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Abstract—Large PV power ramp rates are of concern and
sometimes even explicitly restricted by grid operators. Battery
energy storage systems can smooth the power output and
maintain ramp rates within permissible limits. To enable PV
plant and energy storage systems design and planning, a method
to estimate the largest expected ramps for a given location is
proposed. Because clouds are the dominant source of PV power
output variability, an analytical relationship between the worst
expected ramp rates, cloud motion vectors, and the geometrical
layout of the PV plant is developed. The ability of the proposed
method to bracket actual ramp rates is assessed over 8 months
under different meteorological conditions, demonstrating an
average compliance rate of 96.9% for a 2 min evaluation time
window.

Index Terms—Cloud Speed Sensor, Power Ramp Rate
Estimate, PV Plant Design.

I. INTRODUCTION

The power output variability by large-scale grid-connected
photovoltaic (PV) systems can negatively affect power quality
and grid network reliability. Regulations have been introduced
to restrict the maximum power ramp rates for PV plants on 1
min timescales [1]. These restrictions typically invite one of
two approaches: (1) Compensate the power variability through
energy storage systems (ESS). The storage requirements and
strategies to comply with the regulations, considering capacity
losses and cycling degradation, have been comprehensively
studied [2], [3]. (2) Curtail the PV output to smooth up-ramps
reactively and provide a buffer for smoothing down-ramps
proactively [4], [5]. For example, short-term forecasts for
future cloud arrivals allow a system operator to meet ramp rate
restrictions with less battery reserve or curtailment [6], [7].
If all ramp rates (except plant outages) were to be mitigated,
approach (1) would require knowledge of the worst-case ramp
rate to determine the power and energy rating of the ESS.
Given perfect forecasts, approach (2) could mitigate all power
ramps without ESS. In practice, however, significant errors
in the short-term ramp forecasts combined with restrictive
ramp rate compliance requirements typically still require a
ESS to mitigate worst-case ramp rates, but accurate forecasts
can reduce the number of charge/discharge cycles of the ESS.

The nature of PV power variability has been well-studied
[8]–[11]. For example, Marcos et al. [12] studied the
smoothing effect of power fluctuations over the area of the
power plant by low-pass filtering irradiance measurements at
a single point. Lave et al. [13] proposed a wavelet variability
model to simulate the reduction in power output fluctuations

of a plant or a fleet of dispersed plants. The correlation
scaling coefficient introduced in the model is universal and
a function of cloud speed [14]. Marcos et al. [15] simulated
the power output by a fleet of plants, using only irradiance
measurements at a single location and the smoothing effect
due to geographical dispersion and plant size. The solar power
variability models in the aforementioned studies require
high frequency solar irradiance measurements. While high
frequency solar irradiance data are rarely available, some
applications, such as PV plant design and ESS sizing, require
only the worst power fluctuations. For example, the worst
ramp rate determines the required power and energy capacity
rating for the ESS to buffer all down-ramps. Motivated by
this, we propose a novel analytical approach, where the
maximum expected PV ramp rate is computed in a process-
based model using: 1) low-resolution point irradiance or PV
power measurements, 2) the geometrical layout of PV plant,
and 3) cloud velocity. The main contribution of this paper is
the derivation and demonstration of a simple but universally
applicable model that bounds the maximum ramp rate using
simple data input even in the absence of high temporal
resolution.

The remainder of this paper is organized as follows.
Sections II-A and II-B present the ramp rate model as
an analytical relation between cloud velocity, PV plant
dimension, recent PV power measurements / cloud optical
depth, and expected maximum ramp rate. Section II-C
introduces metrics to evaluate the model. Section III-A
describes the experimental setup and data, and Section III-B
introduces the process to derive the data input for the model.
Sections IV-A and IV-B examine the model performance
through detailed analysis for two example days and validation
over the 8-month data collection period. Limitations of the
proposed methodology and discussion are given in Section
IV-C. Lastly, Section V provides the conclusions.

II. MATHEMATICAL DERIVATION AND PROBLEM
FORMULATION

A. A Geometric Ramp Rate Model

The model is based on the following five assumptions:
1) A steady irradiance field that is larger than the PV plant.
2) The clear and cloudy parts of the irradiance field are

homogeneous and steady within the time interval of
interest.



3) No cloud edge effects such that clear and cloudy
irradiance values are separated by a line.

4) No mismatch losses in the PV plant, i.e. PV plant power
is proportional to spatially averaged irradiance.

5) Constant PV efficiency, i.e. no cell temperature or
inverter effects.

With these assumptions, a power ramp results solely from
the movement of the irradiance field over the PV plant, as
conceptualized in Figure 1. The ramp rate is modeled based
on the interaction between the irradiance field advected by
the CMV and the PV plant geometry. At the initial time
t0, a portion of the irradiance field (bordered by the black
rectangle that marks the PV plant size) affects the PV plant.
The portion of the irradiance field that covers the plant at
t0 is then advected during a small time interval ∆t into a
new position that is bordered by the grey dashed rectangle.
During the advection, part of the irradiance field (the grey
area, denoted as the outgoing portion of size ∆S) moves off
the plant while another part moves in (the red area, denoted as
the incoming portion also of size ∆S). ∆S can be computed
as:

∆S = (Lv|cosα|+Wv|sinα|) ∆t−(v∆t)
2 |sinα cosα| (1)

where L and W are the dimensions of the PV plant, and
v and α are the speed and direction of the irradiance field,
respectively. The cloud field properties (i.e. speed, direction,
and optical thickness) are reasonably assumed stationary
within the time interval ∆t. The difference in cloud optical
thickness between the outgoing and incoming ∆S induces a
power ramp event.

Fig. 1. The irradiance field (outer round rectangle containing clouds and
clear sky) over the PV plant at t0 is advected by speed v and direction α.
The portion of the irradiance field that covered the plant (black rectangle)
moves to a new location (grey rectangle) in time interval ∆t, resulting in
incoming and outgoing portions of the irradiance field with a size of ∆S. The
PV plant measures L by W and aligns with the East and North directions.

For reference, the area-normalized clear sky power
production P̂cs is calculated by (2) given the modeled or
measured power production under clear sky condition Pcs

and PV plant dimensions L and W :

P̂cs =
Pcs

LW
. (2)

The clear sky PV power for a given area is then assumed
to be proportional to Pcs. Thus, the solar power that would
be produced by the net area ∆S under clear sky condition
can be expressed as:

P ∗ = P̂cs∆S. (3)

Not only a faster cloud field causes larger power reduction,
but also a thicker cloud field would result in a larger ramp
event. To factor in the solar power reduction caused by the
cloud optical thickness, the clear sky index kt [16] is included
to reflect a power reduction scale under cloudy condition. The
solar power change ∆P is:

∆P = (kti − kto)P ∗, (4)

where kti and kto respectively represent the average cloud
optical thickness for the incoming portion (red colored area
in Figure 1) and the outgoing portion (complementary grey
colored area) of the irradiance field. Since the irradiance field
is a mix of cloudy and clear sky conditions, kti− kto can be
positive or negative. Finally, the ramp rate RR becomes:

RR =
∆P

∆t
=± (Lv|cosα|+Wv|sinα|−

v2∆t|sinα cosα|)Pcs|kti − kto|
LW

.

(5)

B. The Worst-Case Scenario Ramp Rate (WCS-RR)

Equation (5) is not intended for operational ramp rate
forecasts since without a sky imager the upwind irradiance
field that would be needed to quantify kti is generally not
available. Instead, we consider the worst-case scenario, where
a clear sky gives way to an overcast sky. We estimate the
largest ramp rate by picking the smallest kt from recent
history (e.g. 30 min) ktmin. The WCS-RR can be expressed
as:

WCS-RR =± (Lv|cosα|+Wv|sinα|−

v2∆t|sinα cosα|)Pcs|1− ktmin|
LW

.
(6)

In this formulation, the model is aligned such that the PV
system aligns with East and North directions, and the cloud
direction α is defined relative to North. For PV systems with
non-zero azimuth alignment, α in (6) should be replaced by:

α = αN − αaz, (7)

where αN is the measured cloud direction and αaz is the
azimuth angle of the solar power plant, both defined relative
to North.

C. Performance Evaluation

The WCS-RR estimate is evaluated by the following
performance metrics. First, we define the compliance
indicator σ by dividing the actual ramp rate by the
corresponding WCS-RR estimate, as in:

σ(t) = RRactual(t)/RRestimate(t). (8)



When σ ≤ 1, the actual ramp rate complies with the WCS-RR
estimate. The maximum σ in each non-overlapping evaluation
window of length m minutes is:

µj = max{σ (i) ; i ∈ [nj, n (j + 1)− 1]}, j ∈ [1, N ] . (9)

n = (m× 60) sec/s represents the number of σ in the jth

evaluation window with a temporal resolution of s sec, and
N is the total number of evaluation windows computed by
rounding up the expression T/m, in which T is the overall
daily time window of WCS-RR in minutes. The selection of
m is somewhat arbitrary: a shorter window length results in
more windows with exclusively clear or overcast conditions
which are not of concern for ramp rates while longer window
lengths tend to evaluate σ too infrequently. Since transmission
system operators are typically required to counteract power
fluctuations with load following at a time scale of less than
30 min, we apply window lengths of m = 2, 10, and 30 min.
The compliance rate φ is defined as:

φ =
Ncpl

N
. (10)

The number of compliance events Ncpl indicates the
number of windows that satisfy µj ≤ 1. Subsequently, the
noncompliance rate becomes:

ε = (1− φ)× 100%. (11)

While risk-adverse actors would prefer that the WCS-RR
always envelopes the observed ramps, excessive WCS-RR
may result in an over-sized energy storage system. To quantify
the extent to which the WCS-RR overpredicts the actual ramp,
all compliance events are further evaluated by the degree of
overestimation δ:

δ =

 1

Ncpl

∑
j∈Ncpl

1− µj

× 100%. (12)

III. VALIDATION SETUP AND DATA INPUT

A. Experimental Setup and data

To validate the proposed method, we set up an experiment
at the University of California (UCSD) campus test
bed. Figure 2 illustrates the layout of an existing PV
systems located on the EBU2 building (32◦52′53.1”N ,
117◦13′59.2”W ) at the campus of the UCSD with a tilt angle
of 20◦ and an azimuth angle of 225◦ east of north. It is
arranged in 5 arrays, consisting of a total of 210 PV panels
with the overall dimension of 38.2 m × 15.2 m (marked by
red in Figure 2). The total nominal power is 43 kW DC.
The PV power was measured at a 2 sec sampling rate from
September 29, 2017 to June 5, 2018 by 5 inverters (SMA
Sunny Boy 7000US), with a total rated power of 35 kW
AC. Excluding server shutdowns, rainy and overcast days,
and clear days (defined as less than 30 min of cloud cover),
59 partially cloudy days remain, which are of interest to the
experiment because partial cloud cover causes the largest
power ramps. Note that the production field includes the

ground area in between the rows, which mathematically enters
(2) through the power plant dimensions. To avoid errors from
clear sky and PV performance models, the power produced
on the most recent clear day is used as the clear sky power.

Cloud speed and direction are required to relate cloud field
to ramp rates. While the proposed model is compatible with
any type of cloud speed measurement, we obtain cloud speed
measurements from our in-house Cloud Speed Sensor (CSS),
which provides an accurate yet affordable means to measure
local cloud motion vectors (CMVs) [17], [18]. The instrument
is installed on the same rooftop as the PV system and marked
in Figure 2.

Fig. 2. Aerial view of the PV system installed on EBU2 at UCSD and the PV
production field (red) considered in this paper. The yellow star indicates the
CSS located 10 meters north of the upper corner of the PV system. ©Drone
Photo

B. Search Time Window and Data Processing

Since CMVs are only available in irregular intervals, a
search window length needs to be defined to average the CMV
data and select the ktmin. Longer windows challenge the
assumption of cloud field homogeneity, causing older cloud
fields that are likely different from the ones at present to be
counted. Shorter windows may not contain sufficient cloud
cover events and falsely suggest that clear conditions will
persist. Based on our experience, the cloud field in coastal
Southern California is typically steady over a few hours, so
we consider a 30 min window centered at the time of interest
as a conservative upper bound.

IV. RESULTS AND DISCUSSION

A. Performance on Two Sample Days

In this section, two detailed examples are analyzed to
illustrate and explain the performance of the proposed model.
The WCS-RR estimate on Oct 8, 2017, one of the best days
(100% compliance across all three evaluation windows), is
first validated against the actual ramp rates in Figure 3. The



top plot shows real PV power from 8:00 to 17:00 PDT and
clear sky power output from 2 days earlier. The clouds are
observed to move southward to eastward over the day with
speeds ranging from 4 to 8 m s-1, as illustrated in the middle
plot. The bottom plot illustrates the observed ramp rate and
the WCS-RR estimates.

The WCS-RR generally is positively proportional to
clear sky power and cloud speed, completely enveloping
the actual ramp rate magnitude and timing. This day is
characterized by frequent low scattered stratocumulus clouds,
causing successive cloud optical thickness changes in a few
time periods, subsequently the corresponding kt variations
influence the magnitude of the WCS-RR bound. There is
a 1.5 hour exception from 12:00 to 13:30 PDT when the
sky was completely clear, significantly lowering the WCS-RR
estimate because the difference between 1 and ktmin becomes
minimal. Within ± 15 min of 13:00 PDT there is no WCS-
RR estimate because we do not have a valid cloud speed
measurement under the clear sky cover to produce a WCS-
RR. The largest observed ramp rate of the day occurred at
13:46 PDT, caused by a sudden partial stratocumulus cloud
cover after the prior 1.5 hour clear sky condition (Figure 4).
Because this cloud condition change (clear to worst-case thick
clouds) is the exact circumstance modeled in Equation (6), the
WCS-RR estimate accurately captures the ramp magnitude
with only a 5% overestimate.

Fig. 3. Example validation of the proposed method on Oct 8, 2017. Top:
Actual PV power on Oct 8, 2017 (blue) and on the most recent clear day
(Oct 6, 2017, red). Middle: The velocity and directions derived from raw
CSS CMV measurements (their availabilities are indicated by dots). Bottom:
Comparison between actual ramp rate and WCS-RR estimate.

The daily noncompliance rate of 0% across all evaluation
windows in this day confirms that the observed ramp rates are
perfectly enveloped by the WCS-RR, at a cost of ramp rate
overestimates from 56% (30 min windows) to 70% (2 min
windows). The ideal metrics would be 0% noncompliance
and 0% overestimate. In reality, there is a trade-off between

Fig. 4. Sky image of a cloud shading event at 13:46 PDT on Oct 8, 2017
with the largest ramp of the PV plant.

the noncompliance and the overestimate metrics: to bracket
all large power ramps, the model conservatively assumes a
cloud condition change from clear sky to thick clouds at all
times, including periods with clear or overcast skies, which
inevitably over-predicts the ramp rates. The only hypothetical
scenario with 0% noncompliance and 0% overestimate would
be for a series of thick clouds of the same size as the PV
plant to pass the plant along L (or analogously W); in those
conditions, the plant would continually ramp up or down with
a ramp rate equal to the WCS-RR. For Oct 8, 2017, the
minimal overprediction of the largest ramp event (on 13:46
PDT) proves that the over-prediction is not excessive. The
trade-off between the overestimate and noncompliance rate
will be further discussed in the next section.

Also, May 9 is analyzed in Figure 5 as an example of a day
with the noncompliance ramp events. On this day, there are
2 hour period in the late afternoon when the noncompliance
ramp events occurred during high PV variability on 16:00
to 18:00 PDT, which can be explained by the cloud edge
enhancement causing irradiances to be larger than the clear-
sky model (the top plot) due to additional diffuse irradiance
[9]. While ramp rate violations are observed in those times,
the actual ramp rate exceedances are relatively small (bottom
plot). If the difference between the real PV output and the
respective clear sky power were factored in, the bound of
WCS-RR would be widening accordingly and sufficient to
envelope the ramp rates. Nonetheless, the results still show
that the true worst ramp rates generally follow the calculated
WCS-RR estimates closely, and this example illustrates again
that the accuracy of the proposed method primarily depends
on the quality and availability of CMVs.



Fig. 5. Save layout as in Figure 3, but for May 9 illustrating noncompliance
events caused by cloud edge enhancement effect.

B. Aggregate Ramp Rate Statistics and Discussion

The evaluation of the proposed method over an extensive
set of 59 days is summarized in Table 1. Overall, the
method shows promise: for the shortest 2 min window, the
average noncompliance rate is only 3.1% at a cost of a
71.8% overestimate. The noncompliance rate slightly worsens
with wider evaluation windows, which is expected as the
chance that a noncompliance event (σ > 1) is included
in the evaluation window increases with wider windows.
Nevertheless, even under the longest 30 min evaluation
window, the average noncompliance rate is 11.9%. The
degree of overestimation worsens with shorter evaluation
window length (greater number of windows). Because WCS-
RR estimates are generally conservative at all times except
the time of the daily largest ramp events, the degree of
overestimate would be minimal when only a single time
window (i.e. the daily largest ramp event) is considered over
the day but tends to be larger when more evaluation windows
are considered.

TABLE 1

SUMMARY OF AVERAGE PERFORMANCE METRIC OVER 59 DAYS
ε2min

[%]
δ2min

[%]
ε10min

[%]
δ10min

[%]
ε30min

[%]
δ30min

[%]
Average 3.1 71.8 7.6 63.4 11.9 56.4

By examining the sky images for all noncompliance events,
we conclude that the primary reasons for noncompliance
events are few and/or inaccurate cloud speed measurements,
which affects the performance of the WCS-RR method
because CMV are key inputs to the WCS-RR (as per Equation
(1)). However, these clouds may not be large enough to cause
meaningful ramps. For large PV systems, we expect sparse

or small clouds to be even less relevant as they cover only
a fraction of the PV plant. We could achieve nearly flawless
results if we limit the model more stringently to periods with
robust CMV data, but this also inevitably limits WCS-RR
output during some time periods.

C. Limitations and Applications

A physical limit for this method is that the sampling time
needs to be such that the cloud velocity times the sampling
time step does not exceed the dimension of the PV system in
the direction of cloud motion. Geometrically, Equation (1) is
only valid if v∆t is less than W/|cosα| and L/|sinα|. For
any given sampling rate and dimension of the PV system,
there is a cloud velocity for which that sampling rate starts to
become too slow, and the WCS-RR then incorrectly predicts
the ramp rate over the sampling time step. Since cloud
velocity has a physical limit, a conservative sampling rate
can be derived given the dimensions of the PV system. Large
PV systems can tolerate larger sampling rates.

The WCS-RR estimate is also briefly influenced by the
additional diffuse irradiance resulted from the cloud edge
enhancement, as illustrated in the earlier section. To counter-
effect the irradiance deviation, the modeled clear sky power
may need to be upscaled by a small factor.

The tradeoff between noncompliance rate and degree of
overestimation deserves further discussion. For example, an
energy storage system that can mitigate larger ramp rates
is more costly, but a smaller energy storage system may
not mitigate all ramps and result in noncompliance penalties
and/or curtailed solar energy. Ultimately, economic modeling
specific to a project is needed to answer these questions.
In such conditions, a safety factor could be introduced in
Equation (6) to determine appropriate ktmin and accordingly
adjust WCS-RR to fit the risk profile of the investor.

V. CONCLUSION

Knowing the maximum expected photovoltaic (PV)
production ramp rate proves useful for the design of PV and
energy storage system (ESS) by determining the ESS energy
reserve required to offset power fluctuations. The main goal
of this paper is to provide a method to inform optimal design
of a solar power plant with ESS by estimating the worst-case
scenario ramp rates (WCS-RR) in the design phase, prior to
the PV installation and in the absence of local high-frequency
irradiance data. A method to estimate WCS-RR for a PV
plant, based on cloud speed and direction, solar irradiance
(or power), and geometric PV plant layout is developed and
validated. The principal assumption is that the cloud field
properties are stationary during the cloud passage over the
plant. WCS-RR is validated against a PV system during a 8-
month period, using cloud motion vectors (CMVs) measured
by our in-house cloud speed sensor. The actual ramp rates
comply with the calculated maximum ramp rates 96.9% of
the time with 2 min evaluation time window. The remaining
3.1% of times can be primarily ascribed to inaccurate cloud
velocity measurements in conditions with sparse and/or thin



clouds and cloud edge enhancement effects. In conclusion,
the method proposed in this study will be helpful for both
PV plant planning and operation.
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