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“I	
   know	
  why	
   you're	
   here,	
   Neo.	
   I	
   know	
  what	
   you've	
  
been	
   doing...	
   why	
   you	
   hardly	
   sleep,	
   why	
   you	
   live	
  
alone,	
   and	
   why	
   night	
   after	
   night,	
   you	
   sit	
   by	
   your	
  
computer.	
  You're	
   looking	
   for	
  him.	
   I	
   know	
  because	
   I	
  
was	
   once	
   looking	
   for	
   the	
   same	
   thing.	
   And	
  when	
   he	
  
found	
  me,	
  he	
  told	
  me	
  I	
  wasn't	
  really	
  looking	
  for	
  him.	
  
I	
   was	
   looking	
   for	
   an	
   answer.	
   It's	
   the	
   question	
   that	
  
drives	
   us,	
   Neo.	
   It's	
   the	
   question	
   that	
   brought	
   you	
  
here.	
   You	
   know	
   the	
   question,	
   just	
   as	
   I	
   did.	
   The	
  
answer	
   is	
   out	
   there,	
   Neo,	
   and	
   it's	
   looking	
   for	
   you,	
  
and	
  it	
  will	
  find	
  you	
  if	
  you	
  want	
  it	
  to.”	
  

	
  
Trinity.	
  The	
  matrix,	
  1999	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

“The	
   history	
   of	
   evolution	
   is	
   that	
   life	
   escape	
   all	
  
barriers.	
   Life	
   breaks	
   free.	
   Life	
   expands	
   to	
   new	
  
territories.	
  Painfully,	
  perhaps	
  even	
  dangerously.	
  But	
  
life	
  finds	
  a	
  way.”	
  

	
  
Ian	
  Malcom.	
  Jurassic	
  Park,	
  1993	
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SUMMARY 

A messenger RNA (mRNA) molecule is composed of a coding sequence 

(CDS) flanked by two untranslated regions (UTRs), the 5’UTR and the 

3’UTR, respectively. In eukaryotes, 3’UTRs are key components of post-

transcriptional regulatory mechanisms. Shortening or deregulation of these 

regions is associated with diseases such as cancer and metabolic 

disorders. Comparatively, little is known about the functions of 3’UTRs in 

bacteria. Over the past few years, researchers have shown how bacterial 

3’UTRs can act as reservoirs for trans-acting non-coding RNAs (ncRNAs) 

as well as regulators of the expression of their own mRNAs. These recent 

findings place 3’UTRs as important players in the regulation of key 

bacterial processes such as virulence, iron metabolism and biofilm 

formation. As a consequence, 3’UTRs could play a broader role than 

initially anticipated with many questions still unanswered. For example, are 

3’UTR sequences preserved within and between bacterial species? How 

often do orthologous genes from closely-related bacteria contain 

conserved functional 3’UTRs? Do nucleotide variations affect 3’UTRs 

functionality and, thus, mRNA expression? 

In this Thesis, we performed genome-wide comparative analyses of 

mRNAs encoding orthologous proteins in the genus Staphylococcus. We 

discovered that most of these mRNAs contained non-conserved 3’UTR 

sequences. In contrast, 5’UTRs were more conserved than 3’UTRs 

suggesting an evolutionary bias within 3’UTRs. Transcriptional mapping of 
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different staphylococcal species confirmed that 3’UTRs were also variable 

in length. To test if the 3’UTR variability could affect protein expression, 

we created chimeric mRNAs by fusing the Staphylococcus aureus icaR, 

ftnA and rpiRc CDSs with the 3’UTRs of orthologous genes from several 

staphylococcal species. Northern and Western blot analyses revealed that 

the nucleotide variations in the 3’UTR sequences altered the mRNA and 

protein levels. This suggested that the 3’UTRs from orthologous mRNAs 

may have distinct functional roles. Next, we demonstrated that the 

differences in the mRNA and protein levels could be explained by the 

presence or absence of specific regulatory elements within the 3’UTRs. 

We also showed that sequence variations in the 3’UTRs might occur 

through different processes, including gene rearrangements, local 

nucleotide changes and transposition of insertion sequences. Finally, we 

extended the genome wide comparative analyses to already described 

functional 3’UTRs and the entire set of mRNAs from Escherichia coli and 

Bacillus subtilis. The results suggested 3’UTR variability to be a 

widespread phenomenon in bacteria.  

In summary, this Thesis shows how natural nucleotide variations in 

3’UTRs affect mRNA expression. This common occurrence might be 

responsible for creating different functional species-specific regulatory 

roles and, ultimately, bacterial diversity through the course of evolution. 
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RESUMEN 

Una molécula de RNA mensajero (mRNA) está compuesta por una región 

codificante (CDS) flanqueada por dos regiones no traducidas (UTRs), la 

5’UTR y la 3’UTR, respectivamente. En eucariotas, las 3’UTRs son 

elementos claves en la regulación post-transcripcional. El acortamiento o 

la desregulación de estas regiones está asociado con diversas 

enfermedades como el cáncer o trastornos metabólicos. En comparación, 

el conocimiento de las funciones de las 3’UTRs en bacterias es mucho 

menor. Durante los últimos años, se ha demostrado que las 3’UTRs 

bacterianas pueden regular la expresión del mRNA que las contiene al 

igual que pueden ser reservorios de RNAs no codificantes (ncRNAs). Se 

les ha vinculado en la regulación de procesos bacterianos esenciales 

como la virulencia, el metabolismo del hierro y la formación de biofilm. En 

consecuencia, las 3’UTRs pueden jugar un papel mucho más amplio de lo 

que se había sugerido inicialmente. Sin embargo, todavía hay muchas 

cuestiones por resolver, por ejemplo, ¿cuál es el grado de conservación 

de sus secuencias tanto a nivel intra- como inter-especie? ¿Con qué 

frecuencia los genes ortólogos de bacterias estrechamente relacionadas 

mantienen conservadas las 3'UTRs? ¿Cómo afectan las variaciones 

nucleotídicas a la funcionalidad de las 3'UTRs y, en consecuencia, a la 

expresión de los mRNAs? 

En esta Tesis, por medio de análisis comparativos globales de los mRNAs 

que codifican genes ortólogos en distintas especies del género 

Staphylococcus, descubrimos que la mayoría de los mRNAs contienen 
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3’UTRs que no están conservadas. Por el contrario, las 5’UTRs se 

encuentran más conservadas que las 3’UTRs, sugiriendo un sesgo 

evolutivo hacia las 3’UTRs. La realización de mapas transcriptómicos de 

diversas especies de Staphylococcus confirmó que las 3’UTRs de genes 

ortólogos presentaban variaciones en su longitud además de los cambios 

en sus secuencias. Con el fin de investigar si esta variabilidad afectaba a 

la expresión proteica, se crearon mRNA quiméricos fusionando las CDSs 

de los genes icaR, ftnA y rpiRc de Staphylococcus aureus con las 3’UTRs 

de los mRNAs ortólogos de diferentes especies del mismo género. Los 

resultados mostraron que las variaciones nucleotídicas en las 3’UTRs 

alteraban tanto los niveles de mRNA como de proteína. Estos resultados 

sugerían que las 3’UTRs de genes ortólogos podían tener funciones 

distintas en cada especie bacteriana. Los cambios en los niveles de 

expresión podían ser explicados por la presencia o ausencia de 

elementos reguladores específicos localizados en las diferentes 3’UTRs. 

Las variaciones en las secuencias de las 3’UTRs podían ocurrir por 

diferentes procesos incluyendo reordenamientos genómicos, variaciones 

nucleotídicas locales y transposiciones de secuencias de inserción. Por 

último, extendiendo los análisis comparativos globales a 3’UTRs 

funcionales ya descritas, al igual que a los sets completos de mRNAs de 

Escherichia coli y Bacillus subtilis, descubrimos que la variabilidad de las 

3’UTRs es un fenómeno que se encuentra extendido en las bacterias. 

En resumen, esta Tesis demuestra que las variaciones nucleotídicas en 

las 3’UTRs, que ocurren de manera natural por la evolución, son capaces 
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de producir cambios en la expresión del mRNA. Esto puede crear 

funciones reguladoras específicas en una determinada especie, lo que 

posiblemente podría contribuir a una mayor diversidad entre las especies 

bacterianas. 

 

Secciones de esta Tesis Doctoral han sido publicadas en: 

- Nucleic Acids Research 48 (5): 2544–2563 (2020). Menendez-Gil P, 
Caballero CJ, Catalan-Moreno A, Irurzun N, Barrio-Hernandez I, Caldelari 
I and Toledo-Arana A. Differential evolution in 3’UTRs leads to specific 
gene expression in Staphylococcus.  
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- Nucleic Acids Research 46 (3): 1345-1361 (2018). Caballero CJ, 
Menendez-Gil P, Catalan-Moreno A, Vergara-Irigaray M, García B, 
Segura V, Irurzun N, Villanueva M, Ruiz de los Mozos I, Solano C, Lasa I 
and Toledo-Arana A. The regulon of the RNA chaperone CspA and its 
autoregulation in Staphylococcus aureus. 
 
- Methods in Molecular Biology 2106: 41-58 (2020). Menendez-Gil P, 
Caballero CJ, Solano C and Toledo-Arana A. Fluorescent molecular 
beacons mimicking RNA secondary structures to study RNA chaperone 
activity.  
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INTRODUCTION 

The central dogma of molecular biology states that the genetic 

information, encoded in the DNA, is transcribed into messenger RNAs 

(mRNAs) and then translated into proteins, the main effectors of the 

different biological processes of a cell (Crick, 1970). Based on that, it was 

thought that the levels of transcription determined exclusively the quantity 

of a particular protein. However, huge amount of evidence from last 

decades showed that gene expression is controlled at several levels. In 

addition to transcriptional control, gene expression can be modulated at 

the post-transcriptional and post-translational levels by a wide variety of 

molecular mechanisms. Altogether, these regulatory layers contribute to 

determine the final protein levels and its activity (Figure 1). The interplay 

and coordination between all these layers are essential for the correct 

adaptation of bacteria to the ever changing environment (Mata et al., 

2005; Yang et al., 2014).  
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Figure 1. Main regulatory layers in bacteria. The main regulatory processes 
can be grouped in transcriptional (red), post-transcriptional (blue) and post-
translational (green) controls. P, promoter; 5’UTR, 5’ untranslated region; CDS, 
coding sequence; 3’UTR, 3’ untranslated region; TT, transcriptional terminator. 

Post-transcriptional regulation  

Post-transcriptional regulation comprises all the regulatory mechanisms 

that affect the stability, the structure and the translation of mRNAs (Mata 

et al., 2005). The development of deep RNA-seq technologies has 

enabled the scientific community to obtain complete transcriptomes of 

diverse bacterial models such as L. monocytogenes, B. subtilis, S. aureus 

and E. coli (Toledo-Arana et al., 2009; Sharma et al., 2010; Nicolas et al., 

2012; Kröger et al., 2012; Ruiz de los Mozos et al., 2013; Conway et al., 

2014; Lybecker et al., 2014; Cohen et al., 2016). Thanks to these 
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technological advances, now it is possible to determine the boundaries of 

each RNA molecule transcribed in a cell. Interestingly, it was found that 

the number of transcripts that are not coding for proteins was far larger 

than previously anticipated. Although the function of these non-coding 

regions is mostly unknown, it is expected that they are playing a role in 

post-transcriptional regulation.  

Asides from non-coding RNAs, RNA-binding proteins such as 

ribonucleases (RNases) and RNA chaperones as well as the mRNA itself 

can modulate mRNA expression (Gripenland et al., 2010; Wagner and 

Romby, 2015; Holmqvist and Vogel, 2018). Since these regulatory 

mechanisms are widely diverse, the most relevant paradigmatic examples 

will be discussed in this section, with a special interest in 3’ untranslated 

regions (3’UTRs), which are the main focus of this Thesis. 

Regulatory elements that modulate mRNA expression 

Non-coding RNAs 

Non-coding RNAs (ncRNAs) are regulatory RNAs that act by base pairing 

with their target mRNAs, which can be distally encoded from the ncRNA 

(trans-acting mechanism) or encoded in the opposite DNA strand (cis-

acting mechanism) (Waters and Storz, 2009). These regulatory RNAs are 

involved in controlling many key processes for bacterial homeostasis 

including, for example, quorum sensing, virulence, iron metabolism, 

motility and biofilm formation (Wagner and Romby, 2015).  
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Trans-acting non-coding RNAs 

Although the first studies identified these ncRNAs in intergenic regions of 

the chromosome, it has been shown that many trans-acting ncRNAs can 

be also originated from 5’ and 3’UTRs (Chao et al., 2012). Trans-acting 

ncRNAs can modulate negatively gene expression through different 

mechanisms. The most common is inhibition of mRNA translation by base 

pairing to the ribosome binding site (RBS) of the targeted mRNA (Figure 

2A). As a consequence, there is a direct competition between the ncRNA 

and the ribosome for the RBS. If the concentration of the ncRNA is high 

enough, the ncRNA-mRNA interaction sterically prevents the binding of 

the ribosome to the mRNA (Gripenland et al., 2010). This mechanism 

usually leads to RNA degradation, probably because a) the ribosome-

naked mRNAs are more accessible to ribonucleases (Caron et al., 2010; 

Wagner and Romby, 2015) and b) the degradosome machinery is 

commonly coupled to the ncRNA-mRNA complex (Morita et al., 2005; 

Morita et al., 2006).  

Alternatively, instead of blocking the RBS, ncRNAs can pair other mRNA 

regions to promote mRNA processing (Figure 2A). Although, in these 

cases translation initiation is not directly affected, the ncRNA binding 

causes a decrease of protein expression by reducing the mRNA levels 

through RNA degradation (Wagner, 2009). This is the case of MicC from 

Salmonella that decreases ompA mRNA half-life. MicC binds downstream 

of the RBS, inside the coding sequence (CDS) of ompA mRNA, using a 12 
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base pairs (bp) interaction that does not interfere with protein translation 

initiation but recruits RNase E for mRNA degradation (Pfeiffer et al., 2009). 

 

 

Figure 2. Main post-transcriptional regulatory mechanisms employed by 
trans-acting ncRNAs. (A) Negative regulation includes inhibition of translation 
and/or mRNA degradation. (B) Positive regulation can be promoted by facilitating 
translation and/or increasing mRNA stability. 

To a lesser extent, ncRNAs can promote both translation and mRNA 

stability (Figure 2B). In the first case, the binding of the ncRNA to the 

5’UTR of a target mRNA alleviates a secondary structure that is hindering 

the RBS. Thus, the ncRNA promotes ribosome accessibility and 

translation (Soper et al., 2010). On the second case, the ncRNA binding to 

the mRNA avoids the access of an RNase and prevents its degradation. 
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For example, RydC from Salmonella stabilizes cfa mRNA through binding 

to its 5’UTR. RydC-cfa interaction interferes with RNase E processing, 

protecting cfa mRNA from degradation (Fröhlich et al., 2013).  

In addition, ncRNAs can cause early transcription termination as well as 

behave as sponge RNAs sequestering other ncRNAs or RNA-binding 

proteins (RBPs). In the latter case, sponge RNAs modify ncRNA or RBP 

activity by mimicking their targets. The interaction sponge RNA-ncRNA or 

sponge RNA-RBP prevents mRNA targeting by the ncRNA/RBP, avoiding 

control of mRNA translation (Bossi and Figueroa-Bossi, 2016). 

Interestingly, the same regulatory RNA can modulate each of its mRNA 

targets in different ways. This is exemplified by RNAIII of S. aureus, which 

is activated by the Agr quorum sensing system according to bacterial cell 

density. RNAIII regulates several targets including surface proteins and 

virulence factors (Bronesky et al., 2016). Binding of RNAIII to spa, coa, sbi 

and rot mRNAs causes inhibition of their translation and, in most of the 

cases, this is coupled to RNase III processing (Huntzinger et al., 2005; 

Boisset et al., 2007; Chevalier et al., 2010; Chabelskaya et al., 2014). On 

the other hand, RNAIII regulates positively the expression of mgrA and hla 

mRNAs, the former by stabilizing the mRNA while the latter by activating 

translation (Novick et al., 1993; Gupta et al., 2015). Overall, RNAIII 

manages to repress surface proteins and at the same time promotes 

secreted virulence factors (Bronesky et al., 2016). 
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Cis-acting antisense RNAs 

Antisense RNAs (asRNAs) are encoded in the opposite DNA strand of 

their target genes. They employ similar mechanisms as trans-acting 

ncRNAs including translation inhibition, mRNA degradation, mRNA 

stabilization and transcription attenuation (Brantl, 2007). They were first 

identified in plasmids, transposons and bacteriophages, in which they 

acted as regulators of the correct copy number of these mobile elements 

(Brantl, 2007; Waters and Storz, 2009; Gripenland et al., 2010) (Figure 

3A). Today it is known that asRNAs are widely distributed in all 

chromosomes and plasmids, generating a diverse variety of overlapping 

regions. For example, in E. coli, the asRNA GadY interacts with the 

gadXW mRNA at stationary growth phase leading to RNase cleavage of 

the operon mRNA and increased stabilization of gadX processed 

transcript (Opdyke et al., 2004; Tramonti et al., 2008). In Vibrio 

anguillarum the RNAα interacts with the fatDCBAangRT operon mRNA 

and entails transcription termination after fatA, reducing angRT expression 

(Stork et al., 2007). Additionally, asRNAs are the main regulators of type I 

toxin-antitoxin systems, in which transcription of the asRNA represses 

translation of the toxic protein (Fozo et al., 2008; Waters and Storz, 2009). 

mRNAs carrying long 5’ and 3’UTRs can also produce antisense regions. 

These occur when one or both mRNAs from divergent or convergent 

genes contain very long UTRs that pair with the one encoded in the 

opposite DNA strand, creating overlapping 5’UTRs and 3’UTRs, 

respectively (Lasa et al., 2011; Lasa et al., 2012) (Figure 3B-C).  
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Figure 3. Types of antisense transcription in bacteria. (A) Bona fide 
antisense RNAs are generated by the presence of a promoter that produces a 
transcript that overlaps the mRNA encoded in the opposite DNA strand. (B) 
Overlapping 5’UTRs are produced when one (or both) promoters from divergent 
genes are encoded far away from the corresponding CDSs. (C) Overlapping 
3’UTRs are generated when the transcriptional terminator of at least one 
convergent gene is far away from the corresponding CDS. (D) Noncontiguous 
operons consist in operons containing a gene(s) transcribed from the opposite 
direction to the rest of the operon. P, promoter; TT, transcriptional terminator; +/-, 
DNA strands. Adapted from (Lasa et al., 2012). 

Moreover, it is possible that transcription extends far away from the 

adjacent genes creating more complex transcriptional organizations, 

termed noncontiguous operons (Lasa et al., 2011; Sáenz-Lahoya et al., 

2019) (Figure 3D). These consist of operons with a gene(s) transcribed in 

the opposite direction to the rest of the genes of the operon. The mRNA of 

the gene in the opposite direction has a perfect complementarity with the 

polycistronic transcript. This mRNA acts as both a coding RNA and an 
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antisense RNA (Sáenz-Lahoya et al., 2019). This organization controls 

gene expression by at least two mechanisms. On the one hand, the gene 

configuration causes transcriptional interference, most probably due to 

collision between both RNA synthesis machineries. On the other hand, 

when transcription occurs, the overlapping RNA leads to a differential 

processing of the polycistronic transcript creating mRNA fragments with 

different stabilities (Sáenz-Lahoya et al., 2019). 

RNA-binding proteins 

RNA binding proteins (RBPs) are a diverse group of proteins with the 

ability to regulate transcription termination, translation initiation and 

turnover of many mRNAs. RBPs can be functionally classified in several 

groups including RNA chaperones, RNA helicases, RNases and enzymes 

catalyzing RNA modifications. The latter are involved in the covalent 

modification of RNA nucleotides, while RNases are involved in the 

processing and turnover of RNA molecules. In contrast, RNA helicases 

and chaperones can modify secondary structures and promote or disrupt 

RNA-RNA or RNA-protein interactions. Unlike RNA helicases, RNA 

chaperones do not require ATP hydrolysis for their action (Rajkowitsch et 

al., 2007; Babitzke et al., 2009; Van Assche et al., 2015).  

RNA chaperones promoting binding of trans-acting ncRNAs 

In Gram-negative bacteria, one of the most studied RNA chaperones is 

the Hfq protein (Host Factor I), which belongs to the Sm and Sm-like 

family. It promotes the interaction of specific ncRNAs with their 
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corresponding targets by increasing the local RNA concentrations and 

unfolding secondary structures that can hinder the ncRNA-mRNA binding 

(Møller et al., 2002). The active form of Hfq is an hexameric complex that 

has a preference for A/U-rich regions (Valentin-Hansen et al., 2004). In 

some cases, Hfq is able to recruit the degradosome by interacting with 

RNase E that promotes the clearance of the RNA duplex (Figure 4). 

Although the Hfq protein is also widely present in Gram-positive bacteria, 

its role has not yet been deciphered. In most of the ncRNA-mRNA 

interactions studied so far, with the exception of LhrA in Listeria 

monocytogenes (Nielsen et al., 2009), Hfq was not required for the ncRNA 

interaction with their corresponding targets (Brennan and Link, 2007; Chao 

and Vogel, 2010). 

 

 

Figure 4. The RNA chaperone Hfq. In Gram-negative bacteria, Hfq helps 
binding of ncRNAs with their target mRNAs. In some cases, Hfq also interacts 
with the degradosome for rapid degradation of the ncRNA-mRNA complex.  
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In the last years, other RNA chaperones, which carry the ProQ/FinO 

domain, have also been found to participate in ncRNA-mediated regulation 

in bacteria, for example, RocC in Legionella pneumophila, ProQ in S. 

enterica and ProQ and FinO in E. coli (Attaiech et al., 2017). S. enterica 

ProQ interacts and stabilizes more than 50 ncRNAs, whereas L. 

pneumophila RocC stabilizes RocR ncRNA to regulate genes involved in 

natural transformation. FinO is encoded in plasmids from the lncF family 

and it represses plasmid conjugation by stabilizing the ncRNA FinP 

(Attaiech et al., 2017; Holmqvist and Vogel, 2018). Since the number of 

uncharacterized RNA chaperones is still huge, it is expected that more 

proteins will contribute to the activity of ncRNAs.  

RNA chaperones modulating mRNA translation 

The carbon storage regulator A (CsrA) is a small homodimeric chaperone 

that binds to GGA sequences usually located on the top of stem-loops at 

the RBS of mRNAs. As a consequence, in most of the cases CsrA hinders 

the RBS from the ribosomes inhibiting translation. This is the case of the 

glcCAP and cstA genes. To a lesser extent, CsrA can activate translation 

by destabilizing a hairpin that occludes the RBS or by blocking RNA 

degradation. CsrA is considered a global regulator of carbon metabolism, 

promoting glycolysis and suppressing gluconeogenesis. It is also involved 

in motility and biofilm formation, virulence, quorum sensing and oxidative 

stress response (Schubert et al., 2007; Bhatt et al., 2009; Timmermans 

and Van Melderen, 2010; Romeo and Babitzke, 2018). Interestingly, CsrA 

activity is regulated by the sponge ncRNAs CsrB and CsrC that contain 18 
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and 9 CsrA-binding sites, respectively. Depending on the CsrB/C 

concentration CsrA protein gets sequestered, inhibiting its activity (Liu et 

al., 1997; Weilbacher et al., 2003).  

Cold shock proteins (CSPs) are a group of small RNA chaperones 

widespread among bacteria. Although all the members of this family 

contain a cold shock domain (CSD), not all of them are cold induced and 

some are required for adaptation to other stresses, such as oxidative and 

osmotic stresses. CSPs are able to reshape secondary structures to either 

modulate translation or inhibit transcription termination (Duval et al., 2010; 

Phadtare and Severinov, 2010; Michaux et al., 2017; Caballero et al., 

2018). 

An additional group of RNA chaperones comprises some ribosomal 

proteins (r-proteins) that bind the 5’UTR of their mRNAs regulating their 

own expression (Nomura, 1970; Nomura, 1999). For example, the L20 r-

protein, which is encoded in the rpmL-rpmT operon of E. coli, binds to the 

5’UTR of the rpmL-rpmT transcript through two binding sites and 

competes with the ribosome for mRNA binding, affecting protein 

translation (Guillier et al., 2005).  

RNA helicases modifying RNA structures 

RNA helicases use the energy of ATP hydrolysis to unfold RNA structures 

and displace RNA-bound proteins (Rajkowitsch et al., 2007) (Figure 5). 

Together with DNA helicases, they can be classified based on their amino 

acid sequence in six superfamilies, among which proteins containing the 
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DEAD-box domain constitute the largest group. (Singleton et al., 2007; 

Khemici and Linder, 2016). Helicases bind to double stranded RNAs to 

induce local strand separation, allowing the strands to be further used by 

ncRNAs and other RBPs. They are involved in diverse processes, some 

have a role in RNA turnover taking part in the degradosome, while others 

participate in ribosome biogenesis and translation initiation (Charollais et 

al., 2003; Lehnik-Habrink et al., 2010; Intile et al., 2015). For instance, 

CsdA is required for the binding of the ncRNA DsrA to the 5’UTR of the 

rpoS mRNA at low temperatures. This binding de-sequesters the RBS 

allowing ribosome binding and protein translation (Resch et al., 2010). 

 

 

Figure 5. RNA helicases unfold secondary structures using ATP hydrolysis. 
Depending on the location of the RNA structures, RNA helicases can promote 
mRNA degradation (A) or translation (B).  
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Ribonucleases involved in RNA processing and RNA degradation 

Ribonucleases (RNases) are enzymes that control RNA processing and 

degradation, participate in the quality control of RNAs and are key players 

in the recycling of nucleotides. RNases can be classified in two broad 

groups: 1) endoribonucleases (endoRNases) which cleave within the RNA 

molecule and 2) exoribonucleases (exoRNases) that process the RNA 

from one of the two transcript ends (Arraiano et al., 2010; Jester et al., 

2012; Mohanty and Kushner, 2016) (Figure 6). 

 

 

Figure 6. Main ribonucleases found in Gram-negative (A) and Gram-positive 
(B) bacteria. Single-stranded and double-stranded endoRNases are represented 
in pink and blue, respectively. 3’-5’ exoRNases are colored in orange while 
RNases J1/J2 which possess both endoribonucleolytic and 5’-3’ 
exoribonucleolytic activities are represented in green. 
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The best studied endoRNase is RNase E, an essential protein of Gram-

negative bacteria that is involved in the processing of ribosomal RNAs 

(rRNAs), the maturation of tRNAs (tRNAs), and the ncRNA and mRNA 

decay (Li and Deutscher, 2002; Arraiano et al., 2010). RNase E cleaves 

single stranded RNAs (ssRNAs) and it has a preference for A/U-rich 

sequences and 5’ end monophosphorylated RNAs, although it can 

sometimes bypass this last requisite (Mackie, 1998). Paralogous and 

orthologous RNase E proteins can be found in both Gram-negative and 

Gram-positive bacteria. On the one hand, RNase G, a paralogous RNase 

E, can target a limited number of mRNAs, many of which are related to 

sugar metabolism (Ow et al., 2003). On the other hand, RNase Y, which is 

the orthologous RNase E in Gram-positive bacteria, is also involved in 

mRNA decay (Shahbabian et al., 2009; Lehnik-Habrink et al., 2011).  

RNase III is another well-studied endoRNase that is present in both Gram-

negative and Gram-positive bacteria. In contrast to RNase E, RNase III 

targets double stranded RNAs (dsRNAs) using Mg2+ as a cofactor. It can 

attack dsRNAs that are formed either by intramolecular interactions, e.g. 

hairpin loops, or intermolecular interactions, e.g. imperfect or perfect RNA 

duplexes formed by ncRNA-mRNA or asRNA-mRNA pairing, respectively. 

RNase III is involved in mRNA decay as well as in the maturation of 

rRNAs (Wang and Bechhofer, 1997; Stead et al., 2011). In addition, it has 

been shown that RNase III is the main endoRNase processing antisense 

RNAs (Lasa et al., 2011; Lioliou et al., 2012; Lasa et al., 2012; Lybecker et 

al., 2014). Lasa et al. discovered that RNase III was involved in the 



Introduction 

30 

processing of hundreds of overlapping regions in S. aureus that were 

produced by pervasive antisense transcription (Lasa et al., 2011; Lasa et 

al., 2012). Later on, a study, that precipitated antisense regions using 

antibodies against dsRNAs, confirmed that a genome-wide RNase III-

mediated antisense RNA processing was also present in E. coli (Lybecker 

et al., 2014).  

An RNase III paralog has been identified in low GC-content Gram-positive 

bacteria. Due to its small size, it has been named mini-RNase III. In B. 

subtilis, mini-RNase III is involved in the maturation of the 23s rRNA 

(Redko et al., 2008). 

Regarding exoRNases, the polynucleotide phosphorylase (PNPase) is a 

3’-5’ exoRNase that requires Mg2+ to be functional. Interestingly, RNA 

hairpins inhibit PNPase activity, therefore, it requires the action of RNA 

helicases to continue with RNA processing (Luttinger et al., 1996; Spickler 

and Mackie, 2000). Conversely, RNase R, a PNPase homolog present in 

many bacteria, can degrade RNA hairpins thanks to its intrinsic helicase 

activity. Nevertheless, it requires at least 10-12 nucleotide (nt) single 

stranded 3’ overhang to process such secondary structures. RNase II is 

another 3’-5’ Gram-negative exoRNase, which releases nucleotide 

monophosphates by a hydrolytic mechanism (Cheng and Deutscher, 

2005; Awano et al., 2010). Besides this, RNase J1 and RNase J2, only 

present in Gram-positive bacteria, are bifunctional ribonucleases with both 

ssRNA endoRNase and 5’-3’ exoRNase activities. RNase J1 is a more 



Introduction 

31 

efficient exoRNase than J2, however it cannot degrade RNAs with 5’ 

triphosphate or hairpin ends (Even et al., 2005; Newman et al., 2011). 

Some RNases can be part of a large multiprotein complex, called the RNA 

degradosome that comprises RNA chaperones, RNA helicases and other 

accessory proteins. Specifically, in Gram-negative bacteria, the 

degradosome is formed by RNase E, PNPase, the helicase RhlB and the 

glycolytic enzyme enolase, while in Gram-positive bacteria, it consists of 

RNase Y, RNases J1/J2, PNPase, CshA helicase and the glycolytic 

enzymes phosphofructokinase and enolase. In E. coli, the C-terminal end 

of RNase E is the organizing scaffold of the degradosome (Miczak et al., 

1996; Callaghan et al., 2004; Commichau et al., 2009; Lehnik-Habrink et 

al., 2010; Roux et al., 2011). There are other minor components that bind 

to the degradosome and have the ability to modulate its activity. 

Therefore, the degradosome composition can change according to the 

accessory proteins that are loaded in relation to growth or stress 

conditions. For example, in E. coli, RhlB can be replaced by the CsdA 

helicase generating a “cold-shock” degradosome (Prud'homme-Généreux 

et al., 2004).  

Enzymes catalyzing RNA modifications 

RNA molecules can be modified after transcription by the action of specific 

enzymes, which add different chemical groups to the RNAs. This can 

produce changes in RNA structure, base pairing and protein recognition, 

altering the original RNA function. Therefore, nucleotide modifications after 
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transcription add a new layer of regulation. RNA modifications are found in 

all three domains of life. This field, known as epitranscriptomics, has been 

widely studied in eukaryotes where modifications in mRNA molecules 

affect important cell processes such as stem cell differentiation (Wang et 

al., 2014). In bacteria, since only few modifications have been described in 

tRNAs and rRNAs, little is known about the enzymes catalyzing the 

diverse modifications or the consequences of RNA modifications (Björk 

and Hagervall, 2005; Marbaniang and Vogel, 2016). However, a pioneer 

study carried out by Deng et al., recently identified the N6-

methyladenosine (m6A) transcriptome in several bacterial species and 

observed that this modification was present in many mRNAs of both 

Gram-negative and Gram-positive bacteria, indicating that mRNA 

modifications could be also extended in prokaryotes (Deng et al., 2015).  

The m6A is the most common modification in eukaryotes and is enriched 

in 3’UTRs around the stop codon (Wang et al., 2014). However, Deng et 

al. observed that in E. coli and P. aeruginosa m6A modifications were 

more abundant inside CDSs with a consensus sequence of GCCAG. This 

also differs from the m6A modification present in bacterial tRNAs and 

rRNAs suggesting different set of enzymes modifying the diverse RNA 

molecules (Deng et al., 2015). The mRNAs carrying the m6A modification 

were involved in different bacterial processes such as aerobic respiration 

and amino acid metabolism. Moreover, in P. aeruginosa, m6A was 

temperature dependent, as this modification was almost abolished at high 

temperatures (45ºC) (Deng et al., 2015).  
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In addition to RNA methylation, recent reports have identified that bacterial 

mRNAs can be capped at the 5’ end like eukaryotic RNAs. Coenzyme A 

and nicotinamide adenine dinucleotide (NAD) were found covalently linked 

to the 5’ end of RNAs (Kowtoniuk et al., 2009; Chen et al., 2009). In E. 

coli, ncRNAs and mRNAs were NAD-capped while no tRNAs and rRNAs 

carried this modification. It was proposed that NAD-capping stabilizes 

RNA molecules and protects them from RNase E degradation (Cahová et 

al., 2015) (Figure 7).  

 

 

Figure 7. 5’ capping of mRNAs. Some RNAs susceptible to RNase E 
degradation (A) can be modified at the 5’ end with NAD molecules, protecting 
them from this RNase (B). 

Epitranscriptomics is a new field that will change our understanding about 

post-transcriptional regulation in bacteria. Further studies will be required 

to determine other existing modifications, the consequences of these 

modifications and the enzymes responsible for them (Marbaniang and 

Vogel, 2016). 
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Regulatory elements contained in mRNA molecules 

A prototypical mRNA is comprised of a CDS flanked by two untranslated 

regions, the 5’UTR and the 3’UTR, respectively. Many regulatory elements 

have been found in 5’UTRs including riboswitches and thermosensors. In 

the last years, 3’UTRs have emerged as non-coding regions that also 

include diverse regulatory elements. As a result, many mRNAs are 

considered to possess a dual function: 1) they produce a specific protein 

and 2) they control the expression of their own protein or, in some cases, 

the expression of proteins encoded in other mRNAs. 

5’UTRs with regulatory capacities 

5’UTRs contain diverse regulatory elements that can affect transcription 

termination, RNA stability and translation of the mRNA in which they are 

contained. The most common elements are RNA thermosensors and 

riboswitches (Gripenland et al., 2010).  

RNA thermosensors or RNA thermometers (RNATs) are hairpin structures 

that are modified by temperature fluctuations affecting translation of the 

downstream genes (Figure 8A). An RNAT shifts between two 

conformations depending on temperature. It alternates from a closed one 

that sequesters the RBS impeding ribosome binding, to an open 

conformation that favors translation. This allows bacteria to quickly 

respond to temperature changes, an important skill for bacteria living in 

different niches. Three principal classes of genes are subjected to this 

type of post-transcriptional regulation: cold shock, heat shock and 
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virulence genes (Kortmann and Narberhaus, 2012; Loh et al., 2018). In 

Listeria monocytogenes, the master regulator of virulence PrfA contains a 

127 nt RNAT. While L. monocytogenes is living in the environment at 

temperatures lower than 30ºC, the prfA 5’UTR forms a secondary 

structure that inhibits PrfA translation. However, when L. monocytogenes 

enters into the human body through contaminated food, the temperature 

rises to 37ºC melting the RNAT structure and allowing PrfA translation. 

Then, PrfA activates several virulence factors required for intracellular 

replication and cell to cell dissemination (Johansson et al., 2002; Freitag et 

al., 2009). It is noteworthy that due to their simplicity, RNATs are widely 

distributed among pathogenic bacteria. 

 

 

Figure 8. RNA thermosensors and riboswitches. Both RNA elements can shift 
between two RNA conformations in relation to temperature shifts (A) or upon 
binding of a specific ligand (B). These conformational changes control gene 
expression.  
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Riboswitches are RNA elements that sense the concentration of different 

metabolites. A riboswitch binds to a specific molecule leading to a 

conformational change of its secondary structure (Figure 8B). This change 

in conformation is usually defined as an ON/OFF switch. The most 

common architecture of a riboswitch is composed of two separate 

domains, the aptamer domain that is used for ligand recognition and the 

expression platform, which carries out the regulatory response upon 

metabolite binding. Since these two domains share a mutual common 

region, the changes in the aptamer domain can be transmitted to the 

expression platform. Most of the ligands identified so far are molecules of 

different nature such as S-adenosylmethionine (SAM), nucleotides, amino 

acids, sugars, ions and tRNAs. Several mechanisms exist to ensure high 

selectivity of the ligand including shape, stacking interactions, hydrogen 

bonding and positive and negative interactions. For instance, purine 

riboswitches discriminate purines from pyrimidines using a single 

nucleotide that base pairs with adenine or guanine only (Peselis and 

Serganov, 2014; Sherwood and Henkin, 2016).  

Depending on the riboswitch type, the conformational change upon ligand 

binding can produce different consequences, some affect transcription 

while others translation. Riboswitches can attenuate transcription by 

generating an intrinsic transcriptional terminator or exposing a Rho-binding 

site that leads to premature transcriptional termination. For example, T-

box riboswitches bind to uncharged tRNAs to prevent transcription from 

early termination (Mellin and Cossart, 2015; Sherwood and Henkin, 2016). 
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In other riboswitches, once the ligand is bound, the riboswitch structure 

changes to liberate or occlude the RBS, promoting or inhibiting translation 

initiation, respectively (Sherwood and Henkin, 2016). In E. coli, the btuB 

mRNA translation is regulated by a coenzyme B12 riboswitch. Coenzyme 

B12 binding produces a structure rearrangement in the mRNA that leads to 

inhibition of translation, reducing the levels of the cobalamin transport 

protein BtuB (Nahvi et al., 2002).  

The expression of the same gene can be controlled by more than one 

riboswitch, for example, two located in tandem in the 5’UTR of a specific 

gene. These can be two copies of the same riboswitch, two riboswitches 

that sense the same ligand but act at different levels 

(transcription/translation) or two riboswitches that sense different ligands 

(Roßmanith and Narberhaus, 2017). Alternatively, two riboswitches can be 

found in opposite DNA strands creating antisense transcription to control 

the same gene depending on the concentration of two different 

metabolites. In C. acetobutylicum, the ubiGmccBA operon encodes a set 

of enzymes that convert SAM into cysteine. On the opposite DNA strand 

of the operon, a non-coding antisense RNA is controlled by a S-box 

riboswitch, which binds SAM. When methionine is low, the asRNA is 

transcribed and base pairs with the operon mRNA, inhibiting its 

translation. With high levels of methionine, the asRNA is early terminated. 

The ubiGmccBA operon is regulated by a T-box riboswitch. When high 

cysteine levels are found inside the cell, the charged tRNACys binds to the 

riboswitch causing transcriptional termination. In contrast, with low levels 
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of cysteine, the uncharged tRNACys binds to the riboswitch allowing 

transcription of the operon. As a result, only when there are low levels of 

cysteine and high levels of methionine the ubiGmccBA genes can be 

expressed (André et al., 2008). 

In addition to the expression control of the genes located downstream of 

the riboswitch, these regulatory elements can generate ncRNAs that can 

act in trans. In L. monocytogenes, high levels of SAM entail a 

conformational change in a S-box riboswitch located in the lmo2419 gene 

that generates early transcription termination. The small RNA molecule 

generated (SreA) acts as an trans-acting ncRNA that binds to the 5’UTR 

of prfA mRNA, inhibiting its translation (Loh et al., 2009).  

A variation of thermosensors and riboswitches are pH sensors. In the 

5’UTR of the E. coli alx gene is present an RNA element that responds to 

pH changes. Under neutral pH, the alx 5’UTR adopts a structure that 

hinders the RBS from ribosomes, inhibiting translation. Under alkaline 

conditions during transcription, the RNA polymerase (RNAP) pauses for a 

longer time at two different sites in the 5’UTR. This RNAP pausing allows 

an structural reorganization in the 5’UTR that liberates the RBS permitting 

translation initiation (Nechooshtan et al., 2009).  

In addition, RNA elements with self-cleaving capacities can also be found 

in 5’UTRs (Walter and Engelke, 2002). The B. subtilis glmS ribozyme is 

located in the 5’UTR of the glmS mRNA that encodes for the glucosamine-

6-phosphate synthetase (GlmS), an enzyme that converts fructose-6-

phosphate and glutamine into glutamate and glucosamine-6-phosphate 
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(GlcN6P). When GlcN6P accumulates, it binds to the glmS ribozyme 

inducing a self-cleavage at the 5’UTR that results in a processed mRNA 

with higher RNase J1 susceptibility, leading to mRNA degradation and a 

decrease of GlmS expression (Collins et al., 2007).  

Besides the particular RNA structures described so far, 5’UTRs possess 

specific sequences and structures that are recognized by ncRNAs, 

RNases and other RNA-binding proteins. This is the case of the 5’UTR of 

cspA mRNA in S. aureus where the same secondary structure is 

recognized by RNase III and the CspA chaperone (Figure 9).  

 

 

Figure 9. 5’UTRs can be targeted by RNases and RBPs. cspA mRNA 
possesses regulatory elements in its 5’UTR recognized by RNase III and its own 
protein, allowing the autoregulatory control of CspA expression. The 5’UTR of the 
cspA mRNA forms a hairpin structure, which is cleaved by RNase III to enhance 
CspA translation when CspA levels are low. If the CspA concentration rises, 
CspA is able to interact with this hairpin structure and unfold it. As a 
consequence, the cspA mRNA cannot be processed by RNase III and CspA 
translation is decreased. Adapted from (Menendez-Gil et al., 2020b).  
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The cspA mRNA has a long 5’UTR with two stem loops, one of them 

occluding the RBS from the ribosomes. RNase III cleaves into the first 

stem loop generating a shorter mRNA that has the RBS accessible to the 

ribosomes. Therefore, the short cspA mRNA is more efficiently translated 

than the unprocessed transcript (Lioliou et al., 2012). When high levels of 

CspA are reached in the cell, CspA binds to the first hairpin structure of its 

own 5’UTR impeding RNase III processing. Consequently, CspA auto-

regulates its own expression by inhibiting translation (Caballero et al., 

2018). 

3’UTRs: a new layer of post-transcriptional regulation in 
bacteria 

In eukaryotes, 3’UTRs have been shown as key components of post-

transcriptional regulatory mechanisms. Eukaryotic 3’UTRs possess 

regulatory motifs that are recognized by microRNAs (miRNAs) and RNA 

binding proteins affecting mRNA stability, localization and translation 

(Mazumder et al., 2003; Wilkie et al., 2003; Mayr, 2017). For instance, AU-

rich (ARE) and GU-rich (GRE) elements, located in certain 3’UTRs, are 

recognized by proteins that favor mRNA degradation. The length of the 

polyA tail as well as the localization in which the mRNA is polyadenylated 

(nucleus or cytoplasm) can affect mRNA stability. In other cases, there are 

proteins that promote translation. For example, the PABP protein binds to 

the 3’UTR to then interact with the translation factor eiF4G, which is 

associated to the 5’UTR. This generates a circularization of the mRNA, 
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favoring translation efficiency due to the recycling of the ribosomes (Wilkie 

et al., 2003; Halees et al., 2008; Vlasova and Bohjanen, 2008).  

The 3’UTR length varies according to the protein encoded in the mRNA. 

mRNAs encoding housekeeping proteins carry 3’UTRs shorter that 

mRNAs expressing regulatory proteins. Moreover, some genes can 

produce mRNAs with alternative 3’UTRs depending on the cell tissues 

where they are expressed. Deregulation or shortening 3’UTRs is 

associated with diverse diseases such as cancer or metabolic disorders 

(Khabar, 2010; Mayr, 2017).  

It is noteworthy that the 3’UTR length has increased in relation to the 

complexity of the organism, being humans the organisms with longer 

3’UTRs (> 500 nt), whereas 5’UTR length has remained constant during 

evolution. It is thought that 3’UTRs have contributed to organism 

complexity in eukaryotes (Mazumder et al., 2003).  

In contrast, bacterial 3’UTRs have been historically disregarded because 

studies were mainly focused on the identification of ncRNAs and 

regulatory elements in 5’UTRs, and the RNA-seq techniques did not 

initially mapped the 3’ ends (Wagner and Romby, 2015). Additionally, it 

was believed that 3’UTRs were only needed for a correct transcription 

termination and/or protecting transcripts from exoribonucleases. However, 

several new regulatory elements have been described so far in 3’UTRs 

establishing them as a novel regulatory layer to be considered in bacteria. 

It is expected that this field will grow exponentially in the next years. In the 
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following sections, relevant aspects of post-transcriptional regulation 

mediated by 3’UTRs in bacteria are described.  

Transcriptional termination determines the 3’UTR length 

A prototypical 3’UTR comprises the mRNA region from the stop codon to 

the transcriptional termination site. Therefore, the transcriptional 

termination signal is usually included in this region. In bacteria, 

transcriptional termination can occur either by the presence of an intrinsic 

transcriptional terminator (TT), which consists of a hairpin structure 

followed by a U-tract (Rho-independent termination), or by the presence of 

a Rho utilization (rut) site that recruits the Rho protein (Rho-dependent 

termination). Rho binding to C-rich regions causes the activation of its 

ATPase activity and provides the energy to translocate through the mRNA 

and interact with the RNAP. This leads to the release of the transcript 

thanks to Rho helicase activity (Peters et al., 2011).  

Transcriptional termination systems are not always effective in dissociating 

the RNAP from the transcript. As a consequence, sometimes transcription 

continues far away from the transcriptional terminator signal. This 

phenomenon is defined as termination read-through and causes 

alternative 3’UTRs (Lasa et al., 2011; Ruiz de los Mozos et al., 2013). 

The average length of an intrinsic transcriptional terminator was predicted 

to be around 30 nucleotides in S. aureus. Therefore, a 3’UTR of 40-50 nt 

long should be sufficient to allocate a functional transcriptional terminator 

(Ruiz de los Mozos et al., 2013). However, with the expansion of high-
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throughput RNA sequencing technologies, the real 3’UTR lengths could be 

determined in different bacteria revealing that 3’UTRs were longer than 

previously anticipated (Broeke-Smits et al., 2010; Ruiz de los Mozos et al., 

2013; Dar et al., 2016; Dar and Sorek, 2018). In S. aureus, more than 30% 

of the mapped 3’UTRs were longer than 100 nt. This was a strong 

evidence indicating that 3’UTRs could allocate additional regulatory 

elements (Ruiz de los Mozos et al., 2013).  

3’UTRs involved in the expression of their own mRNAs 

The first example showing that a bacterial 3’UTR could play a role 

modulating the expression of the protein encoded in the same mRNA was 

described by Balaban and Novick in 1995 (Balaban and Novick, 1995). 

The RNAIII of S. aureus is the paradigm of a regulatory transcript, which 

can modulate the expression of several mRNAs by base paring (Bronesky 

et al., 2016). In addition, this RNA encodes the δ−hemolysin. Balaban and 

Novick showed that translation of δ-hemolysin occurred one hour after 

transcription of RNAIII. However, deletion of the 3’UTR significantly 

diminished the delay, suggesting that the 3’UTR blocked δ−hemolysin 

translation (Balaban and Novick, 1995).  

Several years passed until novel 3’UTR functions started to be 

characterized. Diverse 3’UTR-mediated mechanisms have been described 

so far, including 5’UTR-3’UTR interaction and 3’UTR targeting by RNases 

ncRNAs and RBPs (Figure 10).  
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Figure 10. Regulatory mechanisms mediated by 3’UTRs. 3’UTRs can interact 
with the 5’UTRs from the same mRNA and they can also be targeted by ncRNAs, 
RNases, and other RBPs. P, promoter; TT, transcriptional terminator. 

Our group unveiled that the 3’UTR of icaR mRNA in S. aureus interacts 

with the RBS of its own mRNA through a UCCCC sequence that acted as 

an anti-RBS motif. This 5’UTR-3’UTR interaction inhibits translation 

initiation of IcaR protein and produces a double stranded substrate that is 

cleaved by RNase III leading to mRNA degradation. IcaR is the repressor 

of the ica operon that encodes for the main exopolysaccharidic compound 

(PIA-PNAG) in S. aureus biofilms. Therefore, the icaR 5’UTR-3’UTR 

interaction favors biofilm formation (Ruiz de los Mozos et al., 2013). Later, 

another example of 5’UTR-3’UTR interaction was described for the hbs 

mRNA in B. subtilis. A 15 nt long interaction protects hbs mRNA from 

RNase Y cleavage at the 5’UTR (Braun et al., 2017). These mechanisms 

resembled the mRNA circularization occurring in eukaryotes to control 

protein expression (Mazumder et al., 2003). 

Other bacterial 3’UTRs are often used as direct entry points for 

ribonucleases to initiate mRNA degradation (Figure 10). This is the case 
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for the hmsT mRNA, which encodes a protein that modulates c-di-GMP 

synthesis, required for allosteric activation of polysaccharide production in 

Yersinia pestis biofilm formation. PNPase-dependent cleavage of the 

hmsT 3’UTR affects the turnover of the mRNA and, ultimately, HsmT 

expression (Zhu et al., 2016; Zhao et al., 2018). Additionally, several AU-

rich 3’UTRs of Y. pestis are targeted by PNPase when the transcriptional 

termination is Rho-dependent (Zhao et al., 2018). In Salmonella, HilD, one 

of the main transcriptional activator factors of the pathogenicity island 1 

(SPI-1) is processed through its 3’UTR by RNase E and PNPase (López-

Garrido et al., 2014). Similarly, in Corynebacterium glutamicum the aceA 

mRNA, encoding the isocitrate lyase protein that is part of the glyoxylate 

cycle (Gerstmeir et al., 2003), is processed by RNase E/G at the 3’UTR 

(Maeda and Wachi, 2012).  

Bacterial 3’UTRs can also be targeted by other factors such as ncRNAs 

and RBPs to modulate mRNA expression (Figure 10). For example, the 

expression of the E. coli aconitase (acnB) mRNA is autoregulated by its 

own protein. AcnB is an enzyme of the TCA (tricarboxylic acid) cycle that 

uses iron as a cofactor, but it becomes an autoregulatory RBP when 

intracellular iron becomes scarce (apo-AcnB). The apo-AcnB binds to its 

own mRNA at a stem-loop located at the 3’UTR. This binding obstructs an 

RNase E cleavage mediated by the ncRNA RyhB together with Hfq 

(Figure 11). Therefore, during iron starvation apo-AcnB induces its own 

expression by avoiding acnB mRNA processing and maintaining iron 

homeostasis. This regulation creates an equilibrium dependent on the iron 
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pool between both states of AcnB: the enzymatic activity and the RNA-

binding capacity (Benjamin and Massé, 2014).  

 

 

Figure 11. The acnB 3’UTR possesses a secondary structure recognized by 
its own protein. The Apo-AcnB can bind to the acnB 3’UTR to prevent the 
processing of the degradosome. The latter is recruited when RhyB ncRNA and 
Hfq interact with the acnB 5’UTR. Adapted from (Benjamin and Massé, 2014). 

A recent report showed that the RNA chaperone ProQ targets 3’UTRs in 

Salmonella and E. coli. Deletion of ProQ revealed that many of the 

mRNAs targeted by this protein had a reduced stability in the mutant. It 

seems that ProQ recognizes secondary structures at the 3’UTR of several 

mRNAs stabilizing them. This is the case of cspE mRNA in which ProQ 

binding to the 3’UTR protects the mRNA from RNase II cleavage 

(Holmqvist et al., 2018). 

3’UTRs can also be targeted by trans-acting ncRNAs as occurred with 

microRNAs in eukaryotes (El-Mouali et al., 2018; Bronesky et al., 2019). 

The ncRNA RsaI of S. aureus binds to the 3’UTR of icaR mRNA. As 

mentioned before, the 3’UTR of icaR mRNA carries an anti-RBS motif 

(UCCCC sequence) that binds to the RBS of its own mRNA (Ruiz de los 
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Mozos et al., 2013). The binding of RsaI occurs in a different location of 

the 3’UTR so it is thought that this ncRNA might help stabilizing the 

circularization of the mRNA, which inhibits IcaR translation (Bronesky et 

al., 2019) Interestingly, RsaI expression is repressed by the catabolite 

control protein A (CcpA) when glucose is available in the medium. 

Therefore, if this carbon source is consumed, RsaI is activated promoting 

ica expression and biofilm formation (Bronesky et al., 2019) (Figure 12).  

	
  

 

Figure 12. Regulatory elements of icaR 3’UTR. IcaR is the transcriptional 
repressor of the icaADBC operon, encoding the enzymes that synthesize PIA-
PNAG, the main exopolysaccharide of S. aureus biofilms. The icaR 3’UTR 
carries an anti-RBS motif that interacts with the RBS of its own mRNA causing 
translation inhibition and RNase III-dependent degradation. The ncRNA RsaI 
binds to the 3’UTR of icaR in between the anti-RBS motif and the transcriptional 
terminator. Although the molecular mechanism of this ncRNA-mRNA paring is 
unknown, it has been shown that RsaI promotes PIA-PNAG synthesis. P, 
promoter; TT, transcriptional terminator.   
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In Salmonella, Spot42, a trans-acting ncRNA repressed by the catabolite 

repression protein (CRP) and cAMP (cyclic adenosine monophosphate), 

targets the long 3’UTR of hilD mRNA (El-Mouali et al., 2018). The hilD 

3’UTR has been shown essential to modulate HilD expression and HilD-

dependent virulence genes (López-Garrido et al., 2014). El Mouali et al., 

showed that Spot42 binds to the 3’UTR of hilD mRNA in an Hfq-

dependent manner and this interaction stabilizes and/or activates HilD 

expression (El-Mouali et al., 2018) (Figure 13). These two examples 

illustrate how ncRNAs interactions can connect and control different 

pathways according to the availability of nutrient resources. 

 

Figure 13. The regulatory 3’UTR of hilD mRNA. Spot42 together with Hfq 
binds to hilD 3’UTR promoting mRNA stability and/or translation. Additionally, 
hilD 3’UTR can be targeted by the degradosome and ProQ protein. 

3’UTRs as reservoirs of trans-acting ncRNAs 

3’UTRs have also emerged as reservoirs of trans-acting ncRNAs. 3’UTR-

derived ncRNAs can be generated either by an internal promoter located 

inside or just downstream of the CDS (type I) or by processing of the 
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mRNA transcript at the 3’UTR (type II) (Figure 14). Therefore, type I 

ncRNAs carry a triphosphate at the 5’ ends while a monophosphate is 

found at the 5’ ends of type II ncRNAs (Kawano et al., 2005; Chao et al., 

2012; Miyakoshi, Chao, and Vogel, 2015a). 

 

 

Figure 14. 3’UTR-derived ncRNAs. The type I 3’UTR-derived ncRNAs are 
generated by an internal promoter (P), which is inside or just downstream of the 
CDS. The type II 3’UTR-derived ncRNAs result from the processing of the mRNA 
by an specific RNase. Adapted from (Miyakoshi, Chao, and Vogel, 2015a). 

Three type I ncRNAs have been characterized so far, DapZ, MicL and 

MicX. Type II ncRNAs are more abundant and have been described in 

several bacterial species. Table 1 summarizes the 3’UTR-derived ncRNAs 

characterized so far in bacteria. The genes targeted by these ncRNAs and 

the physiological processes controlled by them are also indicated. These 

examples suggest that 3’UTR-derived ncRNAs control a wide variety of 

processes and are widely distributed among bacteria. Note that the 

physiological process in which these ncRNAs participate is related to the 

function of the protein encoded in the mRNA from where they are 

originated. 
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Table 1. List of 3’UTR-derived ncRNAs and their functions 

mRNA	
   ncRNA	
   Type	
   Targets	
   Relevant 
characteristics	
   Reference 

Escherichia coli 

cutC	
   MicL	
   I	
   lpp	
   σE–dependent, 
involved in membrane 

stress	
  

(Guo et al., 
2014) 

sdhCDAB-
sucABCD	
  

ShdX	
   II	
   ackA	
   Coordinates the 
expression of the TCA 
cycle and the acetate 

metabolism	
  

(De Mets et 
al., 2019) 

Salmonella 

dapB	
   DapZ I	
   oppA 

dppA	
  
HilD-dependent, 

represses two ABC 
transporters	
  

(Chao et al., 
2012) 

cpxP	
   CpxQ II	
   agp 

fimAICDHF 

nhaB 

skp-lpxD 

ydjN	
  

Hfq-dependent, targets 
extracytoplasmic 

proteins to alleviate 
inner membrane stress	
  

(Chao and 
Vogel, 2016) 

gltIJKL SroC	
   II	
   GcvB	
   Sponge RNA, 
alleviates GcvB-

repression of amino 
acid transport and 
metabolic genes	
  

(Miyakoshi, 
Chao, and 

Vogel, 2015b) 

Vibrio Cholerae 

vca0943	
   MicX I	
   vc0972	
   Processed by RNase E 
in a Hfq-dependent 
manner, regulates 
outer membrane 

protein	
  

(Davis and 
Waldor, 2007) 

Rhodobacter sphaeroides 

RSP_0847	
   SorX	
   II	
   potA	
   Inhibits a polyamine 
transporter to 

counteract oxidative 
stress	
  

(Peng et al., 
2016) 

Streptomyces coelicolor 

sodF s-SodF	
   II	
   sodN	
   Inhibits SodN, 
regulates superoxide 

dismutases expression 
in relation to nutrient 

availability	
  

(Kim et al., 
2014) 
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Staphylococcus aureus as a bacterial model 

As indicated before, several novel regulatory mechanisms mediated by 

bacterial 3’UTRs have been described in the last decade. However, there 

are still many aspects that remain unknown. In this Thesis, aiming at 

extend our knowledge in the functionality of 3’UTRs in bacteria, we used 

as a model Staphylococcus aureus, one of the most relevant pathogens 

worldwide. 

S. aureus is a facultative anaerobic Gram-positive bacterium that receives 

its name due to the production of a yellow pigment called staphyloxantin 

(Xue et al., 2019). It is estimated that one third of the human population is 

a natural reservoir of S. aureus. It resides in the upper respiratory tracts 

and on the skin as a commensal. However, S. aureus is also an 

opportunistic pathogen that can cause a wide variety of diseases differing 

in severity, ranging from mild soft skin infections to life-threatening 

diseases such as meningitis, endocarditis and sepsis. S. aureus has a 

strong ability to develop resistance to antibiotics by horizontal transfer of 

resistance genes (Oliveira et al., 2018; Horn et al., 2018; Brockhurst et al., 

2019). In addition, it is a very versatile bacterium that can adapt and resist 

to a wide variety of conditions thanks to its capacity to form biofilms. This 

bacterial community is embedded by an extracellular matrix composed 

mainly of polysaccharides, proteins and extracellular DNA. The secreted 

matrix protects the bacterial community from antibiotics, the immune 

system, and extreme environmental conditions. On the one hand, this 

enables S. aureus to cause chronic infections by establishing biofilms on 
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tissues or medical-device surfaces such as catheters, artificial heart valves 

and joint prosthetics. On the other hand, it contributes to S. aureus 

transmission by increasing its survival on different niches (Archer et al., 

2011).  

Moreover, S. aureus is able to produce a wide arsenal of exotoxins and 

virulence factors that are controlled by the quorum sensing system Agr 

(Novick, 2003; Queck et al., 2008). The agr locus consists of two divergent 

transcriptional units originally named RNAII and RNAIII controlled by the 

P2 and P3 promoters, respectively (Figure 15). 

RNAII transcript encodes a two-component system (TCS) composed of 

AgrA and ArgC and a cell density-sensing cassette formed by AgrB and 

AgrD. AgrD is a small peptide that is processed by AgrB, a membrane 

protease that secretes the processed AgrD into the medium. This 

processed version is called autoinducing peptide (AIP) because as cells 

start to replicate and accumulate, the amount of AIP increases inducing 

the autophosphorylation of the membrane kinase, AgrC. Then, AgrC 

transfers the phosphate to the response regulator AgrA to activate the 

expression of RNAIII (Novick, 2003; Queck et al., 2008). RNAIII regulates 

several genes at the post-transcriptional level, promoting the expression of 

secreted virulence factors and inhibiting several adhesion proteins (Novick 

et al., 1993; Bronesky et al., 2016).  
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Figure 15. Agr quorum sensing system of S. aureus. It consists of two 
transcriptional units, RNAII and RNAIII, activated by promoters P2 and P3, 
respectively. RNAII encodes a cell density-sensing TCS that activates RNAIII. 
RNAIII is a dual-functional mRNA encoding the δ-hemolysin (hld), which 
promotes expression of secreted virulence factors and inhibits adhesion protein 
synthesis through mRNA-mRNA interactions. RpiRc is a transcriptional repressor 
that inhibits RNAIII depending on the metabolic status of the cell. Adapted from 
(Painter et al., 2014). 

Agr is tightly regulated by diverse environmental signals sensed by 

different regulatory systems (Bischoff et al., 2001; Pragman et al., 2007). 

For example, RpiRc (ribose phosphate regulator) is a transcriptional 

regulator involved in the control of the pentose phosphate pathway and 

the TCA cycle. At the same time, RpiRc inhibits the expression of RNAIII 

through repression of the P3 promoter. An rpiRc mutant produces higher 

levels of hemolysins and leukocidins enhancing virulence in a murine 

model (Zhu et al., 2011; Balasubramanian et al., 2016; Gaupp et al., 
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2016). In this way, RpiRc is able to connect the cell metabolic status with 

an adequate expression of virulence genes.  

Thanks to this wide palette of abilities, S. aureus is one of the most feared 

pathogens in the healthcare systems. Additionally, it is noteworthy that the 

proportion of infections caused by methicillin-resistant S. aureus strains 

(MRSA) is rising every year. The last weapon against MRSA infections is 

vancomycin but there are already some reports of vancomycin-resistant 

strains (Diep and Otto, 2008; Oliveira et al., 2018; Horn et al., 2018). For 

this reason, the World Health Organization (WHO) considers S. aureus as 

a high priority pathogen and strongly encourages the development of new 

antimicrobials against it (https://www.who.int). 

Due to the obvious importance that S. aureus represents for the society 

worldwide, it has become a paradigm for the study of antimicrobial 

resistance, acute and chronic infections, bacterial clonal dispersion, 

evolution, etc. Since several key discoveries related to non-coding RNA 

regulation have been achieved in S. aureus, it is also considered an 

excellent model for studying post-transcriptional regulation. In this Thesis, 

we unveiled an evolutionary bias within 3’UTRs of Staphylococcus that 

resulted in sequence variations that created functional species-specific 

3’UTRs; a phenomenon that seems to be widely distributed in bacteria. 
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OBJECTIVES 

The pioneering studies carried out so far in bacteria have shown the 

importance of 3’UTRs as a novel regulatory layer. These untranslated 

regions can contain diverse regulatory elements to post-transcriptionally 

control relevant physiological processes in bacteria. Previous work in our 

laboratory showed that the icaR 3’UTR of S. aureus presented sequence 

variability when compared to other staphylococcal species (Ruiz de los 

Mozos et al., 2013). This preliminary observation opened several 

questions about the functionality and evolution of 3’UTRs in bacteria. For 

example, are 3’UTR sequences preserved within and between bacterial 

species? How often do conserved genes from closely related bacteria 

contain different 3’UTRs and how is 3’UTR variability originated? Do 

differences in 3’UTRs between orthologous genes have consequences in 

their expression at the protein level? In this Thesis, aiming to answer 

these questions, we established the following objectives: 

1. Perform genome-wide comparative analyses to study the conservation 

and evolution of 3’UTRs among closely-related bacterial species.  

2. If differences in 3’UTRs conservation are found, study how nucleotide 

variations in 3’UTRs may occur through evolution.  

3. Analyze if 3’UTR sequence variations can create different expression 

patterns among mRNAs encoding orthologous proteins from closely-

related staphylococcal species.  
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MATERIAL AND METHODS 

Strains, plasmids, oligonucleotides and growth conditions 

Bacterial strains, plasmids and oligonucleotides used in this study are 

listed in Annex 1, Annex 2 and Annex 3, respectively. Staphylococcus 

strains were grown in Tryptic Soy Broth (Pronadisa) supplemented with 

0.25% glucose (TSBg) or, when indicated, in Brain Heart Infusion (BHI) or 

chemically defined medium (Toledo-Arana et al., 2005). Escherichia coli 

was grown in Luria-Bertani (LB) broth (Pronadisa). B2 (casein hydrolysate, 

10 g l-1; yeast extract, 25 g l-1; NaCl, 25 g l-1; K2HPO4, 1 g l-1; glucose,       

5 g l-1; pH 7.5) and SuperBroth (tryptone, 30 g l-1; yeast extract, 20 g l-1; 

MOPS, 10 g l-1; pH 7) media were used to prepare S. aureus and E. coli 

competent cells, respectively. For selective growth, media were 

supplemented with the appropriated antibiotics at the following 

concentrations: Ampicillin (Amp), 100 µg ml-1 for all plasmids transformed 

in E. coli; Erythromycin (Erm), 1,5 µg ml-1 or 10 µg ml-1 for pMAD or pCN 

plasmids, respectively, in S. aureus. When using the Pcad promoter, 1.5 

µM of cadmium was added to activate the promoter. 

Nucleotide conservation analysis 

The conservation of UTRs among orthologous monocistronic mRNAs from 

phylogenetically-related bacterial species was determined by performing 

blastn comparisons using the Microbial Nucleotide BLAST tool 

(https://blast.ncbi.nlm.nih.gov/). Monocistronic mRNA boundaries were 
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manually annotated by visualizing the S. aureus transcriptomic maps from 

previous studies (Lasa et al., 2011; Ruiz de los Mozos et al., 2013; Koch 

et al., 2014) in the Jbrowse application (Skinner et al., 2009). For the 

batch comparison of S. aureus 3’UTRs, a file including the query 

sequences in FASTA format was used. Each sequence included the 

annotated 3’UTR and the last 200 nt of the CDS of a monocistronic gene 

(Figure 16). This restriction was applied to normalize the starting point for 

each of the UTRs from the blastn results, facilitating further analysis and 

plotting. We considered that 200 nt from the CDS were enough to properly 

identify their corresponding orthologous genes. Similarly, for batch 

comparison of S. aureus 5’UTRs, a FASTA file including the annotated 

5’UTRs and the first 200 nt of the CDSs were used. In order to normalize 

the starting point of the CDS, we used reverse-complement query 

sequences for 5’UTR blastn comparisons (Figure 16). The UTR 

conservation length was registered as the last nucleotide from the query 

sequence showing a positive alignment with the region of the genome 

under comparison. For this purpose, the information contained in the 

blastn output TXT files was transformed into tables using a custom R 

script. Nucleotide alignments that started at values higher than 100, 

finished at values lower than 100, or were shorter than 80 nucleotides 

were not considered. The UTR conservation lengths of each 

Staphylococcus species were plotted against the reference UTR lengths of 

S. aureus (Figure 16). The square correlation coefficient (R2) was 

calculated in R from the resulting fitted linear model. 
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Figure 16. Schematic representation of the UTR conservation analyses 
performed among closely-related bacterial species. Query UTR databases 
were constructed based on available transcriptomic maps information and were 
used to perform batch blastn analyses to identify the last conserved nucleotides 
among orthologous genes. P, promoter; TT, transcriptional terminator; Sau, S. 
aureus; Ssim, S. simiae. 
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This analysis was also applied to compare the mapped 3’UTRs of B. 

subtilis (Dar et al., 2016) and E. coli (Dar and Sorek, 2018) with 

phylogenetically-related species of the Bacillus genus and 

Enterobacteriaceae family, respectively. Note that in the case of B. 

subtilis, 3’UTRs longer than 150 nt were not annotated (Dar et al., 2016). 

RNA sequencing and data analysis 

In order to perform the transcriptomic maps of S. simiae CCM 7213T, S. 

capitis SK14 and S. epidermidis RP62A, strains were grown in TSBg at 

37ºC and 200 rpm until exponential phase was reached. Total RNAs were 

extracted as previously described (Toledo-Arana et al., 2009). RNA 

sequencing and preliminary data analysis was carried out by the Stab Vida 

company. The RNA-seq reads from S. simiae CCM 7213T, S. capitis 

SK14 and S. epidermidis RP62A samples were aligned using the 

Rockhopper program (Tjaden, 2015) and the complete genome 

sequences from S. simiae NCTC13838 (NZ_LT906460.1), S. capitis 

AYP1020 (NZ_CP007601.1) and S. epidermidis RP62A (NC_002976.3) 

as references, respectively. The obtained read coverage files (.wig) from 

plus and minus strands were converted to BigWig (.bw) files with the 

wig2BigWig program. The generated .bw files and the gene annotation 

files, including the positions of transcriptional terminators predicted by 

TransTerm HP program (Kingsford et al., 2007), were loaded into a public 

web server based on Jbrowse (Skinner et al., 2009) 

(http://rnamaps.unavarra.es/). The 3’UTR lengths of the orthologous 

monocistronic mRNAs were manually annotated and plotted against the 
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lengths of previously described S. aureus 3’UTRs (Ruiz de los Mozos et 

al., 2013). 

Simultaneous mapping of 5’ and 3’ ends from RNA molecules 

The mapping of 5’ and 3’ ends of mRNAs was performed using a modified 

version of the Rapid Amplification of cDNA Ends (mRACE) method 

(Britton et al., 2007). Briefly, total RNA samples were treated with the Cap-

Clip Acid Pyrophosphatase (Tebu-Bio) following the manufacturer’s 

recommendations. After 1 hour of incubation, RNAs were extracted by 

phenol-chloroform and precipitated with sodium acetate and cold ethanol. 

Serial dilutions of Cap-Clip and non-Cap-Clip treated RNAs were ligated 

using the T4 RNA Ligase I (New England Biolabs) at 16ºC overnight (ON). 

RT-PCRs for all the ligated RNA dilutions were carried out using the 

SuperScriptTM III One-Step RT-PCR System with the Platinum Taq DNA 

polymerase (Invitrogen) and the outward primers A and B (Annex 3). For 

the mapping of the 3’UTR of rpiRc from S. epidermidis and S. capitis 

primers RACE-3XFLAG-A and RACE-RpiRc-sau-B were used. PCR 

products were run in 2.5% agarose gels and bands of the expected size 

were purified and ligated into the pGEM-T Easy vector (Promega). The 

resulting reactions were used to transform E. coli XL1-Blue cells 

(Stratagene). Ten isolated white colonies were then analyzed by Sanger 

sequencing. Transcript boundaries were determined by blastn analysis 

and nucleotide frequencies representing the 5’ and 3’ ends, respectively, 

were registered as percentages (%). 
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Chromosomal mutagenesis 

The mutants generated in this study (Annex 1) were obtained by a two-

step homologous recombination that exchanges a specific chromosomic 

region by the mutant allele present in the pMAD plasmid (Arnaud et al., 

2004), as previously described (Valle et al., 2003). The marker-less 

mutants were verified by PCR using the oligonucleotides E and F (Annex 

3) and Sanger sequencing. 

Plasmid construction 

Most of the plasmids used in this study were engineered as previously 

described (Caballero et al., 2018). Briefly, PCR fragments were amplified 

from chromosomic or plasmidic DNA with the DreamTaq DNA polymerase 

or Phusion High-Fidelity DNA Polymerase (Thermo Scientific), using the 

oligonucleotides listed in Annex 3. The PCR products were run and 

purified from agarose gels using the NucleoSpin® Gel and PCR Clean-up 

Macherey-Nagel kit, and ligated into the pJET 1.2 vector (Thermo 

Scientific). The resulting plasmids were used to transform E. coli XL1-Blue 

cells. These were then purified from ON cultures with the NucleoSpin® 

Plasmid Macherey-Nagel kit and verified by Sanger sequencing. When 

required, DNA fragments were excised using FastDigest restriction 

enzymes (Thermo Scientific) and ligated into the appropriate vector with 

the Rapid DNA ligation kit (Thermo Scientific). The final plasmids were 

introduced into S. aureus strains by electroporation, as previously 

described (Lee, 1995). 
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pMADs plasmids used for chromosomal mutations were constructed by 

amplifying flanking sequences (AB and CD) of the target regions using 

primers A/B and C/D (Annex 3). After cloning them into pJET they were 

digested and ligated into pMAD in a double-fragment ligation using 

BamHI, EcoRI and KpnI or NheI (Annex 2 and Annex 3). 

The plasmids used for identification of regulatory 3’UTRs were generated 

by overlapping PCR to introduce the 3xFLAG tag sequence at the N-

terminal of the protein. In particular, the tagged gene was generated by 

linking two partially overlapping PCR fragments that were amplified using 

oligonucleotides +1, 3XFLAG-izq, 3XFLAG-dcha and Term (Annex 3). In 

those genes were the 5’UTR was short, oligonucleotide A was used 

instead of +1. Then, a second PCR with oligonucleotides +1 and Term 

was performed (Annex 3). The PCR fragments were ligated into pJET and 

digested with restriction enzymes BamHI and EcoRI, except for ftnA in 

which BamHI and KpnI were used. They were inserted into pEW or 

pCN51, generating the wild-type (WT) gene plasmids (Annex 2). The pEW 

plasmid was constructed by subcloning the transcriptional terminator 

region from pCN47 to the pCN40 plasmid (Charpentier et al., 2004). 

Plasmids expressing flagged mRNAs without 3’UTRs were generated from 

the WT plasmids with oligonucleotides +1 and D3UTR-term (Annex 3) and 

then inserted into pEW or pCN51 (Annex 2). 

The plasmids expressing chimeric icaR mRNAs were constructed taking 

advantage of conserved natural restriction sites located at the beginning of 

the icaR 3’UTRs. Specifically, icaR mRNA regions were amplified by PCR 
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using chromosomic DNA from the corresponding staphylococcal species 

and specific oligonucleotides IcaR+1 and IcaR-Term (Annex 3). The 

resulting PCR products were inserted into pJET and digested with SpeI 

and EcoRI. In the case of S. simiae, restriction enzymes HincII and EcoRI 

were used. The digested fragments were ligated into the p3XFIcaRm or 

pIcaRm plasmid (Ruiz de los Mozos et al., 2013) producing the plasmids 

carrying the chimeric icaR mRNAs listed in Annex 2. 

To generate the plasmids expressing the chimeric tagged ftnA and rpiRc 

mRNAs (Annex 2), the corresponding 3’UTRs from different 

staphylococcal species were fused to S. aureus FtnA or RpiRc CDSs by 

overlapping PCRs. First, PCR fragments including the 5’UTR and the 

3xFLAG CDS from the ftnA or rpiRc genes were generated by using the 

p3xFFtnA and p3xFRpiRc plasmids as templates and oligonucleotide pairs 

+1-ftn/CDS-stop-ftn and +1-RpiRc/CDS-stop-RpiRc as primers, 

respectively. Second, the 3’UTR regions from different staphylococcal 

species were amplified using their corresponding fw and rvs 

oligonucleotides (Annex 3). Finally, the PCR fragments including the 

3xFLAG tagged CDS and the 3’UTR were fused by PCR using 

oligonucleotides +1 and rvs (Annex 3). Next, they were ligated into pJET 

and digested with BamHI/KpnI and BamHI/EcoRI in the case of 3xFFtnA 

and 3xFRpiRc, respectively, and inserted into pEW.  

The plasmid expressing 3XFFtnAΔ3’UTR57-93 was constructed using the 

p3xFFtnA plasmid as template using oligonucleotides +1-ftn and 3UTR-ftn-
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term-1/2 (Annex 3). The construct was inserted into pEW using BamHI 

and KpnI restriction enzymes (Annex 2). 

The p3xFRpiRc+3’UTRIS256 plasmid was generated by PCR simulating the 

3’UTR of rpiRc from the S. aureus strain 2010-60-6511-5 (GenBank: 

JJCE00000000.1), which carries an IS256 insertion. Briefly, IS256 was 

amplified from the S. aureus strain 15981, using IS256-fw and IS256-

3’UTR-RpiRc-rvs primers and the 3’UTR fragment was amplified from 

p3xFRpiRc, using the RpiRc-CDS-SpeI-fw and 3UTR-RpiRc-42-IS256-rvs 

primers (Annex 3). Then, an overlapping PCR with RpiRc-CDS-SpeI-

fw/IS256-3’UTR-RpiRc-rvs primers was used to generate the 3’UTR 

carrying the IS256 insertion. The amplified product was ligated into pJET. 

Natural restriction sites were used to digest p3xFRpiRc with SpeI/EcoRI, 

pJET3xFRpiRc with NspI/EcoRI and pJET-3’UTR+IS256 with SpeI/NspI, 

followed by a double-fragment ligation into the pEW plasmid in order to 

recreate an rpiRc gene with the IS256 insertion in its 3’UTR.  

The plasmid carrying 3xFRpiRc with the IS1181 insertion in the 3’UTR, 

p3xFRpiRc+3’UTRIS1181, was generated simulating the 3’UTR of rpiRc from 

the S. aureus strain DAR1183 (GenBank: KK099086.1) by PCR. This was 

achieved by amplifying the IS1181 from the S. aureus strain N315 and the 

3’UTR from p3xFRpiRc using primers 3’UTR-RpiRc-IS1181-fw/IS1181-rvs 

and IS1181-3UTR-RpiRc-fw/pCN-univ-AT, respectively (Annex 3). An 

overlapping PCR with the primer pair 3’UTR-RpiRc-IS1181-fw/pCN-univ-

rv-AT was used to generate the 3’UTR carrying IS1181, which was then 

cloned into pJET. Natural restriction sites (SpeI/KasI or SpeI/HindIII) were 
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used to digest p3xFRpiRc while HindIII/KasI were used to digest pJET-

3’UTR+IS1181. Then, a double-fragment ligation into the pEW plasmid 

was performed to recreate an rpiRc gene carrying the IS1181 insertion in 

its 3’UTR. 

The GFP reporter plasmids were constructed using the Listeria 

monocytogenes pAD-cGFP plasmid as a template (Balestrino et al., 

2010). The hly 5’UTR and GFP sequences were amplified with primers 

Sal-GFP-fw and BcuI-TT-BamHI-GFP-rvs (Annex 3). The resulting PCR 

fragment was cloned into the pEW plasmid using SalI and BamHI. The 

3’UTR of ftnA was amplified using primers BamHI-EcoRI-3UTR-ftn-fw and 

SmaI-3UTR-ftn-rvs (Annex 3) and inserted downstream of the gfp gene 

using the restriction sites BamHI and SmaI. The pGFP-Δ3’UTR-ftnA was 

constructed using the pGFP-3’UTR-ftnA as a template and primers SalI-

GFP-fw and KpnI-D3UTR-term-ftn (Annex 3). The amplification product 

was ligated into the pEW-GFP plasmid using SalI and KpnI. The 3’UTR of 

rpiRc was amplified using primers BamHI-EcoRI-3UTR-RpiRc-fw and 

SmaI-3UTR-RpiRc-rvs (Annex 3) and inserted downstream of the gfp 

gene using the restriction sites BamHI and SmaI. The 3’UTRs carrying the 

IS were amplified from p3xFRpiRc+3’UTRIS256 and p3xFRpiRc+3’UTRIS1181 

using BamHI-EcoRI-3UTR-RpiRc-fw and KpnI-term-RpiRc and introduced 

into the pEW-GFP plasmid using BamHI and KpnI. Lastly, the pGFP-

Δ3’UTR-rpiRc was constructed using the pGFP-3’UTR-rpiRc as a template 

and primers SalI-GFP-fw and KpnI-D3’UTR-term-RpiRc (Annex 3). The 
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amplification product was then ligated into the pEW-GFP using SalI and 

KpnI.  

Total protein extraction and Western blotting 

Preinocula were grown in 5 ml of TSBg supplemented with Erm 

(TSBg+Erm) and incubated ON at 37ºC and 200 rpm. Bacterial 

concentrations were estimated by measuring the optical density (OD600) of 

the preinocula and then normalized to an OD600 of 0.02 in Erlermeyer 

flasks containing TSBg+Erm. Cultures were grown at 37ºC and 200 rpm 

until an OD600 of 0.5 (exponential phase) and/or OD600 5-6 (stationary 

phase) were reached. Culture samples were harvested by centrifugation 

(10 min at 4,400 g and 4ºC) and bacterial pellets stored at -20ºC until 

needed. Pellets were thawed, washed and resuspended in 1 ml of 

phosphate-buffered saline (PBS). Next, bacterial suspensions were 

transferred to Fast Prep tubes containing acid-washed 100 µm glass 

beads (Sigma) and cells were lysed using a FastPrep-24 instrument (MP 

Biomedicals) at speed 6 for 45 s twice. Total cell extracts were obtained 

by centrifuging the Fast Prep tubes for 10 min at 21,000 g and 4ºC. The 

total protein concentration was quantified using the Bio-Rad protein assay 

kit. Samples were prepared at the desired concentration in Laemmli buffer 

and stored at -20ºC until needed. 

Western blotting was performed as previously described (Caballero et al., 

2018). The 3xFLAG tagged protein samples were incubated with mouse 

monoclonal anti-FLAG M2-Peroxidase (HRP) antibodies (Sigma) diluted 
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1:1,000 whereas the GFP samples were incubated with mouse 

monoclonal anti-GFP antibodies 1:5,000 (Living Colors, Clontech) and 

peroxidase-conjugated goat anti-mouse immunoglobulin G and M 

antibodies 1:2,500 (Pierce-Thermo Scientific). Membranes were 

developed using the SuperSignal West Pico Chemiluminiscent Substrate 

kit (Thermo Scientific). Protein bands were quantified by densitometry of 

Western blot images using ImageJ (http://rsbweb.nih.gov/ij/). Each of the 

protein levels was normalized to the levels of the S. aureus (Sau) sample. 

RNA extraction and Northern blotting 

Bacteria were grown as described in the previous section, centrifuged for 

3 min at 4,400 g and 4ºC and pellets stored at -80ºC. Total RNA extraction 

was performed as previously described (Toledo-Arana et al., 2009). 

Northern blotting was performed as described by Caballero et al. 

(Caballero et al., 2018) with the following modifications. Radiolabeled-RNA 

probes were synthesized from PCR products carrying the T7 promoter 

(Annex 3) using the MAXIscript T7 transcription kit (Ambion) and [α32P]-

UTP, following the manufacturer’s recommendations. Probes were then 

purified with Illustra MicroSpin G-50 columns (GE Healthcare) and 

membranes were hybridized with the corresponding RNA probes at 68ºC 

ON rotating. mRNA levels were quantified by densitometry of Northern blot 

autoradiographies using ImageJ (http://rsbweb.nih.gov/ij/). Each of the 

mRNA levels was normalized to the levels of the S. aureus (Sau) sample. 
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RNA stability assay 

Bacteria were grown as indicated in the previous sections. Once the 

exponential phase (OD600 = 0.5) was reached, six aliquots of 20 ml of the 

culture were transferred to 50 ml Falcon tubes containing 300 µg ml-1 of 

Rifampicin and incubated at 37 ºC for 0, 2, 4, 8, 15 and 30 min. Then, 5 ml 

of Stop solution (95% ethanol, 5% phenol) were added to the samples and 

centrifuged for 2 min at 4,400 g. Pellets were frozen in liquid nitrogen and 

stored at -80ºC. RNA extraction and Northern blot analysis were 

conducted as described before.  

In vitro transcription 

PCR fragments containing the T7 promoter were used as templates for in 

vitro transcription. The T7 promoter was included in the corresponding Fw 

oligonucleotides (Annex 3). In vitro transcription was carried out using the 

T7 polymerase at 37ºC ON followed by the removal of the PCR templates 

with a DNase I treatment. Transcripts were run on a denaturing 6% 

polyacrylamide gel and visualized using UV shadowing. RNAs were 

excised from the gels and eluted by incubating the gel fractions with 

elution buffer (0,5 M ammonium acetate, 1 mM EDTA, 0,1% SDS) and 

phenol (pH 4.5) at 4ºC ON. RNAs were then purified using a phenol-

chloroform extraction and precipitated with ethanol. Pellets were washed 

with 70% ethanol and resuspended in water. The RNA integrity was 

checked by polyacrylamide gel electrophoresis and their concentration 

measured by a NanoDrop Instrument (Agilent Technologies). 



Material & Methods 

74 

5’ end labeling of synthetic RNAs 

Prior to labeling, the RNA was dephosphorylated with FastAP (Thermo 

Scientific) at 37ºC for 15 min followed by a phenol-chloroform extraction. 7 

µg of dephosphorylated RNA were incubated with [γ 32P]-ATP and the T4 

Polynucleotide Kinase (T4 PNK, Thermo Scientific) at 37ºC for 1h. 

Labeled nucleic acids were purified on a denaturing 6% polyacrylamide 

gel as described in the previous section. The efficiency of the labeling was 

measured using a liquid scintillation counter. 

Electrophoretic mobility assays 

Labeled and non-labeled RNAs were separately prepared at the desired 

concentrations by adding sterile milliQ water and 5X renaturing buffer (100 

mM Tris-HCl pH 7.5, 300 mM KCl, 200 mM NH4Cl, 15 mM DTT). Samples 

were denatured at 90ºC for 1 min and chilled on ice for an additional 

minute. Next, 10 mM of MgCl2 were added and samples were incubated 

for 10 min at 22ºC. Subsequently, the labeled RNA was mixed with 

increasing concentrations of non-labeled samples in 1X reaction buffer (20 

mM Tris-HCl pH 7.5, 60 mM KCl, 40 mM NH4Cl, 3 mM DTT, 10 mM 

MgCl2) in a total volume of 20 µl. The mixtures were then incubated at 

37ºC for 15 min before running them in a non-denaturing 6% 

polyacrylamide gel and 1X Tris-borate buffer containing 1 mM MgCl2 at 

300V and 4ºC. The gel was developed by autoradiography. 
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PIA-PNAG quantification 

PIA/PNAG exopolysaccharide was extracted and quantified as previously 

described (Cramton et al., 1999; Ruiz de los Mozos et al., 2013). Cell 

surface extracts (5 µl), obtained from bacteria grown ON in TSBg, were 

spotted onto a nitrocellulose membrane using a Bio-Dot microfiltration 

apparatus (Bio-Rad). The membranes were blocked ON with 5% skimmed 

milk in phosphate-buffered saline with 0.1% Tween 20 (PBS-Tw20). After 

washing several times with PBS-Tw20, the membranes were incubated for 

2 h with specific anti-PNAG antibodies diluted 1:20,000 (Maira-Litrán et al., 

2005). Bound antibodies were detected by incubating the membranes for 

1h hour with peroxidase-conjugated goat anti-rabbit immunoglobulin G 

antibodies (Jackson ImmunoResearch Laboratories, Inc., Westgrove, PA) 

diluted 1:10,000. Finally, membranes were washed with PBS-Tw20 and 

developed using the SuperSignal West Pico Chemiluminescent Substrate. 

Growth under iron limiting conditions 

Preinocula were grown in 5 ml of modified chemically defined medium 

without iron ON at 37ºC and 200 rpm (Toledo-Arana et al., 2005). Since all 

glass material contains iron traces, bacteria are able to grow in this 

medium. Therefore, in order to eliminate the remaining free iron, we used 

2’2-dipyridil (DIP) (Sigma) as an iron chelator. Preinocula were normalized 

to an OD600= 0,1 and 5 µl of these aliquots were diluted in 195 µl of 

modified chemically defined medium containing different concentrations of 

DIP in 96-well microtiter plates. The growth curve was monitored using the 
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SpectraMax 340 PC Microplate Reader (Molecular Devices). 

Measurements at 0D650 were performed every 30 min at 37ºC during 20 h. 

Identification of elements disrupting rpiRc mRNA sequence 

All available S. aureus genome sequences were retrieved from 

ftp://ftp.ncbi.nlm.nih.gov/genomes/ through the wget command-line utility. 

The Fasta files were loaded into a local nucleotide database using the 

Geneious software package. Next, a Blastn algorithm was locally run 

using the rpiRc mRNA as a query. Genomes presenting pairwise 

alignment disruption located at the rpiRc 3’UTR were registered. When 

possible, sequences surrounding the position of alignment disruptions 

were used to look for insertion sequences in the IS database 

(https://isfinder.biotoul.fr/) (Siguier et al., 2006). Note that in some cases, 

due to the assembly protocol, repeated sequences were eliminated from 

contig ends avoiding the identification of the IS responsible for the 

alignment disruption. 

Hemolysis assay 

 Bacterial cultures were grown in 15 ml of BHI ON at 37ºC and 200 rpm. 

Cultures were centrifuged for 10 min 4,400 g at 4ºC to collect the 

supernatants containing the hemolysins. Supernatants were equalized 

using the wet weight of the pellets and the remaining cells were removed 

from by filtration employing 0.2 µm pore filters. Supernatants were 

concentrated 10 times using a SpeedVac Concentrator. 30 µl of the 

concentrated supernatant were transferred into 5 mm holes within 
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Columbia Sheep blood (5%) agar plates (Biomerieux). Plates were 

incubated at 37ºC ON and then kept at 4ºC for several days.  
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RESULTS 

3’UTRs are highly variable among staphylococcal species 

Next-generation RNA sequencing (NGS) technologies allow to accurately 

determine mRNA boundaries and, therefore, determine the lengths of the 

untranslated regions. To evaluate the evolutionary relationship between 

coding sequences and their corresponding 3’UTRs, we performed 

genome-wide comparative analyses. Using high-resolution transcriptome 

maps of S. aureus as a reference, we analyzed the 3’UTR sequence 

conservation of close phylogenetic members of the genus Staphylococcus 

(Figure 17).  

 

Figure 17. Phylogenetic tree including some relevant species of the 
Staphylococcus genus. Phylogenetic tree representation showing evolutionary 
time scales according to TimeTree knowledge-base (http://www.timetree.org) 
(Hedges et al., 2015). Asterisk indicates those staphylococcal species included in 
the study. MYA, million years ago.  



Results 

82 

In order to simplify the study, we focused on monocistronic mRNAs. This 

ensured that each analyzed CDS was flanked by a 5’UTR and a 3’UTR. 

First, we generated a query database including the 3’UTR sequences plus 

the last 200 nucleotides of each monocistronic CDS (~590 sequences). 

This stretch of nucleotides was intended to serve as an indicator for the 

correct identification of orthologous genes among the staphylococcal 

species. Using blastn (Johnson et al., 2008), we compared the selected 

sequences against 8 representative genomes of the most closely-related 

staphylococcal species according to the TimeTree knowledge-base 

(Hedges et al., 2015) (Figure 17). The last conserved nucleotide position 

of each of the orthologous mRNAs was registered (Figure 16) and plotted 

against the length of their corresponding S. aureus mRNA (Figure 18). 

The comparison of S. aureus NCTC 8325 and MW2 strains revealed that 

97% of the analyzed mRNAs fell on the diagonal axis of the plot, indicating 

3’UTR conservation (Figure 18A). Only 17 (3%) out of 589 monocistronic 

mRNAs showed 3’UTR sequence variations, which could be explained by 

the presence of unique insertion sequences (ISs) or Staphylococcus 

aureus repeat (STAR) elements (Cramton et al., 2000).  
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Figure 18. High-throughput conservation analysis of 3’UTRs from mRNAs 
encoding orthologous proteins among phylogenetically-related 
staphylococcal species. (A) Scatter plots representing the conservation of 3’ 
end regions of S. aureus mRNAs compared to different staphylococcal species. 
The S. aureus NCTC 8325 3’UTR sequence query database was compared by 
blastn to S. aureus MW2, S. argenteus MSHR1132, S. simiae NCTC13838, S. 
capitis AYP1020, S. epidermidis RP62A, S. warneri SG1, S. lugdunensis HKU09-
01 and S. haemolyticus JCSC1435 genome sequences. Each dot represents the 
last conserved nucleotide (y axis) of a specific species in function of the S. 
aureus 3’UTR length (x axis). The plot was colored by applying the Kernel 
density estimation, which indicates the proximity of the dots: blue, isolated dots; 
red, overlapping dots. The number (n) of plotted mRNAs and the square 
correlation coefficient (R2) are indicated. (B) Histogram plots showing the 
distribution of the last conserved nucleotide position (blue bars) among the S. 
aureus mRNAs compared to the indicated species. Each blue bar represents the 
number of conserved 3’UTRs at a given position in windows of 10 nt (width of the 
bar). Grey bars represent the S. aureus distribution, which is included as a 
reference. The dashed red line indicates the position of the stop codon. 
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However, 3’UTR conservation among the analyzed mRNAs decreased as 

the phylogenetic distance between S. aureus and the other staphylococcal 

species increased. This phenomenon is reflected by the dots being 

positioned along the horizontal line that represents the stop codon in 

Figure 18A. The lack of conservation was already noticeable for several 

3’UTRs of S. argenteus, which is the closest species to S. aureus. This 

increased considerably in S. simiae and left the remaining species of the 

genus with just a few conserved 3’UTRs (Figure 18). 

As one would expect, among the conserved 3’UTRs (diagonal line) (Table 

2), we identified RNAIII and several putative riboswitch-dependent 

3’UTRs, meaning that the mRNA transcription ended at the TT of the 

downstream riboswitch when in the OFF configuration (Novick et al., 1993; 

Toledo-Arana et al., 2009; Ruiz de los Mozos et al., 2013; Bronesky et al., 

2016). We also found three mRNAs, encoding SAOUHSC_00937, 

SAOUHSC_02781 and SAOUHSC_02702, which produce the 3’UTR-

derived ncRNAs RsaE/F, RsaOT (i.e. srr43 or SAOUHSCs080) and 

Teg130 (i.e. SAOUHSCs100), respectively (Beaume et al., 2010; Bohn et 

al., 2010; Carroll et al., 2016; Marincola et al., 2019). The remaining 

mRNAs with conserved 3’UTRs encoded enolase, S1 RNA binding 

protein, ribosomal protein L32 (rpmF), and two hypothetical proteins. 
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Table 2. Genes with conserved 3’UTRs among the Staphylococcus genus 

Gene ID Name/description 3’UTR length 
(bp) 

Relevant 
characteristics 

SAOUHSC_02260 RNAIII/hld 353 Master regulator of 
virulence 

SAOUHSC_01788 Threonyl-tRNA 
synthesase 

332 Riboswitch-dependent 
3’UTR 

SAOUHSC_01091 tRNA/rRNA 
methyltransferase 

319 Riboswitch-dependent 
3’UTR 

SAOUHSC_00008 Histidine ammonia 
lyase 

306 Riboswitch-dependent 
3’UTR 

SAOUHSC_00826 Hypothetical protein 305 3’UTR antisense to 
SAOUHSC_00825 

SAOUHSC_01876 Major facilitator 
superfamily MFS_1 

270 Riboswitch-dependent 
3’UTR 

SAOUHSC_00937 Oligoendopeptidase F 199 It includes the 3’UTR-
derived ncRNAs 

RsaE/F 

SAOUHSC_01787 Lysine-specific 
permease 

197 Riboswitch-dependent 
3’UTR 

SAOUHSC_02781 Hypothetical protein 171 It includes the 3’UTR-
derived ncRNA RsaOT 

SAOUHSC_02702 Hypothetical protein 155 It includes the 3’UTR-
derived ncRNA 

Teg130 

SAOUHSC_00799 Enolase 151 - 

SAOUHSC_01055a Hypothetical protein 148 - 

SAOUHSC_00483 S1 RNA binding 
protein 

120 It includes a 3’UTR-
derived ncRNA  

SAOUHSC_01329 30S ribosomal protein 
S14-2 

112 Putative riboswitch-
dependent 3’UTR  

SAOUHSC_01078 Ribosomal protein 
L32 

102 - 
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It is worth noting that, in most of the mRNAs, nucleotide conservation was 

lost downstream of the orthologous CDS (Figure 18A). This is illustrated in 

Figure 18B in which the distribution of the last conserved nucleotide 

position (quantified in windows of 10 nt) is shown. The top left panel of this 

figure shows the 3’UTR conserved length distribution in S. aureus, where 

the maximum of the peak is about 60 nt downstream of the stop codon. 

Meanwhile, in most of the other staphylococcal species, the maximum is 

located within the region comprised between ‒10/+10 nt from the stop 

codon (Figure 18B). The identification of some conserved 3’UTRs was 

indicative of a putative extended 3’UTR functionality. However, the finding 

that there was a significant lack of conservation among the 3’UTRs of 

orthologous genes was very intriguing and deserved further studies. The 

following sections of this Thesis present the main results obtained so far 

regarding the differential evolution of 3’UTRs in bacteria. Note that most of 

the results presented here have been published recently in Nucleic Acids 

Research (Menendez-Gil et al., 2020a).  

5’UTRs are more conserved than 3’UTRs 

It is expected that non-coding sequences accumulate more changes 

throughout the course of evolution than their corresponding CDSs, which 

cannot significantly change without dramatically affecting protein 

functionality. In agreement with this, we reasoned that 5’UTRs (excluding 

the ribosome binding region) should suffer a similar degree of nucleotide 

variation than the 3’UTRs. Therefore, we performed the same blastn 

comparison, using a query database that included the 5’UTR sequences 
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plus the first 200 nt of the CDS. The scatter plots in Figure 19 show that 

evident variations among the 5’UTRs of orthologous genes existed. 

However, the number of conserved 5’UTRs was higher than their 3’UTR 

counterparts. This was significant when comparing the 5’UTR and 3’UTR 

scatter plots of specific staphylococcal species, as the number of dots 

closer to the diagonal line was always greater for the 5’UTRs (Figure 19). 

Although this analysis may have been biased by the presence of the RBS, 

it supported the idea of 3’UTRs being more prone to evolutionary changes 

than 5’UTRs. 

 

Figure 19. High-throughput conservation analysis of 5’UTRs from mRNAs 
encoding orthologous proteins among phylogenetically-related 
staphylococcal species. Scatter plots represent the conservation of 5’ end 
regions of S. aureus mRNAs compared to different staphylococcal species. The 
S. aureus NCTC 8325 5’UTR sequence query database was compared by blastn 
to S. aureus MW2, S. argenteus MSHR1132, S. simiae NCTC13838, S. capitis 
AYP1020, S. epidermidis RP62A, S. warneri SG1, S. lugdunensis HKU09-01 and 
S. haemolyticus JCSC1435 genome sequences. Each dot represents the last 
conserved nucleotide (y axis) of a specific species in function of the S. aureus 
5’UTR length (x axis). The plot is colored applying Kernel density estimation. The 
number (n) of plotted mRNAs encoding orthologous proteins and the square 
correlation coefficient (R2) are indicated.  
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Most of the mRNAs encoding orthologous proteins contain 3’UTRs 
with different lengths and sequences in Staphylococcaceae 

The fact that the conservation of several 3’UTRs was almost fully lost after 

the CDSs indicated that the mRNAs encoding orthologous proteins had 

different 3’UTRs. To determine and compare the real length of 3’UTRs 

among closely-related staphylococcal species, we performed RNA 

sequencing of whole transcripts from S. simiae, S. epidermidis, and S. 

capitis strains. The obtained transcriptomic maps were loaded into a 

Jbrowse-based server (Skinner et al., 2009), which is publicly available at 

http://rnamaps.unavarra.es (some examples are represented in Figure 

20). The lengths of the 3’UTRs from each S. aureus orthologous 

monocistronic gene were manually annotated by combining the RNA-seq 

data and the Rho-independent transcriptional terminator predictions (using 

TransTermHP algorithm) (Kingsford et al., 2007).  

	
    



Results 

89 

 
Figure 20. Browser images showing the RNA transcribed from the icaR, 
ftnA, and rpiRc chromosomic regions of the S. aureus, S. simiae, S. 
epidermidis, and S. capitis strains. Orange arrows, icaR, ftnA and rpiRc CDSs; 
grey arrows, upstream and downstream CDSs; red squares, transcriptional 
terminators; dashed blue arrows, icaR, ftnA and rpiRc mRNAs; dashed green 
arrow, icaZ ncRNA. 
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Subsequently, we plotted the real 3’UTR lengths from each staphylococcal 

species against the 3’UTR lengths of their corresponding S. aureus 

orthologous genes. Figure 21A shows that most of the 3’UTR lengths from 

S. aureus did not correlate with those of the three other analyzed 

staphylococcal species. This lack of correspondence was exemplified 

when selecting some biologically relevant genes (Figure 21B-C). As 

reflected in Figure 21B, in most cases, the length of the 3’UTR showed 

variability among all the analyzed species, while a similar 3’UTR length for 

a given gene was only preserved in a few examples. Overall, these data 

confirmed that most of the mRNAs encoding orthologous genes in 

staphylococcal species had 3’UTRs with different lengths in addition to 

sequence variation.  
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Figure 21. The lengths of the 3’UTRs do not correlate among 
staphylococcal species. (A) Scatter plots representing the real 3’UTR lengths 
of each staphylococcal species in function of the 3’UTR lengths of the 
corresponding orthologous S. aureus mRNAs. The length of the 3’UTRs from S. 
aureus orthologous monocistronic mRNAs were annotated by combining the 
transcriptomic data and the prediction of Rho-independent transcriptional 
terminators by TransTermHP (Kingsford et al., 2007). The number (n) of plotted 
3’UTRs is indicated; only 3’UTRs shorter than 500 nt are represented. The plot 
was colored by applying the Kernel density estimation. (B) Plot representing the 
3’UTR length of relevant orthologous genes in the indicated staphylococcal 
species. (C) Plot representing the 3’UTR conservation length of the orthologous 
genes analyzed in B, which was determined by the blastn algorithm. RNAIII is 
included as an example of an mRNA with a highly conserved 3’UTR. 
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3’UTR sequence differences are originated by local nucleotide 
changes and gene rearrangements 

In order to understand how 3’UTR differences originated among mRNAs 

encoding orthologous proteins, we compared the whole genomic 

sequence of S. aureus (Sau) against that of S. simiae (Ssim), S. 

epidermidis (Sepi), and S. capitis (Scap) using Mauve (Darling et al., 

2004). Note that we only focused on the monocistronic mRNAs, as stated 

above. We expected 3’UTR sequence variations to occur due to different 

genomic rearrangements, as previously described for some ncRNAs 

located at intergenic regions (IGRs) (Raghavan et al., 2015). Therefore, 

we checked the sequence conservation in genomic regions downstream of 

the orthologous CDSs, including IGRs and adjacent CDSs, for each 

genomic pair (Sau vs Ssim, Sau vs Sepi, and Sau vs Scap). We assigned 

a value of 1 or 0 depending on whether the downstream IGR/CDS was 

conserved or not, respectively (Figure 22A). Confirming previous blastn 

analysis (Figure 18), we found that only around 6.8–10.6% of the S. 

aureus CDSs had a conserved downstream IGR/CDS when compared to 

the abovementioned species (Figure 22B). On the other hand, 28.3–

35.2% of the orthologous CDSs lacked a conserved downstream 

IGR/CDS, indicating that gene rearrangements in these loci led to 3’UTR 

variations. The rest of CDSs showed a non-conserved downstream IGR 

but a preserved downstream CDS (between 58% to 62% depending on 

the analyzed species) (Figure 22B). 
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Figure 22. Nucleotide sequence variation occurring downstream of 
orthologous CDSs may explain 3’UTR diversity. (A) Schematic representation 
of the conservation analysis performed on IGRs and CDSs located downstream 
of an orthologous CDS. Whole-genome comparisons between S. aureus and its 
phylogenetically-related species were performed using Mauve (Darling et al., 
2004). Values 1 and 0 were assigned to conserved and non-conserved 
IGRs/CDSs, respectively, and a different color was attributed depending on the 
conservation configuration. Blue: the IGR and CDS downstream of the 
orthologous CDS are conserved; orange: the downstream CDS is conserved but 
not the IGR; green: both downstream regions are not conserved, and grey: no 
orthologous CDS was found in the analyzed species. (B) Pie chart quantifying 
the different categories represented in A. Percentages are calculated only with 
orthologous CDSs. (C) Plot showing the length of the IGR downstream of each 
orthologous CDS in the different species compared to that of S. aureus. (D) Plot 
showing the length of the orthologous CDSs in the different species compared to 
that of S. aureus. Note that only the IGRs and CDSs that fall under the orange 
category are plotted in C and D. 
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When performing this analysis, we realized that such variations 

substantially altered the IGR lengths (Figure 22C). Considering that the 3’ 

end conservation was lost around the protein stop codon (Figure 18), IGR 

length variations may be attributed to shifts in the position of the stop 

codon, which may ultimately affect the CDS length. To address such a 

possibility, we compared the lengths of S. aureus CDSs to those of their 

corresponding orthologous genes for the three abovementioned 

staphylococcal species. As Figure 22D shows, most of the orthologous 

CDSs had similar lengths, indicating that variations in the lengths of the 

IGRs were not due to differences in the analyzed CDS lengths. Therefore, 

we concluded that the differences on the 3’UTR sequences occurred 

partly due to gene rearrangements and mostly because of sequence 

variations in the IGR sequences. The causes of local variations were 

unknown.  

Deletion of 3’UTRs alters expression of relevant genes in S. aureus 

3’UTR variations would be physiologically relevant if they led to 

differences in the expression of the orthologous genes of a particular 

bacterial species. To prove this hypothesis, it was necessary to identify 

mRNAs containing regulatory elements in their 3’UTRs. It has been 

previously shown that deletion of the 3’UTR from RNAIII and icaR mRNAs 

affected the expression of δ-hemolysin and IcaR, respectively (Balaban 

and Novick, 1995; Ruiz de los Mozos et al., 2013). Our comparative 

analysis showed that RNAIII was among the few genes that contain a 
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conserved 3’UTR. This fact left icaR mRNA as the only model to study 

3’UTR variation. Therefore, in order to identify additional functional 

3’UTRs, we selected six monocistronic mRNAs that encoded relevant 

proteins for bacterial homeostasis and carried 3’UTRs longer than 100 nt. 

Table 3 lists the selected genes and the length of their corresponding 

3’UTRs.  

 

Table 3. Selection of mRNAs encoding relevant proteins and carrying long 
3’UTRs 

Gene ID Name Gene description 3’UTR 
length Reference 

SAOUHSC_02589 rpiRc Phosphosugar-
binding 

transcriptional 
regulator  

189 (Gaupp et al., 2016) 

SAOUHSC_02566 sarR Staphylococcal 
accessory regulator  

189 (Manna and Cheung, 
2001) 

SAOUHSC_02108 ftnA Iron storage protein  142 (Morrissey et al., 
2004) 

SAOUHSC_01262 recA SOS response 
regulator  

135 (Cirz et al., 2007) 

SAOUHSC_00992 atlR Autolysin regulator  117 (Houston et al., 
2011) 

SAOUHSC_01997 perR Peroxide-responsive 
regulator  

105 (Horsburgh et al., 
2001) 

 

To identify the mRNAs whose expression could be affected by putative 

regulatory elements located in their corresponding 3’UTRs, these genes 

were labeled by adding the 3xFLAG tag in the N-terminal of each protein. 

The whole tagged mRNA sequences (WT) were cloned into the pEW 

plasmid, which allowed mRNA expression under the control of the PblaZ 
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constitutive promoter (Charpentier et al., 2004). Then, to compare protein 

expression in absence of 3’UTRs, a second set of plasmids was 

constructed by deleting the main 3’UTR sequences from the 

corresponding mRNAs (Δ3’UTRs). Note that these deletions were carried 

out keeping the corresponding transcriptional terminators (Figure 23A). 

Although the expression of all the genes was under the control of the 

same constitutive promoter, Western blot analyses revealed different 

expression protein levels for the selected genes (Figure 23). This indicated 

that protein expression was differentially affected at the post-

transcriptional level. In fact, the plasmid including the altR gene did not 

produce any detectable protein bands. For this reason, the wild type and 

the Δ3’UTR mRNAs expressing 3xFaltR were cloned under the control of 

the Pcad module, which is induced by cadmium (Charpentier et al., 2004).  

Figure 23 shows that deletion of 3’UTRs affected protein expression in 

different ways. On the one hand, no differences could be observed 

between the WT and Δ3’UTR mRNAs expressing 3xFSarR and 3xFAltR 

proteins, at least in the conditions tested. On the other hand, deletion of 

3’UTRs from 3xFrpiRc, 3xFftnA and 3xFperR mRNAs increased protein 

expression in comparison to the WT mRNAs. In contrast, lower amounts 

of 3xFRecA protein were expressed in absence of the 3’UTR. Note that 

changes in expression of 3xFRpiRc protein were only observed in the 

stationary growth phase, suggesting the presence of growth-dependent 

external factors acting on this 3’UTR (Figure 23). Altogether, these results 

unveiled that several mRNAs carried functional 3’UTRs, highlighting the 
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importance of these non-coding regions in modulating protein expression 

in S. aureus. 

 

 

Figure 23. Identification of new regulatory 3’UTRs in Staphylococcus 
aureus. (A) Schematic representation of the constructs expressing the indicated 
proteins from wild type or 3’UTR-deleted mRNAs. Each protein was labeled with 
the 3xFLAG tag (red flag) at the N-terminal. The Δ3’UTRs constructs were 
created by deleting most of the 3’UTR sequence but keeping the TT functional. 
(B-G) Western blotting of 3xFRpiRc (B), 3xFSarR (C), 3xFFtnA (D), 3xFRecA (E), 
3xFAtlR (F) and 3xFPerR (G) constructs showing the protein levels of each pair at 
exponential and stationary growth phases. Tagged proteins were detected with 
peroxidase conjugated anti-FLAG antibodies. Coomassie stained gel portions are 
shown as loading controls. Western images show the representative results from 
at least two independent replicates. Pconst, constitutive promoter; TT, 
transcriptional terminator; Coom, Coomassie. 
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Species-specific 3’UTR variations affect the expression of 
orthologous genes 

To study if 3’UTR variations could lead to differences in the expression of 

the orthologous genes of a particular bacterial species, we selected the 

icaR, ftnA, and rpiRc genes as examples. According to the single 

nucleotide polymorphism (SNP) analysis carried out by Joseph and 

colleagues (Joseph et al., 2016), the 3’UTR sequences of these mRNAs 

were highly conserved among different S. aureus strains (Figure 24A). At 

the same time, these 3’UTRs presented different levels of conservation 

when compared to their closest phylogenetically-related staphylococcal 

species (Figure 24B). In addition, transcript mapping by RNA-seq revealed 

variations in the 3’UTR lengths (Figures 20 and 21B). 

According to synteny analysis, the 3’UTR of icaR showed significant 

variations in length and sequence due to gene rearrangements (Figure 

25A), while the differences in the ftnA and rpiRc 3’UTRs were most likely 

caused by local nucleotide variations in the IGRs, as no gene 

rearrangements were found by synteny analysis (Figure 25B-C). Although 

a CDS insertion was found downstream of the ftnA in S. argenteus, it did 

not affect the mRNA sequence (Figure 25B). 
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Figure 24. The icaR, ftnA and rpiRc 3’UTRs are conserved among S. aureus 
strains but not among staphylococcal species. (A) Plots representing the 
number and position of single nucleotide polymorphisms (SNPs) found in the 
icaR, ftnA and rpiRc mRNA regions of S. aureus according to the analysis carried 
out by Joseph et al. (Joseph et al., 2016). (B) Schematic representation of the 
conservation analysis of the icaR, ftnA, and rpiRc mRNAs among 
phylogenetically-related species. The color code indicates the blastn bit score. 
The 3’UTR lengths in the corresponding species are indicated and represented 
as grey lines. Black triangles indicate the presence of the UCCCC motif (anti-
RBS). 
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Figure 25. Comparison of icaR, ftnA and rpiRc genomic configurations. 
Synteny analyses of the chromosomic icaR (A), ftnA (B) and rpiRc (C) regions, 
performed using SyntTax, the Prokaryotic Synteny & Taxonomy Explorer 
(http://archaea.u-psud.fr/synttax/) (Oberto, 2013).  
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To confirm the transcript boundaries of the icaR, ftnA, and rpiRc mRNAs 

from S. aureus, S. simiae, S. epidermidis, and S. capitis, we performed a 

simultaneous mapping of their 5’ and 3’ mRNA ends using a modified 

version of the rapid amplification of cDNA ends technique (mRACE). 

Annexes 4 to 6 show the mRACE results that confirmed the mRNA 

mappings from the RNA-seq data in combination with the transcriptional 

terminator predictions. Note that rpiRc in S. epidermidis and S. capitis is 

the last gene of a polycistronic transcript. Therefore, we were unable to 

obtain mRACE mapping results from the native gene. We used Mfold to 

predict the putative transcriptional terminator structures of the mapped 

transcripts (Zuker, 2003). Interestingly, these stem-loops were different for 

the majority of the cases (Annex 4B, Annex 5B and Annex 6B). 

Based on the information collected, we constructed chimeric mRNAs that 

combined the CDSs of the three selected S. aureus genes with the 3’UTR 

of their corresponding orthologous genes (from the same staphylococcal 

species analyzed in Figure 24B). We fused such 3’UTRs to their 

corresponding S. aureus CDS, which carried the 3xFLAG sequence at the 

N-terminal, to monitor their protein expression (Figure 26A). These 

plasmids were then transformed into the mutant strains that lacked the 

original genes to facilitate the detection of the mRNAs expressed from the 

plasmids. To confirm the mapping of the 3’ end of the chimeric rpiRc 

mRNA carrying the 3’UTRs from S. epidermidis and S. capitis, we 

performed mRACE. The results showed that the transcripts ended at the 
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expected sites, which were downstream of the predicted stem-loops 

(Annex 6).  

Expression analysis of the 3xFLAG-tagged proteins by Western blotting 

revealed that the deletion of the 3’UTRs produced an increase of the IcaR, 

FtnA, and RpiRc proteins (Figure 26B). Interestingly, the chimeric icaR 

mRNAs harboring the UCCCC motif (3’UTRs from S. argenteus and S. 

simiae), which was required for modulation of IcaR translation in S. aureus 

(Ruiz de los Mozos et al., 2013), presented similar IcaR protein levels to 

those shown by the S. aureus WT mRNA. In contrast, the chimeric icaR 

mRNAs lacking the UCCCC motif (S. epidermidis and S. capitis icaR 

3’UTRs) expressed a comparable amount of the IcaR protein to that of a 

S. aureus mRNA carrying the 3’UTR deletion (Figure 26B). Chimeric 

mRNAs expressing FtnA and RpiRc showed protein yields similar to those 

of the same mRNAs lacking the 3’UTR. The exception to such behavior 

was the chimeric construct carrying the ftnA mRNA in combination with the 

3’UTR of S. argenteus, whose sequence was conserved when compared 

to S. aureus (Figure 24B).  
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Figure 26. 3’UTRs variations affect protein expression. (A) Schema of 
constructed chimeric mRNAs combining the S. aureus CDS with a 3’UTR from 
the indicated species. Red flags indicate the 3xFLAG tag in the N-terminus. (B) 
Western blot (WB) showing the levels of proteins expressed from different 
chimeric mRNAs. (C) Northern blot (NB) showing the mRNA levels expressed 
from the constructs shown in B. Stained protein and RNA gel portions are shown 
as loading controls. WB and NB bands were quantified by densitometry of blot 
images using ImageJ from at least three biological replicates. TT, transcriptional 
terminator; Sau, S. aureus; Sarg, S. argenteus; Ssim, S. simiae; Sepi, S. 
epidermidis; Scap, S. capitis; Coom, Coomassie. 
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The same samples were then subjected to Northern blot analyses. The 

results showed that, in most cases, the steady-state mRNA levels 

correlated with the protein levels (Figure 26C). This suggested that the 

increase in protein levels, which occurred when the original 3’UTR 

sequence was substituted by the one present in its orthologous mRNA, 

was most likely due to an increase in mRNA stability, as previously 

described for the icaR∆3’UTR mRNA (Ruiz de los Mozos et al., 2013). To 

confirm this, we measured the half-life of the chimeric icaR+3’UTRSepi 

mRNA as an example. Figure 27 shows that this chimeric mRNA 

presented a higher half-life in comparison with the icaR WT mRNA. 

Note that the icaR+3’UTRScap and ftnA+3’UTRSepi chimeras did not show 

increased mRNA levels, implying that protein expression could be affected 

in other ways (Figure 26C). Altogether, these results indicated that 

species-specific variations in the 3’UTR sequences could not reproduce 

the expression levels found in S. aureus, suggesting putative distinct 

functional roles for 3’UTRs in the different species. 

The following sections present the studies carried out to demonstrate the 

biological relevance of the 3’UTR-mediated regulation and the 

consequences of nucleotide variations in the 3’UTRs of icaR, ftnA and 

rpiRc mRNAs.  
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Figure 27. The chimeric icaR mRNA including the 3’UTR of S. epidermidis 
has a longer half-life than the icaR WT mRNA. (A) Half-life measurement of 
icaR wild type and icaR+3’UTRSepi mRNAs, which are constitutively expressed 
from the PblaZ promoter. The strains carrying these constructs were grown in 
TSBg at 37ºC until exponential phase and then Rifampicin (300 µg/ml) was 
added. Samples for RNA extraction were taken at the indicated time points (min). 
The experiment was repeated two times and representative images are shown. 
(B) Levels of mRNAs were quantified by densitometry of Northern blot 
autoradiographies using ImageJ (http://rsbweb.nih.gov/ij/). The mRNA levels 
were normalized to mRNA levels at time 0. The mean of mRNA levels was 
plotted as a function of time. Error bars indicate the standard deviation of mRNA 
levels from two independent experiments.  

Species-specific icaR 3’UTRs produce different PIA-PNAG levels in 
S. aureus 

The expression analysis of chimeric icaR mRNAs indicated that the icaR 

3’UTRs from S. epidermidis and S. capitis were unable to reproduce the 

3’UTR-mediated regulation observed in S. aureus (Figure 26B). As 

previously described, the icaR 3’UTR interacts with the 5’UTR of the same 

mRNA molecule through a UCCCC motif to repress IcaR translation and, 
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in return, modulates PIA-PNAG synthesis and biofilm formation in S. 

aureus (Ruiz de los Mozos et al., 2013). The absence of the UCCCC motif 

in the S. epidermidis and S. capitis icaR 3’UTRs may account for the 

differences in IcaR expression. This may be attributed to the lack of 

interaction between their 5’ and 3’UTRs. To test this hypothesis, we 

carried out electrophoretic mobility shift assays (EMSAs). The S. aureus 

icaR 5’UTR was synthesized in vitro, radioactively labeled, and then 

incubated with increasing concentrations of cold icaR 3’UTRs from the five 

staphylococcal species analyzed in Figure 26. Figure 28A shows that the 

S. aureus icaR 3’UTR produced the expected gel-shifts when interacting 

with the 5’UTR, as previously described (Ruiz de los Mozos et al., 2013). 

Consistently, a similar behavior was observed when using the 3’UTR of S. 

simiae (Figure 28B). In the case of the S. argenteus icaR 3’UTR, despite 

sharing a relatively high sequence identity with its S. aureus counterpart 

(82% of identity), a much lower binding affinity was found (Figure 28B). 

This indicated that although S. argenteus preserved the UCCCC motif, the 

nucleotide differences might affect the binding affinity in vitro. S. 

epidermidis and S. capitis 3’UTRs, as one would expect, did not produce 

gel shifts when incubated with the 5’UTR due to the absence of the 

UCCCC motif in their sequences (Figure 28C). Moreover, recent results 

showed that the 5’ and 3’UTRs from S. epidermidis, unlike what was 

observed for S. aureus, did not interact between them, excluding the 

existence of an orthologous mechanism (Lerch et al., 2019). In contrast, it 

was found that the S. epidermidis-specific ncRNA IcaZ, downstream of the 
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icaR 3’UTR, targeted the icaR 5’UTR and prevented IcaR translation 

(Lerch et al., 2019). Altogether, these results indicated that sequence 

variations around the 3’UTR determine the presence or absence of 

specific motifs and, ultimately, the generation of functional distinctions. 

 

Figure 28. Only icaR 3’UTRs carrying the UCCCC motif bind to the S. 
aureus icaR 5’UTR in vitro. Electrophoretic mobility shift assays (EMSAs) 
between the synthetic S. aureus icaR 5’UTR and the synthetic icaR 3’UTR from: 
(A) S. aureus as a positive control; (B) S. argenteus and S. simiae, which carry 
the UCCCC motif necessary for the 5’UTR interaction, as previously described 
(Ruiz de los Mozos et al., 2013); (C) S. epidermidis and S. capitis, which lack the 
UCCCC motif. The autoradiographies of the band-shifts result from incubating a 
32P-labeled synthetic S. aureus 5’UTR RNA fragment (40,000 cpm) with 
increasing amounts of the different synthetic 3’UTR RNAs (100 to 500 nM). The 
UTR complexes are indicated on the right side of the autoradiography. Images 
show representative results from at least two independent experiments. Sau, S. 
aureus. 

In order to demonstrate that the differences observed in terms of IcaR 

expression by chimeric mRNAs were enough to alter PIA-PNAG synthesis 

and, thus, be of biological relevance, we introduced the plasmids 

expressing these chimeric mRNAs into the S. aureus 15981 strain, which 

produces high levels of PIA-PNAG exopolysaccharide. The quantification 

of PIA-PNAG levels by dot-blot using specific antibodies against the 
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exopolysaccharide showed that the strains expressing higher levels of 

IcaR (the chimeric Scap/Sepi and ∆3’UTRs strains, which lacked the 

UCCCC motifs) presented lower levels of PIA-PNAG in comparison with 

the strains producing IcaR from mRNAs containing the UCCCC motif (the 

WT and chimeric Sarg/Ssim strains) (Figure 29). These results confirmed 

that evolutionary variations in 3’UTRs, which occur among 

phylogenetically-related bacteria, are enough to create gene expression 

differences that affect important biological processes, such as 

exopolysaccharide production. This suggested that the synthesis of 

orthologous proteins might be differentially affected by 3’UTR sequence 

variations. 

 

Figure 29. Species-specific variations in icaR 3’UTRs resulted in different 
PIA-PNAG levels. Quantification of PIA-PNAG exopolysaccharide production in 
the S. aureus 15981 strains expressing the different chimeric icaR mRNAs. Serial 
dilutions of the samples were spotted onto nitrocellulose membranes and PIA-
PNAG expression was developed with specific anti-PIA-PNAG antibodies. 
Images show representative results from at least two independent experiments. 
∅ indicates the presence of an empty pCN40 plasmid. Sau, S. aureus; Sarg, S. 
argenteus; Ssim, S. simiae; Sepi, S. epidermidis; Scap, S. capitis.  
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The ftnA 3’UTR is targeted by RNase III and PNPase to reduce mRNA 
levels 

We previously showed that deletion of the ftnA 3’UTR and the inclusion of 

3’UTRs from other staphylococcal species increased 3xFFtnA protein levels 

(Figure 26B). However, the mechanism by which the S. aureus ftnA 3’UTR 

was capable of modulating FtnA expression was unknown. Therefore, we 

wondered whether the ftnA 3’UTR could play a role in translation initiation 

by interacting with the 5’UTR as icaR or could affect mRNA stability by 

leading a specific mRNA processing. On the one hand, we predicted the 

secondary structure of the ftnA mRNA using the Mfold application (Zuker, 

2003). We could not find any evident interaction between the 3’ and the 

5’UTRs suggesting that the 3’UTR was not directly inhibiting translation as 

previously described for IcaR (Ruiz de los Mozos et al., 2013). On the 

other hand, since the Northern blots comparing the ftnA mRNA levels 

showed that the strain carrying the ftnAΔ3’UTR plasmid produced higher 

ftnA mRNA levels than the one expressing the WT ftnA mRNA (Figure 

26C), we analyzed if the ftnA 3’UTR could affect the mRNA stability by 

carrying a target site for a putative RNase. In order to identify the RNases 

that could potentially process the ftnA mRNA, we transformed the most 

relevant RNase mutants of S. aureus, including RNase III (Δrnc), mini-

RNase III (Δmrnc), PNPase (ΔpnpA), RNase R (Δrnr), RNase Y (Δrny) and 

RNase J1 (ΔrnjA), with the plasmids expressing the 3xFftnA WT and 

Δ3’UTR mRNAs. Western blots showed that, although the expression of 

3xFFtnA was variable among the RNase mutants compared to the WT 
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strain, the increased protein expression pattern due to the 3’UTR deletion 

was still observed in Δrnr, Δmrnc and Δrny mutants (Figure 30A). Since we 

could not detect 3xFFtnA in a ΔrnjA mutant, we repeated the Western blot 

but loading higher amounts of total protein extracts. Similarly, we could still 

observe protein differences when comparing the 3xFftnA WT and Δ3’UTR 

mRNAs (Figure 30B). In contrast, no differences in 3xFFtnA levels could be 

detected between ftnA WT and Δ3’UTR mRNAs when they were 

expressed in the Δrnc and ΔpnpA mutants. This result suggested that 

RNase III and PNPase could be targeting the ftnA mRNA through the 

3’UTR. Note that 3xFFtnA levels were higher in the Δrnc than the WT strain, 

pointing out that this RNase could also be targeting other ftnA mRNA 

regions besides the 3’UTR (Figure 30A).  

To confirm that the ftnA 3’UTR carried functional target sites that could be 

recognized by RNase III and PNPase, we fused this 3’UTR to a 

heterologous gene such as the green fluorescent protein (gfp), generating 

the pGFP-3’UTR-ftnA plasmid. As a negative control, the transcriptional 

terminator of the ftnA mRNA was cloned downstream of the gfp gene 

(pGFP-Δ3’UTR). Western blot analysis revealed that GFP levels were 

lower when this protein was expressed from the pGFP-3’UTR-ftnA plasmid 

in comparison to the one just including the ftnA TT (Figure 30C). This 

result indicated that ftnA 3’UTR alone was able to reduce protein 

expression. Interestingly, this effect could be abolished when the pGFP-

3’UTR-ftnA plasmid was introduced into Δrnc and ΔpnpA mutants (Figure 

30D). This confirmed that these RNases targeted ftnA 3’UTR. Since the 
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action of PNPase is inhibited by transcriptional termination hairpin loops, it 

might be expected that PNPase acts after RNase III cleavage. Note that 

RNase III is a double stranded endoRNase. However, no secondary 

structures susceptible to be attacked by RNase III could be predicted in 

the ftnA 3’UTR. Therefore, it is plausible to think that a ncRNA could pair 

to the ftnA 3’UTR to create a double stranded substrate for this RNase.  

 

 

Figure 30. Role of RNases in ftnA 3’UTR-mediated regulation. (A) Western 
blot showing the 3xFFtnA levels of WT and Δ3’UTR constructs in different RNase 
mutants. (B) Western blot of 3xFFtnA in the ΔrnjA mutant with a protein load 
higher than in A. (C) Western blot showing GFP levels of 15981 strains carrying 
either pGFP-3’UTR-ftnA or pGFP-Δ3’UTR. (D) Western blot showing GFP levels 
of 15981, Δrnc and ΔpnpA strains carrying pGFP-3’UTR-ftnA. The Western blots 
from A and B were developed using peroxidase conjugated anti-FLAG 
antibodies, while the Western blots from C and D were developed using 
monoclonal anti-GFP antibodies and peroxidase-conjugated goat anti-mouse 
immunoglobulin G and M antibodies. Coomassie (Coom) stained gel portions are 
shown as loading controls. Western blots images show the representative results 
from at least three independent replicates.   
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The putative ncRNA/RNase target site should be included in the 74-

nucleotide region that has been deleted in the ftnA 3’UTR mutant, which is 

comprised between positions 20 to 93 downstream of the ftnA stop codon. 

To determine the putative functional region across these 74 nt, we created 

a second 3’UTR mutant by deleting the nucleotides from position 57 to 93 

of the ftnA 3’UTR (ftnAΔ3’UTR57-93) (Figure 31A). This plasmid was 

transformed into the WT strain and the protein expression was compared 

to the strains expressing the 3xFftnA WT and Δ3’UTR mRNAs, respectively. 

Western blot analysis revealed that the mRNA carrying the Δ3’UTR57-93 

deletion expressed similar 3xFFtnA protein levels than the WT ftnA mRNA. 

This result indicated that the putative target site should be located in the 

region comprised between positions 20 and 56 of the ftnA 3’UTR (Figure 

31B).  

Our comparative analysis showed that the 3’UTR sequences from S. 

simiae, S. capitis and S. epidermidis ftnA mRNAs were completely 

different (Figure 24B). This meant that the putative target site was absent 

in these species and, therefore, it might explain the increased 3xFFtnA 

protein levels found in these chimeric mRNAs (Figure 26B). Interestingly, 

nucleotide comparison analysis between S. aureus and S. argenteus 

3’UTRs showed that the putative functional region was highly conserved in 

comparison to the surrounding nucleotides (Figure 31C). This was a 

strong evidence supporting that this region effectively contained a target 

site responsible for reducing ftnA mRNA levels in both S. aureus and S. 

argenteus species.  
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Figure 31. The putative regulatory region in the ftnA 3’UTR is located 
between positions 20 to 56 after the stop codon. (A) Schematic 
representation of the constructs generated to identify the functional region of the 
ftnA 3’UTR. (B) Western blot showing the levels of 3xFFtnA when expressed from 
the constructs shown in section A. A Coomassie stained gel portion is shown as 
a loading control. Western blot images show the representative results from at 
least three independent replicates. (C) Blastn alignment of ftnA 3’UTR from S. 
aureus and S. argenteus. The nucleotides corresponding to the CDS, the 
putative regulatory region and the TT are highlighted in orange, blue and green, 
respectively. The arrow indicates the start of the 3’UTR. Pconst, constitutive 
promoter; TT, transcriptional terminator; Coom, Coomassie; Sau, S. aureus; 
Sarg, S. argenteus. 

The ftnA 3’UTR deletion affects adaptation to iron starvation 

The control of the iron pool inside the cells is essential to allow bacterial 

growth. On the one hand, there should be enough iron as a cofactor for a 

wide variety of enzymes while, on the other hand, iron excess should be 

avoided to prevent oxidative stress that could lead to cell damage 

(Andrews et al., 2003; Hood and Skaar, 2012). 
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The ftnA gene encodes for the iron storage protein ferritin, a ubiquitous 

protein found in all cells. Ferritin function appears to be storage of iron, 

removing the intracellular iron to protect cells from its toxic effects. 

Transcription of ftnA mRNA is induced by iron and is highly expressed 

under anaerobiosis, most likely due to the increased solubility of iron in 

these conditions (Horsburgh et al., 2001; Zühlke et al., 2016). Under iron 

starvation conditions, the peroxide stress transcriptional regulator PerR, 

represses ftnA transcription (Horsburgh et al., 2001; Morrissey et al., 

2004). This is required to avoid iron storage when it is scarce. In addition 

to this tight transcriptional regulation, our data showed that ferritin 

expression could also be modulated at the post-transcriptional level 

through the ftnA 3’UTR.  

In order to evaluate the biological relevance of the ftnA 3’UTR-mediated 

regulation, we compared the capacities of the WT and the chromosomal 

ftnAΔ3’UTR mutant strains to grow under iron starvation conditions. To do 

that, these strains were inoculated into microtiter wells containing a 

modified chemically defined medium lacking iron (Toledo-Arana et al., 

2005). Since iron traces are still present in the medium, we added 

increasing concentrations of 2,2'-dipyridyl (DIP), an iron chelator. 

Microplates were incubated at 37ºC and bacterial growth was measured 

by registering the optical density every 30 minutes.  
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Figure 32. The 3’UTR of ftnA is essential under iron starvation conditions. 
15981 WT and ftnAΔ3’UTR strains were grown for 20 hours in a modified 
chemically defined medium without iron (Toledo-Arana et al., 2005) and 
increasing concentrations of the iron chelator 2’2-dipyridil (DIP). OD650 
measurements were registered every half hour. Error bars represent the standard 
deviation of three independent replicates. 

Figure 32 shows that the addition of the DIP chelator at a concentration of 

100 µM significantly affected the growth of the ftnAΔ3’UTR mutant while 

500 µM completely impaired it. Considering that the deletion of the ftnA 

3’UTR increased ferritin concentration (Figure 26B), it could be speculated 

that higher ferritin levels would sequester the scarce iron available inside 

the cells. As result, the essential functions carried out by enzymes 

requiring iron as a cofactor would be affected leading to bacterial growth 

arrest. Altogether, these data demonstrated that the ftnA 3’UTR is 

essential to modulate ferritin expression and to maintain proper iron levels 

for S. aureus growth. Further studies are needed to decipher what are the 

molecular mechanisms by which RNase III and PNPase target this 3’UTR 

to reduce ftnA mRNA levels.  
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IS transposition to rpiRc 3’UTR modifies RpiRc expression and 
hemolysin production 

When studying the rpiRc mRNA in the S. simiae CCM 7213T strain, we 

found that the rpiRc 3’UTR was considerably longer than the 3’UTRs from 

other staphylococcal species (Figure 24B). A deep sequence analysis 

revealed that the S. simiae rpiRc 3’UTR contains three copies of STAR 

elements (Cramton et al., 2000), which are distributed among 

staphylococcal species (Purves et al., 2012). Considering that the number 

and genomic locations of the STAR element copies are variable among 

species and strains (Purves et al., 2012), we investigated whether 

insertions of STAR elements may also occur in the rpiRc 3’UTR of S. 

aureus and, therefore, alter protein expression as observed in the chimeric 

rpiRc construct carrying the 3’UTR of S. simiae (Figure 26). Since SNP 

analysis were not indicative of the presence of insertion/deletion 

sequences, we performed rpiRc mRNA sequence pairwise alignments to 

look for alignment disruptions in the rpiRc 3’UTR. We reasoned that 

alignment disruptions could help us identify repeated regions. Following 

this idea, we used the whole rpiRc mRNA sequence as the query to 

perform blastn against all draft and complete S. aureus genomes available 

on the NCBI database.  

The results showed that 33 S. aureus genomes presented alignment 

disruptions within the rpiRc 3’UTR (Annex 7). Since many of these 

genomes were not fully closed, some alignment disruptions occurred due 

to the query sequence aligning to different contigs. By analyzing the 
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extremes of the aligned contigs, we identified that 16 out of the 33 

genomes contained IS insertions in different locations of the rpiRc 3’UTR 

sequence. Specifically, we were able to map nine IS1181 (Chesneau et 

al., 1999), five IS256 (Lyon et al., 1987) and two ISs of the IS30 

transposase family (Annex 7 and Figure 33A). The remaining genomes 

presented sequence deletions or duplications. Interestingly, we identified 

duplications of 8-12 nt in some of the strains, which were indicative of the 

presence/excision of ISs. The fact that no IS sequences were found in the 

related contigs may be explained by either the use of assembly algorithms 

that eliminated repeated sequences from the extremes of the contigs or 

the ISs being excised. However, the latter would not explain why these 

contigs were not assembled together, suggesting that an unknown IS may 

be inserted in the rpiRc 3’UTR of these genomes. 

In order to analyze the consequences of such insertions, we constructed 

two plasmids containing the IS256 and IS1181 sequences 42 and 108 nt 

downstream of the RpiRc stop codon, respectively. These mimicked the 

chromosomic configurations found in the rpiRc region of the S. aureus 

2010-60-6511-5 and DAR1183 strains, respectively (Figure 33A-B). In 

both cases, the insertion orientation of the IS placed the transposase gene 

in the DNA strand opposite to that of rpiRc. Northern blot analysis 

revealed different chimeric mRNA lengths (Figure 33C). On the one hand, 

IS1181 carried a stem-loop downstream of the transposase gene, in the 

same DNA strand as the rpiRc gene, which acted as a transcriptional 

terminator (Figure 33B). Therefore, the IS1181 insertion produced a 
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chimeric rpiRc-IS1181 mRNA of ~1.4 Kb (3’UTR-IS1181 of 222 nt) that 

included a few nucleotides of the IS1181 sequence. This band migrated in 

a similar manner as the original rpiRc mRNA. The impact of this insertion 

was an increase in the mRNA levels (Figure 33B and C), which correlated 

with an increase in the 3xFRpiRc protein levels (Figure 33D). On the other 

hand, since the IS256 lacked stem-loops able to prevent transcription from 

adjacent genes, a chimeric rpiRc-IS256 mRNA of ~2.8 Kb (3’UTR-IS256 

~1.5 Kb) was produced. In contrast to the IS1181 insertion, the chimeric 

rpiRc-IS256 mRNA included the whole IS256 sequence (Figure 33B and 

C). In this case, there were no considerable changes neither in the mRNA 

nor in the 3xFRpiRc protein levels (Figure 33C and D). Overall, these 

examples indicated that IS insertions may produce different RpiRc protein 

expression outcomes depending on the type of IS, the insertion site, and 

the orientation of the IS. 
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Figure 33. Disruption of the rpiRc 3’UTR sequence by ISs affects the RpiRc 
expression. (A) Schema showing the main IS insertion sites in the rpiRc 3’UTR 
of S. aureus pangenome. (B) Schema representing the putative chimeric mRNAs 
generated by IS1181 and IS256 insertions in the rpiRc 3’UTR of the S. aureus 
DAR1183 and 2010-60-6511-5 strains, respectively. (C-D) Northern and Western 
blots showing the mRNA or protein levels expressed from the WT rpiRc mRNA or 
carrying IS1181 and IS256 insertions or 3’UTR deletion, respectively. (E) 
Western blot showing the GFP levels from constructs carrying the gfp fused to 
the WT rpiRc 3’UTR, the 3’UTR+IS256, the 3’UTR+IS1181 and the rpiRc TT. 
Stained protein and RNA gel portions are shown as loading controls. 
Representative results from at least three independent experiments are shown. 
TT, transcriptional terminator; +/-, DNA strands; Coom, Coomassie. 
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To further confirm that the rpiRc 3’UTR had a functional role that could be 

affected by IS insertions, we analyzed the effect of the WT 3’UTR and the 

chimeric 3’UTR-ISs on the expression of a heterologous gene, the green 

fluorescent protein. To this end, we fused the rpiRc 3’UTR WT, the 3’UTR-

IS1181, and 3’UTR-IS256 sequences downstream of the gfp gene. As a 

control, we included the ∆3’UTR plasmid that carried only the rpiRc TT 

fused downstream of gfp (Figure 33E). Western blot analyses showed that 

the rpiRc 3’UTR led to a lower GFP expression when compared to the 

∆3’UTR version (Figure 33E). This indicated that the rpiRc 3’UTR could 

reduce the expression of a heterologous gene and, therefore, act as a 

functional module. However, the presence of IS1181 in the rpiRc 3’UTR 

increased GFP expression while IS256 only slightly decreased it. This 

confirmed that the transposition of ISs in the rpiRc 3’UTR could have 

different consequences on protein expression depending on the insertion 

events (Figure 33E). 

Next, we decided to analyze the relevance of the rpiRc 3’UTR on the S. 

aureus physiology and the implications of the IS insertions in its role. 

Previous studies showed that RpiRc repressed the expression of RNAIII. 

RNAIII is the master regulator of S. aureus virulence, which activates 

many virulence factors, including hemolysins. A mutant lacking the rpiRc 

gene exhibited an increased hemolysis capacity due to the lack of RNAIII 

repression (Zhu et al., 2011; Balasubramanian et al., 2016; Gaupp et al., 

2016) (Figure 34A). To test whether alterations in the rpiRc 3’UTR could 

modify the hemolytic activity of S. aureus, we constructed chromosomal 



Results 

121 

mutants in S. aureus MW2, a community-acquired agr-positive methicillin-

resistant (MRSA) strain. On the one hand, we performed a 115-bp 

chromosomal deletion that removed most of the 3’UTR of rpiRc while 

preserving its intrinsic TT (MW2 Δ3’UTR), as we did for the 

aforementioned construct. On the other hand, we inserted IS1181 in the 

same rpiRc region as it is naturally found in S. aureus DAR1183 (MW2 

3’UTR+IS1181). As a control, we deleted the whole rpiRc gene 

(MW2 ΔrpiRc). These strains were grown overnight and the production of 

hemolysins in the culture supernatants was tested in sheep-blood agar 

plates (Figure 34B).  

 

 

Figure 34. Deletion of rpiRc 3’UTR or insertion of IS1181 in this region 
affects hemolysin production in S. aureus. (A) Schema representing the 
RpiRc repression of RNAIII. (B) Hemolytic halos produced by the hemolysins 
contained in the supernatant of cultures of S. aureus MW2 wild-type (WT) and 
their isogenic chromosomic mutants ∆3’UTR, ∆rpiRc and 3’UTR+IS1181. The 
supernatants were concentrated 10 times and loaded into 5-mm holes made in 
Columbia Sheep blood (5%) agar plates. This figure shows representative results 
from at least three independent experiments. 
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As expected, the ΔrpiRc mutant showed an increase in hemolysis when 

compared to the WT strain. In contrast, the deletion of the rpiRc 3’UTR 

and the IS1181 insertion in the 3’UTR, which produced higher protein 

levels of the RpiRc repressor (Figure 33D) resulted in lower levels of 

hemolysis (Figure 34B). Overall, these results highlighted the relevance of 

the rpiRc 3’UTR in the physiology of S. aureus while demonstrating that 

the RpiRc function could be altered by the insertion of IS1181 in the rpiRc 

3’UTR. 

3’UTR variability among mRNAs encoding orthologous proteins is a 
common trait in bacteria 

Having proved that the inter-species 3’UTR variability had consequences 

on S. aureus gene expression, we decided to extend the 3’UTR 

conservation analysis to other bacterial genera. First, we focused on 

several previously described functional 3’UTRs (Maeda and Wachi, 2012; 

Benjamin and Massé, 2014; Zhu et al., 2016; Braun et al., 2017). We 

compared the last 200 nt of the CDSs plus the entire 3’UTR sequences 

from the E. coli acnB, Y. pestis hmsT, C. glutamicum aceA, and B. subtilis 

hbs mRNAs with those of their corresponding phylogenetically-related 

species (Annexes 8-11). Although the CDSs were highly conserved across 

all closely-related species, there were 3’UTR sequence variations in all 

four gene examples (Figure 35). The E. coli acnB 3’UTR was conserved in 

the Citrobacter, Enterobacter, and Klebsiella species with only a few 

nucleotide variations. In contrast, and according to synteny analysis by 

SyntTax (Oberto, 2013), the Salmonella, Cronobacter, and Serratia acnB 
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3’UTRs sequences varied due to gene rearrangements (Annex 8B). For 

example, in S. enterica serovar Typhimurium SL1344, an insertion of the 

SL1344_0160 gene (which encodes a putative HNH restriction 

endonuclease) deleted the sequence downstream of the acnB CDS and 

included a different TT. As a result, the Salmonella acnB 3’UTR was only 

34 nt long and it lacked the stem-loop recognized by the apo-AcnB protein 

(Benjamin and Massé, 2014). 

 

Figure 35. Schematic representation of the conservation analysis of 
regulatory 3’UTRs among phylogenetically-related species. Blastn analyses 
were performed using the E. coli acnB (A), Y. pestis hmsT (B), C. glutamicum 
aceA (C), and B. subtilis hbs (D) mRNAs as queries, which carried 3’UTRs with 
proven regulatory capacities (Maeda and Wachi, 2012; Benjamin and Massé, 
2014; Zhu et al., 2016; Braun et al., 2017).  
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Sequence variations were also present in the C. glutamicum aceA, B. 

subtilis hbs, and Yersinia hmsT 3’UTRs. Although the hbs and hmsT 

CDSs are widely distributed across the Bacillus and Yersinia genera, their 

3’UTRs were only conserved in the closest species: B. amyloliquefaciens, 

B. licheniformis, and B. pumilus in the former and Y. pestis biovars and Y. 

pseudotuberculosis in the latter (Figure 35). Finally, none of the 10 

compared species of the genus Corynebacterium carrying the aceA CDS 

presented a similar sequence to that of the C. glutamicum aceA 3’UTR 

(Figure 35). We carried out the prediction of Rho-independent 

transcriptional terminator structures in the non-conserved 3’UTRs from 

Escherichia, Corynebacterium, and Bacillus species to determine the 

length variability (Figure 35, Annexes 8-11). Most of these 3’UTRs 

variations were explained by gene rearrangements occurring downstream 

of CDSs, with the exception of the hbs 3’UTR, in which variations may 

have occurred locally (Annexes 8-11). 

Finally, to further investigate whether 3’UTR variations could also be 

distributed among other genes of E. coli and B. subtilis, as observed in S. 

aureus, we performed similar genome-wide 3’UTR conservation analyses. 

Since the 3’-end transcript boundaries were recently released for E. coli 

and B. subtilis (Dar et al., 2016; Dar and Sorek, 2018), we generated a 

query database including the sequences of all mapped 3’UTRs plus the 

last 200 nt of their corresponding CDSs. Using blastn, we compared the E. 

coli and B. subtilis databases against representative genomes of species 

from Enterobacteriaceae and Bacillus genus, respectively (Figure 36).  
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Figure 36. 3’UTR sequence variations are widely distributed in bacteria. 
Scatter plots representing the conservation of the 3’ end regions of E. coli 
BW25113 (A) and B. subtilis 168 (B) mRNAs compared to their corresponding 3’ 
end regions in phylogenetically-related species: E. coli O157-H7 str EC4115, 
Citrobacter koseri ATCC BAA-895, Salmonella typhimurium SL1344, 
Enterobacter aerogenes KCTC 2190, Klebsiella pneumoniae DMC1097, 
Cronobacter sakazakii ATCC BAA-894, Serratia marcescens Db11 and Yersinia 
pestis CO92 strains; B. subtilis OH 131.1, B. amyloliquefaciens DSM7, B. 
licheniformis ATCC 14580, B. pumilus SH-B9, B. megaterium NBRC 15308, B. 
anthracis Ames, B. cereus ATCC 14579 and B. thuringiensis serovar konkukian 
strains. Data are plotted as indicated in Figure 19. 
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We found a similar outcome to the one observed for the genus 

Staphylococcus, meaning that 3’UTR sequences were also variable 

among mRNAs encoding orthologous proteins (Figure 36). The bacterial 

species of the Enterobacteriaceae family showed a higher number of 

conserved 3’UTRs in comparison with the Bacillus species. This was 

probably due to the phylogenetic distances between the species in the 

former being shorter than the ones in the latter. However, both bacterial 

groups presented a very high variation rate of their 3’UTR sequences, as 

illustrated in Figure 36, where most of the dots fell onto the horizontal line, 

which represented the protein stop codon. This indicated that nucleotide 

conservation was also lost downstream of most CDSs, as represented in 

Figure 37. On the one hand, these comparative analyses confirmed that 

the nucleotide conservation analysis might only be useful for detecting a 

small percentage of inter-species conserved 3’UTRs. On the other hand, 

the results indicated that the 3’UTRs from orthologous genes underwent 

different evolutionary events, a phenomenon that seems to be widespread 

in bacteria.  
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Figure 37. Distribution of the 3’ end conservation lengths of E. coli (A) and 
B. subtilis (B) mRNAs compared to their corresponding 3’ end regions in 
phylogenetically-related species. Each blue bar represents the number of 
conserved 3’UTRs at a given position in windows of 10 nt. Grey bars represent 
the distribution of E. coli and B. subtilis that are included as a reference, 
respectively. The dashed red line indicates the position of the stop codon. 
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DISCUSSION 

Bacterial IGRs, which have been traditionally defined as the genomic 

regions between two CDSs, are known for being poorly conserved among 

phylogenetically-related bacteria (Molina and van Nimwegen, 2008; Luo et 

al., 2011; Sridhar et al., 2011; Thorpe et al., 2017). For this reason, they 

have often been regarded as “junk” genetic material lacking relevant 

biological functions. However, recent RNA-seq technologies revealed that 

IGRs may be more complex than initially anticipated, accommodating a 

plethora of regulatory elements that are either transcribed independently 

as ncRNAs or fully functional from within the UTRs of mRNAs. In recent 

years, several studies showed the biological relevance of 3’UTRs in both 

bacteria and eukaryotic organisms (Miyakoshi, Chao, and Vogel, 2015a; 

Ren et al., 2017; Mayr, 2017). Since the 3’UTR-regulatory elements are 

physically- and functionally-related to the adjacent CDSs through mRNAs, 

an evolutionary connection between them might be expected in 

phylogenetically-related species. This indicates that the 3’UTR sequences 

would be preserved to the same degree as their corresponding CDSs. 

However, in this Thesis, we observed this to be true for just a few 

examples, since most of the 3’UTRs from mRNAs encoding orthologous 

proteins, in closely-related bacterial species, displayed different lengths 

and sequences.  
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Conserved 3’UTRs in the genus Staphylococcus  

Among the few mRNAs that carried conserved 3’UTRs in the genus 

Staphylococcus RNAIII stood out (Table 2). This RNA molecule was one 

of the first regulatory RNAs described in the literature (Novick et al., 1993). 

Since it also encodes the δ−hemolysin (hld), it is the paradigm for dual-

functional mRNAs. RNAIII is the master regulator of S. aureus virulence 

targeting several mRNAs encoding Protein A, Sbi, LytM, Coa, Rot, MgrA 

and Hla. RNAIII pairs these targets mainly through its 3’UTR to either 

inhibit translation initiation and/or promote RNase III-mediated degradation 

or promote mRNA stability and/or translation initiation (Novick et al., 1993; 

Huntzinger et al., 2005; Boisset et al., 2007; Chevalier et al., 2010; 

Chabelskaya et al., 2014; Gupta et al., 2015; Bronesky et al., 2016). 

RNAIII is also able to regulate its own translation through a 5’UTR/3’UTR 

interaction but the molecular mechanism is unknown (Balaban and Novick, 

1995). 

Since the RNAIII 3’UTR, which is the main regulatory region, is highly 

conserved, it might be expected that the RNAIII-regulated targets would 

be also conserved among closely-related staphylococcal species. 

However, analyzing the principal targets we found that only mgrA is 

present in other Staphylococcus species. The rest of the targets were only 

present in a few species. For example, rot and SAOUHSC_01100 were 

found in S. argenteus, S epidermidis and S. haemolyticus, whereas spa 

and sbi were present in S. argenteus and coa and hla in S. argenteus and 

S. haemolyticus. Considering that the Agr system is conserved in all 
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staphylococcal species analyzed, it suggested that the RNAIII-regulatory 

mechanism is preserved over the targets, which might vary according to 

the cell niche. This phenomenon has been observed in eukaryotes with 

some transcriptional factors that are highly conserved but regulate 

different genes depending on the cell tissue or the organism (Mercurio et 

al., 2019; Trefflich et al., 2019). Recently, Connolly et al. observed for 

different pathogenic E. coli, that the conserved transcriptional factor YhaJ 

had different targets in each pathotype. They believe that each organism 

is capable of recycling conserved regulators to create tailor-made 

regulatory circuits that will be beneficial in a particular lifestyle, a situation 

that could be occurring with the RNAIII-mediated regulation (Connolly et 

al., 2019).  

Regarding other conserved 3’UTRs in Staphylococcaceae, it is noteworthy 

that several of them corresponded to riboswitch-dependent 3’UTRs 

(Toledo-Arana et al., 2009; Ruiz de los Mozos et al., 2013). Riboswitches 

are regulatory elements that are usually located in the 5’UTRs to control 

the expression of the downstream genes. However, when the gene 

located upstream of the riboswitch lacks a transcriptional terminator, the 

transcription of this gene will terminate at the transcriptional terminator 

generated by an OFF-riboswitch configuration. As a result, a 3’UTR 

containing the riboswitch is generated (Figure 38). In contrast, if an ON-

riboswitch configuration exists, a long transcript including the upstream 

and downstream genes relative to the riboswitch will be created (Figure 

38). This transcriptomic configuration was initially described in L. 
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monocytogenes but it is present in several bacterial species (Toledo-

Arana et al., 2009; Ruiz de los Mozos et al., 2013). The fact that the roles 

of the upstream genes and the riboswitches are related, could explain why 

these intergenic regions are well conserved among related species. It has 

not yet been elucidated the consequences that this transcriptomic 

architecture can cause on the expression and function of the genes 

involved. Interestingly, most of the riboswitch-dependent 3’UTRs 

comprised T-box riboswitches, which binds specific tRNAs. These 

riboswitches normally control the expression of enzymes related to the 

amino acid metabolism or tRNA synthesis in relation to specific amino acid 

availability (Mellin and Cossart, 2015; Sherwood and Henkin, 2016).  

 

 

Figure 38. Riboswitch-dependent 3’UTRs. Depending on the configuration of 
the riboswitch (ON/OFF) and the promoters’ activation up to 4 different mRNAs 
can be transcribed from this chromosomal organization. P, promoter; TT, 
transcriptional terminator. 

It is also noticeable that at least four of the conserved 3’UTRs are able to 

produce type I non-coding RNAs (Table 2). For instance, the 3’UTR of the 

pepF (SAOUHSC_00937) gene generates the RsaE and RsaF ncRNAs. 



Discussion 

135 

RsaE is conserved in bacteria from the order Bacillales and participates in 

the regulation of the central carbon flux and amino acid metabolism 

(Marincola et al., 2019). There are also evidences of species-specific 

regulatory nodes that might be linked to the bacterial niche. In S. 

epidermidis RsaE promotes biofilm formation by alleviating repression of 

the ica genes through binding to the icaR 5’UTR and by promoting the 

release of extracellular DNA. Interestingly, RsaE in S. epidermidis is 

heterogeneously expressed within the bacterial cells, suggesting that this 

heterogeneity might favor the creation of bacterial populations with distinct 

roles within the biofilm community (Schoenfelder et al., 2019). 

3’UTR variability is widespread among bacteria 

Despite the few mRNAs carrying conserved 3’UTRs, the vast majority of 

mRNAs presented a huge variation in their 3’UTR sequence when 

compared among their close-relatives. The idea of synthetizing hundreds 

of nucleotides at the 3’ ends without a relevant function seems 

contradictory as bacteria tend to efficiently manage energy and clones 

with a lower fitness are rapidly eliminated from populations. Therefore, an 

explanation for the relatively high 3’UTR variation rate should be sought. 

First, it is important to highlight that 3’UTR sequences are more highly 

conserved in comparison with non-transcribed regions of strains from the 

same bacterial species (Ruiz de los Mozos et al., 2013). This implies that 

an evolutionary pressure to preserve 3’UTR sequences in a particular 

species exists. In addition, our data indicates that specific inter-species 

variations in 3’UTR sequences often occur. Therefore, these variations 
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could differentially affect the expression of orthologous proteins from 

different species. This could be a strategy used by bacteria to create 

diversity without changing the CDS, an idea supported by previous studies 

that show how bacterial genes can shift rapidly between multiple 

regulatory nodes. Oren et al. demonstrated the existence of promoter-

regulatory regions that changed among orthologous genes, contributing to 

expression divergence and conferring distinct fitness advantages (Oren et 

al., 2014). Analogously, the finding that 3’UTR sequence variations can 

affect protein expression depending on the species may be an 

evolutionarily-selected trait to create species-specific post-transcriptional 

regulatory processes (Miyakoshi, Chao, and Vogel, 2015a; Updegrove et 

al., 2015; Miyakoshi et al., 2019). Since the 5’UTRs are closely related 

with the initiation of translation, any significant sequence variations could 

impair protein synthesis and, thus, explain the bias in variability within 

3’UTRs. This hypothesis is in agreement with the role of 3’UTRs in 

eukaryotes, which have been specifically targeted through the course of 

evolution to contribute to the divergence of species by accumulating 

regulatory elements in their sequences (Mazumder et al., 2003; Mayr and 

Bartel, 2009; Mayr, 2017). It is worth noting that longer 3’UTRs (including 

multiple miRNA target sites) are preferred in functionally critical eukaryotic 

genes that are spatially or temporally expressed. In contrast, 

housekeeping genes are selected to have shorter 3’UTRs (Cheng et al., 

2009). Strikingly, the 3’UTRs of Salmonella hilD and S. aureus icaR 

mRNAs (which encode the main transcriptional regulators of the SPI-1 
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pathogenicity island and biofilm formation, respectively) are among the 

longest 3’UTRs found in bacteria.  

Resembling the eukaryotic process in which mRNAs are targeted by 

miRNAs, it has been recently shown that hilD and icaR 3’UTRs are 

targeted by ncRNAs (El-Mouali et al., 2018; Bronesky et al., 2019). In the 

former, the Spot 42 ncRNA (transcriptionally repressed by CRP-cAMP) 

targets the hilD 3’UTR, exerting a positive effect on HilD expression (El-

Mouali et al., 2018; El-Mouali and Balsalobre, 2018). In the latter, the RsaI 

ncRNA modulates PIA-PNAG synthesis by interacting with the 3’UTR of 

the icaR mRNA (Bronesky et al., 2019). The RsaI interacting region is 

located between the UCCCC motif, which is required for the icaR 3’-5’UTR 

interaction, and the transcriptional terminator of the icaR mRNA (Bronesky 

et al., 2019). Interestingly, while the UCCCC motif is conserved across the 

S. aureus, S. argenteus, and S. simiae icaR mRNAs, the RsaI paring 

region is only present in the S. aureus icaR mRNA. Note that the RsaI 

ncRNA is conserved in most species of the genus Staphylococcus. The 

Spot 42 ncRNA is present in several bacterial genera, while the hilD gene 

is exclusive to Salmonella (Bækkedal and Haugen, 2015). Overall, this 

shows that the 3’UTRs can accumulate more than one regulatory motif, 

which may be differentially selected during evolution.  

Causes of 3’UTR sequence variability 

We have observed that 3’UTR variability can be caused by different 

phenomena. For instance, the acquisition of icaR 3’UTR variations may be 
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explained by gene rearrangements that created mRNA chimeras among 

staphylococcal species. The S. aureus icaR CDS is only present in 5 out 

of 9 staphylococcal species that encode the icaADBC operon. It is 

interesting to note that in the four species lacking the icaR CDS, either 

DspB (hexosaminidase), a TetR-like regulator, or proteins of a two-

component system are encoded in place of the icaR gene. These different 

genomic organizations indicate that the regulatory locus evolved 

independently from the icaADBC operon and may also explain the 

appearance of 3’UTR variations in the icaR mRNA when such a locus was 

acquired or mobilized. Similarly, gene rearrangements could also be 

responsible for the disparity of ncRNA content in phylogenetically-related 

bacterial species and may also justify some of the 3’UTR variations 

(Raghavan et al., 2015).  

Furthermore, there may be other phenomena beyond gene 

rearrangements behind 3’UTR variations, since only a minor percentage of 

them (around 28.3-35.2%) fell under this category (Figure 22). Between 

58-62% of 3’UTR variations were originated from local variations inside 

IGRs. Several mechanisms have been described that could explain these 

variations. For instance, SNPs and small nucleotide variations can be 

caused by errors in the replication machinery or by exposure to a 

mutagenic agent such as UV light. In this last case, the SOS response of 

each species is key in determining if these nucleotide variations are or not 

corrected (Arber, 2000). Bigger changes can be originated by repeated 

sequences that apart from promoting gene rearrangements due to 
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homologous recombination, they can cause duplications and deletions of 

certain regions by replication machinery errors (Hardy et al., 2004; 

Delihas, 2011). Additionally, mobile elements such as ISs can disrupt 

intergenic regions when a transposition event occurs. Even when ISs are 

no longer present in the 3’UTR, the excision process in some ISs still 

alters the original sequence by producing an excision mark of 8-12 nt 

duplication (Siguier et al., 2014). If this phenomenon happens during a 

long period of time the IGR sequence could significantly change. 

We hypothesized that mobile insertion sequences and/or repeated 

sequences could be an evolutionary motor changing the functionality of 

the 3’UTRs of orthologous mRNAs (Hardy et al., 2004; Purves et al., 

2012). Interestingly, we showed that the presence of STAR elements and 

ISs that interrupt 3’UTR sequences affect the expression of RpiRc in S. 

aureus (Figure 33). This suggests that alternative IS transposition/excision 

processes may generate local 3’UTR variations that can be evolutionarily 

selected if they produce an advantage for a specific clone in comparison 

to the rest of the bacterial population.  

Alternatively, ISs might be also responsible for phase variation 

mechanisms (Ziebuhr et al., 1999; Vandecraen et al., 2017). Here, we 

showed that the presence of IS1181 in the rpiRc 3’UTR of several S. 

aureus strains reduced hemolysin production by increasing the levels of 

the RNAIII-repressor RpiRc (Figure 34). Further studies would be required 

to determine whether the transposition of ISs into the rpiRc 3’UTR provide 
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an additional way to regulate S. aureus virulence through the agr locus, as 

seen for the cases of agr phase variation (Gor et al., 2019). 

Although ISs are able to disrupt 3’UTR sequences, the consequences in 

protein expression might be difficult to predict. Here, we observed that the 

insertion of IS1181 or IS256 in the rpiRc 3’UTR produced different outputs. 

On the one hand, the IS1181 contained a hairpin structure that acted as a 

transcriptional terminator, creating a chimeric rpiRc/IS1181 mRNA of 

similar size to the rpiRc WT mRNA. The insertion increased both mRNA 

and protein levels affecting hemolysin production. On the other hand, 

IS256 insertion produced a longer chimeric rpiRc/IS256 that did not show 

any significant effect on RpiRc expression, at least under the tested 

conditions. Therefore, the consequences of an IS insertion into a 3’UTR 

cannot be predicted. Several variables should be taken into account such 

as the type of IS, the insertion point and the orientation of the transposase. 

Nevertheless, our results demonstrated that 3’UTR function could be 

affected by ISs. It would be interesting to create genomic maps compiling 

the entire set of specific IS sites throughout the genome in a specific 

species. This information could give insights on how ISs might participate 

in the creation of 3’UTR variability. 

Alternative 3’UTR-mediated regulatory mechanisms for the same 
orthologous gene 

In this Thesis, we demonstrated that 3’UTRs vary among bacteria, 

affecting protein expression. Variability in 3’UTRs can cause the 

emergence or vanishing of regulatory elements creating different 



Discussion 

141 

regulation patterns for the same orthologous proteins in closely-related 

bacteria. These changes can affect the sequences required for 

interactions with 5’UTRs, ncRNAs or RNA-binding proteins. This is 

exemplified by the icaR 3’UTR. The UCCCC motif needed for the 5’UTR 

interaction is only present in S. argenteus and S simiae (Figure 24). 

Interestingly, S. epidermidis has developed an alternative mechanism to 

regulate IcaR protein levels instead of the 5’UTR-3’UTR interaction. The 

ncRNA IcaZ that is located just downstream of the icaR mRNA base pairs 

with icaR 5’UTR to inhibit translation initiation (Lerch et al., 2019). 

Similarly, the presence of specific target sites for RNA-binding proteins in 

3’UTRs could also contribute to regulatory differences among bacterial 

species (Benjamin and Massé, 2014). Our comparative analysis revealed 

that gene rearrangements have eliminated the Apo-AcnB binding site from 

acnB 3’UTR from Salmonella, Cronobacter and Serratia. Although further 

experiments are needed, it might be speculated that acnB regulation 

would be different from the one found in Escherichia, Citrobacter, 

Enterobacter and Klebsiella (Figure 35A and Annex 8). 

Furthermore, we have shown that changes in the 3’UTR sequence could 

affect mRNA turnover by modifying the 3’UTR accessibility to exoRNAses. 

This indicates that the accumulation/elimination of ribonuclease target 

sites could be an alternative way to specifically modulate the protein 

expression at the post-transcriptional level in a particular species. In 

agreement with this, the deletion of 3’UTRs (e.g. hilD, aceA, hmsT, and 

icaR), and with them, the putative ribonuclease target sites, increases 
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protein expression (Maeda and Wachi, 2012; Ruiz de los Mozos et al., 

2013; López-Garrido et al., 2014; Zhu et al., 2016; Zhao et al., 2018). This 

could also be the case of the mechanism mediated by the ftnA 3’UTR in S. 

aureus, which is targeted by RNase III and PNPase (Figure 30). Note that 

the putative target region that we identified is only shared by S. aureus 

and S. argenteus. This suggested that the 3’UTR mediated post-

transcriptional regulation of FtnA expression would be different in the other 

staphylococcal species.  

In addition to a differential effect on orthologous genes, it should also be 

considered that variations in 3’UTR sequences might affect the expression 

of downstream genes. For example, if variations in the 3’UTR sequence 

alter the strength of the corresponding TT or even eliminate it (e.g. Figure 

26C shows that transcriptional read-through events occur in ftnA of some 

staphylococcal species), transcription would continue to increase the 

expression of downstream genes or create antisense RNAs if the 

downstream gene is encoded in the opposite direction (Lasa et al., 2012). 

If a downstream gene is close enough, variations in the 3’UTR sequence 

could also alter promoter regulatory elements of the next transcription unit, 

thereby affecting their expression. In the case of convergent genes, 

variations in the 3’UTRs can create overlapping 3’UTRs that can produce 

transcriptional interference due to collision between the RNA synthesis 

machineries and/or antisense regions targeted by RNase III. This could 

generate a reciprocal expression regulation of both genes depending on 

the promoters activation (Sesto et al., 2013). 
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Further studies are needed to improve our knowledge of how sequence 

variations in 3’UTRs may specifically affect gene expression in different 

bacterial species. The development of RNA sequencing techniques, 

mapping the precise 3’-ends of transcripts, as well as ribonuclease 

cleavage regions and RNA-protein binding sites will considerably 

contribute to this (Dar et al., 2016; Chao et al., 2017; Holmqvist and Vogel, 

2018; Altuvia et al., 2018). Combining such information with studies like 

the one presented here will help improving our understanding of the 

evolutionary features responsible for the generation of species-specific 

sequences that may, ultimately, lead to bacterial species differentiation.  
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CONCLUSIONS 

1. Genome-wide comparative analyses of mRNA sequences encoding 

orthologous proteins revealed that only few mRNAs contained conserved 

3’UTRs, including RNAIII and mRNAs carrying riboswitch-dependent 

3’UTRs or type I ncRNAs. 

2. In contrast, most of the 3’UTRs were not conserved among 

phylogenetically-related species of the genus Staphylococcus. The mRNA 

sequence conservation was lost around the stop codon. 

3. Additional comparative analyses showed that 5’UTRs were more 

conserved than 3’UTRs in Staphylococcus, supporting the idea of 3’UTRs 

being more prone to sequence variations than 5’UTRs. 

4. RNA sequencing analyses of diverse Staphylococcus species revealed 

that most of the mRNAs encoding orthologous proteins carried 3’UTRs 

with different lengths in addition to sequence variation. 

5. Sequence conservation analyses of the genomic regions downstream of 

the orthologous CDSs, including IGRs and adjacent CDSs, revealed that 

differences in the 3’UTR sequences occurred partly due to gene 

rearrangements but mostly because of local variations in the IGR 

sequences.  

6. The construction of chimeric mRNAs carrying the 3’UTR of the 

orthologous icaR, ftnA and rpiRc genes from five staphylococcal species 

demonstrated that 3’UTR sequence variations produced changes in both 

mRNA and protein levels. This indicated that 3’UTRs might provide distinct 
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functional roles to differentially control the expression of the same 

orthologous protein in closely-related species. 

7. The IcaR protein is the main repressor of the polysaccharidic biofilm in 

S. aureus. The expression of IcaR is modulated by the interaction of the 5’ 

and 3’UTRs from the same mRNA molecule through base pairing of the 

RBS sequence and a UCCCC motif. The latter is present in the 3’UTR of 

S. aureus, S. argenteus and S. simiae, but absent in S. epidermidis and S. 

capitis. Only the former species could repress IcaR translation through the 

3’UTR and, in return, modulate the polysaccharide PIA-PNAG synthesis.  

8. The ftnA mRNA encodes the ferritin protein required for iron storage. 

The ftnA 3’UTR of S. aureus and S. argenteus carries a putative 

regulatory region located between nucleotides 20 and 56 after the stop 

codon, which is absent in other staphylococcal species. This region is 

targeted by RNase III and PNPase to decrease mRNA levels and 

consequently FtnA expression.  

9. The chromosomal deletion of the ftnA 3’UTR inhibited S. aureus growth 

when iron was scarce, indicating that the 3’UTR-mediated regulation is 

essential for the control of FtnA levels under iron deprivation conditions.  

10. The finding of specific regulatory elements in icaR and ftnA mRNAs 

demonstrated that sequence variations around the 3’UTR determine the 

presence or absence of alternative regulatory motifs and, ultimately, the 

generation of functional distinctions among closely-related species.  
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11. The RpiRc protein is a transcriptional regulator repressing the 

synthesis of RNAIII, the main post-transcriptional regulator of several 

virulence factors including hemolysins. The chromosomal deletion of the 

rpiRc 3’UTR increased RpiRc expression and, consequently, reduced 

hemolysin production. This and the other examples presented in this 

Thesis highlight the importance of 3’UTR-mediated regulation to tightly 

modulate relevant biological processes such as biofilm formation, iron 

metabolism and virulence in a clinical important pathogen such as S. 

aureus. 

12. Several S. aureus strains carried different insertion sequences 

(IS1181, IS256, IS1082, etc) within the rpiRc 3’UTR. The consequences of 

these insertions depended on their location, orientation and type of IS 

element. Specifically, the IS1181 insertion created a chimeric rpiRc mRNA 

that disrupted the rpiRc 3’UTR function by increasing RpiRc expression 

and reducing hemolysin production. This demonstrated that the 3’UTR-

mediated regulatory mechanisms can be affected by transposition events. 

13. The conservation analyses of several previously described functional 

3’UTRs, as well as the entire set of Escherichia coli and Bacillus subtilis 

mRNAs, suggested that the 3’UTR sequence variability is widespread in 

bacteria.  

14. 3’UTR variability might be responsible for creating different functional 

regulatory roles and, ultimately, bacterial diversity through the course of 

evolution, in a similar way to what happened during the diversification of 

eukaryotic species. 
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CONCLUSIONES 

1. Los análisis comparativos globales de las secuencias de los mRNAs 

que codifican para proteínas ortólogas revelaron que sólo unos pocos 

mRNAs contenían 3’UTRs conservadas. Entre estos destacaban RNAIII y 

los mRNAs que incluían 3’UTRs dependientes de riboswitches o ncRNAs 

de tipo I. 

2. Por el contrario, la gran mayoría de las 3’UTRs no estaban 

conservadas entre especies filogenéticamente relacionadas del género 

Staphylococcus. La conservación de las secuencias de los mRNAs se 

perdía al a la altura del último codón de la traducción.  

3. Análisis comparativos adicionales mostraron que las 5’UTRs se 

encontraban más conservadas que las 3’UTRs en Staphylococcus. Estos 

resultados apoyan la idea de que las 3’UTRs son más propensas a 

variaciones nucleotídicas que las 5’UTRs.  

4. Experimentos de secuenciación masiva de RNAs de diversas especies 

de Staphylococcus mostraron que la mayoría de las 3’UTRs de mRNAs 

que codifican para proteínas ortólogas no sólo variaban en su secuencia 

sino también en su longitud. 

5. Los análisis de conservación de secuencia de las regiones genómicas 

posteriores a las CDS ortólogas, incluidas las IGRs y las CDSs 

adyacentes, revelaron que las variaciones nucleotídicas observadas en 

las 3'UTRs se produjeron principalmente debido a variaciones locales en 

las secuencias y en menor medida por reordenamientos genómicos.  
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6. La construcción de mRNAs quiméricos que contenían las CDSs de 

icaR, ftnA y rpiRc de S. aureus fusionadas a las 3’UTRs provenientes de 

cinco especies de Staphylococcus demostró que las variaciones 

nucleotídicas en las 3'UTRs producen cambios en los niveles de mRNAs y 

proteínas. Esto sugería que las 3'UTRs podrían proporcionar funciones 

distintas para controlar de manera diferencial la expresión de la misma 

proteína ortóloga en especies estrechamente relacionadas. 

7. La proteína IcaR es el principal represor del biofilm polisacarídico en S. 

aureus. La expresión de IcaR está modulada por la interacción de la 

5’UTR y la 3’UTR del mismo mRNA por medio del apareamiento de bases 

de la RBS con un motivo UCCCC que está presente en las 3’UTRs de  S. 

aureus, S. argenteus y S. simiae, pero ausente en las de S. epidermidis y 

S. capitis. Únicamente las primeras especies eran capaces de reprimir la 

traducción de IcaR por medio de la 3'UTR y, así, controlar la síntesis del 

exopolisacárido PIA-PNAG.  

8. El mRNA de ftnA codifica a la proteína ferritina necesaria para el 

almacenamiento de hierro. La 3’UTR de ftnA de S. aureus y S. argenteus 

contiene una región con una posible capacidad reguladora ubicada entre 

los nucleótidos 20 y 56 después del codón stop, la cual está ausente en 

otras especies de Staphylococcus. Esta región es procesada por la 

RNasa III y la PNPasa para disminuir los niveles de mRNA y, en 

consecuencia, la expresión de FtnA.  

9. La deleción cromosómica de la 3’UTR de ftnA inhibió el crecimiento de 

S. aureus cuando el hierro era escaso en el medio de cultivo, lo que 
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indicaba que la regulación mediada por la 3'UTR era esencial para el 

control de los niveles de FtnA en condiciones de privación de hierro.  

10. El descubrimiento de elementos reguladores específicos en los 

mRNAs de icaR y ftnA demostró que las variaciones de secuencia 

alrededor de las 3'UTRs determinan la presencia o ausencia de motivos 

alternativos con capacidad reguladora, y, en última instancia, la 

generación de distinciones funcionales entre especies estrechamente 

relacionadas. 

11. La proteína RpiRc es un regulador transcripcional que reprime la 

síntesis de RNAIII, el principal regulador post-transcripcional de varios 

factores de virulencia, incluidas las hemolisinas. La deleción cromosómica 

de la 3'UTR de rpiRc produjo un aumento en la expresión de RpiRc y, en 

consecuencia, redujo la producción de hemolisinas. Éste y los otros 

ejemplos presentados en esta Tesis destacan la importancia de la 

regulación mediada por las 3'UTRs para modular procesos biológicos 

relevantes, como la formación de biofilms, el metabolismo del hierro y la 

virulencia en un patógeno de relevancia clínica como S. aureus. 

12. Varias cepas de S. aureus contenían diferentes secuencias de 

inserción (IS1181, IS256, IS1082, etc.) localizadas en la 3’UTR de rpiRc. 

Las consecuencias de estas inserciones dependían del sitio, la 

orientación y el tipo de inserción. Específicamente, la inserción IS1181 

creaba un mRNA de rpiRc quimérico que interrumpía la función de la 

3’UTR. En consecuencia, se producía un aumento en la expresión de 

RpiRc y una reducción de la producción de hemolisinas. Esto demuestra 
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que los mecanismos reguladores mediados por 3'UTRs pueden verse 

afectados por los eventos de transposición. 

13. Los estudios de conservación de varias 3'UTR funcionales descritas 

anteriormente, así como en el conjunto de los mRNAs de E. coli y B. 

subtilis, demostraron que la variabilidad de las secuencias de las 3'UTRs 

está muy extendida entre las bacterias.  

14. La variabilidad en las 3’UTRs podría ser responsable de crear 

distintas funciones reguladoras y, en última instancia, contribuir en la 

diversidad bacteriana a lo largo de la evolución de manera similar a lo que 

sucedió durante la diversificación de las especies eucariotas. 
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Annex 1. Strains used in this study 
Strains Relevant characteristic(s) BGR 

IDa 
Source or 
reference 

Staphylococcus argenteus    

MSHR1132 Strain isolated from blood culture of a 55-
year-old indigenous Australian female (DMS 
Nº 28299). 

314 Leibniz Institute 
DSMZ, (Holt et 

al., 2011) 

Staphylococcus simiae    

CCM 7213T Strain isolated from faeces of a South 
American squirrel monkey. 

315 CCM, (Suzuki et 
al., 2012) 

Staphylococcus capitis    

SK14 Strain isolated from normal skin of the right 
arm of a 58-year-old man. Catalog No. HM-
117. 

317 BEI Resources 

Staphylococcus epidermidis    

RP62A Strain isolated from a catheter sepsis (Ref. 
ATCC 35984). 

313 NARSA-BEI 
Resources 

Staphylococcus aureus    

RN4220 A cloning intermediate also used in virulence, 
resistance, and metabolic studies. 

13 (Nair et al., 
2011) 

N315 Hospital-acquired MRSA (methicillin resistant 
Staphylococcus aureus) strain.  

15 (Kuroda et al., 
2001) 

15981 MSSA (methicillin sensitive Staphylococcus 
aureus) clinical isolate from an otitis infection; 
biofilm positive; PIA-PNAG-dependent biofilm 
matrix. 

8 (Valle et al., 
2003) 

MW2 Typical community-acquired MRSA strain 
isolated in 1998 in North Dakota, USA. 

10 (Baba et al., 
2002) 

RN4220 p3xFRpiRc RN4220 carrying the p3xFRpiRc plasmid. 551 This study 

RN4220 p3xFRpiRc∆3’UTR RN4220 carrying the p3xFRpiRc∆3’UTR 
plasmid. 

552 This study 

RN4220 p3xFSarR RN4220 carrying the p3xFSarR plasmid. 543 This study 

RN4220 p3xFSarR∆3’UTR RN4220 carrying the p3xFSarR∆3’UTR 
plasmid. 

544 This study 

RN4220 p3xFFtnA RN4220 carrying the p3xFFtnA plasmid. 541 This study 

RN4220 p3xFFtnA∆3’UTR RN4220 carrying the p3xFFtnA∆3’UTR 
plasmid. 

542 This study 

RN4220 p3xFRecA RN4220 carrying the p3xFRecA plasmid. 538 This study 

RN4220 p3xFRecA∆3’UTR RN4220 carrying the p3xFRecA∆3’UTR 
plasmid. 

539 This study 

RN4220 p3xFAtlR RN4220 carrying the p3xFAtlR plasmid. 737 This study 

RN4220 p3xFAtlR∆3’UTR RN4220 carrying the p3xFAtlR∆3’UTR 
plasmid. 

738 This study 

RN4220 p3xFPerR RN4220 carrying the p3xFPerR plasmid. 599 This study 

RN4220 p3xFPerR∆3’UTR RN4220 carrying the p3xFPerR∆3’UTR 
plasmid. 

600 This study 

15981 p3xFFtnA 15981 carrying the p3xFFtnA plasmid. 793 This study 

15981 p3xFFtnA∆3’UTR 15981 carrying the p3xFFtnA∆3’UTR plasmid. 794 This study 

15981 p3xFFtnA∆3’UTR57-93 15981 carrying the p3xFFtnA∆3’UTR57-93 

plasmid. 
1657 This study 

15981 pCN40 15981 carrying the pCN40 plasmid. 559 (Ruiz de los 
Mozos et al., 

2013) 
                       Continued in the following page 
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Annex1. Continued 
Strains Relevant characteristic(s) BGR 

IDa 
Source or 
reference 

15981 pIcaRm 15981 carrying the pIcaRm plasmid. 63 (Ruiz de los 
Mozos et al., 

2013) 

15981 pIcaRm∆3’UTR 15981 carrying the pIcaRm∆3’UTR plasmid.  395 (Ruiz de los 
Mozos et al., 

2013) 

15981 pIcaR+3’UTRSarg 15981 carrying the pIcaR+3’UTRSarg plasmid. 1395 This study 

15981 pIcaR+3’UTRSsim 15981 carrying the pIcaR+3’UTRSsim plasmid. 1397 This study 

15981 pIcaR+3’UTRSepi 15981 carrying the pIcaR+3’UTRSepi plasmid. 1396 This study 

15981 pIcaR+3’UTRScap 15981 carrying the pIcaR+3’UTRScap plasmid. 1518 This study 

15981 pGFP-3UTR-ftnA 15981 carrying the pGFP-3UTR-ftnA plasmid. 1644 This study 

15981 pGFP-Δ3UTR-ftnA 15981 carrying the pGFP-Δ3UTR-ftnA 
plasmid. 

1809 This study 

15981 pGFP-3’UTR-rpiRc 15981 carrying the pGFP-3’UTR-rpiRc 
plasmid. 

1643 This study 

15981 pGFP-3’UTR-
rpiRc+IS256 

15981 carrying the pGFP-3’UTR-rpiRc+IS256 
plasmid. 

1915 This study 

15981 pGFP-3’UTR-
rpiRc+IS1181 

15981 carrying the pGFP-3’UTR-
rpiRc+IS1181 plasmid. 

1916 This study 

15981 pGFP-Δ3’UTR-rpiRc 15981 carrying the pGFP-Δ3’UTR-rpiRc 
plasmid. 

1808 This study 

15981 ∆icaRADBC 15981 mutant with the whole icaR and 
icaADBC locus deleted. 

225 J. Valle/I. Lasa 

∆icaRADBC p3xFIcaRm 15981 ∆icaRADBC carrying the p3xFIcaRm 
plasmid. 

1853 This study 

∆icaRADBC p3xFIcaRm∆3’UTR 15981 ∆icaRADBC carrying the 
p3xFIcaRm∆3’UTR plasmid.  

1854 This study 

∆icaRADBC 
p3xFIcaR+3’UTRSarg 

15981 ∆icaRADBC carrying the 
p3xFIcaR+3’UTRSarg plasmid. 

1855 This study 

∆icaRADBC 
p3xFIcaR+3’UTRSsim 

15981 ∆icaRADBC carrying the 
p3xFIcaR+3’UTRSsim plasmid. 

1856 This study 

∆icaRADBC 
p3xFIcaR+3’UTRSepi 

15981 ∆icaRADBC carrying the 
p3xFIcaR+3’UTRSepi plasmid. 

1857 This study 

∆icaRADBC 
p3xFIcaR+3’UTRScap 

15981 ∆icaRADBC carrying the 
p3xFIcaR+3’UTRScap plasmid. 

1858 This study 

15981 ΔftnA 15981 carrying a chromosomal deletion of 
ftnA gene. 

933 This study 

ΔftnA p3xFFtnA 15981 ΔftnA carrying the p3xFFtnA plasmid. 1831 This study 

ΔftnA p3xFFtnA∆3’UTR 15981 ΔftnA carrying the p3xFFtnA∆3’UTR 
plasmid.  

1832 This study 

ΔftnA p3xFFtnA+3’UTRSarg 15981 ΔftnA carrying the p3xFFtnA+3’UTRSarg 
plasmid. 

1833 This study 

ΔftnA p3xFFtnA+3’UTRSsim 15981 ΔftnA carrying the p3xFFtnA+3’UTRSsim 
plasmid. 

1834 This study 

ΔftnA p3xFFtnA+3’UTRSepi 15981 ΔftnA carrying the p3xFFtnA+3’UTRSepi 
plasmid. 

1835 This study 

ΔftnA p3xFFtnA+3’UTRScap 15981 ΔftnA carrying the p3xFFtnA+3’UTRScap 
plasmid. 

1836 This study 

15981 ΔrpiRc 15981 carrying a deletion rpiRc gene. 920 This study 

ΔrpiRc p3xFRpiRc 15981 ΔrpiRc carrying the p3xFRpiRc plasmid. 1681 This study 
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Annex 1. Continued 
Strains Relevant characteristic(s) BGR 

IDa 
Source or 
reference 

ΔrpiRc p3xFRpiRc∆3’UTR 15981 ΔrpiRc with the p3xFRpiRc∆3’UTR 
plasmid.  

1684 This study 

ΔrpiRc p3xFRpiRc+3’UTRSarg 15981 ΔrpiRc with the p3xFRpiRc+3’UTRSarg 
plasmid. 

1827 This study 

ΔrpiRc p3xFRpiRc+3’UTRSsim 15981 ΔrpiRc with the p3xFRpiRc+3’UTRSsim 
plasmid. 

1828 This study 

ΔrpiRc p3xFRpiRc+3’UTRSepi 15981 ΔrpiRc with the p3xFRpiRc+3’UTRSepi 
plasmid. 

1829 This study 

ΔrpiRc p3xFRpiRc+3’UTRScap 15981 ΔrpiRc with the p3xFRpiRc+3’UTRScap 
plasmid. 

1830 This study 

ΔrpiRc p3xFRpiRc+3’UTRIS256 15981 ΔrpiRc with the p3xFRpiRc+3’UTRIS256 
plasmid. 

1682 This study 

ΔrpiRc p3xFRpiRc+3’UTRIS1181 15981 ΔrpiRc with the p3xFRpiRc+3’UTRIS1181 
plasmid. 

1683 This study 

15981 Δrnc 15981 with a deletion of the rnc gene. 1760 This study 

Δrnc p3xFFtnA 15981 Δrnc carrying the p3xFFtnA plasmid. 1771 This study 

Δrnc p3xFFtnA∆3’UTR 15981 Δrnc carrying the p3xFFtnA∆3’UTR 
plasmid. 

1772 This study 

Δrnc pGFP-3UTR-ftnA 15981 Δrnc carrying the pGFP-3UTR-ftnA 
plasmid. 

1774 This study 

15981 ΔpnpA 15981 with a deletion of the pnpA gene. 242 A. Toledo-Arana 

ΔpnpA p3xFFtnA 15981 ΔpnpA carrying the p3xFFtnA plasmid. 1628 This study 

ΔpnpA p3xFFtnA∆3’UTR 15981 ΔpnpA carrying the p3xFFtnA∆3’UTR 
plasmid. 

1629 This study 

ΔpnpA pGFP-3UTR-ftnA 15981 ΔpnpA carrying the pGFP-3UTR-ftnA 
plasmid. 

1646 This study 

15981 Δrnr 15981 with a deletion of the rnr gene. 243 I. Lasa 

Δrnr p3xFFtnA 15981 Δrnr carrying the p3xFFtnA plasmid. 1630 This study 

Δrnr p3xFFtnA∆3’UTR 15981 Δrnr carrying the p3xFFtnA∆3’UTR 
plasmid. 

1631 This study 

15981 Δmrnc 15981 with a deletion of the mrnc gene. 1762 This study 

Δmrnc p3xFFtnA 15981 Δmrnc carrying the p3xFFtnA plasmid. 1777 This study 

Δmrnc p3xFFtnA∆3’UTR 15981 Δmrnc carrying the p3xFFtnA∆3’UTR 
plasmid. 

1778 This study 

15981 Δrny 15981 with a deletion of the rny gene. 1761 This study 

Δrny p3xFFtnA 15981 Δrny carrying the p3xFFtnA plasmid. 1783 This study 

Δrny p3xFFtnA∆3’UTR 15981 Δrny carrying the p3xFFtnA∆3’UTR 
plasmid. 

1784 This study 

15981 ΔrnjA 15981 with a deletion of the rnjA gene. 1768 This study 

ΔrnjA p3xFFtnA 15981 ΔrnjA carrying the p3xFFtnA plasmid. 1797 This study 

ΔrnjA p3xFFtnA∆3’UTR 15981 ΔrnjA carrying the p3xFFtnA∆3’UTR 
plasmid. 

1798 This study 

15981 ftnAΔ3’UTR 15981 carrying a deletion of the ftnA 3’UTR. 931 This study 

MW2 rpiRcΔ3’UTR MW2 carrying a chromosomal deletion of the 
rpiRc 3’UTR. 

918 This study 

MW2 rpiRc-3’UTR+IS1181 MW2 carrying IS1181 inserted in the 3’UTR 
of the rpiRc gene. 

1922 This study 

MW2 ΔrpiRc MW2 carrying a deletion of the rpiRc gene. 934 This study 
a Identification number of the strains stored at the Laboratory of Bacterial Gene Regulation, IdAB-CSIC. 
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Annex 2. Plasmids used in this study 
Plasmids Relevant characteristic(s) Source and/or reference 

pJET 1.2/blunt E. coli cloning vector carrying a lethal restriction 
enzyme that becomes active when plasmid 
recircularizes. AmpR. 

Thermo Scientific 

pGEM-T Easy E. coli cloning vector carrying lacZ gene for 
colony screening. AmpR. 

Promega 

pCN40 E. coli-S. aureus shuttle vector to express genes 
under the control of the PblaZ promoter. Low 
copy number. AmpR-EmR. 

NARSA-BEI Resources  
(Charpentier et al., 2004) 

pCN47 E. coli-S. aureus shuttle vector for cloning genes 
under the control of its own promoter. Low copy 
number. AmpR-EmR. 

NARSA-BEI Resources 
(Charpentier et al., 2004) 

pEW A derivative pCN40 plasmid including the 
transcriptional terminator region of the pCN47 
plasmid downstream of the multiple cloning site. 

This study 

pCN51 E. coli-S. aureus shuttle vector to express genes 
under the control of the Pcad promoter. Low copy 
number. AmpR-EmR. 

(Charpentier et al., 2004) 

pAD-cGFP Listeria monocytogenes plasmid carrying the 
GFP gene with the 5’UTR from hly gene under 
the control of the Phyper promoter. 

(Balestrino et al., 2010) 

pMAD E. coli-S. aureus shuttle vector with a 
thermosensitive origin of replication for Gram-
positive bacteria. The vector contains the bgaB 
gene encoding a β-galactosidase under the 
control of a constitutive promoter as reporter of 
plasmid presence. AmpR, ErmR. 

(Arnaud et al., 2004) 

pMAD-ΔftnA pMAD plasmid containing the allele for deletion of 
ftnA gene. 

This study 

pMAD-Δ3’UTR ftnA pMAD plasmid containing the allele for deletion of 
the 3’UTR of ftnA gene. 

This study 

pMAD-Δrnc pMAD plasmid containing the allele for deletion of 
rnc gene. 

This study 

pMAD-Δmrnc pMAD plasmid containing the allele for deletion of 
mrnc gene. 

This study 

pMAD-Δrny pMAD plasmid containing the allele for deletion of 
rny gene. 

This study 

pMAD-ΔrnjA pMAD plasmid containing the allele for deletion of 
rnjA gene. 

This study 

pMAD-Δ3’UTR rpiRc pMAD plasmid containing the allele for deletion of 
the 3’UTR of rpiRc gene. 

This study 

pMAD-rpiRc-
3’UTR+IS1181 

pMAD plasmid containing the allele for the insertion 
of IS1181 in the 3’UTR of rpiRc gene. 

This study 

pMAD-ΔrpiRc pMAD plasmid containing the allele for deletion of 
rpiRc gene. 

This study 

p3xFRpiRc pEW plasmid expressing the 3xFLAG-tagged 
rpiRc mRNA. 

This study 

p3xFRpiRc∆3’UTR pEW plasmid expressing the 3xFLAG-tagged 
rpiRc mRNA lacking the 3’UTR while preserving 
the transcriptional terminator. 

This study 

p3xFSarR pEW plasmid expressing the 3xFLAG-tagged 
sarR mRNA. 

This study 

p3xFSarR∆3’UTR pEW plasmid expressing the 3xFLAG-tagged 
sarR mRNA lacking the 3’UTR while preserving 
the transcriptional terminator. 

This study 
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Annex 2. Continued 
Plasmids Relevant characteristic(s) Source and/or reference 

p3xFFtnA pEW plasmid expressing the 3xFLAG-tagged 
ftnA mRNA. 

This study 

p3xFFtnA∆3’UTR pEW plasmid expressing the 3xFLAG-tagged 
ftnA mRNA lacking the 3’UTR while preserving 
the transcriptional terminator.  

This study 

p3xFRecA pEW plasmid expressing the 3xFLAG-tagged 
recA mRNA. 

This study 

p3xFRecA∆3’UTR pEW plasmid expressing the 3xFLAG-tagged 
recA mRNA lacking the 3’UTR while preserving 
the transcriptional terminator. 

This study 

p3xFAtlR pCN51 plasmid expressing the 3xFLAG-tagged 
atlR mRNA. 

This study 

p3xFAtlR∆3’UTR pCN51 plasmid expressing the 3xFLAG-tagged 
atlR mRNA lacking the 3’UTR while preserving 
the transcriptional terminator. 

This study 

p3xFPerR pEW plasmid expressing the 3xFLAG-tagged 
perR mRNA. 

This study 

p3xFPerR∆3’UTR pEW plasmid expressing the 3xFLAG-tagged 
perR mRNA lacking the 3’UTR while preserving 
the transcriptional terminator. 

This study 

p3xFIcaRm pCN40 plasmid expressing the 3xFLAG-tagged 
icaR mRNA from S. aureus 132 strain. 

(Ruiz de los Mozos et al., 
2013) 

p3xFIcaRm∆3’UTR pCN40 plasmid expressing the 3xFLAG-tagged 
icaR mRNA lacking the 3’UTR while preserving 
the transcriptional terminator.  

(Ruiz de los Mozos et al., 
2013) 

p3xFIcaR+3’UTRSarg pCN40 plasmid expressing the chimeric icaR 
mRNA that comprises the S. aureus 3xFLAG-
tagged IcaR CDS and the S. argenteus icaR 
3’UTR.  

This study 

p3xFIcaR+3’UTRSsim pCN40 plasmid expressing the chimeric icaR 
mRNA that comprises the S. aureus 3xFLAG-
tagged IcaR CDS and the S. simiae icaR 3’UTR. 

This study 

p3xFIcaR+3’UTRSepi pCN40 plasmid expressing the chimeric icaR 
mRNA that comprises the S. aureus 3xFLAG-
tagged IcaR CDS and the S. epidermidis icaR 
3’UTR. 

This study 

p3xFIcaR+3’UTRScap pCN40 plasmid expressing the chimeric icaR 
mRNA that comprises the S. aureus 3xFLAG-
tagged IcaR CDS and the S. capitis icaR 3’UTR. 

This study 

pIcaRm pCN40 plasmid expressing the wild type icaR 
mRNA from S. aureus 132 strain. 

(Ruiz de los Mozos et al., 
2013) 

pIcaRm∆3’UTR pCN40 plasmid expressing the icaR mRNA 
lacking the 3’UTR while preserving the 
transcriptional terminator.  

(Ruiz de los Mozos et al., 
2013) 

pIcaR+3’UTRSarg pCN40 plasmid expressing the chimeric icaR 
mRNA that comprises the S. aureus IcaR CDS 
and the S. argenteus icaR 3’UTR.  

This study 

pIcaR+3’UTRSsim pCN40 plasmid expressing the chimeric icaR 
mRNA that comprises the S. aureus IcaR CDS 
and the S. simiae icaR 3’UTR. 

This study 

pIcaR+3’UTRSepi pCN40 plasmid expressing the chimeric icaR 
mRNA that comprises the S. aureus IcaR CDS 
and the S. epidermidis icaR 3’UTR. 

This study 

pIcaR+3’UTRScap pCN40 plasmid expressing the chimeric icaR 
mRNA that comprises the S. aureus IcaR CDS 
and the S. capitis icaR 3’UTR. 

This study 
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Annex 2. Continued 
Plasmids Relevant characteristic(s) Source and/or reference 

p3xFFtnA+3’UTRSarg pEW plasmid expressing the chimeric ftnA 
mRNA that comprises the S. aureus FtnA CDS 
carrying the 3xFLAG tag at its N-terminus and 
the S. argenteus ftnA 3’UTR.  

This study 

p3xFFtnA+3’UTRSsim pEW plasmid expressing the chimeric ftnA 
mRNA that comprises the S. aureus FtnA CDS 
carrying the 3xFLAG tag at its N-terminus and 
the S. simiae ftnA 3’UTR. 

This study 

p3xFFtnA+3’UTRSepi pEW plasmid expressing the chimeric ftnA 
mRNA that comprises the S. aureus FtnA CDS 
carrying the 3xFLAG tag at its N-terminus and 
the S. epidermidis ftnA 3’UTR. 

This study 

p3xFFtnA+3’UTRScap pEW plasmid expressing the chimeric ftnA 
mRNA that comprises the S. aureus FtnA CDS 
carrying the 3xFLAG tag at its N-terminus and 
the S. capitis ftnA 3’UTR. 

This study 

p3xFFtnA∆3’UTR57-93 pEW plasmid expressing the 3xFLAG-tagged 
ftnA mRNA lacking a region of the 3’UTR 
including nt 57-93 after the stop codon while 
preserving the transcriptional terminator. 

This study 

p3xFRpiRc+3’UTRSarg pEW plasmid expressing the chimeric rpiRc 
mRNA that comprises the S. aureus RpiRc CDS 
carrying the 3xFLAG tag at its N-terminus and 
the S. argenteus rpiRc 3’UTR.  

This study 

p3xFRpiRc+3’UTRSsim pEW plasmid expressing the chimeric rpiRc 
mRNA that comprises the S. aureus RpiRc CDS 
carrying the 3xFLAG tag at its N-terminus and 
the S. simiae rpiRc 3’UTR. 

This study 

p3xFRpiRc+3’UTRSepi pEW plasmid expressing the chimeric rpiRc 
mRNA that comprises the S. aureus RpiRc CDS 
carrying the 3xFLAG tag at its N-terminus and 
the S. epidermidis rpiRc 3’UTR. 

This study 

p3xFRpiRc+3’UTRScap pEW plasmid expressing the chimeric rpiRc 
mRNA that comprises the S. aureus RpiRc CDS 
carrying the 3xFLAG tag at its N-terminus and 
the S. capitis rpiRc 3’UTR. 

This study 

p3xFRpiRc+3’UTRIS256 pEW plasmid expressing the chimeric rpiRc 
mRNA that comprises the S. aureus 3xFLAG-
tagged RpiRc CDS at its N-terminus and the 
IS256 inserted in the 3’UTR. 

This study 

p3xFRpiRc+3’UTRIS1181 pEW plasmid expressing the chimeric rpiRc 
mRNA that comprises the S. aureus 3xFLAG-
tagged RpiRc CDS at its N-terminus and the 
IS1181 inserted in the 3’UTR. 

This study 

pGFP-3’UTR-ftnA pEW plasmid expressing a chimeric mRNA 
including the gfp gene fused to the 3’UTR of 
ftnA. 

This study 

pGFP-Δ3’UTR-ftnA pEW plasmid expressing a chimeric mRNA 
including the gfp gene fused to the 
transcriptional terminator of the ftnA mRNA. 

This study 

pGFP-3’UTR-rpiRc pEW plasmid expressing a chimeric mRNA 
including the gfp gene fused to the 3’UTR of rpiRc. 

This study 

pGFP-3’UTR-rpiRc+IS256 pEW plasmid expressing a chimeric mRNA 
including the gfp gene fused to the 3’UTR of rpiRc 
carrying the IS256 insertion. 

This study 

pGFP-3’UTR-
rpiRc+IS1181 

pEW plasmid expressing a chimeric mRNA 
including the gfp gene fused to the 3’UTR of rpiRc 
carrying the IS1181 insertion. 

This study 

pGFP-Δ3’UTR-rpiRc pEW plasmid expressing a chimeric mRNA 
including the gfp gene fused to the transcriptional 
terminator of the rpiRc mRNA. 

This study 
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Annex 3. Primers used in this study 
Oligonucleotide name Sequence a 
Simultaneous mapping of 5’ and 3’ ends (mRACE) 
RACE-icaR-1 TATCATCAAGTGTTGTACCGTCAT 
RACE-icaR-2 TCAAAGATGAAGTGTATTCGCTAC 
RACE-icaR-ssim-A CACACTTTTAGCTATATCATCA 
RACE-icaR-ssim-B ATAGCCGTGTAATATATTTGTAAT 
RACE-icaR-sepi-A GACTAGCCTTTTTTATATTTACAC 
RACE-icaR-sepi-B AATAATTTTTGTAACTAGTATGTAAC 
RACE-icaR-scap-A CACTTTTAGCGATATCATCAAG 
RACE-icaR-scap-B AAATAATTTTGGTAACTAGTATGTAA 
RACE-ftnA-sau-A GTACGATTCTTTATCACAGTATGC 
RACE-ftnA-sau-B CACATCAATTATTTAACTCGTATC 
RACE-ftnA-ssim-A GAAACCTTCATAAGATTCTTTATCAC 
RACE-ftnA-ssim-B GTGACGATAGTAATGCACTTTAC 
RACE-ftnA-sepi-A CATAGATTTTTTTACCGTGGAAAC 
RACE-ftnA-sepi-B CATATAGATTACCTTACTCGTATTG 
RACE-ftnA-scap-A CATAAGATTCTTTATCGCAATAAG 
RACE-ftnA-scap-B GAAAGAACTTGCTAATCGCTC 
RACE-RpiRc-sau-A TTCTGTTAGTACGTTTGACAT 
RACE-RpiRc-sau-B GATAACTATCGTAAACATTTATCAAA 
RACE-RpiRc-ssim-A GTTTGACATATTTATCACTCCAGT 
RACE-RpiRc-ssim-B CAAACATTAAATGACGAGTG 
RACE-3XFLAG-A ACCGTCATGGTCTTTGTAGT 
  

Construction of chromosomic mutant strains 
Dftn-A (BamHI) GGATCCGTGTTTCCTCCTCAAATTTC 
Dftn-B (NheI) GCTAGCTTTTGATACACCTCTTATTTGTA 
D3UTR-ftn-A (BamHI) GGATCCGCAAACTTCTTCATTCAACAAG 
D3UTR-ftn-B (NheI) GCTAGCCTGTCTATTGTAGTGATGTTTAAT 
Dftn-C (NheI) GCTAGCACGGAGATCACTAGATTCATTT 
Dftn-D (EcoRI) GAATTCGTAGTCAATCCTTTCAATTAATTAAATG 
Dftn-E CAATATCATCAACTTGCTCTG 
Dftn-F CAACATCTTCTGGTTGTATG 
DrpiRc-A (BamHI) GGATCCCAACTTGTTCAAGAAACACAT 
DrpiRc-B (NheI) GCTAGCCCAATTTATACATTATGTACTCATC 
D3UTR-rpiRc-A (BamHI) GGATCCCAACTTGTTCAAGAAACACAT 
D3UTR-rpiRc-B (NheI) GCTAGCAAGAATTTATATAAGACTGTTAATG 
DrpiRc-C (NheI) GCTAGCAACAAACGCAGTTGATTAAC 
DrpiRc-D (EcoRI) GAATTCGTATGGTATTTAATGTTGAAACTAG 
DrpiRc-E TCGCTACAAATATCAGATTACTATC 
DrpiRc-F CGTATACGTTTATAGTGCGTC 
Drnc-A (BamHI) GGATCCGGTGAATCGACGTGGAAAAT 
Drnc-B (KpnI) GGTACCTTCTAAAACGATTAACTATCTCAC 
Drnc-C (KpnI) GGTACCGATTTTAAAACACAATTCCAAGA 
Drnc-D (EcoRI) GAATTCAGAACACATGTATACGATATTTTAG 
Drnc-E-n CAGAATTTCTCCCTAAGAAAC 
Drnc-F-n CACCTTTATCGAATTGAACATTG 
Dmrnc-A (BamHI) GGATCCCACATTAAATTATTGAATCCATTG 
Dmrnc-B (KpnI) GGTACCGCTTCAAAATATCCATTTCTTC 
Dmrnc-C (KpnI) GGTACCGAACGATTAGAGGCATTATTAA 
Dmrnc-D (EcoRI) GAATTCCTAATTTAGATTTTGGTACAGTTTG 
Dmrnc-E GCAAGGAAAAACAAAGATTTTG 
Dmrnc-F GTACTGTCAATAAACCTTCTT 
Drny-A (BamHI) GGATCCCAATAGTTTTATAATCGAGCTTC 
Drny_B (KpnI) GGTACCCTCCAACAACTCCTAGAATGATC 
Drny-C (KpnI) GGTACCCGATTGGCTAGAGATATTAAAAATC 
Drny-D (EcoRI) GAATTCGAAAACCAATCATCTTTATAGGTTTA 
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Annex 3. Continued 
Oligonucleotide name Sequence a 
Drny-E CAAATATCCTTATAGGATTGATTG 
Drny-F CTGCAGAAGTTATAAAAGAATTAAAG 
DrnjA-A (BamHI) GGATCCGAGTGGGACAGAAATGA 
DrnjA-B (KpnI) GGTACCTCAAAAAGCTACTAACTTTGAAGT 
DrnjA-C (KpnI) GGTACCTTATTTAGCAATCTCCACATTA 
DrnjA-D (EcoRI) GAATTCGATTTAACTGAAATTTTAGTGTTATT 
DrnjA-E CAATTAAACGAGGCAAAGAG 
DrnjA-F CTCATTTAAATTTTACCGTTTCA 
pMAD-1 GGAAGCGAGAAGAATCATAATG 
pMAD-2 CTAGCTAATGTTACGTTAC 
  

Construction of plasmids for screening of regulatory 3’UTRs 
SarR-A AATTTTGTGAGCAAGCCATC 
+1-SarR (BamHI) GGATCCTAACATAGTTGGATAGAGTTTCG 
3XFLAG-SarR-izqda CCGTCATGGTCTTTGTAGTCCATTATTAAACCACTCCTCTG 
3XFLAG-SarR-drcha GACTACAAAGACCATGACGGTGATTATAAAGATCATGATATCGACTA

CAAAGATGACGACGATAAAAGTAAAATTAATGACATTAATG 
D3UTR-SarR-term (EcoRI) GAATTCAAAATAAAAAGACTAGTGTACCTTGTTTCAAGCTTAATAAGC

TGAAATAAGGTATGGCTAGTCTTTAACTTACGCAATTAACCTTGATTT
AAT 

Term-SarR (EcoRI) GAATTCAAAATAAAAAGACTAGTGTACCT 
RecA-A AACAGACTAATCCTACGATTG 
+1-recA (BamHI) GGATCCAAGATAATTAAAAGATAGCAATTTC 
3XFLAG-recA-izqda CCGTCATGGTCTTTGTAGTCCAAAGCGAGACCTCCTAATT 
3XFLAG-recA-drcha GACTACAAAGACCATGACGGTGATTATAAAGATCATGATATCGACTA

CAAAGATGACGACGATAAAGATAACGATCGTCAAAAAGCT 
D3UTR-recA-term (EcoRI) GAATTCAAAAAACCTTATAGTCTCGATTTGTAGTGTATCCCATAAAGT

TAGATATTTAGATATAAATTTGTGTACTATT 
Term-recA (EcoRI) GAATTCAAAAAACCTTATAGTCTCGATT 
AtlR-A ATTTATCGCCACTAGTGTAG 
+1-atlR (BamHI) GGATCCAAATAATATGTAGTGGAGTAGAAC 
3XFLAG-atlR-izqda CCGTCATGGTCTTTGTAGTCCATGTTGTTCTACTCCACTAC 
3XFLAG-atlR-drcha GACTACAAAGACCATGACGGTGATTATAAAGATCATGATATCGACTA

CAAAGATGACGACGATAAATATAAACAACTTGAAAAACTTATTACAC 
D3UTR-atlR-term (EcoRI) GAATTCATAGCGGTGATTGTTTACCATCAATTTTAACAATCACCGCT

AGTGTTTGCTATTGTCGTGTTAC 
Term-atlR (EcoRI) GAATTCATAGCGGTGATTGTTTACCA 
PerR-A GTAACTATAACAGCGCATATAACT 
+1-PerR (BamHI) GGATCCTAAGTAATAATAATTATTATATAAGAAAGATGGTG 
3XFLAG-PerR-izqda CCGTCATGGTCTTTGTAGTCCATCTATATCACCATCTTTCTTAT 
3XFLAG-PerR-drcha GACTACAAAGACCATGACGGTGATTATAAAGATCATGATATCGACTA

CAAAGATGACGACGATAAAAGTGTTGAAATAGAATCAATTGAAC 
D3UTR-PerR-term (EcoRI) GAATTCAAAAAAAGTTAAACAACTTTCATGTCGTTTAACTTCATACTA

CCAAAGTTAAATTATT 
Term-PerR (EcoRI) GAATTCAAAAAAAGTTAAACAACTTTCATG 
  

Construction of plasmids expressing chimeric icaR mRNAs 
IcaR+1 (BamHI) GGATCCGAAATATTTGTAATTGCA 
IcaR-Term (EcoRI) GAATTCCCTTTTAAAAAGATGTGGGTA 
IcaR-MSHR1132-Term-EcoRI GAATTCCATACTCTGTCCTTGATA 
IcaR-Simiae-Term-EcoRI GAATTCCCAAATTGCCTACCCTAGTTAC 
IcaR-Sepi+1-BamHI GGATCCTAATATTTGTAATTTTAACTTAATTTTTCTG 
IcaR-Sepi-Term-MfeI CAATTGTTTCGCGTTTATAGTAAGTTTTCA 
IcaR-capitis+1-BamHI GGATCCGTAATATTTGTAATTTTAACTTAATTTTCC 
IcaR-capitis-Term-EcoRI GAATTCTTACATCATTGACTTGTAATTAAATTGC 
  

Construction of plasmids expressing chimeric ftnA mRNAs 
Ftn-A GTGTTTCCTCCTCAAATTTC 
+1-ftn (BamHI) GGATCCAATTCATAGTAATTTTAATTTACAA 
3XFLAG-ftn-izqda CCGTCATGGTCTTTGTAGTCCATTTTGATACACCTCTTATTTG 
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Annex 3. Continued 
Oligonucleotide name Sequence a 
3XFLAG-ftn-drcha GACTACAAAGACCATGACGGTGATTATAAAGATCATGATATCGACTA

CAAAGATGACGACGATAAATTAAGTAAAAATTTATTAGAAGCA 
CDS-stop-ftn TTATTCTTCGTCGAATGTACGA 
D3UTR-ftn-term (KpnI) GGTACCAAAAAACGCAGATCAATGATTCAGAAAATGAATCTAGTGAT

CTCCGTCTATTGTAGTGATGTTTAATTAT 
Term-ftn (KpnI) GGTACCAAAAAACGCAGATCAATGAT 
3UTR-ftn-term-1/2 (KpnI) GGTACCAAAAAACGCAGATCAATGATTCAGAAAATGAATCTAGTGAT

CTCCGTGACCCAAATGCCTATCAT 
3UTR-ftn-Sarg-fw TCGTACATTCGACGAAGAATAATTAACAAACTATATTAACAGACAGA 
3UTR-ftn-Sarg-rvs (KpnI) GGTACCGAAGGCCCTTAATAATAAATAGTAC 
3UTR-ftn-Ssim-fw TCGTACATTCGACGAAGAATAAATTATAATTTCATAGAGATATAATTT 
3UTR-ftn-Ssim-rvs (KpnI) GGTACCGACCAATGTGTTTGAGAACAC 
3UTR-ftn-Sepi-fw TCGTACATTCGACGAAGAATAATACAACAACTTATTCCTAAATATTGT 
Term-ftn-Sepi (KpnI) GGTACCAAAAAAACCCTTAAATCATTTATCT 
3UTR-ftn-Scap-fw TCGTACATTCGACGAAGAATAATTCGTAACTCTTGTCTTAAATTC 
3UTR-ftn-Scap-rvs (KpnI) GGTACCGCTCTACTTTTATAAACTAACTCTAAT 
  

Construction of plasmids expressing chimeric rpiRc mRNAs 
+1-RpiRc (BamHI) GGATCCGATTAAGATGGTAGATTTAGTCTT 
3XFLAG-RpiRc-izqda CCGTCATGGTCTTTGTAGTCCATATTAATCACTCCACTTTAACG 
3XFLAG-RpiRc-drcha GACTACAAAGACCATGACGGTGATTATAAAGATCATGATATCGACTA

CAAAGATGACGACGATAAATCAAACGTACTAACAGAAATAGAT 
CDS-stop-RpiRc TTAATGTTTAAAGTTAATATTTGAT 
D3UTR-RpiRc-term (EcoRI) GAATTCAAAATAACAAACGCAATTGATATATGGAATGAATCCGTTAAT

CAACTGCGTTTGTTAAGAATTTATATAAGACTGTTAATG 
Term-RpiRc (EcoRI) GAATTCAAAATAACAAACGCAATTGAT 
3UTR-RpiRc-Sarg-fw AATATTAACTTTAAACATTAACAGTCTTATATAACTTCTTTAAATG 
3UTR-RpiRc-Sarg-rvs (EcoRI) GAATTCGGATCACAATCATTGATAATCTG 
3UTR-RpiRc-Ssim-fw AATATTAACTTTAAACATTAAATGACGAGTGAAACAAATGA 
3UTR-RpiRc-Ssim-rvs-2 (EcoRI) GAATTCATCATTCAGTAAATAAATAATCATCT 
CDS-stop-RpiRc3UTRepi (EcoRI) GAATTCAAAGCGATTCTTTCATACATTATCTTTTCTAGGATAAGTATA

AAGAATCGCTTTTTATTATTTTAATGTTTAAAGTTAATATTTGAT 
3UTR-RpiRc-Scap-fw AATATTAACTTTAAACATTAAATAAATAGAAAAAGCGATTCGTC 
3UTR-RpiRc-Scap-rvs (EcoRI) GAATTCTAGCTATATATAGTTAAACAAAAAAGC 
RpiRc-CDS-SpeI-fw CAATTACTAGTACAAGGGATAATC 
3UTR-RpiRc-42-IS256-rvs CAGGAGTCTGGACTTGACTTAAATTATTATATGACATGATTAAAG 
IS256-fw AGTCAAGTCCAGACTCCTGT 
IS256-3UTR-RpiRc-rvs AAGACATGTAAGCTTTGAAAATGATGCATAAATTATGATAAAGTCCG

TATAATTGTGT 
3UTR RpiRc-IS1181-fw TTCAAAGCTTACATGTCTTTTATCTTGTATAACATACGCATATGACCA

ATGATTTGAGGTTCTCCACCAAATGTGG 
IS1181-rvs CTTCCCACCATAAAAGATGAAGAACCTGATTTGATAAGGCCATTCAA 
pCN_univ_rv_AT GTTTTGGTTCATCTTCTGTTAACTTACTAA 
  

Construction of plasmids expressing GFP 
SalI-GFP-fw GTCGACATAAAGCAAGCATATAATATTGC 
BcuI-TT-BamHI-GFP-rvs ACTAGTAAATGCCTATCCAAGAGGATAGGCATTTTGGATCCTTATTT

GTATAGTTCATCCAT 
BamHI-EcoRI-3UTR-ftn-fw GGATCCGAATTCTTAAACATCACTACAATAGACAGAT 
SmaI-3UTR-ftn-rvs CCCGGGAAAAAACGCAGATCAATGAT 
KpnI-D3UTR-term-ftn GGTACCAAAAAACGCAGATCAATGATTCAGAAAATGAATCTAGTGAT

CTCCCTGTCTATTGTAGTGATGTTTAAG 
BamHI-EcoRI-3UTR-RpiRc-fw GGATCCGAATTCCAGTCTTATATAAATTCTTTAATCATGT 
SmaI-3UTR-RpiRc-rvs CCCGGGAAAATAACAAACGCAATTGAT 
KpnI-term-RpiRc GGTACCAAAATAACAAACGCAATTGAT 
KpnI-D3UTR-term-RpiRc GGTACCAAAATAACAAACGCAATTGATATATGGAATGAATCCGTTAA

TCAACTGCGTTTGTTAAGAATTTATATAAGACTGGAATT 
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Annex 3. Continued 
Oligonucleotide name Sequence a 
Synthesis of riboprobes 
NB-probe-icaR-fw GAAAAAAAGTATTTACGAACAAAG 
T7prom-NB-probe-rvs TAATACGACTCACTATAGGGCTTTCAAATACCAACTTTCAAG 
NB-probe-ftn-fw GAAGAACGTTTCCATGGACAAAA 
T7-NB-probe-ftn-rvs TAATACGACTCACTATAGGGACGAGCGCCAAGTTCTTTTTC 
Riboprobe-RpiRc-fw CTAAACTCCATACACGTACTACAC 
Riboprobe-T7prom-RpiRc-rvs TAATACGACTCACTATAGGGGTCATCAATAACTTTAACCATTG 
  

In vitro transcription of the 5’ and 3’UTRs from IcaR 
T7-5UTR-fw TAATACGACTCACTATAGGGAAATATTTGTAATTGCCAACTTAATTT 
IcaR-5rev ATCATCAAGTGTTGTACCGTCATACCCCTT 
T7-3UTR IcaR-fw TAATACGACTCACTATAGGGATTTTTGAAGAAATAATTTTTGTTA 
Term-IcaR-rvs AAAAAGCGCCTATGTCATGATTTACCATCA 
3UTR-IcaR-Sarg-rvs AAAAATAAGCGTCAATGACATG 
3UTR-IcaR-Ssim-rvs TCCCAAACAAAACAAAAAATCGGATTG 
3UTR-IcaR-Sepi-rvs AAAATAAGCACCTATACTTAATTAG 
3UTR-IcaR-Scap-rvs AAAAAGAGCACCCACAATGAC 

a Restriction enzymes sites, T7 promoter and 3xFLAG sequences included into the oligonucleotides are 
indicated in italic, bold and underlined format, respectively. 
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Annex 4. Determination of icaR mRNA boundaries by mRACE analysis 

 

(A) Simultaneous mapping of 5’ and 3’ icaR mRNA ends by a modified rapid 
amplification of cDNAs ends technique (mRACE) using total RNAs extracted from 
S. aureus, S. simiae, S. epidermidis and S. capitis strains. mRACE RT-PCR 
amplification products were run in agarose gels. Representative gel images are 
shown. Bands corresponding to CAP-CLIP treated samples were excised from 
the gel and cloned into pGEM-T plasmid. Plasmids were purified from 10 
bacterial clones and plasmid sequences were identified by Sanger sequencing. 
The 5’ and 3’ ends and the percentage of clones showing the same nucleotide 
position are indicated in the corresponding sequence. (B) Transcriptional 
terminator structures of icaR mRNA predicted by Mfold in the indicated 
staphylococcal species (Zuker, 2003). 
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Annex 5. Determination of ftnA mRNA boundaries by mRACE analysis  

 

(A) Simultaneous mapping of 5’ and 3’ ftnA mRNA ends by a modified rapid 
amplification of cDNAs ends technique (mRACE) using total RNAs extracted from 
S. aureus, S. simiae, S. epidermidis and S. capitis strains. mRACE RT-PCR 
amplification products were run in agarose gels. Representative gel images are 
shown. Bands corresponding to CAP-CLIP treated samples were excised from 
the gel and cloned into pGEM-T plasmid. Plasmids were purified from 10 
bacterial clones and plasmid sequences were identified by Sanger sequencing. 
The 5’ and 3’ ends and the percentage of clones showing the same nucleotide 
position are indicated in the corresponding sequence. (B) Transcriptional 
terminator structures of ftnA mRNA predicted by Mfold in the indicated 
staphylococcal species (Zuker, 2003). 
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Annex 6. Determination of rpiRc mRNA boundaries by mRACE analysis  

 

 (A) Simultaneous mapping of 5’ and 3’ rpiRc mRNA ends by a modified rapid 
amplification of cDNAs ends technique (mRACE) using total RNAs extracted from 
S. aureus and S. simiae WT strains and S. aureus ∆rpiRc strains carrying the 
p3xFRpiRc+3’UTRSepi and p3xFRpiRc+3’UTRScap plasmids. mRACE RT-PCR 
amplification products were run in agarose gels. Representative gel images are 
shown. Bands corresponding to CAP-CLIP treated samples were excised from 
the gel and cloned into pGEM-T plasmid. Plasmids were purified from 10 
bacterial clones and plasmid sequences were identified by Sanger sequencing. 
The 5’ and 3’ ends and the percentage of clones showing the same nucleotide 
position are indicated in the corresponding sequence. (B) Transcriptional 
terminator structures of rpiRc mRNA predicted by Mfold in the indicated 
staphylococcal species (Zuker, 2003). 
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Annex 7. Alignment disruptions on rpiRc 3’UTR identify the presence of ISs 

S. aureus 
strain 

Aligned 
nucleotides 

3’UTR 
positiona 

Contig IDs 
matched by blastn 

Reason of 
alignment 
disruption 

Insertion 
sequenceb 

C1555 1-1167 

1197-1385 

-27 

3 

LAMV01000070.1 

LAMV01000029.1 

Query matched two 
different contigs. 
Missing 30 nt in 
comparison to 

reference. 

ND 

N13/1/648 105-1197 

1260-1385 

3 

66 

NAIZ01000307.1 

NAIZ01000166.1 

Query matched two 
different contigs. 
Missing 63 nt in 
comparison to 

reference. 

ND 

Q13/1/145 1-1197 

1189-1385 

3 

-5 

NAJG01000081.1 

NAJG01000005.1 

Query matched two 
different contigs. 8 nt 
duplication found at 

the contig ends. 
Putative IS insertion. 

IS? 

ST59-1 1-1197 

1189-1385 

3 

-5 

QQPK01000081.1 

QQPK01000005.1 

Query matched two 
different contigs. 8 nt 
duplication found at 

the contig ends. 
Putative IS insertion. 

IS? 

SA-085 1-1205 

1252-1385 

11 

58 

JXIF01000064.1 

JXIF01000188.1 

Query matched two 
different contigs. 
Missing 47 nt in 
comparison to 

reference. 

ND 

UCL369 1-1208 

1226-1385 

14 

32 

LPWR01000137.1 

LPWR01000151.1 

Query matched two 
different contigs. 
Missing 18 nt in 
comparison to 

reference. 

ND 

UP72 1-1211 

1200-1385 

17 

6 

LGWY01000005.1 

LGWY01000017.1 

Query matched two 
different contigs. 

Inserted sequence. 

ßIS256ß 

BY2 1-1211 

1200-1385 

17 

6 

PTCK01000007.1 

PTCK01000010.1 

Query matched two 
different contigs. 

Inserted sequence. 

ßIS256ß 

AY20 1-1211 

1200-1385 

17 

6 

PTCM01000012.1 

PTCM01000001.1 

Query matched two 
different contigs. 

Inserted sequence. 

ßIS256ß 

AB4 1-1211 

1200-1385 

17 

6 

PTDD01000011.1 

PTDD01000019.1 

Query matched two 
different contigs. 

Inserted sequence. 

ßIS256ß 

CM95 1-1219 

1202-1385 

25 

8 

PZVS01000071.1 

PZVS01000027.1 

Query matched two 
different contigs. 17 

nt duplication. 

ND 
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Annex 7. Continued 

S. aureus 
strain 

Aligned 
nucleotides 

3’UTR 
positiona 

Contig IDs 
matched by blastn 

Reason of 
alignment 
disruption 

Insertion 
sequenceb 

MM66RVI-4 232-1223 

1329-1385 

29 

135 

JMBU01000159.1 

JMBU01000018.1 

Query matched two 
different contigs. 
Missing 106 nt in 

comparison to 
reference. 

ND 

HU09-
1102013 

1-1227 

1196-1385 

33 

2 

MSRE01000085.1 

MSRE01000086.1 

Query matched two 
different contigs. 

Inserted sequence. 

Repeated rpiRc 
3’UTR 

fragment 

2010-60-
6511-5 

1-1236 

1225-1385 

42 

31 

KK220570.1 

KK220550.1 

Query matched two 
different contigs. 

Inserted sequence. 

ßIS256ß 

42 1-1239 

1251-1385 

45 

57 

SULE01000232.1 

SULE01000221.1 

Query matched two 
different contigs. 
Missing 12 nt in 
comparison to 

reference. 

ND 

H8/16 1-1269 

1197-1385 

75 

3 

NKCP01000017.1 

NKCP01000092.1 

Query matched two 
different contigs. 72 

nt duplication.  

ND 

PN235B0 1-1280 

1262-1385 

86 

68 

PDUY01000154.1 

PDUY01000106.1 

Query matched two 
different contigs. 18 

nt duplication. 
Putative IS insertion. 

IS? 

DAR1183 1-1302 

1295-1385 

108 

101 

KK099086.1 Inserted sequence.  ßIS1181ß 

07-03168 1-1314 

1349-1385 

120 CTTN01000002.1 NNNNs at contig 
sequence. Missing 

35 nt.  

ND 

NCTC5657 1-1322 

1323-1385 

138 

129 

UHAO01000001.1 Inserted sequence 
(1870 nt). 

ND 

TUM9458 1-1326 

1323-1385 

132 

129 

AP019305.1 Inserted sequence 
(1023 nt). 

ßISß (Similar 
to IS1062, IS30 

family) 

TUM9463 1-1326 

1323-1385 

132 

129 

AP019306.1 Inserted sequence 
(1063 nt). 

ßISß (Similar 
to IS1062, IS30 

family 
transposase) 

CM154 1-1331 

1324-1385 

137 

130 

PZRV01000009.1 

PZRV01000004.1 

Query matched two 
different contigs. 

Inserted sequence. 

ßIS1181ß 

M1339 1-1332 

1325-1385 

138 

131 

JDEK01000007.1 

JDEK01000026.1 

Query matched two 
different contigs. 

Inserted sequence. 

àIS1181à 

M1360 1-1332 

1325-1385 

138 

131 

KI996572.1 

KI996573.1 

Query matched two 
different contigs. 

Inserted sequence. 

àIS1181à 
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Annex 7. Continued 

S. aureus 
strain 

Aligned 
nucleotides 

3’UTR 
positiona 

Contig IDs 
matched by blastn 

Reason of 
alignment 
disruption 

Insertion 
sequenceb 

M1361 1-1332 

1325-1385 

138 

131 

KI996660.1 

KI996703.1 

Query matched two 
different contigs. 

Inserted sequence. 

àIS1181à 

M1362 1-1332 

1325-1385 

138 

131 

JDEO01000009.1 

JDEO01000024.1 

Query matched two 
different contigs. 

Inserted sequence. 

àIS1181à 

M1365 1-1332 

1325-1385 

138 

131 

KI996771.1 

KI996719.1 

Query matched two 
different contigs. 

Inserted sequence. 

àIS1181à 

21272 1-1333 

1326-1385 

139 

132 

AHJY01000026.1 

AHJY01000029.1 

Query matched two 
different contigs. 7 
nt duplication found 
at the contig ends. 

Putative IS 
insertion. 

ND 

M6K049 1-1333 

1326-1385 

139 

132 

BEAN01000005.1 

BEAN01000006.1 

Query matched two 
different contigs. 

Inserted sequence. 

àIS1181à 

M1532 1-1333 

1326-1385 

139 

132 

KI998229.1 

KI998207.1 

Query matched two 
different contigs. 

Inserted sequence. 

ßIS1181ß 

103 1-1339 

1361-1385 

145 

167 

NAID01000066.1 

NAID01000010.1 

Query matched two 
different contigs. 
Missing 22 nt in 
comparison to 

reference. 

ND 

SAV1149 1-1374 

1364-1385 

180 

170 

QYAT01000195.1 

QYAT01000051.1 

Query matched two 
different contigs. 10 
nt duplication found 
at the contig ends. 

Putative IS 
insertion. 

IS? 

a Pairwise alignment disruption position at the rpiRc 3’UTR. Distance from RpiRc stop codon is indicated. 
b ND, not determined due to missing sequence information. Arrows indicated the transposase gene orientation 
relative to RpiRc CDS.  





Annexes 

205  

Annex 8. Comparison of acnB mRNA genomic configurations and predicted 
TTs among some relevant species of the Enterobacteriaceae family 

 

(A) Phylogenetic tree representation showing evolutionary time scales according 
to TimeTree (http://www.timetree.org) (Hedges et al., 2015). MYA, million years 
ago. (B) Synteny analysis of the chromosomic acnB region performed using 
SyntTax, the Prokaryotic Synteny & Taxonomy Explorer (http://archaea.u-
psud.fr/synttax/) (Oberto, 2013). (C) Putative transcriptional terminator structures 
predicted by Mfold in different enterobacterial species (Zuker, 2003).  
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Annex 9. Comparison of hmsT mRNA genomic configurations among some 
relevant species of Yersina genus 

 

(A) Phylogenetic tree representation showing evolutionary time scales according 
to TimeTree (http://www.timetree.org) (Hedges et al., 2015). MYA, million years 
ago. (B) Synteny analysis of the chromosomic hmsT region performed using 
SyntTax, the Prokaryotic Synteny & Taxonomy Explorer (http://archaea.u-
psud.fr/synttax/) (Oberto, 2013).   
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Annex 10. Comparison of aceA mRNA genomic configurations and 
predicted TTs among some relevant species of Corynebacterium genus 

 
(A) Phylogenetic tree representation showing evolutionary time scales according 
to TimeTree (http://www.timetree.org) (Hedges et al., 2015). MYA, million years 
ago. (B) Synteny analysis of the chromosomic aceA region performed using 
SyntTax, the Prokaryotic Synteny & Taxonomy Explorer (http://archaea.u-
psud.fr/synttax/) (Oberto, 2013). (C) Putative transcriptional terminator structures 
predicted by Mfold in different Corynebacterium species (Zuker, 2003). 
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Annex 11. Comparison of hbs mRNA genomic configurations and predicted 
TTs among some relevant species of Bacillus genus 

 

(A) Phylogenetic tree representation showing evolutionary time scales according 
TimeTree (http://www.timetree.org) (Hedges et al., 2015). MYA, million years 
ago. (B) Synteny analysis of the chromosomic hbs region, performed using 
SyntTax, the Prokaryotic Synteny & Taxonomy Explorer (http://archaea.u-
psud.fr/synttax/) (Oberto, 2013). (C) Putative transcriptional terminator structures 
predicted by Mfold in different Bacillus species (Zuker, 2003). 
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