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Preface
“My supervisor during the development of this project, Arantxa, has been my
computer vision and image processing teacher during my masters degree. Due to
my passion, interest and experience in computer vision and artificial intelligence,
I asked her if there was any available work related to these topics I could do for
my final project. She then offered me this project and I couldn’t refuse. One of
the strands of work being developed within the Gaze Interaction for Everybody
(GI4E) group is a gaze estimation system. The aim of this project is primarily to
research for further improvements in the tracking process by increasing eye image
resolution artificially.”
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1 Introduction

What makes human being special and different from any other living being is its reasoning
ability. Our brain is the one responsible of this, allowing us to process information coming
from our senses, store memories, express emotions and much more, which makes this partic-
ular organ the most important one. Without it, we would be nothing more than organisms
whose actions would rely primarily on our stimulus and reflexes.

For decades, human being has always dreamed of creating machines capable of thinking
and performing tasks only humans could do. This is mainly due to his desire of easing heavy
and difficult workloads, performing repetitive tasks more efficiently or developing new tasks
the human being is not capable of. However, building these machines comes with a very com-
plex computational challenge a brain can solve in a few fractions of a second. The science
aimed to solve these problems and define the techniques, methodology and processes required
to face them belongs to the Artificial Intelligence (AI) field of study. Briega (2017)

1.1 Artificial Intelligence
In the past years, AI has grown at dizzying speed, mainly due to the huge development of
latest technologies. The range of applications where we can find AI is getting wider every
day and, nowadays, it is difficult to find a sector in which at least a minimal AI isn’t being
applied. Some applications where AI is used are:

• Healthcare: Such as the use of novel tools based on AI allowing doctors to improve
the accuracy of their diagnoses.

• Cybersecurity: This includes improving current Intrusion Detection System (IDS)
and malware detection systems used by antivirus and detecting spam and fishing emails.

• Autonomous vehicles: Self-driving cars need to process all the information given by
sensors in order to make decisions about the actions to take.

• Virtual assistants: All the current virtual assistants, like Google Assistant, Siri,
Alexa or Cortana use a combination of AI techniques in order to perform their tasks.

• Finance: Banks commonly use fraud detection systems based on AI which analyzes
patterns in expenses in order to identify suspicious activities before they may occur.
They also use virtual brokers in order to improve the effectiveness of their investments.

Artificial Intelligence is relatively new, as it was born approximately in 1956. It takes several
influences from other fields, such as Mathematics, Psychology, Biology and even Philosophy.

1



2 Introduction

Its term is actually difficult to define. Even Alan Turing, considered as the father of computer
science, avoided answering that question directly. Instead, he created the well-known Turing
Test in order to define whether a system had an artificial intelligence or not. In a nutshell,
it can be defined as a sub-field of computing science whose aim is to make machines perform
tasks only humans could do. Alonso (2011-2012)

As AI is a very general term, it can be divided into several work areas, such as Machine
Learning (ML), Deep Learning (DL), Natural Language Processing (NLP), Robotic Process
Automation, Computer Vision (CV) and many more. The one that will be covered in this
report is the ML area, and more precisely the DL area where Neural Networks belong to.

1.2 Machine Learning
ML is commonly described as an AI technique used to program a system or application
aimed at making decisions, classifying events or generating new information in a completely
autonomous manner based on some input elements. For example, it could be possible to
program an application which identifies a plane in a given image of a plane. However, this
will only be valid for that specific image.

ML applications, however, would be able to correctly identify a plane in any given image,
as they are able to train themselves in order to learn how a plane looks out of a big dataset
containing plane images. Moreno (2016)

The training algorithms commonly used in ML can be classified in four types: Fumo (2017)

• Supervised: In this method, the computer is fed with training data containing the
input along with their corresponding labels. Human interaction is required, as he shall
act as the teacher showing the correct answers to the model, which will learn comparing
them with its predictions.

• Unsupervised: The computer is trained with no labeled data and there’s no human
interaction at all. Here, the model tries to find patterns in data. It is very useful in
cases where the human doesn’t know what to look for in the data.

Figure 1.1: Unsupervised Learning Patterns. Source: deepai.org

• Semi-supervised: A mixture of labeled and unlabeled data is fed to the model. They
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are mainly used in situations where the cost of labeling all the data is too high.

• Reinforcement Learning: The computer learns out of the observations gathered from
the interaction with the environment, trying to minimize the fails and maximize the
rewards. The algorithm (also called agent) tries to determine the ideal behavior within
a specific context, in order to improve its performance. The agent learns its behavior
by using simple reward feedback taken from the environment. These algorithms are
commonly used in Deep Adversarial Networs (DAN), which where used as a basis for
this work. They will be described with more detail later within this document.

Figure 1.2: Reinforcement Learning block diagram. Fumo (2017)

Some of the most well-known models can be found within the supervised models field. They
can be divided into two subcategories depending on their task (Regression or Classification)
and type of output (Discrete or Continuous). The most relevant are: Fumo (2017)

• Regression.

• Linear regression.

• Decision tree.

• Random forest.

• Neural Networks.

• Logistic Regression.

• Support Vector Machine.

Some of them, such as Random Forest, Decision tree or Neural Network can have both dis-
crete and continuous outputs. Fumo (2017)

The theme of this paper revolves around the application of discrete neural networks to
image super-resolution generation based on DAN usage.

It is divided into several sections. Firstly, a comprehensive explanation of these concepts,
their theoretical behavior and state of the art will be described. Secondly, the main objectives
of this work will be presented, as well as the methodology used during its development. Then,
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the steps followed in order to achieve the given objectives, along with its difficulties, improve-
ments and successes will be detailed. Finally, the results obtained from our application will
be shown along with our own conclusions about them.



2 Theoretical Framework

In this section, an extended description of the theoretical basis of this work will be presented.
Firstly, a wide description of deep feed forward and convolutional neural networks funda-
mentals will be covered. Secondly, GAN fundamentals will be explained. Finally, the state
of the art in neural network application in super resolution will be described, as well as the
study on which this work is based.

2.1 Neural Networks
Although many details of how the brain processes information are still unknown, several
models have been developed in an attempt to mimic its abilities. These models are called
Artificial Neural Network (ANN) and they are one of the most used ML models in multiple
AI fields.

A neural network is composed of several elements which are worth describing.

2.1.1 Neuron
The most basic element within an ANN is called neuron. Each neuron receives a set of x-
values representing the features taken from one example of the training set. Besides, each
value comes with its own parameters, called W(list of weights) and b(bias), which will change
during the training process. The neuron will calculate a weighted sum of the input values by
using the current values stored in W and adding the bias b to it. The result will be passed
through a non-linear activation function. The schematic behavior of a neuron is shown in
figure 2.1. The weighted average is shown in the formula 2.1. Skalski (2018)

z = w1x1 + w2x2 + ...+ wnxn = wτx (2.1)

Figure 2.1: Single neuron schematic. Skalski (2018)

5



6 Theoretical Framework

2.1.2 Layer
Just as our brain is made up of interconnected neurons, an ANN is made up of artificial
neurons connected to each other and grouped at different levels that we call layers. These
layers are named differently depending on their location within a network. The first layer,
the one receiving the features as inputs, is called input layer, the last layer of the network
which gives the final output of the network is called output layer and the ones laying between
these two are called hidden layers, as their input and output values remain unknown.

The computations performed in each layer are nothing but the ones performed by each
neuron in a parallel fashion. The formulas are shown in the equation 2.2. The schematic
behavior of a single layer is shown in figure 2.2.

Figure 2.2: Single layer schematic. Skalski (2018)

z
[l]
i = wτ

i ·a[l−1] + bi a
[l]
i = g[l](z

[l]
i ) (2.2)

where: l → index of each layer.
i → index of neuron.
g → Activation function.
a[l] → activation for each layer l.

To sum up the above equations, the w, a, and z vectors of each neuron from a given layer
will be grouped into matrices representing the values of an entire layer, named X, A and Z.
The equation 2.2 will be rewritten into equation 2.3. Skalski (2018)

Z [l] = W τ ·A[l−1] + b[l] A[l] = g[l](Z [l]) (2.3)

2.1.3 Activation Functions
The activation function is a really important element of a neural network. Without it,
its operations would remain a combination of linear functions, so it would be just a linear
function itself. The usage of non-linear elements allows the network to get greater flexibility
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and creation of complex functions during the learning process. The most common one is the
Rectifier Linear Unit (ReLU) and all its variants, as it is widely used in hidden layers. For
the output layer, the sigmoid function is the most popular, especially in binary classification,
hence an output ranging between 0 and 1 is desired. The most common are shown in figure
2.3. Skalski (2018)

Figure 2.3: 4 common activation functions. Skalski (2018)

2.1.4 Loss Function
This function is used to help the network optimize its parameters during the training pro-
cess. The main objective is to minimize the loss for a neural network by matching the target
weights. This loss is computed by matching the actual value with the predicted value gener-
ated by the network. Generally speaking, the loss function is designed to show how far the
network is from the actual solution. The most popular are: Skalski (2018)

• MSE: It is calculated by computing the mean of squared differences between the actual
and the predicted value. It is commonly used when the network outputs a real value.

• Binary Cross-entropy: It is commonly used for binary classification tasks, where the
network outputs a value ranged between 0 and 1 given by a sigmoid activation function.

• Categorical Cross-entropy: Used in multi-class classification tasks. The network
outputs the same number of nodes as the classes. Each output will have a probabilistic
format between 0 and 1 given by a softmax activation function.

2.1.5 Learning algorithm
As aforementioned, a neural network learning process is based on W and b parameters opti-
mization with the aim of minimizing the loss function. This is achieved by executing a task
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called gradient descent method, which enables the network to find a function minimum.

The math behind this process is based on calculating the values of the loss function partial
derivatives with respect to each parameter of the neural network. As computing the partial
derivative allows to obtain the slope of each function, it is possible to manipulate variables
in order to move downhill in the loss graph. As it can be seen in the figure 2.4, the gradient
is computed on each iteration, showing the network the direction in which it should move in
order to minimize the loss. These computations seem fairly simple, however, in ANN, as we
dispose of many parameters to change, it can be very complex. This is why it is commonly
used an algorithm called backpropagation, which enables us to compute very complex gradi-
ents.

The parameters of the neural network are adjusted following the formula 2.4. α represents
the learning rate, which is a parameter allowing to control how fast or slow the neural network
will update its parameters. It will be explained later.

W [l] = W [l] − αdW [l] (2.4)
b[l] = b[l] − αdb[l] (2.5)

These last parameters, dW and db, are computed following the chain rule with the partial
derivatives of the loss function with respect to W and b, as shown in the equation 2.6. The
backpropagation process is shown in figure 2.4. Skalski (2018)

dW [l] =
∂L

∂W [l]
(2.6)

db[l] =
∂L

∂b[l]
(2.7)

Figure 2.4: Forward and backward propagation. Skalski (2018)
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2.1.6 Learning rate

In DFF neural networks trained using the stochastic gradient descent algorithm, the pace at
which the weights are updated during training is referred as the step size or learning rate.
This variable can be tuned as a configurable hyper-parameter used in the training process.

The learning rate controls how quickly a DFF model adapts to a certain problem. Smaller
learning rates require more training epochs, as the weight changes between each update are
smaller. On the other hand, larger learning rates result in fast changes and require less train-
ing epochs.

One of the challenges of training DFF neural networks involves the correct selection of
the learning rate value, as a value that is too large can cause the model to converge too
quickly, reaching a local minima and, therefore, a sub-optimal solution, whereas a learning
rate that is too small can lead to a training process unable to converge. These effect are
shown graphically in the figure 2.5. Brownlee (2019)

Figure 2.5: How the learning rate affects the model training convergence. Jordan (2018)

2.1.7 Types of Neural Networks

In ML field there exist a huge set of ANN architectures and models. They can be classified
depending on multiple factors, such as their architecture, computations done by the neurons,
type of layers, applications, etc. However, the most popular ones are: Tch (2017)

• DFF: These are nothing more than the model described above. Its neurons are com-
monly fully connected and their application is mainly for classification purposes based
on an input. Even though they are quite impractical nowadays, they form the core of
modern ML systems. As explained before, they compute linear operations.
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Figure 2.6: DFF architecture. Yellow dots mean input cells, green stand for hidden cells and orange
ones represent output cells. Tch (2017)

• RNN: A new neuron concept is introduced: Recurrent cells. They allow a regular
DFF to keep some of its recurrent cells in the same state for a fixed delay of iterations
within the training process. This allows the network to train itself using parameters
from previous iterations. This way, the past decisions have an influence on the new
ones. They are commonly used in NLP, as a word can be analyzed only considering
the context of previous words or sentences.

Figure 2.7: RNN architecture. Yellow dots mean input cells, blues stand for recurrent cells and
orange ones represent output cells. Tch (2017)

• CNN: Nowadays, they have become the most valuable models of ANN. They are
commonly used for image processing applications, such as image recognition. Instead
of computing linear operations, their layers compute convolutions of the input images
using kernels and filters. They will be explained with more detail later in this report.
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Figure 2.8: CNN architecture. Yellow dots mean input cells, pinks stand for convolution, pool or
kernel cells and orange ones represent output cells. A DFF is attached to the end, as
image recognition always includes one after the convolution stage. Tch (2017)

2.2 Convolutional Neural Networks
Computer vision means AI applied to image processing and recognition, that is, its main
objective is to enable a machine to see its environment and react differently to different sce-
narios. In the last years, there has been a huge advancement in Deep Learning for Computer
Vision applications, mainly thanks to great improvements in parallel computing using increas-
ingly powerful GPUs, as the calculations done by neural networks can be arranged in matrix
operations, as we learned from the previous section, and GPU are really good at performing
these type of calculations. Image recognition and generation are the most widespread CV
applications in which DL is used. Within this field, one of the most remarkable advancements
has been, without no doubt, the CNN or ConvNets.

A ConvNet is a type of DL algorithm that, instead of computing linear operations from
the input data as a regular DFF network does, it computes convolutions with different filters.
That is, it is able to take an image as input and assign weights and biases to different aspects
inside the image so that it is able to differentiate one from each other. This makes a CNN
much more suitable for image processing than just turning a 4x4 matrix into a 16x1 vector
and feeding it to a DFF neural network, as it is able to successfully capture the spatial and
temporal dependencies in an image through the input image convolution with relevant filters.

Moreover, as images can be really heavy data containing a lot of information stored in
multiple color spaces (RGB, HSV, Grayscale, etc.), a ConvNet can help in reducing them
into a simpler form, making them easier to process by a machine and without losing critical
features that differentiate them. Saha (2018)

2.2.1 Convolution Layer
As mentioned above, a ConvNet uses different filters, also called Kernels or K-matrices, which
constitute the elements involved in carrying out the convolution operations. Each layer can
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perform multiple convolutions as it can contain different filters of NxNxC size, each of one
seeking for different features inside the image. The C variable means the number of channels,
as the Kernel has the same depth as of the input image.

A single convolution process is illustrated in the figures 2.9 and 2.10, where it can be seen
the kernel movement along the image from left to right and from the top to the bottom, as
well as the operations carried out by a kernel of 3x3x3 size. Giving a clear example of a
real-life scenario, a convolution layer holding 64 different filters of 3x3 size, when an input
image of 5x5 size is fed into that layer, the output will be of 3x3x64, that is, 64 output
matrices of 3x3 size, each of one containing different features extracted from the image by
each one of the 64 filters. Saha (2018)

Figure 2.9: Movement trajectory of the Kernel. Saha (2018)

Figure 2.10: Convolution operation on a MxNx3 image matrix with a 3x3x3 Kernel. Saha (2018)
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In a nutshell, the main objective of the convolution operation is to extract high-level
features from the input image. In order to increase its effectiveness, ConvNets need to be
composed of multiple convolution layers, where the first one is responsible for extracting low-
level features such as edges, colors, etc., and the next layers added to the model will extract
increasingly higher-level features, giving as a result a complete feature map of every image
fed into the network. Saha (2018)

2.2.2 Pooling Layer
The Pooling Layers perform a similar task as the Convolution Layers and are commonly
located just after the latter with the aim of reducing their output dimensions. This process
gives two main advantages. In one hand, the computational power required to process the
data is effectively reduced and, in the other hand, it is very useful for extracting dominant
features within an image, making the training process easier for the model. Saha (2018)

There exist two types of Pooling operations:

• Max Pooling: It returns the maximum value from an image portion covered by the
pooling kernel. This is the most popular one, as it also performs as a noise suppressant
ignoring the noisy activations.

• Average Pooling: It returns the average of all the values within the image portion.

Figure 2.11: Types of Pooling. Saha (2018)

2.2.3 Classification Stage
Given an image recognition scenario, there is a need to reduce all the features obtained from
the convolution layers into an output layer whose results match the possible outcomes’ di-
mensions. In order to achieve that, it is very common to combine the output features from
the last convolution layer with a DFF fully connected neural network by means of a Flatten
Layer, allowing the CNN to introduce every single value from each feature matrix into every
neuron of the input layer belonging to the DFF network. Saha (2018)
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Finally, the output values of this last stage can be binary (only one output) or categorical
(multiple outputs matching the number of possible classes), and its corresponding loss func-
tion will be used in order to train the whole network, as explained in the section 2.1.4. A full
schematic of a combination between a CNN and DFF can be seen in the figure 2.12.

Figure 2.12: Combination of a CNN with a DFF. Saha (2018)

2.2.4 Types of CNN

Throughout the latest years, a huge amount of different CNN architectures have been im-
plemented for multiple purposes, mostly for general image classification. These models have
established the basis for any application using CNNs and nowadays are a reference for future
research in the field of image classification and generation. Indeed, most of them have won the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC), an object recognition contest
where dozens of institutions and research groups test their own CNN implementations. The
most relevant are: Saha (2018)

• LeNet.

• AlexNet.

• VGGNet.

• GoogLeNet.

• ResNet.

• ZFNet.

This work will use both a ResNet and a VGGNet. The first one for image generation and
the second one for feature extraction. These architectures will be explained below.
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2.2.4.1 VGGNet

VGGNet is one of the most used and best performing CNN architectures for image recogni-
tion. It was introduced by Simonyan and Zisserman in their work Simonyan & Zisserman
(2015). This is a simple network only using 3x3 kernel-size convolution layers stacked in in-
creasing depth, it uses max pooling for data reduction and two fully-connected of 4096 nodes
at the end of the network, in the classification stage. A visualization of the architecture is
presented in the figure 2.13.

Figure 2.13: Schematic of the VGG architecture. Frossard (2016)

It is commonly called VGG16 or VGG19, where the number stands for the number of
weight layers present in the network, as it can be seen in the table 2.14.

In spite of its performance and popularity, this architecture has two major drawbacks: It
is difficult and slow to train and it is very heavy in terms of disk space. Mainly due to its
fully connected nodes, it can be up to 574MB. Rosebrock (2017)

2.2.4.2 ResNet

This architecture is quite special, as it doesn’t follow a traditional sequential architecture as
the others do. Instead, it is made out of a collection of micro-architecture building blocks
containing their own convolution, pooling and other layers which are then added to the main
architecture. Its schematic can be seen in the figure 2.15.

It was introduced by He et al. in their work Deep Residual Learning for Image Recognition
( Kaiming He (2015)) published in 2015. It has become one of the most important advance-
ments in image-recognition using CNNs. The most popular architecture is the ResNet50,
which is 50 layers deep, and it is an improvement over the VGGNet as it is easier to train
thanks to its residual architecture. In spite it is much deeper than VGG19 model, it is actu-
ally lighter in terms of disk space as it uses global average pooling rather than fully-connected
layers. Rosebrock (2017)
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Figure 2.14: Configurations of VGGNets. Parameters are denoted as conv<kernel-size>-<number
of filters>. Simonyan & Zisserman (2015)

2.3 Generative Adversarial Networks

So far, this work has explained how neural networks are applied to image recognition and
classification purposes with supervised techniques, which is called Discriminative Modeling.
In fact, these are the most popular applications of DL to real-life problem solving. However, a
neural network can also be used to generate data, rather than identifying its contents. These
networks are called Generative Models, which can be used to create a wide variety of data,
such as text or images, and can be trained in an unsupervised manner. The main difference
between these two lies in the problem they aim to solve. In one hand, discriminative models
aim to solve the relationship between the features x and the labels y, that is, find the prob-
ability of y given x. On the other hand, generative models care about how to get x given
y. Nicholson (2018)

The use of generative models to create artificial images has increased in the last few years.
However, the methods used to train these kind of networks have remained in the direct way,
that is, a pixel-wise difference between the generated and the ground truth image is per-
formed. Although these methods have proven to be effective, generally there is a lack of
detail in the generated images that clearly distances them from a real-life one.

However, everything changed when Ian Goodfellow and other researchers from the Uni-
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Figure 2.15: A residual module in the ResNet. Rosebrock (2017)

Figure 2.16: Graphical difference of how Discriminative and Generative networks work. Malhotra
(2019)

versity of Montreal, in 2014, introduced the Generative Adversarial Networks (Goodfellow
et al. (2014)), which where referred by Facebook’s AI research director Yann LeCun as ”the
most interesting idea in the last 10 years in ML”. These networks have a great ability to
mimic any distribution of data in any domain, and it is the technology behind the well-known
Deepfakes. Nicholson (2018) Ledig et al. (2017)

2.3.1 Fundamentals

A GAN network is composed by two neural networks, a generative and a discriminative
model. These two compete against each other in a counterfeit identification contest in which
the generator acts as the counterfeiter and the discriminator acts as the detective. The gen-
erator produces images with the aim of tricking the discriminator into believing that they
are real. Meanwhile, the discriminator aims to detect the counterfeits.

As time passes by, the images produced by the generator become increasingly realistic
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and difficult to identify as counterfeits and, at the same time, the discriminator improves its
ability to identify them. This interaction between these two networks goes on until a point
is reached where the discriminator cannot distinguish the counterfeits from the real ones. As
a result, a great realistic image generator is obtained.

Figure 2.17: A common way of explaining GANs is by using the art counterfeiter - detective example.

2.3.2 Mathematical Model of a GAN

As described above, a GAN is composed of two neural network models denoted as Discrim-
inator and Generator. The generator generates data out of a given input which commonly
consists of random data or noise, though it can be anything else. On the other hand, the
discriminator checks whether the data generated by the generator matches in a certain way
the real data, returning a probability value between 0 and 1, where 0 means absolutely fake
and 1 absolutely real. A common architecture of a GAN network can be seen in the figure
2.18.

Figure 2.18: Schematic of a GAN architecture. Nicholson (2018)

Considering x as the real data input and z as the noise input, G(z, θ1) and D(x, θ2) rep-
resent the generator and discriminator models, where the first one’s role is mapping input
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noise variables z to the target ground truth x, and the second one outputs the probability
that its input data actually was taken from the real dataset. θi represents the weights of both
models. Mosquera (2018)

In one hand, the discriminator is trained to discern fake from real data, that is, its aim is
to maximize the function D(x) while minimizing D(G(z)). On the other hand, the generator
is trained to fool the discriminator, hence it tries to maximize the probability that a fake
data sample is classified as real, defined as D(G(z)). This competition to optimize opposite
loss functions is called the minimax game with value function V (G,D). It can be seen in the
equation 2.8. Goodfellow et al. (2014)

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.8)

where: pz(z) → Probability distribution of noise input data.
pdata(x) → Probability distribution of real input data.

Finally, since both models are based on neural networks, it is possible to use a back-
propagation gradient-based algorithm in order to train the GAN. This was previously ex-
plained in the section 2.1.5.





3 State of the art

SR isn’t new. Reconstructing a high resolution photo-realistic image from its low resolution
version has always been a classic problem in the CV field.

SR can be defined as a set of techniques aiming to estimate a high-resolution (HR) image
out of its low-resolution (LR) counterpart. This can be a really difficult task to achieve,
as in most practical applications all we have is a low resolution image as input, so that its
high-resolution version will be predicted.

Since the beginning of SR, several techniques and algorithms have been developed in order
to achieve a photo-realistic super-resolved image out of a low-resolution one. From the first
to the last advancement in this field, researchers have always sought to achieve even greater
results in terms of image quality and realism by improving high frequency detail preservation
from an image Huang et al. (2017) Sajjadi et al. (2017).

Literature shows that the process does not only improve the perceptual quality of the
image but it can contribute to recover information that is relevant for different computer
vision tasks. In the last few years deep learning based SR models have gained momentum.
A bunch of deep-learning models has been proposed to approach SR. The differences among
the methods employed are related to factors such as the architecture, the learning methods
or the loss function, among others Kim et al. (2016) Anwar et al. (2020) Wang et al. (2020).

The most remarkable technologies will be briefly described.

3.1 Interpolation
Interpolation is the earliest solution and also the most basic one. It consists in resizing a LR
image by a certain factor, such as 2x or 4x using a well-known interpolation algorithms like
bicubic, bilinear or nearest-neighbor. Sahu (2019)

3.2 SRCNN
With the great success of CNNs at that time, researchers came up with a SR implementation
by using a Fully Convolutional Neural Network (FCNN), that is, a regular CNN without a
fully-connected DFF neural network attached at the end of it, in order to predict an output
map given an input image. In a nutshell, FCNN is an image-to-image mapping engine, and
SRCNN is the first implementation of this technique. An example of this model is illustrated
in figure 3.2. Sahu (2019)

21
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Figure 3.1: Results of the three different interpolation algorithms. Kańska (2019)

As it can be seen, the first step is to perform a regular interpolation, which will result in
a HR version of the LR input. Then, the resulting image will be passed through a FCNN in
order to further improve the quality of the resulting image.

3.3 SRResNet
This technique is based in the use of a ResNet model (which was already explained in the
section 2.2.4.2), in order to perform the SR task. Here, the convolution layers are replaced
by residual blocks, which can greatly improve model accuracy. Furthermore, the addition of
sub-pixel convolution layers during the up-sampling phase rather than performing interpola-
tion operations improve the model speed and accuracy, as these layers are learnable by the
model. Sahu (2019)

3.4 Perceptual Loss
Using a SRResNet is an effective way to achieve a reasonably good-quality super-resolved
image. In fact, this method will be used in this work as a warm-up for the generator model.

However, its performance is limited if a MSE loss function is used, which is very common
in SR applications. This method is computed pixel-wise, that is, it computes the distance
between two corresponding pixels in the generated and the ground truth. Minimizing this
difference results in a lack of high-frequency texture details which leads to a overly-smoothed
perceptually not convincing images.

On the other hand, using perceptual loss greatly improves SR image quality as it is based in
the direct comparison between high-level feature representations of the generated and ground
truth images. In order to extract those features, a certain inner layer from a pre-trained CNN
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Figure 3.2: A SRCNN model example. Kańska (2019)

model is used as shown in figure 3.4. In summary, both images are passed through a pre-
trained network, which is usually a ResNet or a VGGnet, and then the Euclidean distance
between both feature maps is computed.

Eventually, this function sums all the squared errors and averages them, instead of summing
the absolute error between pixels as MSE does. Sahu (2019)
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Figure 3.3: A SRResNet model example. Kańska (2019)

Figure 3.4: An inner pooling layer is extracted in order to get the features from the generated image.



4 Objectives
As mentioned in the preface, one of the lines of work of the group I worked with, GI4E, is
the development of a gaze estimation system.

In the literature, there exist a great number of gaze estimation techniques as it is a tech-
nology in high demand nowadays. Many of the presented solutions are able to achieve an
accuracy of around half a degree. However, these techniques tend to require very sophisti-
cated and specific vision hardware, such as cameras constantly focusing the eye center, special
lightning, ultra-high resolution IR cameras, and so on. This comes with a considerable cost
with it, which in many cases can be inconvenient.

In contrast, as the name of the group itself stands, their technique aims to make gaze
interaction more affordable by developing low resolution techniques in order to make them
feasible to be used with images taken from a regular webcam.

Figure 4.1: Comparison between high resolution images taken with an IR camera and low resolution
images taken with a webcam.

With today’s advances in AI and computational performance, it is now more possible than
ever to achieve high-resolution-like results that would previously only be possible to get with
a (commonly expensive) hardware upgrade, by means of software-based solutions.

This project is a clear example of this, as its aim is to improve the existing tracking precision
using low resolution techniques by artificially increasing image resolution, which may enable
the possibility to apply more reliable high resolution techniques, all of this without changing
the image source.
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5 Methodology

This chapter details the hardware and software tools used during the development of this
project. Besides, the methodology followed throughout the project will also be presented.

5.1 Hardware Tools
The computer used for installing the software tools, developing the code, executing the train-
ing sessions, extracting the results and writing the report consists of a workstation holding
the following specifications:

• Central Processing Unit (CPU): Intel(R) Core(TM) i9-9900K @ 3.60GHz

• Motherboard (MB): MSI Z370 PC PRO

• Random Access Memory (RAM): 2x8GB 3200MHz memories in Dual-channel
configuration.

• Solid State Drive (SSD): Samsung EVO 970 1TB.

• GPU: NVIDIA GeForce RTX 2080.

As stated in section 2.2, the GPU is the key hardware component which makes possible
performing all the computations within CNNs in a reasonable amount of time. Hence, its
full specs will be listed in the table 5.1.

NVIDIA GeForce RTX 2080 Specs
Driver Version 445.87 (Windows) / 440.82 (Ubuntu)
CUDA Cores 2944
Tensor Cores 368
Memory Throughput 14.0 Gbps
Memory interface bus 256-bits
Memory bandwidth 448.00 GB/s
Core base clock 1815 MHz
Dedicated memory 8192 MB GDDR6

Table 5.1: Full specifications for the GPU used in this project.

5.2 Software Tools
In this section all the software tools used in this project will be described.

27
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5.2.1 OS
Two OSs have been used throughout the development of this project:

• Windows 10 Pro 1909: It is the most popular OS worldwide. It is simple, stable
and really easy to use. It has been used as a starting point for our work.

• Ubuntu 18.04.4 LTS: Although all software tools are available for Windows systems,
most of them have been developed with Linux systems in mind, so several tools which
are only available on Linux. This is the reason why Ubuntu was also used.

5.2.2 Python
Python is a high-level, interpreted, multi-platform, general-purpose programming language
whose philosophy emphasizes the readability of the code. It is multi-paradigm, since it is
object-oriented, and supports imperative and functional programming. It is managed by the
Python Software Foundation and has an open source license.

This language, along with Matlab, is one of the most popular programming languages in
the scientific and research field, mostly due to its comprehensive standard library and ease
to fast-prototyping. In fact, it is the most popular language in the AI and DL fields.

Throughout the project, several Python versions have been tested. However, the most used
are the 3.6.9 version for Ubuntu OS and the 3.7 version for Windows.

5.2.3 TensorFlow
TensorFlow is a free and open-source software library for machine learning. It disposes of
a comprehensive set of tools, libraries and resources allowing to easily implement, test and
deploy ML applications.

It has been developed by Google Brain team, which included this library within the devel-
opment of most of Google products and research projects. With the release of 2.0.0 version
in October 2019, TensorFlow has become simpler and easier to use.

As with Python, for testing purposes several nightly versions have been used throughout
the project. However, the most stable release used was 2.1.0 and 2.2.0 releases.

5.2.4 Keras
Keras is an open-source library written in Python capable of running on top of several ML
libraries such as TensorFlow, Microsoft Cognitive Toolkit or PlaidML.

TensorFlow implements it on its own core library since 2017 in order to make even easier
to design, develop and deploy ML applications by combining the easy graph capabilities from
Keras and the power and performance of TensorFlow.
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5.2.5 TensorBoard

TensorBoard provides the visualization and tooling needed for machine learning experimen-
tation:

• Tracking and visualizing metrics such as loss and accuracy

• Visualizing the model graph (ops and layers)

• Viewing histograms of weights, biases, or other tensors as they change over time

• Projecting embeddings to a lower dimensional spacey

• Displaying images, text, and audio data

• Profiling TensorFlow programs

5.2.6 CUDA

As mentioned above, GPUs can be used to compute intensive mathematical operations, such
as matrix multiplication and convolution, much faster than a CPU would do. CUDA refers to
a parallel computing platform including a compiler and a set of development tools created by
Nvidia that enables software engineers to use a CUDA-compatible GPU for general purpose
processing.

TensorFlow makes use of this library for accelerating DL model training and inference.
The version that has been used throughout the project is 10.1 version, which is compatible
with both TensorFlow 2.1.0 and 2.2.0 versions.

5.2.7 MATLAB

MATLAB (Matrix Laboratory) is a numerical computing environment providing a full Inte-
grated Development Environment (IDE) with a proprietary programming language called M
language. It is available for all the platforms currently available.

Its basic features include matrix manipulation, data and function representation, algorithm
development, creation of Graphic User Interface (GUI) and communication with programs
in other languages and with other hardware devices.

5.2.8 PyCharm

PyCharm is an IDE specifically designed for the Python language. It is developed by the
company JetBrains. It provides code analysis, debugger, and integration with version control
systems such as Git.

PyCharm has been used for developing the project in Windows OS. In Ubuntu it has been
discarded due to the need of getting a paid version in order to develop inside containers.
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5.2.9 VS Code
Visual Studio Code is a source code editor developed by Microsoft for Windows, Linux and
macOS. It includes support for debugging, integrated Git control, syntax highlighting, intel-
ligent code completion, snippets, and so on.

Although it is relatively new, it has become very popular and very well accepted within
the developer community due to its clean interface and comprehensive list of packages and
plugins which highly improve the coding experience.

VS Code has been used in Ubuntu along with the Python and Remote Development plugins.
The latter allows to develop inside a container with all the VS Code features, just as if it
where the host machine. The container concept will be detailed in the Docker section.

5.2.10 Docker
Installing TensorFlow can be confusing, especially if you also need to install the CUDA li-
braries for GPU support.
Docker is the easiest way to enable TensorFlow GPU support on Linux since only the NVIDIA
GPU driver is required on the host machine. That is, there is no need to install neither CUDA
or TensorFlow inside the host.

Docker is an open source project that automates the deployment of applications within
software containers. These containers can be seen as virtual machines isolated from the host
OS that contain all the environment, configuration and dependencies needed to run a given
application on any operating system, without the need for the host itself to have these re-
quired software installed. An explanatory diagram of how Docker works in our case can be
seen in the figure 5.1.

Figure 5.1: Schematic showing how Docker creates isolated OS instances with GPU capabilities. The
orange blocks can be seen as TensorFlow installation, in our case. NVIDIA (2020)

The Docker image used for the development of the project has the name tag tensorflow/tensorflow:nightly-



5.2. Software Tools 31

gpu, which contains the latest experimental release from TensorFlow and its dependencies.
However, the stable release version holding the tag tensorflow/tensorflow:latest-gpu should
also work.

In order to allow Docker to get access to the GPU, NVIDIA offers a toolkit called nvidia-
container-toolkit whose installation is mandatory. The following commands must be executed
in order to get it installed:

Code snippet 5.1: NVIDIA Container Toolkit installation.

1 # Add the package repositories
2 distribution=$(. /etc/os−release;echo $ID$VERSION_ID)
3 curl −s −L https://nvidia.github.io/nvidia−docker/gpgkey | sudo apt−key add −
4 curl −s −L https://nvidia.github.io/nvidia−docker/$distribution/nvidia−docker.list | sudo tee /etc/apt/←↩

↪→ sources.list.d/nvidia−docker.list
5
6 sudo apt−get update && sudo apt−get install −y nvidia−container−toolkit
7 sudo systemctl restart docker





6 Super-resolution Applied to Eye Image
using GANs

This chapter will dive into the work done in our project. Topics like the basis of the work it is
based on, models used, loss functions, training methods, experiments done and so on will be
explained in detail. In addition, each of these sections will be accompanied by its respective
code in Python in order to be as practical and explanatory as possible.

6.1 Introduction
As we have seen in the chapter 3, in recent years there have been many breakthroughs in
image super-resolution with the use of faster and deeper CNNs. However, all of them present
a lack of detail in the results when using big up-scaling factors due to the way in which the
error between the generated image and the ground truth image is calculated.

Therefore, this work is based on one of the latest and greatest advances in image super-
resolution: GAN networks applied to image SR using a perceptual loss function, or SRGAN.
All these concepts where explained in more detail in chapters 2.3 and 3. Ledig et al. (2017)

6.2 SRGAN model
As described in the section 2.3, a GAN consists of two main models, a generator and a
discriminator. During the training, both networks are competing between each other with
opposite objectives in a min-max game, the first one trying to fool the discriminator and
the other one trying to discern fake images from real ones. The minimax equation for this
specific case is shown in 6.1. Ledig et al. (2017)

min
θG

max
θD

EIHR∼ptrain(IHR)[logDθD(I
HR)] + EILR∼pG(ILR)[log(1−DθD(GθG(I

LR)))] (6.1)

where: IHR → High resolution image set.
ILR → Low resolution image set.
ptrain(I

HR) → Probability distribution of train HR input images.
pG(I

LR) → Probability distribution of LR input images (can be considered as
the noise input).

In this case, a LR image is obtained by applying a Gaussian filter to the ground truth image
and subsequently down-sampling it by a factor k. That is, LR image’s shape is HxWxC and

33
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the HR and SR images’ shape is kHxkWxC. Thus, the generator and the discriminator will
have the following roles:

• Generator: Given a LR image as input, it estimates its corresponding HR version by
generating a SR image as output.

• Discriminator: It tries to discern real images from fake SR ones.
In this section each of these models will be explained and its architecture will be presented.

6.2.1 Generator architecture
The generator model used in this work is based on a fully-convolutional ResNet composed
by 16 residual blocks. It is optimized to achieve an upscaling factor of 4x. Its architecture is
presented in the figure 6.1, in which k corresponds to the kernel size (k x k), n to the number
of channels and s corresponds to the stride (s x s). Ledig et al. (2017)

Figure 6.1: Generator architecture. Ledig et al. (2017)

6.2.2 Discriminator architecture
The discriminator model is based on a deep CNN connected to a DFF fully-connected layer
at the end with a sigmoid activation function so that it returns a float value between 0 and
1, where 0 means completely fake and 1 means completely real. Its architecture is shown in
the figure 6.2, having the same notation as the figure 6.1. Ledig et al. (2017)

Figure 6.2: Discriminator architecture. Ledig et al. (2017)
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6.2.3 Python implementation

The actual implementation of both models will be described below. As noted in the chapter
5, this project was developed using the TensorFlow library and Keras graph design notation.

Within the file Network.py both Generator and Discriminator architecture models can be
found. Each one is implemented as a class object holding two methods: a hyper-parameter
initialization method and a build method returning the constructed model based on its hyper-
parameters.

6.2.3.1 Generator

Below can be found some of the most relevant parts of the Generator model implementation.

Code snippet 6.1: Generator’s hyperparameter initialization method.

1 class Generator(object):
2 def __init__(self, data_format, axis, shared_axis, input_shape=None):
3 self.shared_axis = shared_axis
4 self.axis = axis
5 self.B = 16
6 self.data_format = data_format
7 self.input_shape = input_shape

The Generator’s build method is described below. The model is built layer by layer using
the layer objects from Keras.

Code snippet 6.2: Generator model construction with the build() method.

1 def build(self):
2 # Input shape selection depending on if data_format is ’channels_last’ or ’channels_first’.
3 # If input_shape is None, the Generator won’t have any defined input shape.
4 if self.input_shape is None:
5 input_generator = Input(shape=(None, None, 3) if self.data_format == ’channels_last’ else (3, None←↩

↪→ , None))
6 else:
7 input_generator = Input(shape=self.input_shape)
8
9 x = Conv2D(filters=64, kernel_size=(9, 9),

10 strides=(1, 1), padding=’same’,
11 activation=None)(input_generator)
12
13 x_input_res_block = PReLU(alpha_initializer=’zeros’,
14 alpha_regularizer=None,
15 alpha_constraint=None,
16 shared_axes=self.shared_axis)(x)
17
18 x = x_input_res_block
19
20 # Add B = 16 residual blocks.
21 for _ in range(self.B):
22 x = res_block(x, self.axis, self.shared_axis)
23
24 x = Conv2D(64, kernel_size=(3, 3), strides=(1, 1), padding=’same’, activation=None, use_bias=False)←↩

↪→ (x)
25 x = BatchNormalization(axis=self.axis)(x)
26
27 # Adding skipped connections.
28 x = add([x, x_input_res_block])
29
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30 # Upsampling blocks.
31 x = up_block(x, self.shared_axis)
32 x = up_block(x, self.shared_axis)
33
34 # Output of the generator. Convolution layer with tanh activation ([−1, 1] image values).
35 output_generator = Conv2D(3, kernel_size=(9, 9),
36 strides=(1, 1), activation=’tanh’,
37 use_bias=False, padding=’same’)(x)
38
39 # Model creation.
40 generator = Model(inputs=input_generator, outputs=output_generator, name=”Generator”)
41
42 return generator

The res_block() and up_block() functions are implemented in the following code:

Code snippet 6.3: Definition of generator’s res_block() and up_block() methods.

1 # Residual block.
2 def res_block(inputs, axis, shared_axis):
3 x = Conv2D(64, kernel_size=(3, 3), strides=(1, 1), padding=’same’, activation=None,
4 use_bias=False)(inputs)
5 x = BatchNormalization(axis=axis)(x)
6 x = PReLU(alpha_initializer=’zeros’, alpha_regularizer=None, alpha_constraint=None,
7 shared_axes=shared_axis)(x)
8 x = Conv2D(64, kernel_size=(3, 3), strides=(1, 1), padding=’same’, activation=None, use_bias=False)(x)
9 x = BatchNormalization(axis=axis)(x)

10
11 return add([x, inputs])
12
13
14 # Upsampling block.
15 def up_block(x, shared_axis):
16 x = Conv2D(256, kernel_size=(3, 3), strides=(1, 1), padding=’same’, activation=None,
17 use_bias=False)(x)
18 x = UpSampling2D(size=(2, 2))(x)
19 x = PReLU(alpha_initializer=’zeros’, alpha_regularizer=None, alpha_constraint=None,
20 shared_axes=shared_axis)(x)
21 return x

6.2.3.2 Discriminator

As for the Generator, the __init__() and build() methods of the Discriminator are described
below.

Code snippet 6.4: Discriminator’s hyperparameter initialization method.

1 class Discriminator(object):
2 def __init__(self, input_shape, data_format, axis):
3 self.input_shape = input_shape
4 self.data_format = data_format
5 self.axis = axis

Code snippet 6.5: Discriminator model construction with the build() method.

1 def build(self):
2 input_discriminator = Input(shape=self.input_shape)
3
4 x = Conv2D(64, kernel_size=(3, 3), strides=(1, 1), use_bias=False,
5 activation=None, padding=’same’)(input_discriminator)
6 x = LeakyReLU(alpha=0.2)(x)
7
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8 x = conv_block(x, filters=64, kernel_size=(4, 4), strides=(2, 2), axis=self.axis)
9 x = conv_block(x, filters=128, kernel_size=(3, 3), strides=(1, 1), axis=self.axis)

10 x = conv_block(x, filters=128, kernel_size=(4, 4), strides=(2, 2), axis=self.axis)
11 x = conv_block(x, filters=256, kernel_size=(3, 3), strides=(1, 1), axis=self.axis)
12 x = conv_block(x, filters=256, kernel_size=(4, 4), strides=(2, 2), axis=self.axis)
13 x = conv_block(x, filters=512, kernel_size=(3, 3), strides=(1, 1), axis=self.axis)
14 x = conv_block(x, filters=512, kernel_size=(4, 4), strides=(2, 2), axis=self.axis)
15
16 x = Flatten(data_format=self.data_format)(x)
17 x = Dense(1024, activation=None)(x)
18 x = LeakyReLU(alpha=0.2)(x)
19
20 output_discriminator = Dense(1, activation=’sigmoid’)(x)
21
22 discriminator_model = Model(inputs=input_discriminator, outputs=output_discriminator, name=”←↩

↪→ Discriminator”)
23
24 return discriminator_model

The conv_block() is implemented in the following code:

Code snippet 6.6: Definition of discriminator’s conv_block() method.

1 # Convolutional block.
2 def conv_block(x, filters, kernel_size, strides, axis):
3 x = Conv2D(filters, kernel_size=kernel_size, strides=strides,
4 activation=None, use_bias=False, padding=’same’)(x)
5 x = BatchNormalization(axis=axis)(x)
6 x = LeakyReLU(alpha=0.2)(x)
7 return x

6.2.3.3 SRGAN

Once defined the architecture of both models, it is time to put the pieces together in order
to create the full SRGAN model. This process is shown below.

Code snippet 6.7: SRGAN model construction.

1 def get_gan_model(discriminator_gan, generator_gan, input_shape):
2 discriminator_gan.trainable = False
3
4 input_gan = Input(shape=input_shape, name=”SRGAN_Input”)
5 output_generator = generator_gan(input_gan)
6 output_discriminator = discriminator_gan(output_generator)
7
8 gan_model = Model(inputs=input_gan, outputs=[output_generator, output_discriminator], name=”←↩

↪→ SRGAN”)
9

10 discriminator_gan.trainable = True
11
12 return gan_model

Here, the discriminator is set to not trainable while building the SRGAN model as it will
be trained separately from the generator in an alternate manner during the loop, as it uses
a different loss function to update its weights. This will be explained with more detail later.
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6.3 Loss function
This is one of the key elements of this SR approach and is of critical importance for the
generator performance.

With SRGAN, authors formulate the perceptual loss function as a weighted sum of a
content loss (lSRX ) and an adversarial loss component lSRGen. This resulting loss function is
defined in the equation 6.2. Ledig et al. (2017)

lSR = lSRX︸︷︷︸
ContentLoss

+ 10−3lSRGen︸ ︷︷ ︸
AdversarialLoss︸ ︷︷ ︸

PerceptualLoss

(6.2)

The reasons of using a 10−3 factor for the adversarial loss are not explained by the authors.
However, giving more relevance to the content loss rather than to the adversarial loss, but
still keeping it, can allow the generator to focus in improving the content similarity between
the generated and ground truth images whilst still forcing it to improve its results on each
iteration. Ledig et al. (2017)

6.3.1 Content Loss
In the equation 6.2, lSRX holds an X as the authors present two possible content loss func-
tions Ledig et al. (2017):

• MSE loss (lSRMSE): As noted in the chapter 3, the most of the state-of-the-art models
focus in minimizing the MSE and maximizing the PSNR, both based on pixel-wise
difference. However, even if the PSNR values obtained are high, the resulting images
are not perceptually convincing.

ISRMSE =
1

r2WH

rW∑
x=1

rH∑
y=1

(IHR
x,y −GθG(I

LR)x,y)
2 (6.3)

• VGG loss (lSRV GG): As explained in the chapter 3, one possible solution to the blurry
generated images obtained when using pixel-wise MSE-based loss functions is the use
of a perceptual loss function based on computing the Euclidean distance between the
high-level feature representations of the generated and ground truth images. Those
high-level features are obtained by passing both ground truth and generated images
through a pre-trained CNN. In this case, a 19-layer VGG loss was used based on its
ReLU activation layers, that is, taking the output features of a certain convolutional
hidden layer. This is the best option as it gives the best results from both solutions
and so it is the chosen one in this project.

ISRV GG/i,j =
1

Wi,jHi,j

Wi,j∑
x=1

Hi,j∑
y=1

(ϕi,j(I
HR)x,y − ϕi,j(GθG(I

LR))x,y)
2 (6.4)
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6.3.2 Adversarial Loss
The remaining element of the perceptual function lSRGen consists on the generative loss based
on the probabilities of the discriminator over the samples. As described in section 2.3, the
discriminator encourages the generator to improve on every iteration with the objective of
fooling it. The loss function is defined by the equation 6.5, where DθD(GθG(I

LR)) is the
probability that the generated SR image GθG(I

LR) is actually a real one. Ledig et al. (2017)

lSRGen =

N∑
N=0

− logDθD(GθG(I
LR)) (6.5)

6.4 Dataset description
Once the model and the loss functions are determined, the dataset to be used in the training
process must be selected. In the case of GAN training, it is specially important to dispose of
a large image dataset, as the quality of the results obtained after the training session will be
highly dependent on the amount and variety of cases the model learns during the process.

The dataset used in this work consists on a set of artificial eye images called U2Eyes Porta
et al. (2019), which was developed and generated by the GI4E team. It includes 1000 users
at a rate of 5875 images per user arranged in a three-level directory tree structure as shown
in the figure 6.3. Due to space limitations as each user folder requires approximately 2.5 GB
of space, 20 different users have been chosen in order to train our model, making a total of
117500 images. Porta et al. (2019)

Figure 6.3: Folders and files tree structure.

Each user was generated using a PCA model offered by UnityEyes containing 20 skin-
textures and 5 eye-textures which were uniformly distributed across all users. Some examples
can be seen in the figure 6.4. Wood et al. (2016)

The variability of the data not only resides on the eye and skin textures, but also on the
position of the user head pose and number of look-at-points. Porta et al. (2019)
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Figure 6.4: Images samples extracted from the dataset. Porta et al. (2019)

For each user, 125 head poses combining head center position and face orientation where
modeled. These positions are distributed uniformly into five planes at different distances from
the camera focus. Additionally, in order to avoid over-fitting, these points are randomized
adding some uniform noise to them. This is shown in figure 6.5. Porta et al. (2019)

Figure 6.5: The 125 head positions following frustum distribution with five distances from the camera
(up) and with added noise (down). Porta et al. (2019)
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Figure 6.6: Image examples with different poses. Porta et al. (2019)

Moreover, for each head pose two gazing grids are modeled: the first one containing 15
points uniformly spread in a 220x220mm squared surface, and the second one containing 32
points not uniformly spread in the same surface. This is illustrated in the figure 6.7. Porta
et al. (2019)

(a) Grid pattern of 15 and 32 points for
each head pose.

(b) Point distribution for the 32 look-at-
points grid.

Figure 6.7: 15 and 32 grid each user gazes for each pose. Porta et al. (2019)
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6.5 SR metrics

The evaluation of SR techniques is not straightforward. Several efforts have been carried out
in order to tackle the problem of assessing the performance of SR methods. Conclusions show
that there is not a single criteria that can be generally applicable for every SR application
domain. Among the existing general purpose metrics we can differentiate between numeric
values such as PSNR Horé & Ziou (2010) or SSIM Wang et al. (2004) and more qualitative
measures such as Mean Option Score (MOS) based on human raters opinions Streijl et al.
(2016).

Alternatively, task-based evaluation permits to measure the performance of the reconstruc-
tion SR method by comparing the task results using original and reconstructed HR images.
The impact produced by the SR generated images can be estimated according to the perfor-
mance variation of our task Wang et al. (2020)

In this work, both, general purpose and task-based metrics have been used.

6.5.1 General purpose metrics

• PSNR: It is one of the most popular merit function. Given an image I of size k and
its reconstruction named as Î, PSNR is defined as:

PSNR = 10 · log10(
L2

1
k

∑k
i=1(I(i)− Î(i))2

) (6.6)

where L equals to 255 in general cases using 8-bit representations. Since the PSNR is
only related to the pixel-level error and does not retrieve any performance value about
visual perception, it often leads to poor performance in real scenes. However, despite
of its low accuracy, due to the lack of appropriate perceptual metrics, it is the most
widely employed method in order to compare SR works Horé & Ziou (2010).

• SSIM: It uses knowledge about human visual system in order to propose a quantifiable
comparison tool. It is based on concepts such as luminance, contrast and structural
information. Given an image I and its reconstruction named as Î, SSIM is defined as:

SSIM(I, Î) =
(2µIµÎ + c1) · (2σIÎ + c2)

(µ2
I + µ2

Î
+ c1) · (σ2

I + σ2
Î
+ c2)

(6.7)

where µX and σX are the average and the standard deviation of X respectively and
σXY is the covariance between X and Y images. On the other hand, c1 and c2 are
constants that depend on the dynamic range of the images that permit to account for
the cases with weak denominator Wang et al. (2004).

Due to the fact that SSIM evaluates the reconstruction quality considering human
visual system performance it retrieves an improved perceptual assessment.
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6.5.2 Task-based evaluation: gaze estimation
In order to assess the performance of our model, reconstructed images will be used as input
to a gaze estimation model that has previously been tested on the original images. The
architecture of this network consists on a ResNet-18 He et al. (2016) as backbone, followed
by a Global Average Pooling layer and three Fully-connected (FC) layers. The choice of
the ResNet-18 as the core of our architecture is supported by its performance over Imagenet
Deng et al. (2009) classification task while being simple enough to make retraining steps
feasible in both, time and hardware requirements.

Results obtained over Imagenet ensure that the network is able to extract meaningful
features from images. The three fully connected layers at the top of the network make use
of these features to compute the X and Y coordinates of the look-at-points as it can be seen
in figure 6.8. To avoid excessive over-fitting, L2 regularization with a regularization factor of
0.001, batch normalization (BN) after the fully connected layers, and a dropout layer with
a dropout value of 0.5 were used. Additionally, Gaussian noise with a standard deviation of
0.2 was added to the input images to avoid over-fitting too.

ResNet-18

Global Avg
Pooling

512

FC + BN

256

FC + BN

128

FC + BN + Dropout

x
y

2

FC

Gaussian Noise

Figure 6.8: Architecture proposed. The backbone consists in a ResNet-18 to extract meaningful
features from the image. Then, those features are fed into fully connected regression
network to obtain the final gaze components. He et al. (2016)

The model is trained over the synthetic dataset U2Eyes using original images. The goal
with this step is to bring closer the domain in which the model is trained to the final envi-
ronment. The models are trained over 96 epochs, using a batch size of 128 images. The loss
function employed is the Euclidean distance between the estimated and the real look-at-point,
represented by the following equation:

Loss :=
1

N

N∑
i=1

∥p− p̂∥2, (6.8)

where p is the real look-at-point p(x, y), p̂ is the estimated look-at-point, and N is the
number of images per batch. Stochastic Gradient Descent (SGD) with momentum=0.95
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using Nesterov momentum is employed to optimize the loss function. The learning rate
schedule followed is based on the Cyclic learning rate schedule Smith (2017) in a triangular
manner for the first 80 epochs, fluctuating among a max learning rate value of 3e−2 and a
min learning rate of 3e−3, and a linear decrease for the remaining 16 epochs from 3e−3 to
3e−4. Garde et al. (2020).

6.5.3 Task-based evaluation: iris/pupil center and contour points estimation
using an SDM

The GI4E team is also developing a semiautomatic tool for annotation of eye tracking images
based on SDM Larumbe-Bergera et al. (2019). In order to introduce another testing to our
SR model, some generated images extracted for each user from the U2Eye dataset where
passed through this algorithm, and its results where stored and compared where compared
with the ones obtained using original images using some Matlab scripts. In the figure 6.9 the
algorithm is applied to an image from GI4E.

Figure 6.9: The cropped ROI is represented in which the points resulting from the segmentation are
plotted in red. Porta et al. (2019)

6.6 Experiments

As mentioned in the dataset description section, the U2Eyes dataset contains 20 different
head shapes and skin textures. However, only 5 eye textures are available. In order to
evaluate our model, a Leave-One-Out strategy has been agreed considering the five textures
separately. In other words, five experiments have been carried out in which all the users
having the same texture have been excluded from the training for each of the training stages.

Regarding the gaze estimation model, the same strategy was used in order to assure the
minimal overlapping between training and testing stages. The users were classified according
to their eye texture following the same grouping carried out for SR model training. Thus, five
independent gaze estimation models were trained for each one of the five testing textures.
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6.6.1 Data pre-processing

The purpose of the SRGAN model is to scale an input image resolution by a factor of 4,
which corresponds to a 16x increase in the number of pixels. The U2Eyes dataset used in
our experiments has been processed in order to normalize the size of the images employed
by cropping the eye region of interest and applying a black padding until the images reach a
common shape resolution of 388x84 pixels.

However, the black frames used to pad the image to make it reach a normalized resolution
of 388x84 pixels, as it can be seen in figure 6.4, made the generator produce some artifacts
affecting ourROI. This effect is shown in figure 6.10.

Figure 6.10: The generated image presents strange artifacts on the image’s sides.

This is why we decided to fill those black frames by replicating the image borders until the
image is fully covered. This can be seen in figure 6.11b.

(a) Gaze image with black frames. (b) Gaze image with filled frames.

Figure 6.11: Comparison between eye images with black frames and with filled frames.

6.6.2 Training the model

This section will detail the complete training process, starting with the basis of the process,
parameters used and the pre-processing applied to the input data. As it was done in previous
sections, every explanation will be accompanied by its respective Python code snippet.

Our training method is based on the work of Ledig et al. (2017), in which they identified
two different stages within the training process: Pre-training the generator with MSE loss
function and then performing the GAN training.
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6.6.2.1 MSE-based pre-training

This stage consists in performing an initial training of the generator using a MSE-based loss
function before training the model with the GAN method.

According to the authors, this pre-training process helps the generator reach a better result
during the GAN training phase, as it avoids undesired local optima and assures the conver-
gence of the model. In our case, this step is of high importance, as we were unable to make
the GAN training converge to a good solution without pre-training the generator first. Ledig
et al. (2017)

The most important parts of the process will be illustrated with code below. How the
dataset is pre-processed and introduced into the model during the training process will be
explained in a separate section.

In first place, as in the paper, for optimization we used Adam with β1 = 0.9 with a learning
rate of 10−4. The SRResNet was built with an MSE loss function. Ledig et al. (2017)

Code snippet 6.8: Optimizer and Generator construction.

1 common_optimizer = tf.keras.optimizers.Adam(lr=1e−4, beta_1=0.9)
2
3 generator = Network.Generator(data_format=data_format, axis=axis, shared_axis=shared_axis).build()
4 generator.compile(loss=’mse’, optimizer=common_optimizer)

In order to save the best model weights during training, some callbacks where added.
Moreover, an EarlyStopping callback was also defined in order to stop the training in case
the loss value do not fall by at least 0.001 in two consecutive epochs. Finally, a TensorBoard
callback has been introduced in order to save the session events, allowing us to analyze the
training session and identify when the loss function reaches a plateau state1, and thus avoid
over-fitting.

Code snippet 6.9: Callbacks construction.

1 checkpoint = ModelCheckpoint(
2 filepath=’./outputs/checkpoints/SRResNet−MSE/weights.{’’epoch:02d}−{’
3 ’loss:.4f}.hdf5’,
4 monitor=’loss’,
5 save_weights_only=True,
6 save_freq=2000,
7 verbose=2)
8
9 best_checkpoint = ModelCheckpoint(

10 filepath=’./outputs/checkpoints/SRResNet−MSE/best_weights.hdf5’,
11 monitor=’loss’,
12 save_weights_only=True,
13 save_best_only=True,
14 save_freq=2000,
15 verbose=2)
16
17 early_stop = EarlyStopping(monitor=’loss’, min_delta=0.001, patience=2, verbose=1, mode=’min’)
18
19 tensorboard_callback = TensorBoard(log_dir=’logs/’,

1A state in which the model is not improving its loss values, resulting in an horizontal line in the loss graphical
representation.
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20 histogram_freq=1,
21 update_freq=100,
22 profile_batch=’200,250’
23 )
24
25 callbacks = [tensorboard_callback, checkpoint, best_checkpoint, early_stop]

Finally, the generator is trained for 3 epochs with a batch size of 6, as this value was the limit
for our 8GB VRAM GPU. In each epoch, all the images of the dataset are covered, that is,
the steps_per_epoch paramater is equal to the number of images in the dataset divided by
the batch size.

Code snippet 6.10: Generator training method.

1 history = generator.fit(x=train_ds, epochs=epochs, steps_per_epoch=steps_per_epoch, callbacks=callbacks)

The epoch value is taken from the analysis of the loss value graph shown in the figure 6.12.

Figure 6.12: Loss value graph per batch processed (up). Loss value graph per epoch (down), where
orange corresponds to training values and blue corresponds to validation values.

As it can be seen, from batch 20000 and 25000 (with batch size of 6) and epoch 1 to 2,
the model reaches a plateau state. Therefore, there is no point in training more than 2 or
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3 epochs using a batch size of 6 and a. This can be explained due to the great similarity
between every image in the dataset.

When a plateau state is reached, it is very common in DFF neural networks to retrain
the model using the saved weights from the previous session, but lowering the learning rate
by a certain factor, with the aim of fine-tuning the model weights. Hence, the generator
was trained again with a learning rate of 10−5 for another 3 epochs. However, probably due
to the similarity between images, the loss value didn’t improve as expected and there is no
noticeable difference in the results.

6.6.2.2 SRGAN training

Once the pre-training phase is accomplished, the generator will be trained using the GAN
method.

As mentioned in the Loss Function section, specifically in the equation 6.2, the loss function
used in the SRGAN model is a weighted combination of two losses: a content loss, denoted
as lSRX , and an adversarial loss (lSRGen).

It has also been explained that the content loss can be a MSE-based loss (lSRM SE) or a
perceptual loss based on a certain layer of a VGGnet CNN, noted as lSRV GG. The authors of
the paper Ledig et al. (2017) performed some experiments by varying the activation layer to
be set as the output of our features extractor. They identified two different losses:

• SRGAN-VGG22 (lSRV GG/2.2): A loss defined on lower-level features. The output layer
holding the features corresponds to the 2nd maxpooling layer of the 2nd convolution
layer (after activation). In other words, ϕ2,2 is used inside the formula 6.4.

• SRGAN-VGG54 (lSRV GG/5.4): A loss defined on higher-level features from deeper net-
work layers which are more focused on the content of images. Following the same idea
as in the first point, the used output layer corresponds to the 5th maxpooling layer of
the 4th convolution layer, that is, ϕ5,4 is used inside the formula 6.4.

In their work, the authors tested the performance of the model using each of the presented
content losses, including without the adversarial component. According to their results, the
loss function combining an adversarial loss and a lSRV GG/5.4 function gave the best results.
Hence, this is the configuration used for our work. Ledig et al. (2017)

As for the previous stage, the most important parts of the process will be illustrated with
code below. As the discriminator needs to be trained apart from the generator, a custom
loop was required in order to train the full SRGAN model.

Just as in the pre-training phase, for optimization we used Adam with β1 = 0.9 with a
learning rate of 10−4. As it can be seen in the code snippet below, both generator and dis-
criminator are built. The first one is compiled using a binary_crossentropy loss function,
which is convenient for output activation float values between 0 and 1. Ledig et al. (2017)
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Moreover, the Generator is loaded with the pre-trained weights obtained from the previous
stage. Besides, it is not matched to a loss function, as it will be trained using the SRGAN
loss function which will be built later on.

Code snippet 6.11: Discriminator, generator and feature extractor construction.

1 # Discriminator construction.
2 discriminator = Network.Discriminator(input_shape=target_shape, axis=axis, data_format=data_format).←↩

↪→ build()
3 discriminator.compile(loss=’binary_crossentropy’, optimizer=common_optimizer)
4
5 # Generator construction.
6 generator = Network.Generator(data_format=data_format,
7 axis=axis, shared_axis=shared_axis).build()
8 generator.load_weights(’./saved_weights/SRResNet−MSE/best_weights.hdf5’)
9

10 # Feature extractor construction.
11 features_extractor = build_vgg(target_shape)

In this code, the feature extractor is also built. Its function implementation is shown in
code snippet below.

Code snippet 6.12: Feature extractor construction based on a pre-trained VGG19 model.

1 def build_vgg(target_shape_vgg):
2 vgg19 = VGG19(include_top=False, input_shape=target_shape_vgg, weights=’imagenet’)
3
4 vgg19.trainable = False
5 for layer in vgg19.layers:
6 layer.trainable = False
7
8 vgg_model = Model(inputs=vgg19.input, outputs=vgg19.layers[20].output, name=”VGG”)
9

10 return vgg_model

As explained before, it is a 19-layer VGGnet CNN pre-trained with the Imagenet dataset.
The 20th position of the layer array is used as the ouput of our feature extractor, as it corre-
sponds to the 5th maxpooling layer of the 4th convolution. In case we want to get a VGG22,
the output layer to be used corresponds to the 9th position of the array. Ledig et al. (2017)

To continue, the complete SRGAN model is built from the parts we have already defined.

Code snippet 6.13: Building and compiling the SRGAN model.

1 # Building and compiling the SRGAN
2 gan = get_gan_model(discriminator_gan=discriminator, generator_gan=generator, input_shape=shape)
3
4 gan.compile(loss=[vgg_loss, ’binary_crossentropy’], loss_weights=[1, 1e−3],
5 optimizer=common_optimizer)

As it can be noted above, the SRGAN model is compiled with the loss function defined in
the equation 6.2, where the vgg_loss corresponds to the content loss lSRV GG/5.4, and the bi-
nary_crossentropy corresponds to the adversarial loss function.

Note that the compile() method allows to set a weighted sum of loss functions by filling
the loss_weights parameter with an array containing the corresponding scaling factors, which
were extracted from the equation 6.2.
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Code snippet 6.14: Building the content loss function using the feature extractor.

1 def vgg_loss(y_true, y_pred):
2 return 0.006 ∗ K.mean(K.square(features_extractor(preprocess_vgg(y_pred)) −
3 features_extractor(preprocess_vgg(y_true))),
4 axis=−1)

In the code snippet above, the content loss function lSRV GG/5.4 is defined using the fea-
ture_extractor previously defined. As described in equation 6.4, the loss function is based
on the Euclidean distance between the features extracted from the generated and the real
images. The 0.006 factor applied to the formula, according to the authors, corresponds to a
1/12.75 scaling factor applied to the content loss function lSRV GG in order to obtain VGG loss
values of a scale comparable to using a lSRMSE content loss. Ledig et al. (2017)

Finally, the full SRGAN is trained in a custom loop for another 3 epochs with a batch size
of 6 images. Within this loop, the discriminator is trained separately from the generator. In
each epoch, all the images of the dataset are covered, that is, the steps_per_epoch parameter
is equal to the number of images in the dataset divided by the batch size.

In the first stage of this process, the discriminator is trained with fake and real images
separately. A random noise is added to the labels in order to force the model to improve its
decisions. This process can be seen in the code snippet below:

Code snippet 6.15: Discriminator training process.

1 # The discriminator’s trainable state is set to true in order to be able to update its weights during this stage.
2 discriminator.trainable = True
3
4 # Every iteration a batch of 6 \gls{lr} and \gls{hr} is retrieved.
5 lr_images, hr_images = next(iterator)
6
7 # The actual state of the generator is used in order to generate a batch of images which will be fed to the ←↩

↪→ discriminator.
8 sr_images = generator.predict(lr_images)
9

10 # Generate batch of fake and real labels. They are randomized in order to force the discriminator to improve ←↩
↪→ its decision−making.

11 real_labels = np.random.uniform(0.7, 1.0, size=batch_size).astype(np.float32)
12 fake_labels = np.random.uniform(0.0, 0.3, size=batch_size).astype(np.float32)
13
14 # The resulting loss values are stored in two arrays.
15 d_loss_real = discriminator.train_on_batch(hr_images, real_labels)
16 d_losses_real.append(d_loss_real)
17
18 d_loss_fake = discriminator.train_on_batch(sr_images, fake_labels)
19 d_losses_fake.append(d_loss_fake)

Once the discriminator’s weights are updated, in the second stage of the process the gen-
erator will be trained.

Code snippet 6.16: Generator training process with SRGAN method.

1 # The discriminator’s weights are blocked again so that its weights cannot be updated while training the ←↩
↪→ generator.

2 discriminator.trainable = False
3



6.6. Experiments 51

4 # A different batch of 6 \gls{lr} and \gls{hr} is retrieved.
5 lr_images, hr_images = next(iterator)
6
7 opposite_labels = np.ones((batch_size, 1)).astype(np.float32)
8
9 # Train the generator network by using the \gls{hr} images and the labels.

10 g_loss = gan.train_on_batch(lr_images, [hr_images, opposite_labels])
11 g_losses_mse_vgg.append(g_loss[0])





7 Results

In figure 7.1 random samples obtained from our model are shown. The fist row shows scaled
versions of the LR images used as input to the SRGAN model (the size has been increased
in order to make it comparable). In the second row original images are shown against which
the rest of the images should be compared to. In the third and fourth rows SRGAN and
SRResNet-MSE generated images are provided. SRGAN is the final result of our model and
the one to be compared with the original one, however, SRResNet-MSE is included for the
sake of completeness. Finally, in the last row the result of a bicubic standard interpolation
applied to the LR image is provided.

Figure 7.1: Examples of generated images.

From the figures it can be appreciated the ability of our SRGAN model to reconstruct the
image and to recover details that are missing in the LR eye version. It can be visually appre-
ciated that SRGAN images present the highest similarity when compared with the original
ones.

As mentioned in section 6.5, two types of metrics will be used for comparison. Regarding
PSNR and SSIM the following values are shown in table 7.1:

From this table can be noted that the PSNR for both SRResNet-MSE and SRGAN (pro-
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PSNR (dB) SSIM

MSE-image 32.93±2.52 0.86±0.05
SRGAN-image 27.67±1.75 0.83±0.05

Table 7.1: PSNR and SSIM merit figure values forSR images.

posed model) is comparable but the SR image obtained from MSE is not perceptually con-
vincing. Hence, the following two conclusions can be obtained:

• The measurement indices PSNR and SSIM do not capture the perceptually relevant
differences in images.

• The standard SR algorithms such as bicubic interpolation are unable to produce quality
super resolved images with high frequency details.

The remarkable metric values obtained by the SRResNet-MSE are not surprising since
the minimization of the MSE between the original and reconstructed images results in the
maximization of the PSNR. This conclusion is not new and resembles to a large extent the
findings provided by the literature Ledig et al. (2017). PSNR applied to SRResNet-MSE
results, is not able to capture texture-rich features, consequently, high values of PSNR do not
assure a perceptually better outcome. This probably justifies the emergence of MOS metrics
in the field.

Users’ images belonging to each one of the five textures were used as input to the texture-
specific gaze estimation model. The gaze estimation accuracy obtained by the SRGAN and
SRResNet-MSE models was compared with the one provided by the original images. The
comparison is shown in figure 7.2.

As shown in the figure, the impact of using SRGAN images is negligible compared to the
values obtained by the original images, which means that the information lost by the recon-
struction procedure is not meaningful in terms of gaze estimation. Furthermore, according
to the results the SRResNet-MSE images provide fully comparable results leading to the
conclusion that high frequency details do not contribute to improve the model accuracy of
the gaze estimation process.

Regarding iris/pupil center estimation, the SDM algorithm ( Larumbe-Bergera et al. (2019))
has been applied to some images taken from the 20 users within the U2Eyes dataset. An
accumulated error between the ground truth and the points obtained from original and gen-
erated images is shown in figure 7.3.

As it can be noted, approximately 80% of images tested present a normalized error of less
or equal than 0.01 for both, original and SRGAN generated images. Furthermore, the curves
are pretty close between each other, which proves once again the effectiveness of the SR model
in giving original-like results. On the other hand, MSE generated and Bicubic images give
worse results in terms of iris/pupil center estimation.
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Figure 7.2: Gaze estimation errors provided by the model when using original, SRResNet-MSE and
SRGAN images as input. Train, validation and test results are provided.

The SRGAN model is not useful only for reducing the computing performance require-
ments of the image acquisition process, as it can also be used to improve the image quality
by increasing its resolution by a factor of 4. That is, when introducing an image with a size
of 388x84 pixels to the generator, an enhanced image of size 1552x336 will be retrieved as
output. Furthermore, the SRGAN can be employed to scale any image, however, the perfor-
mance of the model varies according to the computer vision domain it is applied to.

The potential of having a domain-specific SR model permits to specialize the network in
a specialized research field, i.e. eye tracking. In this respect, the model proposed in our
work permits to reconstruct eye images which are not necessarily coming from the training
dataset. As it can be noted in figure 7.4, the high quality results of applying SRGAN to real
eye images are shown. A single eye from an enhanced 1552x336 size image is shown in order
to highlight the improvement.

In contrast, the result of applying the model to other everyday images is shown in figure
7.5. The model achieves to increase the resolution of the image and to smooth the contours
as for the eye images. However, the colors of the images are altered and the quality of the
image is lower compared to the eyes from a perceptual point of view.
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(a) SRGAN

(b) MSE

(c) Bicubic

Figure 7.3: Accumulated error comparison between original and generated images for the User 18.
The error is normalized using the distance between both pupil centers points. Black line
corresponds to results obtained using original images and the red line to the generated
images results.
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Figure 7.4: Binocular real eye 388x84 images are used as input to the SRGAN (upper row, cropped
to single eye). The output of the network is an enhanced eye image of size 1552x336
(lower row, cropped to single eye). The quality can be visually evaluated.
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Figure 7.5: In the upper row ROIs of 200x200 cropped from non-eye images are shown. In the lower
row the generated 800x800 versions are provided.



8 Conclusions
In this report, a SR model has been presented to reconstruct eye tracking images. The model
is implemented using an SRGAN training method based on two optimization steps, namely,
SRResNet-MSE pre-training and final SRGAN training.

U2Eyes dataset has been used as training framework in order to feed our model. Our
method achieves to reconstruct eye images with a perceptually noticeable quality. The nu-
meric evaluation of the method delivers results confirming that standard metrics such as
PSNR and SSIM are not able to match human perception. Furthermore, a gaze estimation
model is used as a task-specific evaluation metric to measure the performance of our model.
Comparable accuracy is obtained for original, SRResNet-MSE and SRGAN images. There-
fore, computational resources could be saved during the acquisition of eye images since the
missed information can be reconstructed in a post processing stage.

Interestingly, according to the results obtained, gaze estimation model apparently does
not exploit high frequency details of the image in order to estimate gaze in the range of
accuracies provided. Future research lines suggest to explore, among others, the importance
of the domain in the performance of the SR model, to develop more specific eye tracking
metrics for SR methods and to study the relevant image features for deep learning based
gaze estimation.
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CNN Convolutional Neural Network.
CPU Central Processing Unit.
CUDA Compute Unified Device Architecture.
CV Computer Vision.
DAN Deep Adversarial Networs.
DFF Deep Feed Forward.
DL Deep Learning.
FC Fully-connected.
FCNN Fully Convolutional Neural Network.
GAN Generative Adversarial Network.
GI4E Gaze Interaction for Everybody.
GPU Graphics Processing Unit.
GUI Graphic User Interface.
HR high-resolution.
IDE Integrated Development Environment.
IDS Intrusion Detection System.
ILSVRC ImageNet Large Scale Visual Recognition Challenge.
IR Infrared.
LR low-resolution.
MB Motherboard.
ML Machine Learning.
MOS Mean Option Score.
MSE Mean Squared Error.
NLP Natural Language Processing.
OS Operative System.
PSNR Peek Signal-to-Noise Ratio.
RAM Random Access Memory.
ReLU Rectifier Linear Unit.
ResNet Residual Network.
RNN Recurrent Neural Network.
ROI Region of Interest.
SDM Supervised-Descent-Method.
SGD Stochastic Gradient Descent.
SR Single image super-resolution.
SRCNN Super-resolution Convolutional Neural Network.
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SRGAN Super Resolution Generative Adversarial Network.
SRResNet Super-resolution Residual Network.
SSD Solid State Drive.
SSIM Structural Similarity.
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