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Abstract: Canopy management operations, such as shoot thinning, leaf removal, and shoot trimming,
are among the most relevant agricultural practices in viticulture. However, the supervision of these
tasks demands a visual inspection of the whole vineyard, which is time-consuming and laborious.
The application of photogrammetric techniques to images acquired with an Unmanned Aerial Vehicle
(UAV) has proved to be an efficient way to measure woody crops canopy. Consequently, the objective
of this work was to determine whether the use of UAV photogrammetry allows the detection of canopy
management operations. A UAV equipped with an RGB digital camera was used to acquire images
with high overlap over different canopy management experiments in four vineyards with the aim of
characterizing vine dimensions before and after shoot thinning, leaf removal, and shoot trimming
operations. The images were processed to generate photogrammetric point clouds of every vine
that were analyzed using a fully automated object-based image analysis algorithm. Two approaches
were tested in the analysis of the UAV derived data: (1) to determine whether the comparison of
the vine dimensions before and after the treatments allowed the detection of the canopy management
operations; and (2) to study the vine dimensions after the operations and assess the possibility
of detecting these operations using only the data from the flight after them. The first approach
successfully detected the canopy management. Regarding the second approach, significant differences
in the vine dimensions after the treatments were detected in all the experiments, and the vines under
the shoot trimming treatment could be easily and accurately detected based on a fixed threshold.

Keywords: shoot thinning; leaf removal; shoot trimming; remote sensing; change detection; 3D
mapping; OBIA

1. Introduction

Vineyard management includes a wide variety of operations such as canopy management,
phytochemical applications, pruning, soil management, irrigation and fertilization scheduling, and
application of soil amendments. Canopy management comprises some of the most relevant practices
in viticulture being performed at least once a year in most vineyards around the world. Among canopy
management practices, the most relevant are:
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• Shoot thinning: this consists of the selective removal of shoots in spring and, somehow,
complements the winter pruning. At this operation, shoots are removed or not depending
on their position in the spur or cane, and on their fruitfulness. The objectives of this task are
yield adjustment and bunch microclimate improvement. This operation is necessarily done by
hand operators.

• Shoot trimming: this is the cutting of the shoot upper part, and it is carried out during the summer.
Its main goals are to ease machinery traffic along the lanes, to increase bunch exposure to sunlight
and to phytochemical treatments and, sometimes, to improve fruit set. This operation is mostly
performed with specific farming implements.

• Leaf removal: this is the detachment of leaves from the fruit zone, and can be executed at any
time between fruit set and harvest. The main goal of this operation is to increase bunch exposition
to sunlight and phytochemical treatments, as well as improving aeration of the bunch area to
diminish fungal pathogen incidence. This practice, together with shoot trimming, is being studied
as a technique to delay ripeness and compensate the consequences of global warming on fruit
sugar concentration [1–3].

The accomplishment of the canopy management operations is sometimes carried out by temporary
workers or external contractors, and it is important for field managers to be sure that they are
performed in a timely and proper way. However, the supervision of these tasks is currently based on
time-consuming field inspections, only feasible in a small fraction of the total acreage. Alternatives to
the field inspections aimed at verifying the proper completion of these tasks have arisen to overcome this
problem in the last years. For example, accurate three-dimensional (3D) modeling and characterization
of crop canopies have been achieved using different technologies, such as aerial photogrammetry by
means of unmanned aerial vehicles (UAVs) acquired images [4,5], and also LIDAR (light detection and
ranging) [6,7], ultrasonic sensors [8,9], or depth cameras [10,11] for mapping 3D structure in different
crops. In an economic study, the use of photogrammetric techniques applied in UAV-images has been
reported as the most efficient method to geometrically and accurately characterize a vineyard when
compared to LIDAR and depth-camera sensors on board on-ground vehicles [12].

UAV photogrammetry can generate two different outputs for 3D measurement of crops: digital
surface models (DSM) and point clouds. The main difference between them is that whereas DSMs only
store one height value for every (x, y) point, point clouds allow having more than one height value,
which enhances the 3D representation of the crops. Meanwhile DSMs have been used in vineyards for
vine volume and height calculation [13–16] and point clouds have been reported for vineyard detection
and estimation of its macro-structure [17,18], for measuring vine height [19], and for adding geometric
traits to the spectral information for disease detection [20]. Another application of the UAV-generated
3D models of orchards is their use as a source of information for simulating and evaluating routes for
agricultural robots [21].

Pádua et al. [16] monitored the vegetation growing cycle of a vineyard using UAV-derived
imagery and DSM, which allowed them to estimate the vineyard area and volume in nine distinct dates.
Although it was not their main objective, they detected the changes in area and volume caused by leaf
removal operations. However, they were not able to distinguish any change in the vines after a shoot
thinning treatment as “much of this operation is performed in the grapevine canopy understory, and
the DSM only represented the upper part of the vine. Consequently, it is clear that a methodology
for the detection and inspection of the most frequent canopy management operations should be able
of identifying changes in the vines at different heights.” Escolà et al. [22] created width profiles at
different heights for vineyards and olive and fruit trees, using a tractor-mounted scanning LIDAR and
point clouds. However, to the best of our knowledge, photogrammetric point clouds generated from
UAV imagery have not been applied to quantify the differences of the vine dimensions after and before
canopy management operations. Point clouds representing woody crops include a high amount of
information, whose processing and interpretation in a timely way requires advanced and automated
image analysis procedures. Object Based Image Analysis (OBIA) techniques have proved its efficiency
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and accuracy in the extraction of information from high-resolution images [23]. OBIA algorithms have
been applied to UAV 3D datasets to detect canopy management operations in lychee [24] and different
pruning strategies in olive [25], but they used DSM as input for the algorithms. However, in the last
years, OBIA procedures are being also used for processing non-image remote sensing datasets, such
as point clouds. For example, LIDAR point clouds have been analyzed with OBIA techniques for
building detection [26–28] and forest inventory [29–32]; and photogrammetric point clouds from UAV
imagery have been successfully used for the 3D characterization of woody crops such as almond [5]
and olive trees [33].

The objective of this work setup was to assess the possibility of detecting canopy management
operations using UAV photogrammetry. For achieving this objective, a UAV equipped with an RGB
digital camera was used to acquire images with high overlap over different canopy management
experiments in four vineyards. These images were used for generating photogrammetric point clouds
of the vineyards before and after the canopy management operations. An automated OBIA algorithm
was applied to the point clouds for extracting geometric information from every vine, including
its width at different heights. The UAV derived-data were analyzed using two approaches to: (1)
determine whether the comparison of the vine dimensions after and before the canopy management
operations allowed their detection; and (2) study the vine dimensions solely after the operations and
assess the possibility of detecting these operations using only the vine dimensions estimated from
the flight after them. To the best of our knowledge, this is the first time that photogrammetric point
clouds have been used for evaluating a set of canopy management operations in agricultural fields, and
it is also the first time that width profiles at different heights have been extracted from photogrammetric
point clouds representing a woody crop.

2. Materials and Methods

2.1. Study Sites

The experiment was carried out in a set of commercial vineyards located in Northern Spain, two
in Navarra (named Azagra, Az; Traibuenas, Tr) and two in La Rioja (named Ausejo, Au-1 and Au-2).
The grape variety was Tempranillo. The vines were trellised as a vertical-shoot positioned cordon royat,
and vineyards were chosen as representative of the typical growing conditions in the region, their
main characteristics being summarized in Table 1.

Table 1. Information about the study fields.

Field
Name Location Planting

Distance

Slope
Along

the Vine
Rows (%)

Soil Management Canopy Management
Practices Evaluated 1

Az Azagra
(NA, Spain) 3.0 × 1.3 m 2.62

Bare soil,
mechanical tillage
(A) + herbicide (U)

Shoot thinning

Tr Traibuenas
(NA, Spain) 3.0 × 1.0 m 4.95

Spontaneous low
vigour cover crop

(A) + herbicide (U)

Leaf removal mode
(1 vs 2 sides)

Au-1 Ausejo
(LO, Spain) 2.4 × 1.0 m 5.54

Spontaneous low
vigour uneven

cover crop (A) +
herbicide (U)

Leaf removal intensity
Shoot trimming

intensity

Au-2 Ausejo
(LO, Spain) 2.4 × 1.0 m 4.14

Spontaneous low
vigour uneven

cover crop (A) +
herbicide (U)

Shoot trimming

NA: Navarra; LO: La Rioja; A: vineyard alleys; U: area under the vine. 1 Details of canopy management operations
provided in Table 2.
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Table 2. Information about locations, canopy management operations, and UAV flights performed at the study vineyards.

Canopy Management
Operation

Factor
Evaluated

Location Treatments and
Abbreviation

No. 1 M-Long
Row Sections

Treatment and
Flight Date

Flights
(Before and After Canopy Operation)

Before After

Shoot thinning
(STh)

STh
detection

Azagra (Az)
Navarra

Thinned (Th)
Control (C)

20
20 05–17–2018 X X

Leaf removal
(LR)

LR mode Traibuenas (Tr)
Navarra

1 side (LR-1s)
2 sides (LR-2s)

Control (C)

108
108
108

08–01–2018 X X

LR intensity Ausejo (Au-1) La
Rioja

Low intensity
(LR-LI)

High intensity
(LR-HI)
Control

12

12
06–20–2018 X X

Shoot trimming
(ST) ST detection Ausejo (Au-2) La

Rioja

Shoot trimming
(ST)

Control (C)

160

160

Treatment:
06–12–2018

Flight:
06–20–2018

X

ST intensity Ausejo (Au-1) La
Rioja

Low intensity
(ST-LI)

High intensity
(ST-HI)
Control

12

12

06–20–2018 X X
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2.2. UAV Flights and Image Acquisition

Remote images were acquired with a UAV for the generation of the 3D point clouds used
for the geometric characterization of the vines. Images were taken with a Sony ILCE-6000 (Sony
Corporation, Tokyo, Japan) camera equipped with a 20 mm fixed focal length lens. The UAV used in
these works was a quadcopter model MD4-1000 (microdrones GmbH, Siegen, Germany), to which
the camera was attached facing downward for nadir capture. The flight routes were designed at
30 m flight height above ground, with a side lap of 60%, and a forward lap of 89%. The flights were
performed around midday on sunny days with wind speeds below 3 m·s-1. Similar flight configurations
have been successfully used for the creation of 3D point clouds representing woody crops in previous
works [5,33].

2.3. Experiment Description

2.3.1. Shoot Thinning

The shoot thinning experiment was carried out on 17th of May 2018 on the Az vineyard. Thinning
was done following winery specifications for this operation. The study area comprised 1.2 ha, where
alternate pair of rows were shoot-thinned or kept untouched as control. For evaluation, 10 replicates
of two consecutive vines were marked and georeferenced along the vineyard, and their canopy
characteristics were determined. Before thinning, the average number of shoots per vine was 22.7,
and thinning decreased that value to 9.7 shoots per vine. Figure 1 shows images of some vines after
the shoot thinning and some unthinned vines belonging to the control treatment. Leaf area before and
after thinning was estimated after establishing an allometric relationship between individual shoot
length (SL, cm) and its leaf area (LA, cm2) following the procedure detailed in [34] [LA = 0.132·SL2

+ 9.217·SL + 11.68, R2 = 0.87, n = 50, P < 0.001). The average leaf area before shoot thinning was
0.98 m2 vine−1, and 0.52 m2 vine−1 afterwards.
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Figure 1. Images of the vineyard in Azagra after shoot thinning: (a) shoot thinned vines, (b) control vines.

2.3.2. Leaf Removal

Leaf removal was evaluated in two fields, Tr (leaf removal mode) and Au-1 (leaf removal intensity)
and operations were made as follows:

• Leaf removal mode (1 vs. 2 sides)

The experiment to evaluate the detection of leaf removal mode was carried out in Tr vineyard 1st
August 2018. In that field, leaf removal was done in two different modes; leaf removal in one side
(LR-1s) of the row and leaf removal in the two sides (LR-2s). In both cases, the leaves from the basal
40 cm of the shoots were removed, irrespective of whether they belonged to the main shoot or to
laterals (Figure 2). For each treatment, leaves were removed in nine replicates of 12 vines each, leaving
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nine additional replicates where the vines remained untouched as a control. Figure 2 shows the general
aspect of the canopy management treatments. Total leaf area before removal was estimated through
allometric relationships performed in 54 vines, being, as an average, 3.39 m2 vine−1. The amount of
removed leaf area was measured in 18 vines per treatment, being as an average 0.99 m2 vine−1 in LR-1s
and 1.82 m2 vine−1 in LR-2s.Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 23 
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Figure 2. Pictures after leaf removal mode experiment in Traibuenas: (a) leaves removed from one side
(LR-1s), (b) two sides (LR-2s), (c) control vines.

• Leaf removal intensity

The evaluation of the potential of UAV-acquired photogrammetric point clouds to assess leaf
removal intensity was carried out in the Au-1 vineyard on 20th of June 2018. Two intensities of leaf
removal were tested, differing on the fraction of the shoot that was defoliated. Thus, in low intensity
leaf removal vines (LR-LI), all the leaves in the basal 40 cm of the shoot were removed, whereas in
high intensity leaf removal (LR-HI), leaves were removed from the basal 70 cm. In both intensities, all
leaves were removed, irrespective of whether they belonged to the main shoot or to laterals (Figure 3).
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Figure 3. Pictures after leaf removal intensity experiment in Ausejo: (a) low intensity leaf removal
(LR-LI), (b) high intensity leaf removal (LR-HI), (c) control vines.

Two replicates of six vines where established for each leaf removal intensity, and an additional
two replicates of six untouched vines were used as control. Vine leaf area was estimated through
allometric relationships before leaf removal in 24 vines, being 3.42 m2 vine−1 on average. The leaves
removed from 12 vines per treatment were collected, and their leaf area was measured, accounting for
1.12 m2 vine−1 in LR-LI and for 1.65 m2 vine−1 in LR-HI on average.
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2.3.3. Shoot Trimming

Shoot trimming was evaluated in two fields: Au-2 (shoot trimming detection) and Au-1 (shoot
trimming intensity). The main difference was that whereas in Au-1 leaves were removed the same day
the flights took place, and therefore, canopy characteristics and UAV imaging could be acquired before
and after the operation, in Au-2 leaf removal had already been performed some days before (Table 2
for details).

• Shoot trimming detection

Shoot trimming was applied to 10 replicates of 16 vines, whereas another 16 vines were used
as control and were left untreated (Figure 4). Leaf area before trimming was measured in 20 vines,
being as 2.62 m2 vine−1 on average. The trimmed shoots were collected and their leaf area calculated,
accounting for 0.87 m2 vine−1.
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Figure 4. Pictures after the shoot trimming detection experiment in Ausejo: (a) Shoot trimmed vines,
(b) control vines.

• Shoot trimming intensity

The dates and experimental design of this experiment follows the same structure detailed for leaf
removal in Au-1, as they were performed at the same time and in adjacent vines. Two intensities of
shoot trimming were tested, differing on the length of the shoot that was kept untrimmed. On the one
side, in low intensity shoot-trimmed vines (ST-LI), shoots were cut 80 cm above the cordon, whereas
for high intensity shoot-trimmed vines (ST-HI) shoots were cut 45 cm above the cordon (Figure 5). Leaf
area before trimming was measured in 24 vines, being as an average 3.36 m2 vine−1. The trimmed
shoots were collected, and their leaf area calculated, accounting for 1.24 m2 vine−1 in ST-LI vines and
for 1.87 m2 vine−1 in ST-HI vines.
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2.4. Point Cloud Generation

Photogrammetric and computer vision techniques were applied to the UAV-imagery for
the generation of the 3D point clouds used for the geometric characterization of the vines. The software
used for the creation of the 3D point clouds was Agisoft PhotoScan Professional Edition (Agisoft LLC,
St. Petersburg, Russia) version 1.5.3 build 8469. The photogrammetric process only required human
intervention for the localization of five ground control points, georeferenced in each field with a real
time kinematic (RTK) GPS linked to a reference station from the GNSS network from the National
Geographic Institute, Spain. The estimated accuracy of the GNSS-RTK system was 0.02 m in planimetry
and 0.03 m in altimetry. More details about the process can be found in [5]. The point clouds had
a mean point density of 15,431 points·m−2, and were stored in “las” format, a public file format
for the interchange of 3D point cloud data. Much lower point cloud densities around 2000 [5] and
4000 points·m−2 [33] have been successfully used for 3D crop characterization in other woody crops.

2.5. OBIA Algorithm

The OBIA algorithm for the characterization of grapevine rows was created using Cognition
Network Language in eCognition Developer 9 software (Trimble GeoSpatial, Munich, Germany).
The detection of the vines was based on the measurement of their height over the soil, and a voxel
method was used for vine volume estimation. These approaches have been tested in previous
algorithms, and developed and successfully validated for point cloud analysis in other woody crops,
such as almond [5] and olive [33]. In this work, the above-mentioned methodologies have been adapted
to the vineyard structure, which is organized in narrow vine rows. The detection and segmentation of
vine rows is adapted from a previous work were DSM instead of points clouds were used for the 3D
characterization of vines [14]. As the algorithms for almond and olive [5,33], the algorithm for vineyard
3D analysis is fully automatic with no need of user intervention. It can be divided in the following
steps and the only inputs used were the point cloud and a shapefile delimiting the field studied:

1. Digital terrain model (DTM) generation: the point cloud is segmented using a chessboard pattern

with a 2 m side. The average height of the points belonging to the 15th lowest percentile in each
square, which are assumed to belong to the soil, is stored in an image layer (Figure 6a) that will
be used as DTM. This methodology for DTM creation has been validated in fruit orchards with
no understory vegetation [5,33], and it has been used in these vineyards since they only have
some spontaneous low vigor herbaceous cover (Table 1). The use of a DTM allows taking into
account the slope of the fields (Table 1) when measuring the height of the vines.

2. Vineyard classification: the point cloud is segmented using a chessboard pattern with 0.1 m side.
All the squares containing points whose height over the DTM was higher than 0.5 m are classified
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as vineyard (Figure 6a). The points inside the areas classified as vineyard, and with a height over
the DTM higher than 0.5 m are stored in a temporal point cloud.

3. Point cloud slicing: the new point cloud is divided in slices parallel to the DTM with 0.1 m height.
Considering that the point cloud was previously divided in 0.1 m squares, it results that the vine
point cloud is divided in 3D pixels (voxels) of 0.1 m side. Phattaralerphong et al. [35] reported
that the optimal voxel sizes for crown volume estimates ranged from 0.1 to 0.4 m. The size of
the voxel is linked with the accuracy of the crown volume estimate [36–38] and large voxel sizes
are related with greater estimation accuracies. However, choosing an excessively large voxel side
leads to the generation of few voxels, which results in too coarse description of the canopy. Thus,
taking into account the size of the vine rows, 0.1 m was selected as the optimal voxel size. A set of
image layers is created with a resolution of 0.1 m, storing in every pixel of each layer the number
of voxels containing points belonging to the vine that had the same x,y coordinates than the pixel.

4. Vine row detection and segmentation: for the vineyard to be characterized, the vine rows must
be detected and segmented, as the absolute and relative coordinates of these segments are used
to refer to the data extracted by the algorithm. Once all the vines are classified, their orientation
is automatically calculated and it is used to rotate the image. By doing this, the image shows
the rows horizontally, which eases the following processes. The first one is the creation of an
upper level of analysis, segmented in horizontal strips with a width of 0.5 m. Then, the algorithm
looks for the strip with the highest percentage of vine at the lowest level and classifies it as
“vine row.” Next, taking into account the distance between rows, the algorithm searches for
the remaining lines with high percentage of vine at the lowest level, and classifies them as “vine
rows.” Finally, the “vine rows” are divided in segments with a user-defined length, which was
0.1 m (Figure 6b) in this case.

5. Vine segments characterization: the maximum height of every segment is calculated by comparing
the point height with the DTM height (Figure 6c). The segment area is extracted from
the classification performed in the second step of the algorithm. For every one of the vine
segments and knowing the voxel volume (0.1 × 0.1 × 0.1 m3), the volume is calculated taking
into account the number of voxels including vine points that are under the vine segment for
all the slices created in step 3 (Figure 5d). The maximum width of the segment at 0.1 m-height
intervals is extracted from the slices created in step 3. For both the width and volume calculation,
the space between the sides of the vine is supposed to be full of vegetation (Figure 5d). The data
for each segment are associated with its coordinates and relative position inside the vine row.

The vine rows were divided in 0.1 m length segments to achieve a detailed characterization
of its geometrical properties. However, clusters of 10 segments were created to achieve 1-m long
groups that could be assimilated to individual vines. In the experiments where the results from two
flights were compared, this grouping could also help to deal with subtle changes in the shoot position
caused by the corresponding canopy management, which could affect the matching of the segments for
the comparison between flights. In the grouping of the segments, the sum of the values was calculated
for volume and area, while the maximum was computed for the rest of the features (height, total width,
and width at different heights). The segment length used in this work was that recommended by [39,40]
in the analysis of LIDAR point clouds acquired using an on-ground vehicle for analyzing vineyards.
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2.6. Data Analysis

The changes in the vine dimensions after the canopy management operations that had been
estimated with UAV-acquired photogrammetric point clouds were analyzed using a paired T-test (at
p = 0.05). In this analysis, the difference among the features of each 1-m long segment before and after
the canopy management was calculated for the different treatments, with positive values indicating
a decrease, and negative values an increase in the vine dimensions of the studied feature. In order
to assess the second objective of the work, the vine dimensions after the canopy management were
analyzed using a Student’s T test (at p = 0.05) to look for significant differences among treatments.
All the statistical analysis were carried out using JMP software version 10.0.0 (SAS, Cary, NC, USA),
the charts were created using R, version 3.5.2, with the R package “ggplot2” [41].

3. Results

3.1. Vine Dimensions after the Canopy Operation Experiments

The results reported in this section aimed to study if the comparison between the data from
the flights before and after the canopy treatments is suitable for detecting the execution of the canopy
management operations.

3.1.1. Shoot Thinning

The shoot thinning treatment led to a decrease of all the studied vine features, with the exception
of vine height and of width at highest height interval (1.2–1.3 m) (Table 3). The greatest mean changes
in width (0.7 ± 0.09) were detected at around 1 m height, where the canopy was the widest before
shoots were thinned. On the contrary, there were no significant changes in the dimensions of the control
vines in the shoot thinning experiment, with all the mean variations being close to zero (Table 3).
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Table 3. Mean and standard deviation of vine dimension changes after the shoot thinning experiment
at Azagra. The table is divided in two parts: (1) changes in main dimensions of the vine, (2) changes
in the width at different height intervals. Values followed by an asterisk are indicative of significant
differences among the vine dimensions before and after the canopy management (paired T-test at p =

0.05).

Variable Control Shoot-Thinned

Change in vine
dimensions

Volume (m3) 0.00 ± 0.02 0.03 ± 0.03 *
Height (m) −0.01 ± 0.06 0.03 ± 0.07
Area (m2) 0.00 ± 0.03 0.06 ± 0.05 *

Max width (m) 0.00 ± 0.04 0.04 ± 0.06 *

Change in
width (m), at

height interval

0.5–0.6 −0.03 ± 0.12 0.05 ± 0.10 *
0.6–0.7 −0.01 ± 0.07 0.04 ± 0.08 *
0.7–0.8 0.00 ± 0.05 0.05 ± 0.07 *
0.8–0.9 0.00 ± 0.04 0.05 ± 0.07 *
0.9–1.0 0.02 ± 0.05 0.05 ± 0.07 *
1.0–1.1 −0.03 ± 0.08 0.07 ± 0.09 *
1.1–1.2 0.04 ± 0.13 0.06 ± 0.08 *
1.2–1.3 0.01 ± 0.08 0.02 ± 0.08

3.1.2. Leaf Removal

• Leaf removal mode

Table 4 summarizes the results for the assessment of vine dimension changes in the experiment
with different modes of leaf removal at Traibuenas vineyard. All the geometric parameters evaluated
applying the OBIA algorithm to the vineyard point clouds registered a significant decrease between
the pre- and post-treatment flights at Traibuenas vineyard, except for the width at 2.0–2.1 m for
the Tr-2S. Although these width changes were observed to occur in all treatments, including control
vines, the changes in width for the intervals between 0.6 and 1.1 m (where the leaves were removed)
followed an increasing trend, the smallest changes being observed for control vines, followed by LR-1s,
and the maximum changes being observed for LR-2s.

Table 4. Mean and standard deviation of vine dimensions change after the leaf removal experiment at
Traibuenas vineyard. The table is divided in two parts: (1) changes in main dimensions of the vine,
(2) changes in the width at different height intervals. Values followed by an asterisk are indicative of
significant differences among the vine dimensions before and after the canopy management (paired
T-test at p = 0.05).

Variable Control One Side
(LR–1s)

Two Sides
(LR–2s)

Change in vine
dimensions

Volume (m3) 0.09 ± 0.09 0.13 ± 0.09 * 0.16 ± 0.09 *
Height (m) 0.04 ± 0.06 0.04 ± 0.06 * 0.05 ± 0.08 *
Area (m2) 0.02 ± 0.05 0.05 ± 0.05 * 0.06 ± 0.05 *

Max width (m) 0.04 ± 0.08 0.06 ± 0.08 * 0.06 ± 0.09 *

Change in
width (m), at

height interval

0.5–0.6 0.05 ± 0.16 0.09 ± 0.20 * 0.08 ± 0.21 *
0.6–0.7 0.08 ± 0.17 0.15 ± 0.19 * 0.18 ± 0.19 *
0.7–0.8 0.08 ± 0.20 0.16 ± 0.19 * 0.25 ± 0.20 *
0.8–0.9 0.08 ± 0.23 0.17 ± 0.21 * 0.27 ± 0.24 *
0.9–1.0 0.08 ± 0.24 0.16 ± 0.21 * 0.24 ± 0.21 *
1.0–1.1 0.03 ± 0.14 0.12 ± 0.18 * 0.15 ± 0.22 *
1.1–1.2 0.04 ± 0.10 0.09 ± 0.15 * 0.08 ± 0.14 *
1.2–1.3 0.03 ± 0.09 0.05 ± 0.10 * 0.04 ± 0.09 *
1.3–1.4 0.03 ± 0.09 0.04 ± 0.08 * 0.05 ± 0.09 *
1.4–1.5 0.05 ± 0.11 0.04 ± 0.09 * 0.06 ± 0.09 *
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Table 4. Cont.

Variable Control One Side
(LR–1s)

Two Sides
(LR–2s)

1.5–1.6 0.07 ± 0.12 0.06 ± 0.15 * 0.09 ± 0.15 *
1.6–1.7 0.08 ± 0.15 0.09 ± 0.16 * 0.09 ± 0.17 *
1.7–1.8 0.09 ± 0.16 0.09 ± 0.17 * 0.12 ± 0.21 *
1.8–1.9 0.05 ± 0.13 0.10 ± 0.20 * 0.09 ± 0.19 *
1.9–2.0 0.04 ± 0.13 0.03 ± 0.10 * 0.03 ± 0.12 *
2.0–2.1 0.01 ± 0.04 0.01 ± 0.04 * 0.01 ± 0.09

• Leaf removal intensity

Table 5 summarizes the results for the assessment of vine dimension changes in the experiment
with different intensities of leaf removal carried out at Ausejo-1. Although changes in vine dimensions
were detected for all treatments, including control vines, for the latter, changes occurred only in a few
features related with the width. However, removing one vine that was detected as unusually wide in
the first flight, only two of the significant differences would remain (width at intervals 1.4–1.5, 1.6–1.7,
and 1.8–1.9 m). Vines under the lower intensity leaf removal (LR-LI) treatment suffered significant
changes in their volume, area, and width at different height intervals, with these changes being larger
(around 0.2 m) at the height intervals where the leaves were removed (0.9–1.3 m). The changes observed
for high intensity leaf removal (LR-HI) treatment were similar, although it also affected the vine height
at higher width intervals.

Table 5. Mean and standard deviation of vine dimension changes after low and high intensity leaf
removal experiment at Ausejo-1. The table is divided in two parts: (1) changes in main dimensions
of the vine, (2) changes in the width at different height intervals. Values followed by an asterisk are
indicative of significant differences among the vine dimensions before and after the canopy management
(paired T-test at p = 0.05).

Variable Control
Low Intensity
Leaf Removal

(LR-LI)

High Intensity
Leaf Removal

(LR-HI)

Change in
vine

dimensions

Volume (m3) 0.02 ± 0.09 0.13 ± 0.12 * 0.16 ± 0.10 *
Height (m) 0.01 ± 0.13 0.03 ± 0.17 0.11 ± 0.19 *
Area (m2) 0.05 ± 0.08 * 0.10 ± 0.05 * 0.17 ± 0.05 *

Max width (m) 0.07 ± 0.12 * 0.09 ± 0.10 * 0.19 ± 0.08 *

Change in
width (m),
at height
interval

0.5–0.6 −0.01 ± 0.18 −0.09 ± 0.13 * 0.04 ± 0.11
0.6–0.7 0.03 ± 0.20 −0.11 ± 0.13 * −0.02 ± 0.19
0.7–0.8 −0.01 ± 0.18 −0.06 ± 0.18 −0.03 ± 0.25
0.8–0.9 0.18 ± 0.29 * 0.04 ± 0.22 0.02 ± 0.26
0.9–1.0 −0.01 ± 0.14 0.18 ± 0.17 * 0.15 ± 0.14 *
1.0–1.1 0.02 ± 0.21 0.19 ± 0.18 * 0.21 ± 0.14 *
1.1–1.2 −0.01 ± 0.27 0.17 ± 0.16 * 0.24 ± 0.14 *
1.2–1.3 0.04 ± 0.20 0.13 ± 0.15 * 0.23 ± 0.16 *
1.3–1.4 0.06 ± 0.15 0.13 ± 0.07 * 0.17 ± 0.09 *
1.4–1.5 0.10 ± 0.10 * 0.12 ± 0.09 * 0.16 ± 0.09 *
1.5–1.6 0.04 ± 0.10 0.09 ± 0.12 * 0.11 ± 0.10 *
1.6–1.7 0.07 ± 0.10 * 0.06 ± 0.12 0.14 ± 0.08 *
1.7–1.8 0.06 ± 0.12 0.11 ± 0.16 * 0.16 ± 0.10 *
1.8–1.9 0.11 ± 0.13 * 0.10 ± 0.11 * 0.14 ± 0.11 *
1.9–2.0 0.05 ± 0.23 0.08 ± 0.20 0.15 ± 0.16 *
2.0–2.1 0.09 ± 0.21 0.03 ± 0.24 0.12 ± 0.22 *
2.1–2.2 0.01 ± 0.16 0.07 ± 0.21 0.12 ± 0.16 *
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3.1.3. Shoot Trimming Intensity

The trimming treatments caused large reductions in vine height (Table 6). The OBIA algorithm
detected significant changes caused by the Au-1-LIST treatment in the volume, height, area, maximum
width, and for the width at the height intervals above the height where the shoots were trimmed
(from 1.4 to 2.2 m). The trimming treatment of higher intensity (Au-1-HIST) led to a similar trend in
the dimension changes, although the change in volume and height were higher, and the differences in
width appeared at lower heights than in Au-1-LIST because the trimming of the shoots was done at
a lower height.

Table 6. Mean and standard deviation of vine dimension changes after low and high intensity shoot
trimming experiment at Ausejo-1. The table is divided in two parts: (1) changes in main dimensions
of the vine, (2) changes in the width at different height intervals. Values followed by an asterisk are
indicative of significant differences among the vine dimensions before and after the canopy management
(paired T-test at p = 0.05).

Variable Control

Low Intensity
Shoot

Trimming
(Au-1-LIST)

High Intensity
Shoot Trimming

(Au-1-HIST)

Change in
vine

dimensions

Volume (m3) 0.02 ± 0.09 0.20 ± 0.12 * 0.26 ± 0.07 *
Height (m) 0.01 ± 0.13 0.49 ± 0.16 * 0.60 ± 0.18 *
Area (m2) 0.05 ± 0.08 * 0.14 ± 0.08 * 0.23 ± 0.16 *

Max width (m) 0.07 ± 0.12 * 0.17 ± 0.18 * 0.23 ± 0.18 *

Change in
width (m),
at height
interval

0.5–0.6 −0.01 ± 0.18 −0.08 ± 0.17 −0.10 ± 0.18
0.6–0.7 0.03 ± 0.20 −0.11 ± 0.16 −0.09 ± 0.22
0.7–0.8 −0.01 ± 0.18 0.01 ± 0.18 −0.05 ± 0.15
0.8–0.9 0.18 ± 0.29 * −0.01 ± 0.19 −0.02 ± 0.17
0.9–1.0 −0.01 ± 0.14 −0.04 ± 0.20 −0.11 ± 0.16 *
1.0–1.1 0.02 ± 0.21 −0.06 ± 0.16 0.01 ± 0.22
1.1–1.2 −0.01 ± 0.27 −0.06 ± 0.17 −0.03 ± 0.16
1.2–1.3 0.04 ± 0.20 −0.03 ± 0.19 0.15 ± 0.16 *
1.3–1.4 0.06 ± 0.15 0.04 ± 0.14 0.40 ± 0.27 *
1.4–1.5 0.10 ± 0.10 * 0.16 ± 0.14 * 0.60 ± 0.27 *
1.5–1.6 0.04 ± 0.10 0.41 ± 0.22 * 0.64 ± 0.24 *
1.6–1.7 0.07 ± 0.10 * 0.62 ± 0.34 * 0.64 ± 0.25 *
1.7–1.8 0.06 ± 0.12 0.67 ± 0.33 * 0.64 ± 0.23 *
1.8–1.9 0.11 ± 0.13 * 0.59 ± 0.32 * 0.59 ± 0.30 *
1.9–2.0 0.05 ± 0.23 0.49 ± 0.36 * 0.51 ± 0.40 *
2.0–2.1 0.09 ± 0.21 0.47 ± 0.40 * 0.23 ± 0.23 *
2.1–2.2 0.01 ± 0.16 0.38 ± 0.37 * 0.12 ± 0.17 *

3.2. Vine Dimensions after the Experiments

In this section, the results of the analysis of flight after the treatments are considered to study
the vine dimensions after the treatments, and to assess whether it is possible to detect the execution
of the canopy management operations without the necessity of comparing with a previous flight.
Comparisons are presented for the main vine dimensions (volume, height, area, and maximum width)
(Table 7), and graphical width profiles in height are also displayed.
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Table 7. Mean and standard deviation of vine dimensions after the canopy management operations.
For each experiment and vine dimension, values followed by different letter are statistically different at
p = 0.05 by a Student’s T-test.

Experiment Treatment Volume (m3)
Maximum
Height (m) Area (m2)

Maximum
Width (m)

Shoot Thinning
(Azagra)

Control 0.21 ± 0.03 A 1.17 ± 0.08 A 0.44 ± 0.05 A 0.61 ± 0.07 A

Th 0.16 ± 0.04 B 1.15 ± 0.07 A 0.35 ± 0.06 B 0.55 ± 0.06 B

Leaf Removal
Mode

(Traibuenas)

Control 0.45 ± 0.12 A 1.74 ± 0.11 A 0.70 ± 0.12 A 0.86 ± 0.12 A

LR-1S 0.41 ± 0.13 B 1.73 ± 0.10 A 0.68 ± 0.15 A 0.87 ± 0.14 A

LR-2S 0.41 ± 0.10 B 1.75 ± 0.13 A 0.71 ± 0.13 A 0.89 ± 0.14 A

Leaf Removal
Intensity

(Ausejo-1)

Control 0.52 ± 0.12 AB 2.03 ± 0.16 A 0.68 ± 0.14 A 0.90 ± 0.20 A

LR-LI 0.53 ± 0.07 A 2.07 ± 0.14 A 0.63 ± 0.06 AB 0.80 ± 0.05 AB

LR-HI 0.46 ± 0.05 B 2.03 ± 0.16 A 0.55 ± 0.07 B 0.72 ± 0.10 B

Shoot Trimming
Detection
(Ausejo-2)

Control 0.65 ± 0.11 A 2.06 ± 0.15 A 0.72 ± 0.10 A 0.92 ± 0.15 A

ST 0.33 ± 0.05 B 1.42 ± 0.11 B 0.59 ± 0.08 B 0.74 ± 0.09 B

Shoot Trimming
Intensity

(Ausejo-1)

Control 0.52 ± 0.12 A 2.03 ± 0.16 A 0.68 ± 0.14 A 0.90 ± 0.20 A

ST-LI 0.36 ± 0.08 B 1.62 ± 0.17 B 0.59 ± 0.12 B 0.73 ± 0.16 B

ST-HI 0.26 ± 0.06 C 1.44 ± 0.19 C 0.54 ± 0.06 B 0.71 ± 0.11 B

3.2.1. Shoot Thinning

The analysis of the point clouds after the canopy management operations at Azagra field showed
that the vines under the STh treatment had significantly lower volume, area, and maximum width
than the control vines (Table 7). Despite these significant differences, it was not possible to establish
a threshold between treated and un-treated vines, due to the existence of some overlap in the standard
deviation among the vine dimensions for both treatments. The shoot thinning, as shown in the width
profiles in Figure 7, also significantly reduced the width at the intervals below 1 m height.
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3.2.2. Leaf Removal

• Leaf removal mode

Removing leaves whether from one or from both canopy sides at the Traibuenas vineyard
decreased the volume of leaves in the treated vines compared to the control (Table 7), although they
did not result in significant differences regarding the height, area, nor maximum width. However,
studying the width profiles (Figure 8), the width at the height intervals below 1 m was affected by
the leaf removal treatments. The removal of leaves at both sides of the vine led to the lowest widths
at 0.9–1.0 and 0.8–0.9 intervals, while the widest ones were the control vines, and the Tr-TS vines
had intermediate values. However, due to the overlap among width values, it was not possible to
determine a fixed threshold for accurately detecting the canopy management using only one flight
after the operations.Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 23 
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• Leaf removal intensity

Regarding leaf removal intensity experiments in Ausejo, there were no significant differences
between the control, and LR-LI and LR-HI treatments for the volume and maximum height vine
dimensions (Table 7). Increasing the intensity in the leaf removal did cause a significant reduction in
the area and maximum width in comparison with the control vines. There also was a reduction in
the volume although non-significant compared to the control.

Although the analysis of the main vine dimensions did not detect differences between the LR-LI
treatment and the control, the study of the width profile of the vines allowed discriminating the LR-HI
treatment (Figure 9), since significant differences were found for the width at height intervals between
1.0 and 1.2 m. Only the LR-LI treatment was significantly narrower than the control treatment at 1.1 m.
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3.2.3. Shoot Trimming

• Shoot trimming detection

Vines at Ausejo-2 vineyard after shoot trimming had significantly lower volume, height, area,
and maximum width than the control vines (Table 7). The difference in height was so large that it
allowed establishing a threshold for detecting the shoot trimming using data from only one flight after
treatment. For example, using 1.75 m as threshold, 98.75 % of the trimmed vineyards were correctly
classified (i.e., 158 vines out of 160), and 98.44% of the no trimmed vineyards were correctly detected
(i.e., 315 vines out of 320).

The width at different height intervals also depicted the differences between treatments (Figure 10).
The most conspicuous differences were detected at higher heights due to the trimming of the shoots.

• Shoot trimming intensity

Both trimming intensities (ST-LI and ST-HI) caused significant differences for the four vine
dimensions in regards to the control treatment (Table 7). The differences for the trimming treatments
were larger for the maximum height (1.62 m for ST-LI and 1.44 m for ST-HI compared to the 2.03 m
height obtained for the control). According to the standard deviation, all the non-trimmed vines had
a height above 1.75 m, a value that could be used as height threshold for detecting the correct execution
of the trimming treatments considering solely the flight after the canopy management. This threshold
classified correctly the 83.33 % of the ST-LI vines, and the 91.67 % of ST-HI vines.

The width profiles for the shoot trimming treatments reflected them through significantly lower
width values at the higher height intervals (Figure 11). The higher intensity of the ST-HI treatment led
to the reduction in width in a larger interval than for the ST-LI treatment. That is, while this reduction
was detected from 1.5 m height in the lower intensity treatment, it could be detected from 1.3 m for
the higher intensity treatment.
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4. Discussion

The results show that the detection of canopy management operation using data from UAV
photogrammetry can be accomplished. The possibilities provided by this approach for farmers can
be of great interest since they can reduce the intensity of field inspections to determine if canopy
management operations are being performed in due time and manner. The cost-effectiveness of this
solution could, at this moment, be questioned, but the expected increase for non-supervised UAV
operation and image processing will make these solutions readily usable and affordable for growers.

Regarding the two approaches in the analysis of the UAV-derived data, the first one was successful,
that is, the execution of the canopy management operations can be validated through the comparison
of the OBIA-measured vine dimensions before and after the treatments. Significant differences in vine
dimensions were detected in all the treatments, and these differences matched the characteristics of
the treatments. This fact is especially relevant in the case of the shoot thinning, since this treatment is
carried out when the shoots are small, and the changes caused to the vine by removing them are subtle
and, consequently, hard to detect. Pádua et al. [16] were not able to detect changes in the vineyard
volume after a shoot thinning treatment; probably due to the poorer resolution of their data, acquired
by flying at a higher altitude (60 m) and with a lower resolution sensor. This highlights the relevance
of choosing an adequate UAV flight plan and sensor in order to achieve the objectives desired.

Leaf removal and shoot thinning led to reductions in the volume, area, and maximum width of
the vines. However, what is of more relevance, is that the analysis of the width changes at different
height intervals showed that the largest decreases were associated with the heights where the leaves
were removed (around 1 m from the soil). Regarding shoot trimming, changes were associated with
decreases in volume, height, area, and maximum width. As opposed to the leaf removal treatments,
the biggest reductions in vine width were detected at the upper parts of the vines, where the shoots
were trimmed.

Additionally, some unexpected significant differences were detected, such as the reduction in
height reported for LR-HI. These differences could be associated with some errors inherent to the point
cloud generation, or with real changes in vine dimensions. For example, it is likely the transit of
operators among the vine rows and their activity during leaf removal could have caused some shoots
to change position or to be damaged before the second flight was made. Apart from those, some
other remarkable and unexpected dimension changes were detected in control vines, particularly in
the Traibuenas vineyard. These differences are probably associated to changes in both leaf turgor and
leaf blade angle associated to water deficit and high atmospheric evaporative demand at mid-day.
In this field, the first flight was performed at 9:15 solar time, whereas the second one was done at
11:30, when temperatures were particularly high (34.9 ◦C). Changes in leaf turgor and angle have
been previously reported in grapevine as a response to water deficit and high temperature stress [42],
the former being a direct consequence of water deficit, and the latter an adaptation of plants to minimize
sunlight interception at noon.

The analysis of the vine dimensions extracted from the point cloud created after the canopy
management operations detected significant differences among the treatments in all the experiments.
These differences matched the characteristics of the treatments, as also happened in the analysis of
the changes in vine dimensions. Shoot thinning influenced the volume, area, and width of the vines;
however, it did not cause differences in height nor in the width at the higher height intervals in
comparison with the control vines, as the shoots removed were not the longest ones.

In regards to shoot trimming, it caused a large reduction in height, volume, and the width at
the highest height intervals, which was linked to the removal of the upper part of the shoots. On
the other hand, leaf removal mainly affected the width of the vine, which also modified the area
and volume of the vines. In the leaf removal experiment at Ausejo, the vines subjected to high
intensity leaf removal (LR-HI) showed lower volume and area than those subjected to low intensity
leaf removal (LR-LI). However, there were no significant differences in the main dimensions between
LR-LI and control (C) vines. In this case, only the analysis of the width at different height intervals
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made possible the detection of the differences between these treatments. The importance of the width
profile analysis in height is also revealed by the experiment carried out at Traibuenas. At that location,
both intensities of the leaf removal showed no significant differences between them for the main vine
dimensions, although they displayed differences in the width at the height intervals between 0.8 and
1 m. This fact highlights the importance of the analysis of the vine width profile, which has, to the best
of our knowledge, been applied for the first time in this work for the analysis of vineyards using
photogrammetric point clouds. Escolà et al. [22] reported similar width profiles, but they were created
using data from a mobile terrestrial LIDAR scanner, which is less efficient.

In the case of shoot trimming, differences between treatments were very clearly detected. Thus,
there were significant differences between the three types of vines considered: control (C), low intensity
(ST-LI), and high intensity (ST-HI) trimming.

The second approach in the analysis of the UAV-derived data, i.e., the use of the information
provided only by the flight after the treatments, was effective for shoot trimming monitoring. There
were significant differences among the vine dimensions after the treatments in all the experiments, and
for trimmed plants, it was possible to discriminate trimmed vines on the basis of a fixed threshold.
For the rest of the operations (shoot thinning and leaf removal), the overlap among the standard
deviation values for the vine dimensions did not allow such a discrimination. When that degree of
detection would be required, flight configuration at lower altitude, or the use of higher resolution
cameras, could be explored as an alternative. Flying at lower altitudes would require to capture higher
amount of images per ha, and more time to cover the same area and to mosaic the imagery [43,44].
As a consequence, potential UAV energy restrictions may be a limiting factor for a practical use of
the technology and methodology herein presented. Therefore, future research lines could explore
the use of higher resolution cameras for trying to detect shoot thinning and leaf removal using only
one flight after the management operations.

The data extracted from the vineyard point clouds by the OBIA algorithm have demonstrated
their ability to characterize the vine dimensions and to detect the changes that the canopy management
operations cause. Therefore, this ability to measure vine dimensions would allow the supervision or
inspection of vineyard fields. The degree of detail obtained with the OBIA algorithm opens the door to
other applications of using vine dimensions. For instance, knowing vine dimensions in detail could be
used to design site-specific treatments adapted to the needs of the crop according size, implying a better
use of phytochemicals. According to Campos et al. [45], the combination of information extracted from
UAV flights and a decision support system resulted in a 45% reduction of pesticide foliar application in
vineyards. The 3D modelling of vineyards is also useful for the evaluation of vine-rows features (such
as inter-row spacing or row orientation) [17] and for the detection of missing plants [46]. In addition,
the estimation of vine dimensions throughout a season would allow the generation of dynamic growth
maps, and the identification of areas were canopy management operations could be beneficial or
needed to be re-designed [16]. Last, a good characterization of canopy management operations in
vineyard volume can be an accurate tool to estimate the available residual biomass [47], that can be
used as a source of energy [48,49], or as input for the production of adsorbents in water purification
processes [50,51].

5. Conclusions

This study demonstrates that the use of UAV photogrammetry in combination with an automatic
algorithm allows the detection of canopy management operations in vineyards. The use of the proposed
methodology would allow supervising the execution of these tasks in an efficient way, substituting
the time-consuming field inspections that are used nowadays. To the best of our knowledge, this is
the first time that a set of canopy management operations in agricultural fields have been evaluated
through the use of photogrammetric point clouds, and it also is the first time that width profiles at
different heights have been extracted from photogrammetric point clouds representing a woody crop.
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The results showed that the comparison of the vine dimensions after and before the treatments
allowed the detection of all the canopy management operations, since changes in vine dimensions
appeared in the parts of the vine where the treatments had been applied. Furthermore, significant
differences in the vine structure for the different treatments were detected in all the experiments using
only the data from the flight after the management operations, and for trimming it was possible to
establish a fixed threshold to detect trimmed vines considering only the data generated from the flight
after the treatment. Future research will be focused on the detection of all the canopy management
operations using only one flight after their execution.
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