation functionM such thatM(x1, .., xn) =
0 only if x1 = · · · = xn = 0 has the form M(x1, . . . , xn) =

∑n
i=1 fi(xi) , where each

fi : [0, 1] → [0, 1] is increasing, fi(x) = 0 only if x = 0, and
∑
fi(1) = 1, see, e.g.,

[19]. To see the necessity, observe that the additivity of mE,M,GO
implies that

M(GO(E(1), EÃ(1)), . . . , GO(E(n), EÃ(n))) =

M(GO((E(1), EÃ(1)), 0, . . . , 0)) +M(0, . . . , 0, GO(E(n), EÃ(n))).

In view of the mean value theorem for overlap functions, this equality is equivalent to

M(x1, . . . , xn) =M(x1, 0, . . . , 0) +M(0, x2, 0, . . . , 0) + · · ·+M(0, . . . , 0, xn)

for every x1, . . . , xn ∈ [0, 1]. Defining fi(x) =M(0, 0, . . . , 0, x, 0, . . . , 0), where the x
is in the i-th position, the result follows. To see the converse, observe thatM(x1, . . . , xn) =∑n
i=1 fi(xi) is an aggregation function such that M(x1, . . . , xn) = 0 if and only if

x1 = · · · = xn = 0. �

Observe that ifM satisfies the requirements of the previous theorem, thenmE,M,GO

is additive for all GO and all E 6= ∅.



5 Conclusions

In this chapter we have made a summary of the developments in [8] and discussed a
method to build capacities from overlap indexes and overlap measures. In this way,
relationships among data in the problem can be taken into account in order to build an
appropriate measure which will later be used to determine the aggregation procedure.

In future research, we intend to analyse aggregations that make use of our mea-
sures, such as Sugeno, Shilkret, Choquet or copula-based integrals, and compare the
obtained results using other aggregations in different problems, such as, for instance,
digital fingerprint recognition or decision making.
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[13] S. Garcia, H. Bustince, E. Hüllermeier, R. Mesiar, N. Pal, A. Pradera, Overlap Indices:
Construction of and Application to Interpolative Fuzzy Systems, IEEE Transactions on
Fuzzy Systems 23, 1259–1273, 2015.

[14] D. Gomez, J.T. Rodriguez, J. Montero, H. Bustince, E. Barrenechea, N-dimensional overlap
functions, Fuzzy Sets and Systems 287, 57–75, 2016.

[15] M. Grabisch, J.-L. Marichal, R. Mesiar, E. Pap, Aggregation Functions. Cambridge Uni-
versity Press, Cambridge, 2009.

[16] A. Jurio, H. Bustince, M. Pagola, A. Pradera, R.R. Yager, Some properties of overlap and
grouping functions and their application to image thresholding. Fuzzy Sets and Systems,
229, 69–90, 2013.
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