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Abstract

In this paper, we propose a numerical method for the solution of time-
dependent flow problems in mixed form. Such problems can be efficiently
approximated on hierarchical grids, obtained from an unstructured coarse
triangulation by using a regular refinement process inside each of the initial
coarse elements. If these elements are considered as subdomains, we can
formulate a non-overlapping domain decomposition method based on the
lowest-order Raviart–Thomas elements, properly enhanced with Lagrange
multipliers on the boundaries of each subdomain (excluding the Dirichlet
edges). A suitable choice of mixed finite element spaces and quadrature
rules yields a cell-centered scheme for the pressures with a local 10-point
stencil. The resulting system of differential-algebraic equations is integrated
in time by the Crank–Nicolson method, which is known to be a stiffly accu-
rate scheme. As a result, we obtain independent subdomain linear systems
that can be solved in parallel. The behaviour of the algorithm is illustrated
on a variety of numerical experiments.
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1. Introduction

Let us consider the parabolic initial-boundary value problem

pt +∇ · u = f in Ω× (0, tf ], (1a)

u = −K∇p in Ω× (0, tf ], (1b)

p = p0 in Ω× {0}, (1c)

p = gD on ΓD × (0, tf ], (1d)

u · n = gN on ΓN × (0, tf ], (1e)

where Ω ⊂ R
2 is a convex polygonal domain with boundary ∂Ω = ΓD ∪ ΓN

such that ΓD∩ΓN = ∅. In this formulation, K ≡ K(x) ∈ R
2×2 is a symmetric

and positive definite tensor, and n is the outward unit vector normal to ∂Ω.
In the framework of flow in porous media, p represents the fluid pressure,
u denotes the Darcy velocity and K is the rock permeability divided by
the fluid viscosity. In this context, it is common for K to be a piecewise
continuous tensor, whose discontinuities are typically related to the presence
of layers of different material within the flow domain.

The aim of this paper is to design a numerical scheme for approximating
the solution of (1). The method will be specially conceived to handle com-
plex geometries and discontinuous tensor coefficients while preserving the
computational efficiency and ease of implementation. The use of so-called
hierarchical grids permits to reach the compromise between both aspects,
since they combine the flexibility of unstructured triangulations –to handle
irregular boundaries, or interfaces generated by discontinuous coefficients–,
with the efficiency provided by regular meshes. In order to construct a hier-
archical grid, we consider an unstructured coarse partition of Ω into a certain
number of triangular elements, and subsequently apply a regular refinement
process to each of these coarse elements1. The use of this kind of grids has
experienced a great development in recent years, due to their potential for
solving a considerable class of problems in large scale simulation (see, e.g.,
[6, 14]). Hierarchical grids are also referred to as semi-structured grids, struc-
tured multiblock grids or patch-wise structured grids (cf. [22] and references
therein).

1The regular triangulation obtained inside each coarse triangle is known as a three-line
mesh, since it is composed of parallel lines to the sides of such a triangle.
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In the sequel, the coarse elements of our hierarchy of grids will be consid-
ered as subdomains of a suitable non-overlapping decomposition of Ω. For the
spatial discretization, we consider an expanded mixed finite element (MFE)
approximation to (1) using the lowest-order Raviart–Thomas spaces. Since
these spaces are separately defined for each subdomain, we need to introduce
Lagrange multiplier pressures on the subdomain interfaces (and also on the
Neumann boundaries) to guarantee the continuity of the normal components
of velocity vectors across subdomains. This idea, first proposed in [1, 2],
will later permit to decouple the global problem into a set of independent
subdomain problems that can be efficiently solved in parallel.

The key idea behind expanded methods is to introduce an auxiliary vari-
able, called the adjusted gradient, as a third explicit unknown (see [1, 9, 13]).
In this way, unlike the standard mixed method, the resulting scheme avoids
inverting K, thus allowing for a non-negative tensor coefficient. Further,
it has the additional advantage that numerical quadrature can be used to
obtain a cell-centered finite difference scheme for the pressures (cf. [1, 2]).
Similar ideas leading to cell-centered methods on triangular meshes can be
found in [8, 11, 20]. In our case, this strategy yields a stencil-based formu-
lation of the original problem that takes advantage of the structure of the
hierarchical grid. In particular, if the material properties (given by K) are
constant within each subdomain, a unique 10-point stencil will be associated
to every interior cell in the subdomain. Moreover, this stencil will be constant
regardless of the level of refinement of the hierarchical grid, thus drastically
reducing the computational complexity of the problem at hand.

The expanded MFE method, combined with numerical quadrature and
enhanced with Lagrange multipliers at the subdomain interfaces, achieves
second-order superconvergence for the pressure variable at the centroids of
the triangles (see [2]). On equilateral three-line meshes and if K is the iden-
tity matrix, second-order superconvergence is also observed for the normal
velocity at the midpoints of the edges (cf. [10]). As we will show experimen-
tally, the order of convergence is slightly less than 2 for the normal velocity
if a general three-line mesh and/or a general tensor K are considered. The
application of a post-processing technique introduced in [10] will further per-
mit to increase the optimal first-order convergence of the velocity vector to
superconvergence of order almost 2.

The continuous-in-time semidiscrete problem leads to a system of semi-
explicit differential-algebraic equations (DAEs) of index 1. Specifically, the
velocity and gradient can be eliminated from the semidiscrete problem via
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a static condensation procedure, and the resulting scheme is formulated in
terms of pressure and Lagrange multiplier unknowns. This formulation com-
prises a system of ordinary differential equations (ODEs) subject to certain
constraints, that is to say, a system of DAEs in which the pressure represents
the differential component and the Lagrange multiplier is the algebraic com-
ponent. In order to guarantee the same order of convergence for both compo-
nents, a stiffly accurate Runge–Kutta method is used for the time integration
(see, e.g., [17]). In particular, we will consider the simplest member in the
Lobatto IIIA family, the well-known Crank–Nicolson method, that achieves
second-order convergence for both the differential and algebraic variables (cf.
[16]). At each time step, the fully discrete scheme consists of a set of linear
systems that decouple across subdomains and, therefore, can be efficiently
solved in parallel. This parallel solution strategy has two distinct properties:
on the one hand, no iterations are required for convergence; on the other,
since the use of hierarchical grids implies the same size (in terms of degrees
of freedom) for each subdomain problem, a perfectly balanced workload is
attained among parallel processors.

The present work extends the ideas introduced in [1, 2] for the elliptic
problem to the parabolic case. Further, it provides a full derivation of the
explicit expressions for the stencil coefficients, which was lacking so far. In
doing so, we apply a novel strategy that relies on the three-line structure
of each subdomain partition, and permits an efficient implementation of the
proposed algorithm. As discussed in [22] (where such an strategy is used for
Galerkin finite element discretizations of elliptic problems), the idea is based
on a suitable Cartesian distribution of the subdomain nodes.

The solution of evolutionary problems of the form (1) has also been tack-
led in the earlier work [4]. In that paper, an overlapping domain decompo-
sition approach for solving (1), with gN = 0, is designed and analyzed. The
method combines an expanded MFE scheme on triangles with a first-order
time-splitting technique2. However, its use is restricted to three-line meshes
and it is not suitable for dealing with unstructured triangulations and/or
piecewise continuous tensor coefficients. The newly proposed method suc-
ceeds to circumvent these situations by enhancing the method with Lagrange

2Unlike the method presented here, the scheme in [4] makes use of a domain decompo-
sition technique that is not related to a coarse triangulation of Ω. Instead, it is constructed
to generate a family of partition-of-unity functions that permits to split the discrete elliptic
operator into terms of lower dimension yielding a time-splitting scheme.
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multipliers; in addition, it provides second-order convergence in time.
To conclude, it is remarkable to note that this enhanced variant of the ex-

panded MFE scheme is closely related to the so-called hybrid MFE method.
The hybrid method, first proposed in [3], is defined by adding Lagrange
multipliers on every single edge of the triangulation of Ω (see also [7]). By
construction, the present scheme, which restricts the use of Lagrange multi-
pliers to the subdomain interfaces, will be in general much more efficient than
the hybrid technique: as long as K is continuous over relatively large sub-
domains and/or the coarse elements in the hierarchical grid are sufficiently
refined, the number of Lagrange multiplier unknowns will be much larger for
the hybrid formulation (cf. [2]).

The rest of the paper is organized as follows. In Section 2, we intro-
duce the expanded variational formulation of (1). The construction of the
expanded MFE spatial discretization on hierarchical grids is discussed in Sec-
tion 3. This section also includes the matrix formulation of the semidiscrete
scheme leading to a cell-centered finite difference method. Section 4 is de-
voted to the time integration of the resulting DAE system. The numerical
behaviour of the fully discrete scheme is tested on a variety of numerical
experiments in Section 5. The paper ends with some concluding remarks
and perspectives. In addition, Appendix A includes a full derivation of the
pressure stencil associated to both an upward and a downward triangle in a
three-line mesh.

2. The expanded variational form

For a domain R ⊂ R
2, let W k,p(R) denote the standard Sobolev space,

with k ∈ R and 1 ≤ p ≤ ∞. Let Hk(R) be the Hilbert space W k,2(R). In the
sequel, we will mainly use the spaces of square-integrable scalar and vector
functions, L2(R) and (L2(R))2, respectively. Such spaces are endowed with

the inner product (·, ·)R and norm ‖ · ‖R, so that ‖ϕ‖R = (ϕ, ϕ)
1/2
R . The

subscript R will be omitted whenever R ≡ Ω. For a section S of the domain
boundary, 〈·, ·〉S represents the L2(S)-inner product or duality pairing. We
will also use the space

H(div;R) = {v ∈ (L2(R))2 : ∇ · v ∈ L2(R)}.
In order to define an expanded formulation, we need to introduce an auxiliary
unknown, the so-called adjusted gradient ũ ≡ ũ(x, t), given by

ũ = −G−1∇p,

5



where G ≡ G(x) ∈ R
2×2 is a symmetric and positive definite matrix related

to the geometry of Ω. Considering this new variable, the equation (1b) can
be rewritten as

Gũ = −∇p in Ω× (0, T ], (2a)

u = KGũ in Ω× (0, T ]. (2b)

The system given by the equations (1a), (2a) and (2b), together with the
corresponding initial and boundary conditions, is usually referred to as ex-
panded mixed formulation.

Let us consider that Ω can be decomposed into a set of s non-overlapping
triangular subdomains {Ω1,Ω2, . . . ,Ωs}, defined to be shape-regular of diam-
eter H and pairwise disjoint, i.e.,

Ω = ∪s
i=1Ωi, Ωi ∩ Ωj = ∅, for i 6= j. (3)

Let ∂Ωi denote the boundary of subdomain Ωi. This decomposition is as-
sumed to be geometrically conforming in the sense that any edge of ∂Ωi is
either part of ∂Ω or coincides with an edge of an adjacent subdomain. If Ωi

and Ωj are adjacent to each other, we denote Γij = ∂Ωi ∩ ∂Ωj , for i 6= j,
assuming that Γij = Γji. Furthermore, we set Γi = ∂Ωi \ ΓD and define
Γ = ∪s

i=1Γi. Typically, as we will see below, these subdomains correspond to
the elements in a coarse partition TH of Ω with mesh size H .

Next, we define the subdomain spaces Vi = H(div; Ωi), Ṽi = (L2(Ωi))
2

and Wi = L2(Ωi), and the global spaces

V =

s
⊕

i=1

Vi, Ṽ =

s
⊕

i=1

Ṽi = (L2(Ω))2, W =

s
⊕

i=1

Wi = L2(Ω).

Note that, in the definition of V , we are relaxing the continuity of the space
H(div; Ω) across the subdomain interfaces. Thus, we need to impose it
weakly by introducing the additional space L = H1/2(Γ). The following
weak form can be obtained by integrating the original equations over each
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Ωi and summing up: Find (u, ũ, p, λ) : [0, T ] → V × Ṽ ×W × L such that

(pt, w) +

s
∑

i=1

(∇ · u, w)Ωi
= (f, w) ∀w ∈ W, (4a)

(Gũ,v) =
s
∑

i=1

((p,∇ · v)Ωi
− 〈λ,v · n〉Γi

)− 〈gD,v · n〉ΓD
∀v ∈ V, (4b)

(Gu, ṽ) = (GKGũ, ṽ) ∀ ṽ ∈ Ṽ , (4c)
s
∑

i=1

〈u · n, µ〉Γi
= 〈gN , µ〉ΓN

∀µ ∈ L, (4d)

p(0) = p0. (4e)

Note that the flux continuity equation (4d) implies that u is, in fact, an
element of H(div; Ω). This formulation is referred to as the macro-hybrid
expanded variational form of (1) with respect to the decomposition (3) (cf.
[7]).

3. The expanded mixed finite element method

In this section, we describe the spatial discretization of the variational
formulation (4) on a hierarchical grid. To this end, we first define the lowest-
order Raviart–Thomas spaces for each single subdomain, and then introduce
a space of Lagrange multipliers that ensures the flux continuity across sub-
domains. The subsequent application of a suitable quadrature rule for com-
puting certain vector inner products permits to reduce the expanded MFE
method to a cell-centered finite difference scheme for the pressure, enhanced
with some additional unknowns on the subdomain interfaces. A static con-
densation procedure yields the Schur complement form of the semidiscrete
system.

3.1. A hierarchical triangular grid

Let TH be an unstructured coarse triangulation of Ω, whose elements
are assumed to be the subdomains Ωi, for i = 1, 2, . . . , s. This partition is
constructed to adequately represent the geometry of the domain, and may
also take into account physical features of the problem, such as material
properties. If we divide each subdomain Ωi into four congruent triangles by
connecting the midpoints of its edges, a new regular mesh T 1

h,i is obtained

7



Figure 1: Coarse grid TH (left) and fine grid Th ≡ T 2
h (right) for a polygonal domain Ω.

per subdomain. We assume that T 1
h,i and T 1

h,j match on Γij , for i 6= j, so that
T 1
h = ∪s

i=1T 1
h,i is a conforming triangulation of Ω. This regular refinement

process can be subsequently applied in order to obtain a nested hierarchy of
conforming meshes TH ⊂ T 1

h ⊂ T 2
h ⊂ . . . ⊂ T k

h ≡ Th, where Th = ∪s
i=1Th,i is

a mesh with the desired fine scale h (cf. [22]). Here, H = maxT∈THdiam(T )
and h = maxT∈Thdiam(T ), where T denotes an element of either TH or Th.
Figure 1 shows an example of the coarse and fine triangulations, TH and
Th ≡ T 2

h , for a polygonal domain Ω. Note that, for i = 1, 2, . . . , s, each Th,i

is a three-line mesh.

3.2. Mixed finite element spaces

Let T̂ be the reference equilateral triangle with vertices r̂1 = (−1, 0)T ,
r̂2 = (1, 0)T and r̂3 = (0,

√
3)T , and introduce a family of bijective affine

mappings {FT}T∈Th such that FT (T̂ ) = T . We further define, for each map-
ping FT , the Jacobian matrix BT and its determinant JT = | det(BT )|. The
corresponding vertices of T are denoted by ri = (xi, yi)

T , while the outward
unit vectors normal to the edges of T̂ and T are represented by n̂i and ni,
respectively, for i = 1, 2, 3 (see Figure 2).

Let V̂h(T̂ ) and Ŵh(T̂ ) be the RT0 finite element spaces on the reference
element T̂ , i.e.,

V̂h(T̂ ) = (P0(T̂ ))
2 ⊕ x̂P0(T̂ ), Ŵh(T̂ ) = P0(T̂ ),

where P0(T̂ ) denotes the set of constant functions defined on T̂ . On every
ê ⊂ ∂T̂ , we further define the space L̂h(ê) = P0(ê). If v̂ ∈ V̂h(T̂ ) and
ŵ ∈ Ŵh(T̂ ), the degrees of freedom for V̂h(T̂ ) are chosen to be the values of
v̂ · n̂i at the midpoints of the edges, for i = 1, 2, 3, while that for Ŵh(T̂ ) is
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(−1, 0) (1, 0)

(0,
√
3)

n̂3

n̂1n̂2

FT

r1

r2

r3

n3

n1

n2

Figure 2: Affine mapping FT from the reference element T̂ onto a generic triangle T ∈ Th.

the value of ŵ at the element center. Finally, the corresponding degree of
freedom for µ̂ ∈ L̂h(ê) is the value of µ̂ at the midpoint of the edge ê.

In order to transform any scalar function ŵ on T̂ or µ̂ on ê ⊂ ∂T̂ to a
generic element T or edge e ⊂ ∂T belonging to Th, we introduce the standard
isomorphisms

w ↔ ŵ : w = ŵ ◦ F−1
T ,

µ ↔ µ̂ : µ = µ̂ ◦ F−1
T .

For vector functions v̂ on T̂ , we use the Piola transformation (cf. [23])

v ↔ v̂ : v =

(

1

JT
BT v̂

)

◦ F−1
T ,

which is defined to preserve the continuity of the normal components of
velocity vectors across interelement edges. This is a necessary condition that
must be fulfilled when building approximations to H(div; Ωi).

The subdomain spaces on Th,i, denoted as Vh,i× Ṽh,i×Wh,i ⊂ Vi× Ṽi×Wi,
are defined to be

Vh,i =
{

v ∈ Vi : v|T ↔ v̂, v̂ ∈ V̂h(T̂ ) ∀T ∈ Th,i

}

,

Ṽh,i =
{

ṽ ∈ Ṽi : ṽ|T ↔ ˆ̃v, ˆ̃v ∈ V̂h(T̂ ) ∀T ∈ Th,i

}

,

Wh,i =
{

w ∈ Wi : w|T ↔ ŵ, ŵ ∈ Ŵh(T̂ ) ∀T ∈ Th,i

}

.

The global spaces on Th are thus given by

Vh =

s
⊕

i=1

Vh,i, Ṽh =

s
⊕

i=1

Ṽh,i, Wh =

s
⊕

i=1

Wh,i.

9



Figure 3: Degrees of freedom for the spacesWh (left) and Lh (right) on a polygonal domain
Ω. The former are located at the centers of the elements T ∈ Th, while the latter live
on the midpoints of the edges e ⊂ (∂T ∩ Γ). Note that those degrees of freedom in Lh

belonging to ∂Ω correspond to the Neumann boundaries ΓN .

Note that the vector functions in Vh have continuous normal components
on the edges between elements inside each subdomain, but the space has
no continuity constraint on the edges lying on Γ. In order to recover the
continuity for such edges, we introduce the space Lh ⊂ L of pressure Lagrange
multipliers, defined as

Lh =
{

µ ∈ L : µ|e ↔ µ̂, µ̂ ∈ L̂h(ê) ∀ e ⊂ (∂T ∩ Γ), T ∈ Th

}

,

whose elements provide an approximation to p|Γ.
To determine the dimensions of the preceding spaces, we need to introduce

some notations first. Let Ne and NT be the number of edges and elements in
Th, respectively. Moreover, let NΓ

e , N
D
e and NN

e denote the number of edges
in Th belonging to Γ, ΓD and ΓN , respectively. Then, we have that

NV = dim(Vh) = Ne +NΓ
e −NN

e , NṼ = dim(Ṽh) = 2Ne −ND
e −NN

e ,

NW = dim(Wh) = NT , NL = dim(Lh) = NΓ
e .

Observe that, in general, NΓ
e ≪ Ne, that is, the number of Lagrange mul-

tipliers is much smaller than the total number of edges in Th. As we will
see below, this fact makes the proposed scheme much more efficient than the
class of so-called hybrid methods. For such methods, a Lagrange multiplier is
introduced on every edge in Th, so that the dimension of Lh (i.e., the number
of Lagrange multiplier unknowns) is Ne instead of NΓ

e .
The degrees of freedom for the pressure spaces Wh and Lh are represented

in Figure 3 for a polygonal domain Ω. The unknowns ph ∈ Wh are located at
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the centers of the elements T ∈ Th, while the Lagrange multipliers λh ∈ Lh

live on the midpoints of the edges e ⊂ (∂T ∩ Γ). These latter include the
edges on the internal boundaries of the subdomains Ωi, for i = 1, 2, . . . , s,
and the edges on the Neumann boundaries ΓN .

3.3. The semidiscrete scheme

The expanded MFE approximation to the variational form (4) reads as
follows: Find (uh, ũh, ph, λh) : [0, T ] → Vh × Ṽh ×Wh × Lh such that

(ph,t, w) +

s
∑

i=1

(∇ · uh, w)Ωi
= (f, w) ∀w ∈ Wh, (5a)

(Gũh,v) =
s
∑

i=1

((ph,∇ · v)Ωi
− 〈 λh,v · n〉Γi

)− 〈gD,v · n〉ΓD
∀v ∈ Vh, (5b)

(Guh, ṽ) = (GKGũh, ṽ) ∀ ṽ ∈ Ṽh, (5c)
s
∑

i=1

〈uh · n, µ〉Γi
= 〈gN , µ〉ΓN

∀µ ∈ Lh, (5d)

ph(0) = Shp0. (5e)

In this case, the flux matching condition (5d) is the discrete analogue to (4d)
and guarantees that uh ∈ H(div; Ω). The operator Sh denotes the MFE
elliptic projection as defined, e.g., in [24, 25].

Considering the left-hand side of (5c) in the previous formulation, we can
define a rectangular matrix S whose elements are given by (S)ij = (Gvj , ṽi),

where {vi}NV

i=1 and {ṽi}NṼ

i=1 are bases for Vh and Ṽh, respectively. In turn, the
left-hand side of (5b) involves the matrix ST . Following [2], we subsequently
consider Ṽh = Vh with the aim of making S be a square, symmetric and
invertible matrix. In addition, the resulting matrix can be further diago-
nalized by using a suitable quadrature rule for computing the inner product
(Gvj, ṽi). In this way, the method becomes a cell-centered finite difference
scheme for the pressure, with as many unknowns as the number of elements
in Th, NT , enhanced with as many additional unknowns as the number of
edges along Γ, NΓ

e .
To properly define this quadrature rule, we first obtain the inner product

on each T ∈ Th by mapping to the reference element T̂ . Using the Piola
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transformation, for any q, v ∈ Vh and q̂, v̂ ∈ V̂h(T̂ ), we have

(Gq,v)T =

(

1

JT
BT

TGBT q̂, v̂

)

T̂

.

If we choose G|T = JTB
−T
T B−1

T on each element T , we simplify the interaction

of the functions on T̂ , thus obtaining (Gq,v)T = (q̂, v̂)T̂ . Note that G is
indeed symmetric and positive definite for every T ∈ Th. In virtue of the
previous result, the quadrature rule on T is defined as (cf. [1, 2])

(Gq,v)Q,T ≡ (q̂, v̂)Q̂,T̂ =
|T̂ |
6

(

3
∑

i=1

q̂(r̂i) · v̂(r̂i) + 3q̂(x̂c) · v̂(x̂c)

)

,

where |T̂ | is the area of T̂ and x̂c = 1
3
(r̂1 + r̂2 + r̂3). This quadrature rule

is exact for polynomials of degree 1. Furthermore, if we denote by v̂i the
basis function of V̂h(T̂ ) associated with the i-th edge êi, for i = 1, 2, 3, the
following orthogonality condition is satisfied:

(v̂i, v̂j)Q̂,T̂ =







0, if i 6= j,

|T̂ |
6

|ei|2, if i = j,
(6)

where |ei| is the length of the corresponding i-th edge ei of T , for i = 1, 2, 3.
The global quadrature rule is thus given by

(Gq,v)Q =
∑

T∈Th

(Gq,v)Q,T . (7)

Due to (6), the application of this quadrature rule permits to reduce S to a
diagonal matrix.

Summarizing, if we choose Ṽh = Vh and further use the quadrature rule
(7) for computing the integrals on the left-hand sides of (5b) and (5c), the
semidiscrete scheme is now given by (5a), (5d) and (5e), in combination with
the following equations:

(Gũh,v)Q =
s
∑

i=1

((ph,∇ · v)Ωi
− 〈 λh,v · n〉Γi

)− 〈gD,v · n〉ΓD
∀v ∈ Vh, (8a)

(Guh,v)Q = (GKGũh,v) ∀v ∈ Vh. (8b)
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In [4], the unenhanced variant of this method (i.e., that obtained for a single
subdomain) was shown to achieve O(h) optimal convergence for both pres-
sures and velocities. In addition, the pressure variable was experimentally
observed to be O(h2) superconvergent at the centroids of the triangles. Sim-
ilar results were derived in [2] for the enhanced mixed method in the elliptic
case. As reported in [10], on equilateral three-line meshes and if K is the
identity matrix, the normal velocity also achieves O(h2) superconvergence at
the midpoints of the edges in the enhanced case. However, the order of con-
vergence for the normal velocity is slightly less than 2 if a general three-line
mesh and/or a general tensor K are considered. The application of a post-
processing technique further permits to increase the order of convergence of
the velocity vector field to almost 2 (cf. [10]). In Section 5, all these results
are confirmed through a collection of numerical experiments.

3.4. Matrix formulation

In this subsection, we describe how to express the expanded MFE scheme
(5a), (8a), (8b), (5d) and (5e) in matrix form. Let us denote by {vi}NV

i=1,
{wi}NW

i=1 and {µi}NL

i=1 the basis functions of Vh, Wh and Lh, respectively. Then,
the semidiscrete solution (uh, ũh, ph, λh) can be expressed as

uh(x, t) =

NV
∑

i=1

Uh,i(t)vi(x), ũh(x, t) =

NV
∑

i=1

Ũh,i(t)vi(x),

ph(x, t) =

NW
∑

i=1

Ph,i(t)wi(x), λh(x, t) =

NL
∑

i=1

Λh,i(t)µi(x).

Omitting the time dependences, if we further define the vectors

Uh = (Uh,1, Uh,2, . . . , Uh,NV
)T , Ũh = (Ũh,1, Ũh,2, . . . , Ũh,NV

)T ,

Ph = (Ph,1, Ph,2, . . . , Ph,NW
)T , Λh = (Λh,1,Λh,2, . . . ,Λh,NL

)T ,

the differential system obtained above can be written as









0
0

DP ′
h

0









+









A1 −A2 0 0
−A2 0 BT −C
0 B 0 0
0 −CT 0 0

















Ũh

Uh

Ph

Λh









=









0
GD

h

DFh

GN
h









, (9)
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where the matrices A1, A2 ∈ R
NV ×NV , B ∈ R

NW×NV and C ∈ R
NV ×NL are

given by

(A1)ij = (GKGvj ,vi), for i, j ∈ {1, 2, . . . , NV },
(A2)ij = (Gvj ,vi)Q, for i, j ∈ {1, 2, . . . , NV },
(B)ij = (∇ · vj, wi), for i = 1, 2, . . . , NW ; j = 1, 2, . . . , NV ,

(C)ij = 〈µj,vi · n〉Γ, for i = 1, 2, . . . , NV ; j = 1, 2, . . . , NL.

By construction, A1 and A2 are block-diagonal matrices with s diagonal
blocks, each associated to a subdomain Ωi, for i = 1, 2, . . . , s. In particular,

A1 = diag(A1
1, A

2
1, . . . , A

s
1),

A2 = diag(A1
2, A

2
2, . . . , A

s
2),

where Ai
1, A

i
2 ∈ R

(NV /s)×(NV /s). Note that the value NV /s ∈ N corresponds to
the number of edges per subdomain. Furthermore, A1 is symmetric, positive
definite and sparse, and A2 is diagonal with positive diagonal entries (see
(6)). In turn, B is a rectangular block matrix of the form

B =











B1

B2

. . .

Bs











,

whose blocks Bi ∈ R
(NW /s)×(NV /s), for i = 1, 2, . . . , s. In this case, the value

NW/s ∈ N corresponds to the number of elements per subdomain. On the
other hand, the diagonal matrix D ∈ R

NW×NW is given by

D = diag(|T1|, |T2|, . . . , |TNW
|),

where |Ti| denotes the area of Ti, for i = 1, 2, . . . , NW . Finally, the vectors
GD

h ∈ R
NV , Fh ∈ R

NW and GN
h ∈ R

NL are defined to be

(GD
h )i = 〈gD,vi · n〉ΓD

, for i = 1, 2, . . . , NV , (10)

(Fh)i =
1

|Ti|
(f, wi), for i = 1, 2, . . . , NW , (11)

(GN
h )i = −〈gN , µi〉ΓN

, for i = 1, 2, . . . , NL.

14



The initial condition Ph(0) = P 0
h ∈ R

NW is obtained as

(P 0
h )i =

1

|Ti|

∫

Ti

p0(x) dx, for i = 1, 2, . . . , NW . (12)

The preceding system (9) can be reduced to a system for Ph and Λh by
eliminating both Uh and Ũh. To this end, we express





0
DP ′

h

0



+





A BT −C
B 0 0

−CT 0 0









Φh

Ph

Λh



 =





Rh

DFh

GN
h



 , (13)

where we introduce the submatrix

A =

(

A1 −A2

−A2 0

)

,

and the vectors B = (0, B), C = (0, C)T , Φh = (Ũh, Uh)
T and Rh = (0, GD

h )
T .

From the first equation in (13), we obtain

Φh = A−1
(

Rh − BTPh + CΛh

)

.

Inserting this expression into the second and third equations, the system can
be written in the Schur complement form

(

DP ′
h

0

)

+

(

M Q
QT N

)(

Ph

Λh

)

=

(

Sh

Th

)

, (14)

where the block elements of the system matrix are given by

M = BA−1
2 A1A

−1
2 BT ,

N = CTA−1
2 A1A

−1
2 C,

Q = −BA−1
2 A1A

−1
2 C,

and the right-hand side terms are

Sh = DFh +BA−1
2 A1A

−1
2 GD

h ,

Th = GN
h − CTA−1

2 A1A
−1
2 GD

h .

Note that M ∈ R
NW×NW and N ∈ R

NV ×NV are both symmetric and positive
definite. Moreover, M is a block-diagonal matrix of the form

M = diag(M1,M2, . . . ,Ms),
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where each block M i ∈ R
(NW /s)×(NW /s) is associated to a subdomain Ωi, for

i = 1, 2, . . . , s, and can be obtained as

M i = Bi(Ai
2)

−1Ai
1(A

i
2)

−1(Bi)T .

As a consequence, M decouples across subdomains. Moreover, each block M i

is a sparse matrix with, at most, 10 non-zero entries per row. The specific
expressions for the coefficients of the 10-point stencil corresponding to MPh

are derived in detail in Appendix A. Figures A.11 and A.12 further show
the stencil of a pressure unknown associated to an upward and a downward
triangle, respectively.

4. The fully discrete scheme

The resulting system (14) can be formulated in the form

P ′
h(t) = F1 (t, Ph,Λh) , (15a)

0 = F2 (t, Ph,Λh) , (15b)

where

F1 (t, Ph,Λh) = D−1 (Sh(t)−MPh −QΛh) ,

F2 (t, Ph,Λh) = Th(t)−QTPh −NΛh.

This is a system of semi-explicit DAEs, namely: the system of ODEs (15a)
subject to the constraint (15b). In this context, Ph(t) is usually referred to
as the differential component, whereas Λh(t) is called the algebraic compo-
nent. Since det(N) 6= 0, (15) is indeed an index-1 DAE system. The initial
condition for Ph(t) is provided by (12), and that for Λh(t) can be derived
from (15b) as

Λh(0) = Λ0
h = N−1(Th(0)−QTP 0

h ).

The initial values are thus consistent with (15), i.e., F2 (0, P
0
h ,Λ

0
h) = 0.

It is well known that the time integration of index-1 DAE systems re-
quires the application of stiffly accurate Runge–Kutta methods3 in order to
obtain the same order of convergence for both the differential and algebraic

3A Runge–Kutta method is called stiffly accurate if its coefficients in the Butcher
tableau satisfy aqj = bj , for j = 1, 2, . . . , q.
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components (cf. [17]). For instance, the families of Lobatto IIIA and Lo-
batto IIIC methods are convergent of order 2q − 2 for both components, q
being the number of internal stages of the corresponding method (cf. [16]).
The simplest member in the Lobatto IIIA family (i.e., that corresponding to
q = 2) is the Crank–Nicolson method. Applied to (15), this method reads















































P 0
h = Ph(0),

Λ0
h = Λh(0),

P n+1
h − P n

h

τ
+

1

2
D−1M

(

P n
h + P n+1

h

)

+
1

2
D−1Q

(

Λn
h + Λn+1

h

)

=
1

2
D−1

(

Sn
h + Sn+1

h

)

,

QTP n+1
h +NΛn+1

h = T n+1
h , n = 0, 1, . . . , nf − 1,

(16)
yielding approximations P n

h ≈ Ph(tn) and Λn
h ≈ Λh(tn) on the equidistant

time grid 0 = t0 < t1 < . . . < tnf
= tf , where tn = nτ and τ = tf/nf , for

n = 0, 1, . . . , nf ∈ N. The notations Sn
h = Sh(tn) and T n

h = Th(tn) are also
used.

In order to solve the system (16), we define M̂ = I + 1
2
τD−1M and

consider the following procedure:

1. Set P 0
h and Λ0

h.

2. For n = 0, 1, . . . , nf − 1:

(a) Solve the system for Λn+1
h :

(

N − 1
2
τQT M̂−1D−1Q

)

Λn+1
h = T n+1

h

+QTM̂−1
(

1
2
τD−1

(

Sn
h + Sn+1

h +QΛn
h

)

−
(

I − 1
2
τD−1M

)

P n
h

)

.

(17)

(b) Solve the system for P n+1
h :

M̂P n+1
h = 1

2
τD−1

(

Sn
h + Sn+1

h

)

− 1
2
τD−1Q

(

Λn
h + Λn+1

h

)

+
(

I − 1
2
τD−1M

)

P n
h . (18)

The solution of (17) may be obtained by using iterative linear solvers that
require the computation of matrix-vector products involving the system ma-
trix N − 1

2
τQT M̂−1D−1Q. In such a case, we need to solve problems of the
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form
M̂x = b,

for certain right-hand sides b. Taking into account that the coefficient matrix
M̂ decouples across subdomains, this equation involves independent subdo-
main problems which can be solved simultaneously. In addition, the use of
hierarchical grids entails the same size for such subdomain problems, thus
yielding a perfectly balanced workload among parallel processors. Once Λn+1

h

has been computed from (17), the same ideas can be applied to the solution
of (18).

5. Numerical experiments

In this section, we study the numerical behaviour of the proposed method
in the solution of a collection of parabolic initial-boundary value problems
of the form (1): on the one hand, we examine its convergence properties
by considering problems with a known analytical solution; on the other,
we analyze its qualitative performance when applied to non-stationary flow
models in porous media.

5.1. Convergence examples with known analytical solutions

5.1.1. A smooth solution test

Let us consider (1) posed on the irregular polygon with 7 sides shown
in Figure 1. The polygon vertices are located at the points (0, 0)T , (1, 1)T ,
(2.4, 0.9)T , (3.2, 0)T , (2.8,−0.8)T , (1.9,−1.2)T and (0.7,−0.9)T . We further
consider tf = 2, ΓD = ∂Ω, and

K =

(

2 1
1 2

)

.

The functions f , p0 and gD are defined in such a way that

p(x, y, t) = sin(πt) sin(πx) sin(πy)

is the exact solution of the problem. The spatial domain Ω is decomposed
into s = 9 subdomains, as shown in Figure 1 (left).

In the sequel, the pressure and velocity errors are computed by combining
the ℓ∞-norm in time with various norms in space. In particular, with an abuse
of notation, the pressure errors are obtained in the norms

‖rhp− Ph‖ℓ∞(ℓ2) = max
1≤n≤nf

‖rhp(tn)− P n
h ‖ℓ2 , (19)
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and ‖rhp − Ph‖ℓ∞(ℓ∞), where the maximum norm is used in both time and
space. In these expressions, for any given t, rhp(t) ∈ R

NW is a vector whose
i-th component is p(xi

c, t), x
i
c being the centroid of the i-th triangle of Th, for

i = 1, 2, . . . , NW . Regarding the velocity variable, we consider the following
norms

‖u−R(uh)‖ℓ∞(L2) = max
1≤n≤nf

‖u(tn)−R(un
h)‖, (20)

‖ (u− uh) · n‖ℓ∞(ℓ2) = max
1≤n≤nf

‖ (u(tn)− un
h) · n‖ℓ2 . (21)

In both expressions, un
h is a function of Vh defined as un

h(x) =
∑NV

i=1 U
n
h,i vi(x),

where Un
h,i are the elements of a vector Un

h containing the normal components
of the numerical flux, given by

Un
h = A−1

2 A1A
−1
2

(

GD
h (tn) +BTP n

h − CΛn
h

)

.

In addition, the term (u(tn)− un
h) · n on the right-hand side of (21) denotes

a vector in R
NV , whose elements are the normal components of u(tn) − un

h

at the midpoints of the edges of Th. The expression (20) further includes
a linear operator R : Vh → L2(Ω) that provides, for any un

h ∈ Vh, a post-
processed flux R(un

h) as defined in [10]. Specifically, R(un
h) is a piecewise

function given by

R(un
h) =

(

a x+ b y + c
d x+ e y + f

)

on each interior triangle T ∈ Th. The coefficients a, b, . . . , f are obtained
as the solution of an overdetermined system with 9 equations by a least
squares procedure. Such equations are obtained by imposing that the nor-
mal components of both the numerical and post-processed fluxes coincide
at the midpoints of 9 edges: the three edges of T and the two other edges
of each of the three triangles bordering T . As described in [10], for those
triangles containing an edge on the boundary of Ω, a suitable modification
of this procedure can be applied in order to preserve the global accuracy.
In that work, the authors show theoretically that, for MFE methods, this
post-processing technique is second-order accurate on three-line meshes if
K is the identity matrix. For enhanced MFE methods, numerical evidence
reveals that the post-processed flux achieves close to second-order accuracy,
even if a full tensor K is considered.
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‖rhp− Ph‖ℓ∞(ℓ2) ℓ = 3 ℓ = 4 ℓ = 5 ℓ = 6
τ = 4.0E-1 1.3948E-2 8.7120E-3 7.5778E-3 7.7539E-3
τ = 2.0E-1 9.9587E-3 2.9405E-3 2.1206E-3 1.9511E-3
τ = 1.0E-1 1.0282E-2 2.7437E-3 7.5382E-4 4.2576E-4
τ = 5.0E-2 1.0264E-2 2.7232E-3 7.0609E-4 1.8993E-4
τ = 2.5E-2 1.0267E-2 2.7211E-3 7.0099E-4 1.7894E-4

Table 1: Pressure errors in ℓ∞(ℓ2)-norm obtained for a nested collection of spatial meshes
T ℓ
h , with ℓ = 3, 4, 5, 6, and various decreasing time steps τ .

‖rhp− Ph‖ℓ∞(ℓ∞) ℓ = 3 ℓ = 4 ℓ = 5 ℓ = 6
τ = 4.0E-1 3.2717E-2 2.0340E-2 1.8256E-3 1.8446E-2
τ = 2.0E-1 3.0892E-2 9.3021E-3 5.0352E-3 4.6947E-3
τ = 1.0E-1 3.2036E-2 9.4528E-3 2.6495E-3 1.0058E-3
τ = 5.0E-2 3.2013E-2 9.4278E-3 2.6247E-3 7.1625E-4
τ = 2.5E-2 3.2083E-2 9.4370E-3 2.6212E-3 7.1009E-4

Table 2: Pressure errors in ℓ∞(ℓ∞)-norm obtained for a nested collection of spatial meshes
T ℓ
h , with ℓ = 3, 4, 5, 6, and various decreasing time steps τ .

The integral on the right-hand side of (20) is approximated element-wise
by the midpoint quadrature rule. In turn, we use the formula

∫

T

g(x) dx ≈ |T |
3

3
∑

i=1

g(xi
m)

for computing the integrals (11) and (12) involving the functions f and p0,
respectively. Here, xi

m denotes the midpoint of the i-th edge of T , for i =
1, 2, 3. This formula is exact for polynomials of degree 2. Finally, the line
integrals (10) for the Dirichlet boundary condition gD are approximated by
Simpson’s rule.

Tables 1-4 show the pressure and velocity errors for a nested collection
of spatial meshes T ℓ

h , with ℓ = 3, 4, 5, 6, and several decreasing time steps
τ . In particular, Tables 1 and 2 display the pressure errors computed with
the norms ‖ · ‖ℓ∞(ℓ2) and ‖ · ‖ℓ∞(ℓ∞), respectively, as defined above. In both
cases, we can observe an unconditionally stable behaviour of the algorithm,
which converges irrespective of the size of the parameters h and τ under
consideration. Furthermore, as revealed by the last row in both tables, the
ratios of subsequent errors imply second-order convergence in space. Ac-
cordingly, the first errors in the last column show second-order convergence
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‖u−R(uh)‖ℓ∞(L2) ℓ = 3 ℓ = 4 ℓ = 5 ℓ = 6
τ = 4.0E-1 5.6553E-1 2.4799E-1 1.6123E-1 1.5100E-1
τ = 2.0E-1 4.7129E-1 1.4528E-1 5.5718E-2 4.0916E-2
τ = 1.0E-1 4.9077E-1 1.4819E-1 4.4715E-2 1.4333E-2
τ = 5.0E-2 4.8997E-1 1.4771E-1 4.4354E-2 1.3802E-2
τ = 2.5E-2 4.8991E-1 1.4766E-1 4.4307E-2 1.3763E-2

Table 3: Errors for the post-processed fluxes for a nested collection of spatial meshes T ℓ
h ,

with ℓ = 3, 4, 5, 6, and various decreasing time steps τ .

‖ (u− uh) · n‖ℓ∞(ℓ2) ℓ = 3 ℓ = 4 ℓ = 5 ℓ = 6
τ = 4.0E-1 1.0447E-1 5.8187E-2 5.2154E-2 5.2289E-2
τ = 2.0E-1 8.5800E-2 2.9946E-2 1.4575E-2 1.2743E-2
τ = 1.0E-1 8.9694E-2 3.0881E-2 1.0513E-2 3.6249E-3
τ = 5.0E-2 8.9650E-2 3.0849E-2 1.0482E-2 3.5917E-3
τ = 2.5E-2 8.9639E-2 3.0841E-2 1.0476E-2 3.5872E-3

Table 4: Errors for the normal fluxes obtained for a nested collection of spatial meshes
T ℓ
h , with ℓ = 3, 4, 5, 6, and various decreasing time steps τ .

in time. Note that the last two positions in this column are meaningless,
since they virtually represent the error due to the spatial discretization. On
the other hand, Table 3 displays the computed errors for the post-processed
fluxes according to formula (20). In this case, the method shows an uncon-
ditionally convergent behaviour, with second-order convergence in time and
close to second-order convergence in space. Finally, in Table 4, we observe
the errors for the normal fluxes given by (21). Once again, the method is un-
conditionally convergent; specifically, the order of convergence approaches an
asymptotic value of 2 in time and approximately 1.6 in space, in accordance
with the numerical results reported in [10].

5.1.2. The case of discontinuous coefficients

As a second example, we consider a test problem inspired by a model by
Mackinnon and Carey (cf. [18]) that involves a discontinuous permeability
tensor. In particular, let (1) be posed on the unit square, with tf = 3 and
ΓD = ∂Ω. In this case, K(x, y) = k(x, y) I, where I is the 2 × 2 identity
matrix and k(x, y) = k1 = 1, for x ≤ 1

2
, and k(x, y) = k2 = 2, for x > 1

2
.

The data functions f , p0 and gD are defined in such a way that the piecewise
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Figure 4: Coarse grid TH for the Mackinnon and Carey test example with discontinuous
permeability tensor.

quadratic function

p(x, y, t) =















t2
(

a1
x2

2
+ b1x

)

, if 0 ≤ x ≤ 1

2
,

t2
(

a2
x2

2
+ b2x+ c2

)

, if
1

2
< x ≤ 1,

(22)

is the exact solution of the problem, where

a1 = − 1

k1
, a2 = − 1

k2
, b1 = −3a2 + a1

4

k2
k1 + k2

, b2 =
k1
k2

b1, c2 = −b2 −
a2
2
.

The domain Ω is decomposed into s = 4 triangular subdomains which are
aligned with the permeability discontinuity, as shown in Figure 4. The inte-
grals arising in the computations are approximated by the same quadrature
rules as in the previous example.

Table 5 shows the pressure and velocity errors obtained for a nested col-
lection of spatial meshes T ℓ

h , with ℓ = 1, 2, 3, 4, 5, and a time step τ = 1E-01,
considering the norms defined above. The use of the Crank–Nicolson time
integrator for an exact solution of the form (22) permits us to obtain neg-
ligible errors in time and to study the spatial convergence of the method.
The last row in the table contains the average orders of convergence. As
expected, the method is second-order convergent for pressures and close to
second-order convergent for post-processed and normal fluxes.

22



‖rhp− Ph‖ℓ∞(ℓ2) ‖rhp− Ph‖ℓ∞(ℓ∞) ‖u−R(uh)‖ℓ∞(L2) ‖ (u− uh) · n‖ℓ∞(ℓ2)

ℓ = 1 2.4218E-2 7.2240E-2 3.7393E-1 2.7329E-1
ℓ = 2 5.9113E-3 1.8738E-2 1.0901E-1 8.0644E-2
ℓ = 3 1.4637E-3 4.6708E-3 3.1850E-2 2.3434E-2
ℓ = 4 3.6745E-4 1.1656E-3 9.5547E-3 6.7958E-3
ℓ = 5 9.2331E-5 2.9124E-4 2.9657E-3 2.0113E-3
order 2.009 1.989 1.745 1.772

Table 5: Pressure and velocity errors for the Mackinnon and Carey test example. A
nested collection of spatial meshes T ℓ

h , with ℓ = 1, 2, 3, 4, 5, and a time step τ = 1E-01 are
considered. The last row in the table contains the average orders of convergence.

5.2. Numerical examples of time-dependent Darcy flow

5.2.1. A flow domain with low-permeability regions

In this example, we consider (1) posed on the unit square, with tf = 5,
f(x, y, t) = 0 and p0(x, y) = 1 − x. Furthermore, ΓD = {0, 1} × (0, 1) and
ΓN = (0, 1) × {0, 1}. The pressure is specified to be equal to 1 on the left
boundary and equal to 0 on the right boundary. A zero-flux condition is
imposed on ΓN . The flow domain contains two low-permeability regions,
namely, R1 = (0.2, 0.3)× (0, 0.8) and R2 = (0.6, 0.7)× (0.3, 1). In particular,
the permeability tensor is K = k(x, y) I, where I is the 2× 2 identity matrix
and

k(x, y) =

{

1, if (x, y) ∈ Ω \ (R1 ∪R2),

10−6, if (x, y) ∈ R1 ∪ R2.

This numerical example permits us to test the behaviour of the algorithm
on problems involving abrupt variations in the permeability. A stationary
version of this problem was considered in [12] in the framework of heat flow
applications.

Figure 5 (left) shows the coarse grid TH used in this example. It consists
of s = 16 triangular subdomains and it is adapted to the geometry of the low-
permeability regions, depicted in the plot by shaded areas. In turn, Figure 5
(right) shows the fine grid Th ≡ T 3

h obtained after three regular refinement
processes.

In Figure 6 (left), we display the pressure distribution obtained once the
stationary state is reached. In this case, we consider the triangular mesh T 5

h ,
obtained after five regular refinement processes of the coarse grid TH , and a
time step τ = 5E-02. This figure illustrates the effect of the low-permeability
regions on the pressure distribution. On the other hand, Figure 6 (right)
shows the velocity field obtained at the stationary state. As usual, the length
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Figure 5: Coarse grid TH (left) and fine grid Th ≡ T 3
h (right) for the unit square with two

low-permeability regions.
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Figure 6: Pressure distribution (left) and velocity field (right) for the Example 5.2.1.

of the arrows is proportional to the module of the vectors. In this case, we
consider the triangular mesh T 3

h shown in Figure 5 (right) and a time step
τ = 5E-02. As expected from the physical configuration, no flow enters the
low-permeability regions.

5.2.2. A flow domain with holes

Finally, we consider (1) posed on Ω × (0, tf ], where Ω is a non-simply
connected domain with two rectangular holes, and tf = 5. Specifically, we
define Ω = (0, 1)2 \ (R1 ∪ R2), where R1 = [0.2, 0.6] × [0.6, 0.8] and R2 =
[0.4, 0.8] × [0.2, 0.4]. The source/sink term is f(x, y, t) = 0, and the initial
condition is p0(x, y) = 1 − x. The boundary of Ω is decomposed into ΓD =
{0, 1} × (0, 1) and ΓN = (0, 1) × {0, 1} ∪ ∂R1 ∪ ∂R2. In this context, the
pressure is set to be equal to 1 on the boundary {0} × (0, 1) and equal
to 0 on the boundary {1} × (0, 1). In turn, zero flux is imposed on ΓN .
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Figure 7: Coarse grid TH (left) and fine grid Th ≡ T 3
h (right) for the non-simply connected

domain Ω.
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Figure 8: Pressure distribution (left) and velocity field (right) for the Example 5.2.2.

In this example, we consider a uniform and isotropic permeability tensor
K = I, where I is the 2 × 2 identity matrix. This experiment permits
us to test the behaviour of the method on problems posed on non-simply
connected domains. Stationary versions of this problem considering various
configurations of holes in a square domain can be found in [12].

Figure 7 (left) shows the coarse grid TH used in this example. It consists
of s = 20 triangular subdomains, which are aligned with the two rectangular
holes. Figure 7 (right) shows the fine grid Th ≡ T 3

h obtained after three
regular refinement processes.

The computed pressures and fluxes are displayed on Figure 8. The left-
hand plot shows the pressure distribution at the stationary state, when con-
sidering the triangular mesh T 5

h and a time step τ = 5E-02. The effect of both
holes on the pressure distribution is quite significant. In turn, the right-hand
plot shows the velocity field obtained at the stationary state, when consid-
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ering the triangular mesh T 3
h depicted in Figure 7 (right) and τ = 5E-02. In

this case, the fluid flows around the internal boundaries of the domain.

6. Concluding remarks

A novel algorithm for solving time-dependent Darcy problems with possi-
bly discontinuous tensor coefficients has been designed and tested on different
geometries. The method is conceived to fit in the framework of hierarchical
grids, taking advantage of their flexibility to handle complex problems while
preserving the efficiency of stencil-based operations.

A relevant feature of the numerical procedure is that, provided that the
material properties are constant within each subdomain, the corresponding
stencil remains unchanged regardless of the level of refinement. In addition,
the fully discrete scheme yields a local problem on each subdomain whose
solution does not depend on the neighbouring subdomains, thus allowing
for parallelization. Since the subdomain problems are all the same size, a
perfectly balanced workload can be assigned among parallel processors in
the solution process.

The structure of the resulting linear systems can lead to the development
of very efficient linear solvers based on a judicious combination of precon-
ditioning techniques and multigrid methods. Furthermore, the ease of im-
plementation and robust numerical behaviour of the algorithm can make it
suitable for more general flow problems. Both topics are the scope of current
research.

Appendix A. Derivation of the stencil for MPh

In this appendix, we describe how to deduce the coefficients of the local
10-point stencil associated to MPh, when K is a tensor whose components
do not depend on the spatial variables. Since matrix M decouples across
subdomains (cf. Subsection 3.4), it suffices to study each subdomain sepa-
rately.

Let us consider a triangular subdomain Ωk, and let Th,k ≡ T ℓ
h,k be the

conforming mesh that covers Ωk with 4ℓ similar triangular elements. First
of all, we need to set a suitable local numbering for the vertices, edges and
triangles of the mesh. For a fixed refinement level ℓ, each grid point in Th,k

is assigned a pair of indices (i, j) that take the values j = 1, 2, . . . , 2ℓ + 1
and i = j, j + 1, . . . , 2ℓ + 1. Based on this notation, the vertices of Ωk are
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Figure A.9: A mesh T 2
h,k covering the subdomain Ωk is represented in an oblique coordinate

system {e′1, e′2}. The local numbering of grid points is included. In addition, the three
edges e13,2, e

2
3,2 and e33,2 associated to the grid point (3, 2) are depicted in blue, red and

brown, respectively.

the points (1, 1), (2ℓ + 1, 1) and (2ℓ + 1, 2ℓ + 1). In fact, such indices can
be interpreted as the coordinates of the grid points in an oblique coordinate
system {e′1, e′2} that depends on the geometry of the subdomain. Further,
the edges associated to the (i, j)-th grid node are denoted as emi,j, where
m = 1, 2, 3. This latter index determines which side of the coarse triangle
Ωk is parallel to the edge under consideration. Figure A.9 shows the local
numbering of a mesh T 2

h,k covering Ωk that consists of 16 triangles. The three
edges associated to the grid point (3, 2), namely e13,2, e

2
3,2 and e33,2, are depicted

in blue, red and brown, respectively. Note that the triangles conforming
the mesh can be classified, depending on its orientation, into upward and
downward triangles. As shown in Figure A.10, we will use the notation TU

i,j

and TD
i,j to refer to the upward and downward triangles, respectively, that

share the grid nodes (i, j) and (i + 1, j + 1). Figures A.11 and A.12 further
show the distribution of several of these triangles on a certain region of a
given mesh.

In the remaining of this section, we derive the stencil coefficients associ-
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r1r2
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Figure A.10: Representation of two neighbouring triangles TU
i,j and TD

i,j . The local notation
of their sides and vertices (left) and the local ordering of their vertices (right) are included.

ated to an interior4 upward triangle TU
i,j . We will assume, in the sequel, that

the unit vectors normal to the edges of Th,k are defined to point outwards
from TU

i,j and inwards to TD
i,j.

To begin with, let us consider w = wU
i,j in the equation (5a), where wU

i,j is
the basis function of Wh,k associated to TU

i,j (i.e., the characteristic function
of such a triangle). If we apply the divergence theorem on TU

i,j and take into
account the orientation of normal unit vectors on TU

i,j , we obtain

|TU
i,j|

dPU
i,j

dt
+ l2 U

2
i,j + l3 U

3
i,j + l1 U

1
i+1,j =

∫

TU
i,j

f dx, (A.1)

where PU
i,j denotes the pressure unknown associated to the triangle TU

i,j. In
turn, U2

i,j, U
3
i,j and U1

i+1,j stand for the components of vector Uh corresponding
to the edges e2i,j, e

3
i,j and e1i+1,j , respectively. As shown in Figure A.10 (left),

these are the sides of TU
i,j. Their respective lengths are denoted by l1, l2 and

l3. Note that, due to the hierarchical structure of the grid covering Ωk, the
edges emi,j all have the same length lm, for m = 1, 2, 3, regardless of the grid
point coordinates (i, j).

Next, we take v = v2
i,j in the equation (8b), where v2

i,j is the basis function
of Vh,k associated to the edge e2i,j . Taking into account that v2

i,j is different
from zero only on the triangles TU

i,j and TD
i,j (cf. Figure A.10 (left)), and using

4In this framework, a triangle in Th,k is said to be interior if the 10-point stencil of the
pressure unknown associated to such a triangle is contained in the subdomain Ωk.
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the quadrature rule introduced in (7), we get

U2
i,j =

√
3

l22

(

Ũ2
i,j

∫

TU
i,j

(

v2
i,j

)T
GKGv2

i,j dx+ Ũ3
i,j

∫

TU
i,j

(

v2
i,j

)T
GKGv3

i,j dx+

Ũ1
i+1,j

∫

TU
i,j

(

v2
i,j

)T
GKGv1

i+1,j dx+ Ũ2
i,j

∫

TD
i,j

(

v2
i,j

)T
GKGv2

i,j dx+

Ũ3
i,j+1

∫

TD
i,j

(

v2
i,j

)T
GKGv3

i,j+1 dx+ Ũ1
i,j

∫

TD
i,j

(

v2
i,j

)T
GKGv1

i,j dx

)

,

(A.2)
where Ũm

i,j denotes the component of vector Ũh associated to the edge emi,j .

Note that the five components of vector Ũh contained in the previous formula
refer to the sides of the triangles TU

i,j and TD
i,j , as shown in Figure A.10 (left).

In order to compute the integrals on the right-hand side of (A.2), we first
map each of them onto the reference element T̂ . Specifically, we introduce
an affine mapping FT , defined from the reference triangle T̂ , with vertices
r̂1 = (−1, 0)T , r̂2 = (1, 0)T and r̂3 = (0,

√
3)T , onto any triangle T ∈ Th,k,

with vertices r1 = (x1, y1)
T , r2 = (x2, y2)

T and r3 = (x3, y3)
T , i.e.,

x = FT (x̂) = BT x̂+ bT ,

where

BT =









x2 − x1

2

2x3 − x2 − x1

2
√
3

y2 − y1
2

2y3 − y2 − y1

2
√
3









, bT =







x1 + x2

2
y1 + y2

2






.

Then, we consider the first integral on the right-hand side of (A.2) and denote
T ≡ TU

i,j. Using the fact that (v2
i,j ◦ FT )(x̂) = J−1

T BT v̂
2
i,j(x̂) and G|T =

JTB
−T
T B−1

T , we obtain

∫

T

(

v2
i,j

)T
GKGv2

i,j dx = JT

∫

T̂

(

v̂2
i,j

)T
B−1

T KB−T
T v̂2

i,j dx̂.

This same procedure can be applied to the rest of integrals in (A.2). In the
sequel, we show that the integral on the right-hand side of the preceding
expression is independent of the particular (upward or downward) triangle
under consideration.
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Let us consider the local ordering of vertices displayed on Figure A.10
(right) for either an upward or a downward triangle. As the spatial mesh
Th,k is composed of similar triangles, it is easy to see that all mappings from

T̂ to an upward (or downward) triangle share the same Jacobian matrix BTU

(or BTD). Since BTU = −BTD , if tensor K is assumed to be constant on Ωk,
then B−1

TUKB−T
TU = B−1

TDKB−T
TD for all the triangles in Th,k. We denote this

product by B−1
k KB−T

k , and further define Jk ≡ JTU = JTD . In addition, it
can be shown that v̂m

i,j = lm
2
v̂m, for any grid point (i, j) and m = 1, 2, 3,

where

v̂1 =
1√
3

(

1 + x̂
ŷ

)

, v̂2 =
1√
3

(

−1 + x̂
ŷ

)

, v̂3 =
1√
3

(

x̂

−
√
3 + ŷ

)

are the standard basis functions of V̂h(T̂ ). Therefore, introducing the nota-
tion5

aℓ,m =
Jk

4

∫

T̂

v̂T
ℓ B

−1
k KB−T

k v̂m dx̂, (A.3)

for ℓ,m ∈ {1, 2, 3}, it is easy to derive, from (A.2), the following expression
for U2

i,j

U2
i,j =

√
3

l2

(

2l2 a2,2 Ũ
2
i,j + l3 a2,3

(

Ũ3
i,j + Ũ3

i+1,j

)

+ l1 a2,1

(

Ũ1
i,j + Ũ1

i+1,j

))

.

(A.4)
Accordingly, if we consider v = v3

i,j in the equation (8b), we will be able

to express U3
i,j in terms of Ũ3

i,j, Ũ
1
i,j−1, Ũ

1
i+1,j , Ũ

2
i,j and Ũ2

i,j−1. Finally, if we

take v = v1
i+1,j in (8b), U1

i+1,j will be given in terms of Ũ1
i+1,j, Ũ

2
i,j , Ũ

2
i+1,j ,

Ũ3
i,j and Ũ3

i+1,j+1.
To conclude, we use the equation (8a) to express the components of vector

Ũh as differences of pressure unknowns. In particular, let us consider v = u2
i,j

in (8a). If we make use of the quadrature rule (7) and recall the orientation
of normal unit vectors, we obtain

Ũ2
i,j =

√
3

l2

(

PU
i,j − PD

i,j

)

. (A.5)

In this expression, the component of Ũh corresponding to the edge e2i,j is
written in terms of the pressure unknowns associated to the triangles that

5Note that, by construction, aℓ,m = am,ℓ.
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Figure A.11: 10-point stencil for the upward triangle TU
i,j ∈ Th,k represented in the oblique

coordinate system {e′1, e′2}.

share this edge. As shown in Figure A.10 (left), such triangles are TU
i,j and TD

i,j .

If we repeat this procedure for the remaining 8 components of Ũh involved
in the expressions above, we finally obtain 10 pressure unknowns: 7 of them
are associated to upward triangles and the other 3 correspond to downward
triangles (depicted in brown and blue, respectively, in Figure A.11).

As a result, if we insert into (A.1) the expressions for Um
i,j in terms of Ũm

i,j

derived above, for m = 1, 2, 3 (see (A.4) for the case U2
i,j), and further replace

such Ũm
i,j by their corresponding formulas in terms of pressure differences (see

(A.5) for the case Ũ2
i,j), we obtain an equation for the pressure variable at

TU
i,j involving 10 unknowns, as shown in Figure A.11. The term MPh arising

in such an equation can be explicitly written using the standard notation for
the elements of a stencil

S =





S−1,1 S0,1 S1,1

S−1,0 S0,0 S1,0

S−1,−1 S0,−1 S1,−1



 .

More precisely,

(MPh)
U
i,j =

1
∑

ℓ=−1

1
∑

m=−1

SUU
ℓ,mP

U
i+ℓ,j+m +

1
∑

ℓ=−1

1
∑

m=−1

SUD
ℓ,mPD

i+ℓ,j+m,
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where

SUU = 3













0 a2,3 a1,3

a1,2 2
3
∑

ℓ=1

3
∑

m=ℓ

aℓ,m a1,2

a1,3 a2,3 0













, SUD = −6



















0 0 0

0
3
∑

ℓ=1

aℓ,2

3
∑

ℓ=1

a1,ℓ

0
3
∑

ℓ=1

aℓ,3 0



















.

The entries aℓ,m in both matrices are given by (A.3). Remarkably, the sten-
cil coefficients are the same for all interior pressures associated to upward
triangles. Furthermore, these coefficients depend on tensor K and the geom-
etry of the given subdomain Ωk, but not on the number of mesh refinement
processes.

The procedure to derive the stencil coefficients associated to an interior
downward triangle is completely analogous. In such a case, we obtain

(MPh)
D
i,j =

1
∑

ℓ=−1

1
∑

m=−1

SDU
ℓ,mPU

i+ℓ,j+m +

1
∑

ℓ=−1

1
∑

m=−1

SDD
ℓ,mPD

i+ℓ,j+m,

where SDD = SUU , and

SDU = −6

















0
3
∑

ℓ=1

aℓ,3 0

3
∑

ℓ=1

a1,ℓ

3
∑

ℓ=1

aℓ,2 0

0 0 0

















.

Figure A.12 shows the resulting stencil involving 10 pressure unknowns: 7
of them associated to downward triangles and the other 3 corresponding to
upward triangles, coloured in blue and brown, respectively.

Note that, if we consider non-interior triangles, the coefficients for the
pressure stencil can be derived following the same strategy; the only difference
is that, in this case, the matrices SUU , SUD, SDU and SDD may contain a
greater number of null elements.
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