2000 Mathematics Subject Classification:
Primary 30E15; Secondary 44A60,60B15
Keywords: product convolution semigroup, asymptotic approximation of integrals, Laplace and saddle point methods, moment problems, Gumbel distribution.

Asymptotic behaviour of the Urbanik semigroup

Christian Berg ${ }^{1, *}$
Department of Mathematics, University of Copenhagen, Universitetsparken 5, DK-2100, Denmark
José Luis López ${ }^{2}$
Departamento de Ingenería Matemática e Informática, Universidad Pública de Navarra, 31006 Pamplona, Spain

Abstract

We revisit the product convolution semigroup of probability densities $e_{c}(t), c>$ 0 on the positive half-line with moments $(n!)^{c}$ and determine the asymptotic behaviour of e_{c} for large and small $t>0$. This shows that $(n!)^{c}$ is indeterminate as Stieltjes moment sequence if and only if $c>2$. When c is a natural number e_{c} is a Meijer-G function. From the results about e_{c} we obtain the asymptotic behaviour at $\pm \infty$ of the convolution roots of the Gumbel distribution.

1. Introduction

We consider a family of probability densities $e_{c}(t), c>0$ on the half-line given by

$$
\begin{equation*}
e_{c}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} t^{i x-1} \Gamma(1-i x)^{c} d x, \quad t>0 \tag{1}
\end{equation*}
$$

In this formula we use that $\Gamma(z)$ is a non-vanishing holomorphic function in the cut plane

$$
\begin{equation*}
\mathcal{A}=\mathbb{C} \backslash(-\infty, 0], \tag{2}
\end{equation*}
$$

so we can define

$$
\Gamma(z)^{c}=\exp (c \log \Gamma(z)), \quad z \in \mathcal{A}
$$

using the holomorphic branch of $\log \Gamma$ which is 0 for $z=1$.

[^0]As far as we know it was proved first by Urbanik in [17, Section 4] that e_{c} is a probability density, and that the following product convolution equation holds

$$
\begin{equation*}
e_{c+d}(t)=\int_{0}^{\infty} e_{c}(t / x) e_{d}(x) \frac{d x}{x}, \quad c, d>0 . \tag{3}
\end{equation*}
$$

Furthermore, it was noticed that

$$
\begin{equation*}
\int_{0}^{\infty} t^{n} e_{c}(t) d t=(n!)^{c}, \quad c>0, n=0,1, \ldots \tag{4}
\end{equation*}
$$

Defining the probability measure τ_{c} on $(0, \infty)$ by

$$
\begin{equation*}
d \tau_{c}=e_{c}(t) d t=t e_{c}(t) d m(t), \quad c>0 \tag{5}
\end{equation*}
$$

where $d m(t)=(1 / t) d t$ is the Haar measure on the locally compact abelian group $G=(0, \infty)$ under multiplication, we can write (3) as $\tau_{c} \diamond \tau_{d}=\tau_{c+d}$, where \diamond denotes the (product) convolution of measures on the multiplicative group G. The family $\left(\tau_{c}\right)_{c>0}$ is a convolution semigroup in the sense of [7]. We propose to call this semigroup the Urbanik semigroup because of [17].

The continuous characters of the group G can be given as $t \rightarrow t^{i x}$, where $x \in \mathbb{R}$ is arbitrary, and in this way the dual group \widehat{G} of G can be identified with the additive group of real numbers, and by the inversion theorem of Fourier analysis for LCA-groups, (1) is equivalent to

$$
\begin{equation*}
\widehat{\tau}_{c}(x)=\int_{0}^{\infty} t^{-i x} d \tau_{c}(t)=\exp (c \log (\Gamma(1-i x)), \quad x \in \mathbb{R} \tag{6}
\end{equation*}
$$

To establish the existence of a product convolution semigroup $\left(\tau_{c}\right)$ satisfying (6) is therefore equivalent to proving that

$$
\begin{equation*}
\rho(x):=-\log \Gamma(1-i x), \quad x \in \mathbb{R} \tag{7}
\end{equation*}
$$

is a continuous negative definite function on \mathbb{R} in the terminology of [7] or [14].
This was done in [17] by giving the Lévy-Khinchin representation of ρ, using Plana's formula, cf. [9, 8.341(3)] or [12, p. 187]:

$$
\begin{equation*}
\log \Gamma(z)=\int_{0}^{\infty}\left[\frac{e^{-z t}-e^{-t}}{1-e^{-t}}+(z-1) e^{-t}\right] \frac{d t}{t}, \quad \operatorname{Re}(z)>0 \tag{8}
\end{equation*}
$$

In fact from (8) we get

$$
\begin{equation*}
-\log \Gamma(1-i x)=\int_{0}^{\infty}\left[1-e^{i x t}+\frac{i t x}{1+t^{2}}\right] \frac{e^{-t}}{t\left(1-e^{-t}\right)} d t-i a x \tag{9}
\end{equation*}
$$

where

$$
a=\int_{0}^{\infty}\left[\frac{1}{\left(1+t^{2}\right)\left(1-e^{-t}\right)}-\frac{1}{t}\right] e^{-t} d t
$$

showing that $\rho(x)=-\log \Gamma(1-i x)$ is negative definite with the Lévy measure

$$
d \mu=\frac{e^{-t}}{t\left(1-e^{-t}\right)} d t
$$

concentrated on $(0, \infty)$.
Another proof of the negative definiteness of ρ was given in [6] based on the Weierstrass product for Γ, where Log denotes the principal logarithm in the cut plane \mathcal{A}, cf. (2):

$$
-\log \Gamma(z)=\gamma z+\log z+\sum_{k=1}^{\infty}(\log (1+z / k)-z / k), \quad z \in \mathcal{A}
$$

Clearly,

$$
\rho_{n}(z):=\gamma z+\log z+\sum_{k=1}^{n}(\log (1+z / k)-z / k)
$$

converges locally uniformly to $-\log \Gamma(z)$ for $z \in \mathcal{A}$, and since

$$
\rho_{n}(1-i x)=\rho_{n}(1)-i\left(\gamma-\sum_{k=1}^{n} \frac{1}{k}\right) x+\sum_{k=1}^{n+1} \log (1-i x / k)
$$

is negative definite, because $\log (1+i a x)$ is so for $a \in \mathbb{R}$ and

$$
\rho_{n}(1)=\gamma+\log (n+1)-\sum_{k=1}^{n} \frac{1}{k}>0
$$

we conclude that the limit function $\rho(x)=-\log \Gamma(1-i x)$ is negative definite.
As noticed in [6, Lemma 2.1], (4) is a special case of

$$
\begin{equation*}
\int_{0}^{\infty} t^{z} e_{c}(t) d t=\Gamma(1+z)^{c}, \quad \operatorname{Re}(z)>-1 \tag{10}
\end{equation*}
$$

and letting z tend to -1 along the real axis, we get

$$
\begin{equation*}
\int_{0}^{\infty} e_{c}(t) \frac{d t}{t}=\int_{0}^{\infty} e_{c}(1 / t) \frac{d t}{t}=\infty, \quad c>0 \tag{11}
\end{equation*}
$$

It follows from (4) that $(n!)^{c}$ is a Stieltjes moment sequence for any $c>0$, and while it is easy to see that it is S-determinate for $c \leq 2$ in the sense, that there is only one measure on the half-line with these moments, namely τ_{c}, it is rather delicate to see that it is S -indeterminate for $c>2$. This was proved in Theorem 2.5 in [6]. The proof was based on a relationship between τ_{c} and stable distributions, and it used heavily asymptotic results of Skorokhod from [15] and exposed in [19]. Further details are given at the end of this section.

The purpose of the present paper is to establish the asymptotic behaviour of the densities $e_{c}(t)$ for $t \rightarrow \infty$ and $t \rightarrow 0$. The behaviour for $t \rightarrow \infty$ will lead to a direct proof of the S-indeterminacy for $c>2$.

We mention that the product convolution semigroup $\left(\tau_{c}\right)_{c>0}$ corresponds to the Bernstein function $f(s)=s$ in the following result from [6, Theorem 1.8].

Theorem 1.1. Let f be a non-zero Bernstein function. The uniquely determined measure $\kappa=\kappa(f)$ with moments $s_{n}=f(1) \cdots f(n)$ is infinitely divisible with respect to the product convolution. The unique product convolution semigroup $\left(\kappa_{c}\right)_{c>0}$ with $\kappa_{1}=\kappa$ has the moments

$$
\begin{equation*}
\int_{0}^{\infty} x^{n} d \kappa_{c}(x)=(f(1) \cdots f(n))^{c}, \quad c>0, n=0,1, \ldots \tag{12}
\end{equation*}
$$

It is an easy consequence of Carleman's criterion that the measures κ_{c} are S-determinate for $c \leq 2$, cf. [6, Theorem 1.6].

In [6] we consider three Bernstein functions $f_{\alpha}, f_{\beta}, f_{\gamma}$ with corresponding product convolution semigroups $\left(\alpha_{c}\right)_{c>0},\left(\beta_{c}\right)_{c>0},\left(\gamma_{c}\right)_{c>0}$:

$$
f_{\alpha}(s)=(1+1 / s)^{s}, \quad f_{\beta}(s)=(1+1 / s)^{-s-1}, \quad f_{\gamma}(s)=s(1+1 / s)^{s+1}
$$

It is proved that the measures α_{c}, β_{c} have compact support, so they are clearly S -determinate for all $c>0$, but γ_{c} is S-indeterminate for $c>2$. Using that $\tau_{c}=\beta_{c} \diamond \gamma_{c}$, it is possible to infer that also τ_{c} is S-indeterminate, see [6] for details.

As noticed in [17], the measures $\tau_{c}, c \geq 1$ are also infinitely divisible for the additive structure, because $e_{c}(t)$ is completely monotonic. To see this, notice that the convolution equation (3) with $d=1$ can be written

$$
\begin{equation*}
e_{c+1}(t)=\int_{0}^{\infty} e^{-t x} e_{c}(1 / x) \frac{d x}{x}, \quad c>0 \tag{13}
\end{equation*}
$$

showing that $e_{c}(t)$ is completely monotonic for $c>1$, and it tends to infinity for $t \rightarrow 0$ because of (11).

It is well-known that the exponential distribution τ_{1} is infinitely divisible for the additive structure and with a completely monotonic density $e_{1}(t)$.

Urbanik also showed that τ_{c} is not infinitely divisible for the additive structure when $0<c<1$.

Formula (1) states roughly speaking that $t e_{c}(t)$ is the Fourier transform of the Schwartz function $\Gamma(1-i x)^{c}$ evaluated at $\log t$, thus showing that e_{c} is C^{∞} on $(0, \infty)$. By Riemann-Lebesgue's Lemma we also see that $t e_{c}(t)$ tends to zero for t tending to zero and to infinity. Much more will be obtained in the main results below.

2. Main results

Our main results are
Theorem 2.1. For $c>0$ we have

$$
\begin{equation*}
e_{c}(t)=\frac{(2 \pi)^{(c-1) / 2}}{\sqrt{c}} \frac{\exp \left(-c t^{1 / c}\right)}{t^{(c-1) /(2 c)}}\left[1+\mathcal{O}\left(\frac{1}{t^{1 / c}}\right)\right], \quad t \rightarrow \infty . \tag{14}
\end{equation*}
$$

Remark 2.2. It is worth noticing that e_{c} can be expressed as a Meijer-G function when $c=1,2, \ldots$, namely as

$$
e_{c}(t)=G_{0, c}^{c, 0}\left(\begin{array}{ccc}
& - & \tag{15}\\
0, & \cdots, & 0
\end{array}\right)
$$

For an introduction to these functions see the recent paper [3]. Formula (15) follows e.g. by (31) below. The cases $c=1,2$ are particularly simple since

$$
e_{1}(t)=e^{-t}, \quad e_{2}(t)=\int_{0}^{\infty} \exp (-x-t / x) \frac{d x}{x}=2 K_{0}(2 \sqrt{t})
$$

In the last formula K_{0} is a modified Bessel function, see [13, Chap. 10, Sec. 25].
Meijer-G functions have appeared recently in connection with random matrix problems, see [1],[8],[10].

Corollary 2.3. The measure $\tau_{c}=e_{c}(t) d t$ is S-indeterminate for $c>2$.
Theorem 2.4. For $c>0$ we have

$$
\begin{equation*}
e_{c}(t)=\frac{(\log (1 / t))^{c-1}}{\Gamma(c)}+\mathcal{O}\left((\log (1 / t))^{c-2}\right), \quad t \rightarrow 0 \tag{16}
\end{equation*}
$$

Remark 2.5. Formula (16) shows that $e_{c}(t)$ tends to infinity as a power of $\log (1 / t)$ when $c>1$, but so slowly that multiplication with t forces the density to tend to zero. When $0<c<1$ the density $e_{c}(t)$ tends to zero.

In a short Section 4 we transfer our results to information about the Gumbel distribution.

3. Proofs

We will first give a proof of Theorem 2.1 in the case, where c is a natural number. Note that the asymptotic expression in (14) for $c=1$ reduces to $e_{1}(t)=$ e^{-t}. When $c=n+1$, where n is a natural number, we know that $e_{n+1}(t)$ is the n 'th product convolution power of e_{1}, hence

$$
e_{n+1}(t)=\int_{0}^{\infty} \cdots \int_{0}^{\infty} e^{-\frac{t}{u_{1} \cdots u_{n}}} e^{-u_{1}} \cdots e^{-u_{n}} \frac{d u_{1}}{u_{1}} \cdots \frac{d u_{n}}{u_{n}}
$$

For $t>0$ fixed, the change of variables $u_{j}=t^{1 /(n+1)} v_{j}, j=1, \ldots, n$ leads to

$$
\begin{equation*}
e_{n+1}(t)=\int_{0}^{\infty} \ldots \int_{0}^{\infty} g\left(v_{1}, \ldots, v_{n}\right) e^{-t^{1 /(n+1)} f\left(v_{1}, \ldots, v_{n}\right)} d v_{1} \cdots d v_{n} \tag{17}
\end{equation*}
$$

with

$$
g\left(v_{1}, \ldots, v_{n}\right):=\frac{1}{v_{1} \cdots v_{n}}, \quad f\left(v_{1}, \ldots, v_{n}\right):=v_{1}+\cdots+v_{n}+g\left(v_{1}, \ldots, v_{n}\right)
$$

The phase function $f\left(v_{1}, \ldots, v_{n}\right)$ is convex in $C=\left\{v_{1}>0, \ldots, v_{n}>0\right\}$ because the Hessian matrix of second derivatives is

$$
H f\left(v_{1}, \ldots, v_{n}\right)=g\left(v_{1}, \ldots, v_{n}\right)\left(\begin{array}{cccc}
\frac{2}{v_{1}^{2}} & \frac{1}{v_{1} v_{2}} & \cdots & \frac{1}{v_{1} v_{n}} \\
\frac{1}{v_{2} v_{1}} & \frac{2}{v_{2}^{2}} & \cdots & \frac{1}{v_{2} v_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{1}{v_{n} v_{1}} & \frac{1}{v_{n} v_{2}} & \cdots & \frac{2}{v_{n}^{2}}
\end{array}\right),
$$

which is easily seen to be positive definite. The phase function therefore has a global minimum at the unique stationary point \vec{v}_{0} such that $\vec{\nabla} f\left(\vec{v}_{0}\right)=\overrightarrow{0}$, that is, at $\vec{v}_{0}=(1, \ldots, 1)$. At that point, the Hessian matrix of $f(\vec{v})$ is

$$
A:=H f(1, \ldots, 1)=\left(\begin{array}{ccccc}
2 & 1 & 1 & \cdots & 1 \\
1 & 2 & 1 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \cdots & 2
\end{array}\right)
$$

with determinant $\operatorname{det}(A)=n+1$.
By Laplace's asymptotic method for multiple dimensional Laplace transforms, cf. [18, Theorem 3, p. 495], we know that for $t \rightarrow \infty$,

$$
e_{n+1}(t)=\left(\frac{2 \pi}{t^{1 /(n+1)}}\right)^{n / 2} g\left(\vec{v}_{0}\right)(\operatorname{det}(A))^{-1 / 2} e^{-t^{1 /(n+1)} f\left(\vec{v}_{0}\right)}\left[1+\mathcal{O}\left(\frac{1}{t^{1 /(n+1)}}\right)\right]
$$

We have that $g\left(\vec{v}_{0}\right)=1$ and $f\left(\vec{v}_{0}\right)=n+1$, hence

$$
\begin{equation*}
e_{n+1}(t)=\frac{(2 \pi)^{n / 2}}{\sqrt{n+1}} \frac{e^{-(n+1) t^{1 /(n+1)}}}{t^{n /(2(n+1))}}\left[1+\mathcal{O}\left(\frac{1}{t^{1 /(n+1)}}\right)\right], \tag{18}
\end{equation*}
$$

which agrees with (14) for $c=n+1$.
The proof of Theorem 2.1 for arbitrary $c>0$ is more delicate. We first apply Cauchy's integral theorem to move the integration in (1) to an arbitrary horizontal line

$$
\begin{equation*}
L_{a}:=\{z=x+i a \mid x \in \mathbb{R}\}, \quad a>0 \tag{19}
\end{equation*}
$$

Lemma 3.1. With L_{a} as in (19) we have

$$
\begin{equation*}
e_{c}(t)=\frac{1}{2 \pi} \int_{L_{a}} t^{i z-1} \Gamma(1-i z)^{c} d z, \quad t>0 \tag{20}
\end{equation*}
$$

Proof: For $t, c>0$ fixed, $f(z)=t^{i z-1} \Gamma(1-i z)^{c}$ is holomorphic in the simply connected domain $\mathbb{C} \backslash i(-\infty,-1]$, so the Lemma follows from Cauchy's integral theorem provided the integral

$$
\int_{0}^{a} f(x+i y) d y
$$

tends to 0 for $x \rightarrow \pm \infty$. We have

$$
|f(x+i y)|=t^{-y-1}|\Gamma(1+y-i x)|^{c}
$$

and since

$$
|\Gamma(u+i v)| \sim \sqrt{2 \pi} e^{-|v| \pi / 2}|v|^{u-1 / 2}, \quad|v| \rightarrow \infty, \text { uniformly for bounded real } u,
$$

cf. [2, p.141, eq. 5.11.9], [9, 8.328(1)], the result follows.
In the following we will use Lemma 3.1 with the line of integration $L=L_{a}$, where $a=t^{1 / c}-1$ for $t>1$. Therefore, using the parametrization $z=x+i\left(t^{1 / c}-1\right)$ we get

$$
e_{c}(t)=t^{-t^{1 / c}} \frac{1}{2 \pi} \int_{-\infty}^{\infty} t^{i x} \Gamma\left(t^{1 / c}-i x\right)^{c} d x
$$

and after the change of variable $x=t^{1 / c} u$

$$
\begin{equation*}
e_{c}(t)=t^{1 / c-t^{1 / c}} \frac{1}{2 \pi} \int_{-\infty}^{\infty} t^{i u t^{1 / c}} \Gamma\left(t^{1 / c}(1-i u)\right)^{c} d u \tag{21}
\end{equation*}
$$

Stirling's formula for Γ with Binet's remainder term is, see $[9,8.341(1)]$ or [12, p. 176],

$$
\begin{equation*}
\Gamma(z)=\sqrt{2 \pi} z^{z-\frac{1}{2}} e^{-z+\mu(z)}, \quad \operatorname{Re}(z)>0 \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu(z)=\int_{0}^{\infty}\left(\frac{1}{2}-\frac{1}{t}+\frac{1}{e^{t}-1}\right) \frac{e^{-z t}}{t} d t, \quad \operatorname{Re}(z)>0 . \tag{23}
\end{equation*}
$$

Notice that $\mu(z)$ is the Laplace transform of a positive function, so we have the estimates for $z=r+i s, r>0$

$$
\begin{equation*}
|\mu(z)| \leq \mu(r) \leq \frac{1}{12 r} \tag{24}
\end{equation*}
$$

where the last inequality is a classical version of Stirling's formula, thus showing that the estimate is uniform in $s \in \mathbb{R}$.

Inserting this in (21), we get after some simplification

$$
\begin{equation*}
e_{c}(t)=(2 \pi)^{c / 2-1} t^{1 / c-1 / 2} e^{-c t^{1 / c}} \int_{-\infty}^{\infty} e^{c t^{1 / c} f(u)} g_{c}(u) M(u, t) d u \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
f(u):=i u+(1-i u) \log (1-i u), \quad g_{c}(u):=(1-i u)^{-c / 2} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
M(u, t):=\exp \left[c \mu\left(t^{1 / c}(1-i u)\right)\right] . \tag{27}
\end{equation*}
$$

From (24) we get $M(u, t)=1+\mathcal{O}\left(t^{-1 / c}\right)$ for $t \rightarrow \infty$, uniformly in u. We shall therefore consider the behaviour of

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{c t^{1 / c} f(u)} g_{c}(u) d u \tag{28}
\end{equation*}
$$

From here we need to apply the saddle point method to obtain the approximation of (28) for large positive t. For convenience, we use Theorem 1 in [11]. We have that the only saddle point of the phase function $f(u)$ is $u=0$ and $f(0)=f^{\prime}(0)=$ $0, f^{\prime \prime}(0)=-1, f^{\prime \prime \prime}(0) \neq 0$; also $g_{c}(0)=1$. Then, the parameters used in that theorem are $m=2, p=3, \phi=\pi, N=0, M=1$ and the large variable used in the theorem is $x \equiv c t^{1 / c}$. We have that the steepest descendent path used in the theorem is $\Gamma=\Gamma_{0} \bigcup \Gamma_{1}=(-\infty, 0) \bigcup(0, \infty)$, that is, it is just the original integration path in the above integral, and therefore does not need any deformation. From [11, Theorem 1] with the notation used there, we read that the integral (28) has an expansion of the form

$$
e^{x f(0)}\left[c_{0} \Psi_{0}(x)+c_{1} \Psi_{1}(x)+c_{2} \Psi_{2}(x)+\cdots\right],
$$

with $\Psi_{n}(x)=\mathcal{O}\left(x^{-(n+1) / 2}\right)$ and c_{n} is independent of x. Because the factors $c_{2 n+1}$ vanish we find

$$
c_{0} \Psi_{0}(x)+c_{1} \Psi_{1}(x)+c_{2} \Psi_{2}(x)+\cdots=c_{0} \Psi_{0}(x)\left[1+\mathcal{O}\left(x^{-1}\right)\right]
$$

with $c_{0}=1$ and

$$
\Psi_{0}(x)=a_{0}(x) \Gamma\left(\frac{1}{2}\right)\left|\frac{2}{x f^{\prime \prime}(0)}\right|^{1 / 2}
$$

with

$$
a_{0}(x)=e^{-x f(0)} A_{0}(x) B_{0}, \quad A_{0}(x)=e^{x f(0)}, \quad B_{0}=g_{c}(0)
$$

hence $a_{0}(x)=B_{0}=1$. Using all these data we finally obtain

$$
\int_{-\infty}^{\infty} e^{c t^{1 / c}} f(u) g_{c}(u) d u=\frac{\sqrt{2 \pi}}{\sqrt{c} t^{1 /(2 c)}}\left[1+\mathcal{O}\left(t^{-1 / c}\right)\right]
$$

and

$$
e_{c}(t)=\frac{(2 \pi)^{(c-1) / 2}}{\sqrt{c}} \frac{e^{-c t^{1 / c}}}{t^{(c-1) /(2 c)}}\left[1+\mathcal{O}\left(t^{-1 / c}\right)\right] .
$$

Proof of Corollary 2.3. We apply the Krein criterion for S-indeterminacy of probability densities concentrated on the half-line, using a version given in [5, Theorem 5.1]. It states that if

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\log e_{c}(t) d t}{\sqrt{t}(1+t)}>-\infty \tag{29}
\end{equation*}
$$

then $\tau_{c}=e_{c}(t) d t$ is S-indeterminate. We shall see that (29) holds for $c>2$.
From Theorem 2.1 combined with the fact that $e_{c}(t)$ is decreasing when $c>1$, we see that the inequality in (29) holds if and only if

$$
\int_{0}^{\infty} \frac{\log \left((2 \pi)^{(c-1) / 2} / \sqrt{c}\right)-c t^{1 / c}-((c-1) /(2 c)) \log t}{\sqrt{t}(1+t)} d t>-\infty
$$

and the latter holds precisely for $c>2$. This shows that τ_{c} is S -indeterminate for $c>2$.

Proof of Theorem 2.4.
Since we are studying the behaviour for $t \rightarrow 0$, we assume that $0<t<1$ so that $\Lambda:=\log (1 / t)>0$.

We will need integration along the vertical lines

$$
\begin{equation*}
V_{a}:=\{a+i y \mid y=-\infty \ldots \infty\}, \quad a \in \mathbb{R}, \tag{30}
\end{equation*}
$$

and we can therefore express (1) as

$$
\begin{equation*}
e_{c}(t)=\frac{1}{2 \pi i} \int_{V_{-1}} t^{z} \Gamma(-z)^{c} d z \tag{31}
\end{equation*}
$$

By the functional equation for Γ we get

$$
\begin{equation*}
e_{c}(t)=\frac{1}{2 \pi i} \int_{V_{-1}}(-z)^{-c} t^{z} \Gamma(1-z)^{c} d z \tag{32}
\end{equation*}
$$

To ease the writing we define

$$
\varphi(z):=t^{z} \Gamma(1-z)^{c}, \quad g(z):=(-z)^{-c}=\exp (-c \log (-z))
$$

and note that φ is holomorphic in $\mathbb{C} \backslash[1, \infty)$, while g is holomorphic in $\mathbb{C} \backslash[0, \infty)$. Here \log is the principal logarithm in the cut plane \mathcal{A}, cf. (2).

Note that for $x>0$

$$
g_{ \pm}(x):=\lim _{\varepsilon \rightarrow 0^{+}} g(x \pm i \varepsilon)=x^{-c} e^{ \pm i \pi c}
$$

Formula (32) can now be written

$$
\begin{equation*}
e_{c}(t)=\frac{1}{2 \pi i} \int_{V_{-1}} g(z) \varphi(z) d z \tag{33}
\end{equation*}
$$

Case 1. We will first treat the case $0<c<1$.
We fix $0<s<1$, choose $0<\varepsilon<s$ and integrate $g(z) \varphi(z)$ over the contour \mathcal{C}
$\{-1+i y \mid y=\infty \ldots 0\} \cup[-1,-\varepsilon] \cup\left\{\varepsilon e^{i \theta} \mid \theta=\pi \ldots 0\right\} \cup[\varepsilon, s] \cup\{s+i y \mid y=0 \ldots \infty\}$
and get 0 by the integral theorem of Cauchy. On the interval $[\varepsilon, s]$ we use the values of g_{+}.

Similarly we get 0 by integrating $g(z) \varphi(z)$ over the complex conjugate contour $\overline{\mathcal{C}}$, and now we use the values of g_{-}on the interval $[\varepsilon, s]$.

Subtracting the second contour integral from the first leads to

$$
\int_{V_{s}}-\int_{V_{-1}}-\int_{|z|=\varepsilon} g(z) \varphi(z) d z+\int_{\varepsilon}^{s} \varphi(x)\left(g_{+}(x)-g_{-}(x)\right) d x=0
$$

where the integral over the circle is with positive orientation. Note that the two integrals over $[-1,-\varepsilon]$ cancel. Using that $0<c<1$ it is easy to see that the integral over the circle $|z|=\varepsilon$ converges to 0 for $\varepsilon \rightarrow 0$, and we finally get for $\varepsilon \rightarrow 0$

$$
e_{c}(t)=\frac{1}{2 \pi i} \int_{V_{s}} g(z) \varphi(z) d z+\frac{\sin (\pi c)}{\pi} \int_{0}^{s} x^{-c} \varphi(x) d x:=I_{1}+I_{2}
$$

We claim that the first integral I_{1} is $o\left(t^{s}\right)$ for $t \rightarrow 0$. To see this we insert the parametrization of V_{s} and get

$$
I_{1}=\frac{t^{s}}{2 \pi} \int_{-\infty}^{\infty}(-s-i y)^{-c} t^{i y} \Gamma(1-s-i y)^{c} d y
$$

and the integral is $o(1)$ by Riemann-Lebesgue's Lemma, so $I_{1}=o\left(t^{s}\right)$.
The substitution $u=x \log (1 / t)=x \Lambda$ in the integral I_{2} leads to

$$
\begin{equation*}
I_{2}=\frac{\sin (\pi c)}{\pi} \Lambda^{c-1} \int_{0}^{s \Lambda} u^{-c} e^{-u} \Gamma(1-u / \Lambda)^{c} d u \tag{34}
\end{equation*}
$$

We split the integral in (34) as

$$
\begin{equation*}
\Gamma(1-c)+\int_{0}^{s \Lambda} u^{-c} e^{-u}\left[\Gamma(1-u / \Lambda)^{c}-1\right] d u-\int_{s \Lambda}^{\infty} u^{-c} e^{-u} d u \tag{35}
\end{equation*}
$$

and by the mean-value theorem and $\Psi=\Gamma^{\prime} / \Gamma$ we have

$$
\Gamma(1-u / \Lambda)^{c}-1=-\frac{u}{\Lambda} c \Gamma(1-\theta u / \Lambda)^{c} \Psi(1-\theta u / \Lambda)
$$

for some $0<\theta<1$, but this implies that

$$
\left|\Gamma(1-u / \Lambda)^{c}-1\right| \leq \frac{c u}{\Lambda} M(s), \quad 0<u<s \Lambda
$$

where

$$
M(s):=\max \left\{\Gamma(x)^{c}|\Psi(x)| \mid 1-s \leq x \leq 1\right\}
$$

so the first integral in (35) is $\mathcal{O}\left(\Lambda^{-1}\right)$. The second integral is an incomplete Gamma function, and by known asymptotics for this, see [9], we get that the second integral is $\mathcal{O}\left(\Lambda^{-c} t^{s}\right)$. Putting things together and using Euler's reflection formula for Γ, we see that

$$
e_{c}(t)=\frac{\Lambda^{c-1}}{\Gamma(c)}+\mathcal{O}\left(\Lambda^{c-2}\right)
$$

which is (16).
Case 2. We now assume $1<c<2$.
The Gamma function decays so rapidly when $z=-1+i y \in V_{-1}, y \rightarrow \pm \infty$, that we can integrate by parts in (32) to get

$$
\begin{equation*}
e_{c}(t)=-\frac{1}{2 \pi i} \int_{V_{-1}} \frac{(-z)^{-(c-1)}}{c-1} \frac{d}{d z}\left(t^{z} \Gamma(1-z)^{c}\right) d z \tag{36}
\end{equation*}
$$

Defining

$$
\varphi_{1}(z):=\frac{d}{d z}\left(t^{z} \Gamma(1-z)^{c}\right)=t^{z} \Gamma(1-z)^{c}(\log t-c \Psi(1-z))
$$

and using the same contour technique as in case 1 to the integral in (36), where now $0<c-1<1$, we get for $0<s<1$ fixed

$$
e_{c}(t)=-\frac{1}{c-1} \frac{1}{2 \pi i} \int_{V_{s}}(-z)^{-(c-1)} \varphi_{1}(z) d z-\frac{\sin (\pi(c-1))}{(c-1) \pi} \int_{0}^{s} x^{-(c-1)} \varphi_{1}(x) d x
$$

The first integral is $o\left(t^{s} \Lambda\right)$ by Riemann-Lebesgue's Lemma, and the substitution $u=x \Lambda$ in the second integral leads to

$$
\begin{aligned}
& \int_{0}^{s} x^{-(c-1)} \varphi_{1}(x) d x \\
&= \Lambda^{c-2} \int_{0}^{s \Lambda} u^{-(c-1)} \varphi_{1}(u / \Lambda) d u \\
&=-\Lambda^{c-1} \int_{0}^{s \Lambda} u^{-(c-1)} e^{-u} d u-\Lambda^{c-1} \int_{0}^{s \Lambda} u^{-(c-1)} e^{-u}\left(\Gamma(1-u / \Lambda)^{c}-1\right) d u \\
&-c \Lambda^{c-2} \int_{0}^{s \Lambda} u^{-(c-1)} e^{-u} \Gamma(1-u / \Lambda)^{c} \Psi(1-u / \Lambda) d u \\
&=-\Lambda^{c-1} \Gamma(2-c)+\mathcal{O}\left(\Lambda^{c-2}\right)
\end{aligned}
$$

Using that

$$
\left(-\frac{\sin (\pi(c-1))}{(c-1) \pi}\right)\left(-\Lambda^{c-1} \Gamma(2-c)\right)=\frac{\Lambda^{c-1}}{\Gamma(c)}
$$

by Euler's reflection formula, we see that (16) holds.
Case 3. We now assume $c>2$.
We perform the change of variable $w=\Lambda z$ in (32) and obtain

$$
e_{c}(t)=\frac{\Lambda^{c-1}}{2 \pi i} \int_{V_{-\Lambda}}(-w)^{-c} e^{-w} \Gamma(1-w / \Lambda)^{c} d w
$$

Using Cauchy's integral theorem, we can shift the contour $V_{-\Lambda}$ to V_{-1} as the integrand is holomorphic in the vertical strip between both paths and exponentially small at both extremes of that vertical strip. Then,

$$
e_{c}(t)=\frac{\Lambda^{c-1}}{2 \pi i} \int_{V_{-1}}(-w)^{-c} e^{-w} \Gamma(1-w / \Lambda)^{c} d w
$$

For any holomorphic function h in a domain G which is star-shaped with respect to 0 we have

$$
h(z)=h(0)+z \int_{0}^{1} h^{\prime}(u z) d u, \quad z \in G
$$

If this is applied to $G=\mathbb{C} \backslash[1, \infty)$ and $h(z)=\Gamma(1-z)^{c}$ we find

$$
\begin{equation*}
\Gamma(1-w / \Lambda)^{c}=1-\frac{c w}{\Lambda} \int_{0}^{1} \Gamma(1-u w / \Lambda)^{c} \Psi(1-u w / \Lambda) d u \tag{37}
\end{equation*}
$$

Defining

$$
R(w)=\int_{0}^{1} \Gamma(1-u w / \Lambda)^{c} \Psi(1-u w / \Lambda) d u
$$

we get

$$
\begin{equation*}
e_{c}(t)=\frac{\Lambda^{c-1}}{2 \pi i} \int_{V_{-1}}(-w)^{-c} e^{-w} d w+\frac{c \Lambda^{c-2}}{2 \pi i} \int_{V_{-1}}(-w)^{1-c} e^{-w} R(w) d w \tag{38}
\end{equation*}
$$

For any $w \in V_{-1}, 0 \leq u \leq 1$ and for $\Lambda \geq 1$ we have that $1-u w / \Lambda \in \Omega$, where Ω is the closed vertical strip located between the vertical lines V_{1} and V_{2}. Because $\Gamma(z)^{c} \Psi(z)$ is continuous in Ω and exponentially small at the upper and lower limits of Ω, the function $R(w)$ is bounded for $w \in V_{-1}$ by a constant independent of $\Lambda \geq 1$. Therefore,

$$
\frac{c \Lambda^{c-2}}{2 \pi i} \int_{V_{-1}}(-w)^{1-c} e^{-w} R(w) d w=\mathcal{O}\left(\Lambda^{c-2}\right)
$$

where we use that $(-w)^{1-c} e^{-w}$ is integrable over V_{-1} because $c>2$.

On the other hand, in the first integral of (38), the contour V_{-1} may be deformed to a Hankel contour

$$
\mathcal{H}:=\{x-i \mid x=\infty \ldots 0\} \cup\left\{e^{i \theta} \mid \theta=-\pi / 2 \ldots-3 \pi / 2\right\} \cup\{x+i \mid x=0 \ldots \infty\}
$$

surrounding $[0, \infty)$, and the integral over \mathcal{H} is Hankel's integral representation of the inverse of the Gamma function:

$$
\frac{1}{2 \pi i} \int_{\mathcal{H}}(-w)^{-c} e^{-w} d w=\frac{1}{\Gamma(c)}
$$

Therefore, when we join everything, we obtain that for $c>2$:

$$
e_{c}(t)=\frac{(\log (1 / t))^{c-1}}{\Gamma(c)}+\mathcal{O}\left((\log (1 / t))^{c-2}\right), \quad t \rightarrow 0
$$

Case 4. $c=1, c=2$.
These cases are easy since $e_{1}(t)=e^{-t}$ and $e_{2}(t)=2 K_{0}(2 \sqrt{t})$.
Remark 3.2. The behaviour of $e_{c}(t)$ for $t \rightarrow 0$ can be obtained from (31) using the residue theorem when c is a natural number, so e_{c} belongs to the Meijer-G family. In fact, in this case $\Gamma(-z)^{c}$ has a pole of order c at $z=0$, and a shift of the contour V_{-1} to V_{s}, where $0<s<1$, has to be compensated by a residue, which will give the behaviour for $t \rightarrow 0$.

4. Remarks about the Gumbel distribution

The standard Gumbel distribution has the probability density

$$
G(x)=\exp \left(-x-e^{-x}\right), \quad x \in \mathbb{R}
$$

with respect to Lebesgue measure. It is known to be infinitely divisible, see [16], and hence embeddable in a convolution semigroup $\left(G_{c}(x)\right)_{c>0}$ with $G_{1}=G$. The image measure of the Gumbel distribution under the group isomorphism $x \mapsto e^{-x}$ of $(\mathbb{R},+)$ onto $((0, \infty), \cdot)$ is the exponential distribution τ_{1} given in (5), and therefore $\left(G_{c}\right)$ is mapped onto the Urbanik semigroup $\left(\tau_{c}\right)$, so we obtain

$$
G_{c}(x)=e^{-x} e_{c}\left(e^{-x}\right), \quad x \in \mathbb{R}, c>0 .
$$

From the asymptotic behaviour of e_{c} in Theorem 2.1 and Theorem 2.4 we can obtain the asymptotic behaviour of the Gumbel convolution roots $G_{c}(x)$:

$$
\begin{equation*}
G_{c}(x)=\frac{x^{c-1} e^{-x}}{\Gamma(c)}\left[1+\mathcal{O}\left(\frac{1}{x}\right)\right], \quad x \rightarrow \infty \tag{39}
\end{equation*}
$$

$$
\begin{equation*}
G_{c}(x)=\frac{(2 \pi)^{(c-1) / 2}}{\sqrt{c}} \exp \left(-x \frac{c+1}{2 c}-c e^{-x / c}\right)\left[1+\mathcal{O}\left(e^{x / c}\right)\right], \quad x \rightarrow-\infty \tag{40}
\end{equation*}
$$

The Gumbel distribution is determinate because the moments

$$
s_{n}=\int_{-\infty}^{\infty} x^{n} G(x) d x=\int_{0}^{\infty}(-\log t)^{n} e^{-t} d t
$$

satisfy $s_{2 n} \leq 2(2 n)$!. This shows that Carleman's condition $\sum 1 / \sqrt[2 n]{s_{2 n}}=\infty$ is satisfied. By [4, Corollary 3.3] it follows that Carleman's condition is satisfied for all Gumbel roots $G_{c}, c>0$, so they are all determinate.

Acknowledgment: The authors want to thank Nico Temme for his indications about the asymptotics of the integral (1). The authors also thank one referee for having pointed out that $e_{c}(t)$ is a Meijer-G function, when c is a natural number. This has led to inclusion of references to recent work using these functions.

References

[1] G. Akemann, M. Kieburg, Lu Wei, Singular value correlation functions for products of Wishart random matrices, J. Phys. A: Math. Theor. 46 (2013), 275205 (22 pp.)
[2] R. A. Askey, R. Roy, Chapter 5, Gamma Function, NIST Handbook of Mathematical Functions, NIST and Cambridge Univ. Press, 2010.
[3] R. Beals, J. Szmigielski, Meijer G-Functions: A Gentle Introduction, Notices of the AMS 60 No. 7 (2013), 866-872.
[4] C. Berg, On the preservation of determinacy under convolution, Proc. Amer. Math. Soc. 93 (1985), 351-357.
[5] C. Berg, Indeterminate moment problems and the theory of entire functions, J. Comput. Appl. Math. 65 (1995), 27-55.
[6] C. Berg, On powers of Stieltjes moment sequences, I, J. Theor. Prob. 18 (2005), 871-889.
[7] C. Berg, G. Forst, Potential Theory on Locally Compact Abelian Groups, Springer-Verlag, Berlin-Heidelberg-New York, 1975.
[8] M. Bertola, M. Gekhtman, J. Szmigielski, Cauchy-Laguerre two-matrix model and the Meijer-G random point field, Commun. Math. Phys 326 (2014), 111-144.
[9] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series and Products. Sixth Edition, Academic Press, San Diego, 2000.
[10] A. B. J. Kuijlaars, L. Zhang, Singular values of products of Ginibre random matrices, multiple orthogonal polynomials and hard edge scaling limits, arxiv:1308.1003v2 [math-ph].
[11] J. L. López, P. Pagola and E. Pérez Sinusía, A systematization of the saddle point method. Application to the Airy and Hankel functions. J. Math. Anal. Appl. 354 (2009), 347-359.
[12] N. Nielsen, Handbuch der Theorie der Gammafunktion, B. G. Teubner, Leipzig 1906.
[13] F. W. J. Olver, L. C. Maximon, Chapter 10, Bessel Functions, NIST Handbook of Mathematical Functions, NIST and Cambridge Univ. Press, 2010.
[14] R. L. Schilling, R. Song and Z. Vondraček, Bernstein functions. Theory and applications. De Gruyter Studies in Mathematics 37, de Gruyter, Berlin 2010.
[15] A. V. Skorokhod, Asymptotic formulas for stable distribution laws, Dokl. Akad. Nauk SSSR 98 (1954), 731-734; English transl., Selected Transl. Math. Statist. and Probab., Vol. 1 (1961), 157-161, Amer. Math. Soc., Providence, R. I.
[16] F. W. Steutel, K. Van Harn, Infinite divisibility of probability distributions on the real line, Marcel Dekker, Inc., New York, Basel 2004.
[17] K. Urbanik, Functionals on transient stochastic processes with independent increments. Studia Math. 103 (1992), 299-315.
[18] R. Wong, Asymptotic Approximations of Integrals, Classics in applied mathematics 34, SIAM, Philadelphia, USA, 2001.
[19] V. M. Zolotarev, One-dimensional Stable Distributions, Translations of Mathematical Monographs 65, Amer. Math. Soc., Providence, R. I., 1986.

[^0]: *Corresponding author
 Email addresses: berg@math.ku.dk (Christian Berg), jl.lopez@unavarra.es (José Luis López)
 ${ }^{1}$ The author has been supported by grant 10-083122 from The Danish Council for Independent Research | Natural Sciences
 ${ }^{2}$ The author has been supported by grant MTM2010-21037 from the Dirección General de Ciencia y Tecnología

