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Abstract 

The full-width at half maximum (FWHM) of lossy mode 
resonances (LMRs) in the optical spectrum depends on the 
homogeneity of the thin-film deposited. Here, a method for 
improving the FWHM is applied for an LMR generated by a D-
shaped optical fiber in reflection configuration. To this 
purpose, three samples with different attenuation were 
deposited with DC sputtering thin-films of SnO2-x and a further 
controlled immersion in water of the samples was performed. A 
laser cleaner method was used to improve the FWHM 
characteristics of one of the samples from 106 nm to 53 nm. 
This improvement can be applied to thin-film based sensors 
where there is a problem of inhomogeneity of the coating 
thickness. Moreover, with this technique it was proved that a 
coated length of just 3-4 mm permits to generate an LMR, with 
what this imply in terms of miniaturization of the final device. 
OCIS codes: (060.2430)   Fibers, single-mode (310.0310) Thin-films, 
(060.2370)   Fiber optics sensors.  

Both surface plasmon resonances (SPRs) and lossy mode resonances (LMRs) are based on light coupling due to deposition of a thin-film on a dielectric medium [1-5]. LMRs present some properties that make them more versatile compared to SPRs: they can be obtained in a wide range of materials that include mainly metallic oxides and polymers [6-8], they can be excited both at TE and TM polarization, and multiple resonances in the same spectrum can be generated [4].  On the other hand, because it is obtained with incidence angles close to 90º, it has been widely used in multimode fibers and tapered fibers [9-13], and also recently by lateral incidence of light on the edge of a glass coverslip or a microscope slide [14].   Regarding optical fibers, one of the most widely used structures for generating LMRs is the D-shaped fiber in transmission [15, 16]. However, this configuration has the drawback that it is not as easy to handle as a fiber in the reflection configuration, which allows the device to be used as a catheter, [17, 18], a nasogastric probe [19], or even for chemical mapping of surfaces [20]. Another interesting property of LMRs is that their central wavelength is directly related to the coating thickness. Hence, it is easy 

to tune their position in a broadband spectral range [4]. This also explains their high sensitivity [3]. However, this versatility becomes a drawback when the thickness of the nanocoating along the fiber length is not uniform, which may occur due to the distance and inclination with which the sample is positioned inside the sputtering machine or to the parameters used for rotating the platform where the sample is placed on [21-23]. Here it will be demonstrated that it is possible to improve the full width at half maximum (FWHM) of the LMR, which is important for obtaining a high figure of merit, one of the main parameters used for assessing the performance of a refractometer and also a key parameter to determine the limit of detection in chemical sensors and biosensors [24]. Initially, this will be demonstrated by immersing different lengths of the device in water, whereas a more robust procedure based on laser ablation will be applied to confirm this idea. In order to analyze this, three different D-shaped fiber samples from Phoenix Photonics Ltd (Kent, UK) were used: S1, S2 and S3. The D-shaped fibers consisted of a standard single mode fiber (SMF-28 from Corning) with a side-polished length of 10 mm. The attenuation of light transmitted through sample S1 was -0.3 dB in high index oil (refractive index 1.45), whereas the attenuation of samples S2 and S3 was -0.7 dB. In other words, the degree of polishing of samples S2 and S3 was higher than in samples S1 in order to compare the results obtained with two different degrees of polishing. The samples were cleaved at a 90° angle after the polished region for a further deposition of a gold layer that guarantees that all light that reaches the tip of the fiber is reflected back. In this way, the performance of the reflection configuration D-shaped fiber must be the same as a transmission configuration D-shaped fiber but with the exception that light passes two times through the same polished region. In other words, a 10 mm long D-shaped fiber in reflection configuration should perform like a 20 mm long D-shaped fiber in transmission. In order to guarantee the good adhesion of the 110 nm gold layer at the end of the fiber, a titanium layer of 10 nm was initially deposited. Both the titanium and the gold layer were deposited by means of an Electron beam evaporator (Kenosistec CL400C, Binasco (MI), Italy). To avoid the material deposition onto the lateral surface of the D-shaped fiber, the samples were inserted into a loose tube leaving only the end face of the optical fiber exposed to the evaporation process. 
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