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Highlights 32 

 33 

• Terrestrial Laser Scanner (TLS) and Structure from Motion (SfM) 34 

photogrammetry techniques were evaluated for quantifying surface 35 

roughness over different agricultural soils. 36 

• A precise co-registration of TLS and SfM photogrammetry point-clouds 37 

with laser profilometer data was carried out to compare different 38 

roughness parameters. 39 

• Profiles obtained with SfM photogrammetry and TLS (to a lesser extent) 40 

showed lower high-frequency elevation information that affected the 41 

values of some roughness parameters when compared to the laser 42 

profilometer. 43 

• TLS and SfM photogrammetry proved to be useful for measuring 3D soil 44 

surface roughness in agricultural soils. 45 

 46 

 47 

Abstract 48 

 49 

The surface roughness of agricultural soils is mainly related to the type of tillage 50 

performed, typically consisting of oriented and random components. Traditionally, 51 

soil surface roughness (SSR) characterization has been difficult due to its high 52 

spatial variability and the sensitivity of roughness parameters to the 53 

characteristics of the instruments, including its measurement scale. Recent 54 

advances in surveying have greatly improved the spatial resolution, extent, and 55 

availability of surface elevation datasets. However, it is still unknown how new 56 
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roughness measurements relates with the conventional roughness 57 

measurements such as 2D profiles acquired by laser profilometers. The objective 58 

of this study was to evaluate the suitability of Terrestrial Laser Scanner (TLS) and 59 

Structure from Motion (SfM) photogrammetry techniques for quantifying SSR 60 

over different agricultural soils. With this aim, an experiment was carried out in 61 

three plots (5 × 5 m) representing different roughness conditions, where TLS and 62 

SfM photogrammetry measurements were co-registered with 2D profiles 63 

obtained using a laser profilometer. Differences between new and conventional 64 

roughness measurement techniques were evaluated visually and quantitatively 65 

using regression analysis and comparing the values of six different roughness 66 

parameters. TLS and SfM photogrammetry measurements were further 67 

compared by evaluating multi-directional roughness parameters and analyzing 68 

corresponding Digital Elevation Models. The results obtained demonstrate the 69 

ability of both TLS and SfM photogrammetry techniques to measure 3D SSR over 70 

agricultural soils. However, profiles obtained with both techniques (especially SfM 71 

photogrammetry) showed a loss of high-frequency elevation information that 72 

affected the values of some parameters (e.g. initial slope of the autocorrelation 73 

function, peak frequency and tortuosity). Nevertheless, both TLS and SfM 74 

photogrammetry provide a massive amount of 3D information that enables a 75 

detailed analysis of surface roughness, which is relevant for multiple applications, 76 

such as those focused in hydrological and soil erosion processes and microwave 77 

scattering. 78 

 79 

Keywords: soil surface roughness, TLS, SfM photogrammetry, roughness 80 

parameters, agricultural soils 81 
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 82 

 83 

Introduction 84 

 85 

Soil Surface Roughness (SSR, also referred to as micro-topography or micro-86 

relief) can be defined differently depending primarily on its application. For 87 

example, in the radar scattering theory, SSR is defined as the variation in soil 88 

surface elevation relative to a reference surface (Ulaby et al., 1982). In 89 

agricultural soils, SSR is mainly an anthropogenic factor determined by the type 90 

of tillage and management, typically with an oriented component consisting of 91 

pseudo-periodical height variations due to tillage implements and a random 92 

component representing soil clods or aggregates. In agricultural soils, SSR is a 93 

property with a high spatial variability, since the same type of tillage can result in 94 

surfaces with different SSRs depending on the physical characteristics of the soil. 95 

In addition, SSR is more or less susceptible to change through time due to the 96 

action of meteorological agents (e.g., precipitation, wind and temperature 97 

changes) in the low atmosphere or even animal activity (Martinez-Agirre et al., 98 

2016).    99 

SSR is a key element in hydrology and soil erosion processes occurring at the 100 

soil-atmosphere interface (Helming et al., 1998), such as infiltration, runoff, the 101 

detachment of soil particles due to water or wind, gas exchange, evaporation, 102 

and heat fluxes (Huang and Bradford, 1992). Therefore, quantifying SSR can be 103 

useful for understanding and modeling processes relevant for different 104 

applications. 105 
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Many different parameters and indices have been proposed for quantifying SSR 106 

(e.g., Helming et al., 1993; Magunda et al., 1997; Kamphorst et al., 2000; Taconet 107 

and Ciarletti, 2007; Vermang et al., 2013). These can be divided into four groups 108 

(Martinez-Agirre et al., 2016), following a criterion similar to that of Smith (2014): 109 

(1) parameters measuring the vertical dimension of roughness, (2) parameters 110 

measuring the horizontal dimension of roughness, (3) parameters combining both 111 

dimensions, and (4) parameters based on fractal theory. The first parameters 112 

measure the magnitude of elevation differences along a transect or area. On the 113 

other hand, horizontal parameters evaluate the spacing at which these elevation 114 

differences occur. Combined parameters represent both properties since they are 115 

normally obtained as the product or ratio of a vertical and a horizontal parameter. 116 

Finally, fractal parameters measure the self-affinity of surface transects or areas, 117 

i.e., whether similar statistical properties can be obtained at different spatial 118 

scales along the surface. Although the number of parameters found in the 119 

literature is high, many of them measure similar properties and are, thus, strongly 120 

correlated (Martinez-Agirre et al., 2016). Depending on the particular application 121 

of interest, some parameters have been preferred to others, with the standard 122 

deviation of heights (s) (also referred to as RMS of height) being the most 123 

commonly used in most applications (Govers et al., 2000; Verhoest et al., 2008).  124 

Recent advances in surveying have greatly improved the spatial resolution, 125 

extent, and availability of surface elevation datasets (Smith, 2014). Surface 126 

roughness measurement techniques can be classified according to various 127 

criteria: the dimensionality of measure (2D/3D), resolution (mm/cm), sensor type, 128 

and whether the measure is done with contact to the soil surface or not (Jester 129 

and Klik, 2005; Gilliot et al., 2017). However, most of the literature in the topic 130 
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centered the classification into contact and non-contact techniques (Govers et 131 

al., 2000; Verhoest et al., 2008, Aguilar et al., 2009; Thomsen et al., 2015; 132 

Nouwakpo et al., 2016). Regarding this, non-contact devices are preferred 133 

because the physical contact between an instrument and the soil surface is 134 

associated with measurement biases and disturbances (Jester and Klik, 2005). 135 

For example, a laser profilometer is a non-contact instrument that records surface 136 

elevations along a transect (i.e., a 2D surface profile) with a given length and a 137 

regular sampling interval. For many years, this technique has been the standard 138 

for SSR measurements in different fields of earth science (e.g., microwave 139 

remote sensing, soil erosion) (Helming et al., 1998; Davidson et al., 2000; Jester 140 

and Klik, 2005). However, 3D laser scanning and image-based 3D reconstruction 141 

techniques have been recently suggested as alternatives for the traditional non-142 

contact SSR measurements (Barneveld et al., 2013, Nouwakpo et al., 2016).  143 

Image-based 3D reconstruction techniques are nowadays primarily based on 144 

Structure from Motion (SfM) principles. SfM photogrammetry combines the utility 145 

of digital photogrammetry with a flexibility and ease of use derived from multi-146 

view computer vision methods (James et al., 2019). In contrast to traditional and 147 

close-range oblique photogrammetry, SfM photogrammetry relaxes some 148 

constraints (i.e., calibration, collinearity equations and orientation) making image 149 

acquisition and processing significantly easier for non-expert users (Castillo et 150 

al., 2012; James and Robson, 2012; Woodget et al., 2015; Gomez et al., 2015; 151 

Nouwakpo et al., 2016; Mosbrucker et al., 2017; James et al., 2019). Therefore, 152 

the interest of scientists in this technology has expanded across different 153 

disciplines in geosciences, due also to the development of readily available SfM 154 

photogrammetry software (Nouwakpo et al., 2016). 155 
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Laser-based technologies, also known as laser scanning or LiDAR (light 156 

detection and ranging), have also been used for high-resolution soil micro-157 

topography measurements (Perez-Gutierrez et al., 2007; Aguilar et al., 2009; 158 

Castillo et al., 2012; Milenković et al., 2015; Nouwakpo et al., 2016). Specifically, 159 

Terrestrial Laser Scanner (TLS) can reach accuracies down to 0.1 mm. Although 160 

TLS’s high hardware acquisition cost and bulky size have limited its widespread 161 

use for field measurement campaigns (Nouwakpo et al., 2016), technical 162 

improvements in sensor design might improve this in the near future. 163 

 164 

Table 1. Studies published using TLS and/or photogrammetry techniques (SfM 165 
or not) for measuring surface roughness in agricultural soils. 166 

Reference Techniques Roughness classes Size of plots 
Gilliot et al., 2017 SP 4 (from moldboard to rotary cultivator) 0.54 × 0.44 m 
Nouwakpo et al., 2016 TLS/SfM No tilled (bare ground) 6 × 2 m 
Rodriguez-Caballero et al., 2016 TLS 2 (barley field and natural hillslope) - 
Milenković et al., 2015 TLS/OTS Seedbed 2.6 × 3 m 
Thomsen et al., 2015 TLS/SP/Others 4 (harrowed, ploughed, seeding and forest) 1 × 1 m 
Snapir et al., 2014 SfM No tilled 2 × 11 m 
Barneveld et al., 2013 TLS 3 (moldboard, harrowed and seedbed) 21 – 100 m2 
Marzahn et al., 2012a SP 6 (from moldboard to seedbed) 1 × 2.5 m 
Mirzaei et al., 2012 SP 2 (harrowed and seedbed) 1 × 1 m 
Heng et al., 2010 TLS/SP No tilled 3.9 × 1.4 m 
Aguilar et al., 2009 TLS/SP 2 (untilled and very cloddy tilled) 0.2 m2 
Blaes and Defourny, 2008 PRO/SP 3 (sugar beet, winter wheat and maize) 8 m2 
Taconet and Ciarletti, 2007 SP 3 (from chisel to seedbed) 0.5 – 3.5 m2 
Jester and Klik, 2005 TLS/SP 2 (smooth and rough) 0.55 × 0.5 m 

OTS = Optical Triangulating Scanner; SP = Stereo-photogrammetry; PRO = Laser profilometer 167 
 168 

Different studies have already attempted to measure SSR with TLS and 169 

photogrammetry techniques (SfM or not) (Table 1). Many of these considered 170 

either one measurement technique, or just one single soil roughness condition 171 

(Taconet and Ciarletti, 2007; Heng et al., 2010; Mirzaei et al., 2012; Snapir et al., 172 

2014; Milenković et al., 2015; Rodriguez-Caballero et al., 2016; Nouwakpo et al., 173 

2016). Other studies focused more on a comparison between old and new 174 

techniques (Jester and Klik, 2005; Thomsen et al., 2015), but over a rather small 175 
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area (1 × 1 m), which does not allow analyzing the multiscale nature of SSR 176 

(Verhoest et al., 2008). Then, there are studies that applied one single technique, 177 

but considered different SSR conditions (Taconet and Ciarletti, 2007; Marzahn et 178 

al., 2012a; Gilliot et al., 2017). However, more studies carried out in large plots 179 

(> 10-20 m2) considering different measurements techniques and soil roughness 180 

conditions (e.g., different tillage) are still needed for a complete understanding of 181 

SSR. More precisely, the transition from profilometer based SSR measurements 182 

(the standard measurement technique in the past) to 3D measurements obtained 183 

from TLS or SfM photogrammetry surveys need to be explored over different SSR 184 

conditions and a large plot size. This is important to evaluate the suitability of the 185 

new techniques, and to be able to interpret different roughness studies performed 186 

in the past. 187 

Therefore, in this study, terrestrial laser scanner (TLS) and Structure from Motion 188 

(SfM) photogrammetry 3D measurements were evaluated and compared with 189 

laser profilometer 2D measurements obtained on three experimental 5 × 5 m SSR 190 

plots tilled with different tillage implements. The objective of this work was to 191 

evaluate the TLS and SfM photogrammetry techniques and to assess their 192 

suitability for quantifying surface roughness in different agricultural soils. With this 193 

objective, an experiment was carried out where TLS and SfM photogrammetry 194 

surveys were co-registered with 2D profiles obtained using a laser profilometer. 195 

Differences between techniques were evaluated visually and analytically using 196 

regression analysis, and next by comparing the values of some roughness 197 

parameters obtained with the techniques evaluated. Then, polar plots showing 198 

multi-directional roughness parameters were computed and compared between 199 

TLS and SfM photogrammetry. Finally, Digital Elevation Models (DEM) obtained 200 
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with TLS and SfM photogrammetry were compared to detect areas and surface 201 

features where a mismatch existed between techniques. 202 

 203 

 204 

Materials and methods   205 

 206 

Study area 207 

This study was conducted in the experimental fields at the School of Agricultural 208 

Engineers of the Public University of Navarre in Pamplona (Navarre, Spain) 209 

(42.79º N, 1.63º W). The climate is humid sub-Mediterranean with a mean annual 210 

temperature of ~13ºC and average annual precipitation of ~720 mm distributed 211 

over ~150 days. The experimental field is almost horizontal (slope < 2%) and 212 

soils have a silty-clay-loam texture (13.7% sand, 48.3% silt and 38% clay). 213 

Three experimental plots (5 × 5 m) were created using different tillage 214 

implements, so as to represent different surface roughness conditions typical of 215 

agricultural soils (Fig. 1). Plot 1 corresponded to high roughness conditions 216 

(Moldboard Plough), Plot 2 to medium roughness (Chisel), and Plot 3 to low 217 

roughness (Moldboard Plough + Harrowed Compacted). Moldboard Plough (MP) 218 

is a primary tillage operation performed with a plough with multiple moldboards 219 

(15–20 cm depth) that break and turn over the soil, resulting in very rough surface 220 

(Fig. 1A). Chisel (CH) is also a primary tillage operation that breaks and shatters 221 

the soil leaving it rough with residue on the surface, yet not as rough as MP (Fig. 222 

1B). Moldboard Plough + Harrowed Compacted (HC) consists of an MP operation 223 

followed by a secondary operation using a spike harrow and a compacting roller, 224 

leading to a smooth soil (Fig. 1C). 225 
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 226 

 227 

Fig. 1. Experimental plots: (A) Moldboard Plough, (B) Chisel and (C) Moldboard 228 

Plough + Harrowed Compacted. 229 

 230 

Experimental protocol 231 

The data collection was carried out over three days, November 25-27 2013, 232 

where no precipitation was recorded. Profilometer measurements (Fig. 2A) were 233 

performed on November 25 afternoon in Plot 2 (CH), and on November 26 234 

afternoon in Plot 3 (HC) and Plot 1 (MP). On each plot, eight profiles were 235 

measured, four in parallel to the tillage direction and four in perpendicular. The 236 

beginning and end points of each profile were marked with nails and referenced 237 

using a total station. To avoid the influence of sunlight shadows caused by 238 

aggregates, the acquisition of photographs for the SfM photogrammetry 239 

technique was made on November 26 later in the afternoon without direct 240 

sunlight. Twenty four photographs were taken per plot from different points-of-241 

view using a lifting platform (Fig. 2B). Eight surveying targets were spatially 242 

distributed around the experimental plots for referencing the data. Finally, TLS 243 

measurements (Fig. 2C) were carried out on the morning of November 27. Four 244 

scans were measured per plot (i.e., one from each side), which were co-245 

registered using five reference spheres deployed around the plots. A detailed 246 

description of the three techniques is given below. 247 
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 248 

 249 

Fig. 2. Measurement techniques: (A) Laser profilometer (PRO), (B) Structure for 250 

Motion (SfM) photogrammetry and (C) Terrestrial Laser Scanner (TLS). 251 

 252 

Measuring techniques  253 

 254 

Laser profilometer (PRO) 255 

Profiles were taken with a laser profilometer (Fig. 2A) designed specifically for 256 

measuring roughness (Álvarez-Mozos et al., 2009). The device consists of a laser 257 

distance meter located inside a case that moves along an aluminum beam (fixed 258 

with two tripods) propelled by a small electric motor. The position of the carriage 259 

is measured by a rack and cogwheel mechanism on the carriage that activates a 260 

photoelectric sensor. The profilometer measures the vertical distance to the soil 261 

surface using a 3-mm wide laser beam and resamples height records to 5 mm. 262 

The laser sensor is a SICK DME 2000 with a specified vertical accuracy of 1 mm 263 

(SICK, 1996). The verticality of the laser beam is adjusted using a hand level to 264 

secure transversal and longitudinal horizontality. For each experimental plot, 5-265 

m-long eight profiles (four parallel to the tillage direction and four perpendicular 266 

to it) were measured with the laser profilometer (Fig. 3), resulting in a total of 24 267 

profiles. 268 

 269 
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    270 

Fig. 3. Experimental setup with the approximate locations of the different 271 

measurement elements (left) and camera positions (~6 m high for red ones and 272 

~8 m high for blue ones) calculated by PhotoScan for CH plot (right). 273 

 274 

Profilometer data processing was done in three steps: (1) correction of the 275 

aluminum beam bending using a lab determined parabolic function, (2) outlier 276 

filtering by deleting and interpolating records larger than a threshold (i.e., 2 cm) 277 

with the previous and following records (to filter out vegetation elements 278 

eventually present on the soil surface), and (3) terrain slope correction (i.e., profile 279 

detrending) subtracting the linear trend observed in the data, if any. 280 

The laser profilometer was considered a benchmark for 2D roughness 281 

measurements for several reasons: (1) its vertical accuracy is high; (2) its nadir-282 

looking geometry avoids occlusions, and; (3) although it measures 2D profiles 283 

and not 3D surfaces, it has been the standard technique to characterize surface 284 

roughness for different applications for the last decades (Oh et al., 1992; Helming 285 

et al., 1998; Davidson et al., 2000; Darboux and Huang 2003; Callens et al., 2006; 286 

Verhoest et al., 2008; Baghdadi et al., 2008) and is still used at present (Zribi et 287 

al., 2019; El Hajj et al., 2019). Thus, it can be considered a state of the art 288 

technology in the field of surface roughness measurement. 289 

 290 
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Terrestrial Laser Scanner (TLS) 291 

The TLS used in this study was the FARO Focus 3D (Fig. 2C). The scanner emits 292 

a single pulse of laser light and measures the time for the reflected light between 293 

the target and the scanner. The scans were obtained from a tripod ~1.75 m high. 294 

The TLS has a specific ranging accuracy of 2 mm (at a distance of 25 m) and a 295 

laser beam divergence of 0.16 mrad (0.009º) with a beam diameter of 3 mm (at 296 

the exit) (FARO, 2018). The scan vertical and horizontal resolution was set to 297 

0.018º (20480 3D pixel in 360º), so for a range distance of 6 m (maximum 298 

distance in our measurements), a theoretical horizontal sampling interval of 1.84 299 

mm and vertical sampling interval of 6.13 mm were obtained. For each of the 300 

three experimental plots, four scans were measured (i.e., one from each side of 301 

the plot) (Fig. 3). 302 

For TLS data processing, raw scans were first filtered to exclude mixed-pixels 303 

(points whose footprint partly includes the edge of one object and the objects 304 

behind), and then, co-registered and merged into a single point cloud. The 305 

filtering of mixed-pixels was performed using a self-implemented algorithm as the 306 

existing predefined filters in the manufacturer software did not provide 307 

satisfactory results for our data. This filtering algorithm to exclude mixed-pixels 308 

was based on the incidence angle and the intensity. In this way, depending on 309 

the sensor-point distance range (related to the incidence angle) intensity 310 

thresholds were set to filter mixed-pixels, since they usually have low intensity 311 

returns. The co-registration of individual TLS scans was done globally and using 312 

the iterative closest point (ICP) algorithm implemented in the OPALS software 313 

(Otepka et al., 2013; Pfeifer et al., 2014). The ICP algorithm minimizes point-to-314 

plane distances between the corresponding points (Glira et al., 2015). The quality 315 
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of the co-registration was assessed using the standard deviation, based on more 316 

than 5000 residuals, which was about 1.1 mm for the CH and HC plots. For the 317 

MP plot, the standard deviation was slightly higher (i.e., 2.5 mm) but nevertheless 318 

sufficiently precise considering the specific ranging accuracy of the TLS (2 mm) 319 

and that the products to be obtained for the roughness parameters analysis were 320 

profiles and DEMs at 5 mm resolution. Finally, for each 5 × 5 m experimental plot, 321 

a ~30 million point cloud was obtained by merging the individual co-registered 322 

TLS scans per plot (see details in Table 2 and Fig. 4). 323 

 324 

Table 2. Details of the data after pre-processing.  325 
Plot Measurement technique No of samplings No of readings 
MP Profilometer (PRO) 08 profiles 8,008 points* 
MP Terrestrial Laser Scanner (TLS) 04 scans 30,447,219 points 
MP Structure from Motion (SfM) 24 photos 17,303,166 points** 
CH Profilometer (PRO) 08 profiles 8,008 points* 
CH Terrestrial Laser Scanner (TLS) 04 scans 26,513,592 points 
CH Structure from Motion (SfM) 24 photos 13,507,994 points** 
HC Profilometer (PRO) 08 profiles 8,008 points* 
HC Terrestrial Laser Scanner (TLS) 04 scans 31,964,773 points 
HC Structure from Motion (SfM) 24 photos 11,548,505 points** 

* corresponds to eight 5-m-long profiles   326 
** total points obtained from the dense point cloud 327 
 328 

Structure from Motion (SfM) photogrammetry 329 

Structure from Motion (SfM) photogrammetry is based on a set of overlapping 330 

photographs acquired from different points-of-view using a high-quality digital 331 

camera, which are processed automatically to determine the scene geometry and 332 

camera parameters (Favally et al., 2012; Gilliot et al., 2017). For each plot 24 333 

photos of 20 megapixels (5000 × 4000 pixels) were acquired with a Canon EOS 334 

5D Mark II camera with a 21 mm objective Zeiss Distagon T* 2.8/21 ZE (see Fig. 335 

2B). Photo acquisition was carried out with an ISO 100 speed index (sensibility) 336 

and a variable aperture (~f/4) and exposure time (1/60-1/80 s) in order to adapt 337 
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to the small variations of luminosity. Photo acquisition locations were 338 

homogenously distributed (Fig. 3) and obtained from a height of ~6-8 m above 339 

ground using a lifting platform, thus capturing the entire experimental plot from 340 

each photo (100% overlapping) with a pseudo-nadir perspective. In addition, it 341 

was essential not to modify the original surface roughness of each plot, which 342 

prevented us from obtaining photos from within the plot. The spatial extent of the 343 

photos was slightly higher than the experimental plot extent, obtaining a mean 344 

pixel size of < 2 mm. 345 

For SfM photogrammetry data processing, eight ground control points (GCP) (i.e., 346 

two on each side of the plot) were measured per plot with a total station and used 347 

for referencing the photos (Fig. 3), obtaining mean geometric error values lower 348 

than 2 mm for each plot (1.97 mm for MP class, 1.43 mm for CH and 1.14 mm 349 

for HC).  Also, the errors obtained for the three axes (dX, dY, dZ) were analyzed 350 

and no spatial dependence was observed. The dense point cloud generation was 351 

done in “ultra-high quality” and “mild filtering" (in order to obtain small details) 352 

mode using the Agisoft Photoscan software (Agisoft, 2018). After this process, 353 

final point clouds were obtained with an average point spacing of ~1.7 mm on a 354 

flat surface (i.e., planimetric distance) corresponding to a minimum of 10 million 355 

points for each experimental plot (see details in Table 2 and Fig. 4). 356 

 357 

Roughness parameters 358 

In total, six roughness parameters were analyzed (Table 3). These parameters 359 

were selected after a previous analysis (Martinez-Agirre et al., 2016), where their 360 

correlation and their ability to discriminate between different tillage classes were 361 

assessed. All the parameters were calculated after terrain slope correction (by 362 
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subtracting a linear regression equation from the measured surface) (Xingming 363 

et al., 2014) and height normalization for each profile (by setting the mean height 364 

of the profile to 0.0) (Martinez-Agirre et al., 2016). 365 

 366 

Table 3. Summary of roughness parameters analyzed. 367 
Parameter Description Reference 
s (cm) Standard deviation of the heights Allmaras et al., 1966 
l (cm) Correlation length  Ulaby et al., 1982 
ρ'(0) Initial slope of the auto-correlation function Ulaby et al., 1982 
F (cm-1) Peak frequency Römkens and Wang, 1986 
TS Tortuosity Saleh et al., 1993 
D Fractal dimension Vidal Vázquez et al., 2005 

 368 
 369 

The standard deviation of heights (s) (Eq. 1) is a descriptor of the vertical 370 

roughness component. 371 

 372 

𝑠𝑠 = �∑ (𝑧𝑧𝑖𝑖2−�̅�𝑧2)𝑁𝑁
𝑖𝑖=1

𝑁𝑁−1
         (1) 373 

 374 

where 𝑁𝑁 is the number of the records registered in the profile, 𝑧𝑧𝑖𝑖 is the height 375 

corresponding to record 𝑖𝑖, and 𝑧𝑧̅ is the mean height of all the records. The 376 

correlation length (l) represents the horizontal component of roughness and is 377 

defined as the distance at which the heights of two points on the surface are 378 

considered independent. The correlation length is obtained from the 379 

autocorrelation function (Eq. 2) (Ulaby et al., 1982): 380 

 381 

𝜌𝜌(ℎ) =
∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑖𝑖+ℎ
𝑁𝑁(ℎ)
𝑖𝑖=1
∑ 𝑧𝑧𝑖𝑖2𝑁𝑁
𝑖𝑖=1

         (2) 382 

 383 
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where 𝜌𝜌(ℎ) is the autocorrelation function, representing the correlation existing 384 

between the height of  point i (𝑧𝑧𝑖𝑖) and that of another point located at a lag 385 

distance h from it (𝑧𝑧𝑖𝑖+ℎ), and 𝑁𝑁(ℎ) is the number of pairs considered in each lag 386 

h. The correlation length (l) is then defined as the distance at which 𝜌𝜌(ℎ) is equal 387 

to 1/𝑒𝑒, so that 𝜌𝜌(𝑙𝑙) = 1/𝑒𝑒 (Euler’s number (e) ~ 2.71828). The initial slope of the 388 

autocorrelation function (ρ'(0)) characterizes the horizontal component of 389 

roughness focusing on the height variations of a point with its nearest neighbors. 390 

The peak frequency (F) describes the horizontal component of roughness as the 391 

number of peaks (i.e., points with higher elevations than their neighbors on both 392 

sides) per unit length of the profile (Römkens and Wang, 1986). The tortuosity 393 

index of Saleh (TS) (Eq. 3) is the ratio of the perimeter length of a profile (L1) and 394 

its projected distance on a horizontal surface taken as reference (L0) (Saleh et 395 

al., 1993): 396 

 397 

𝑇𝑇𝑆𝑆 = 100 ∙  (𝐿𝐿1−𝐿𝐿0)
𝐿𝐿1

         (3) 398 

 399 

Finally, the fractal dimension (D) represents the self-affinity of surface roughness 400 

profiles. In this study, the semivariogram method was used (Vidal Vázquez et al., 401 

2005), which represents how height data are related to distance, where the 402 

semivariance function depending on the lag h can be calculated as in Eq. 4. 403 

 404 

𝛾𝛾(ℎ) = 1
2𝑁𝑁(ℎ)

∑ [𝑧𝑧𝑖𝑖+ℎ − 𝑧𝑧𝑖𝑖]2
𝑁𝑁(ℎ)
𝑖𝑖=1        (4) 405 

 406 

Assuming a fractal Brownian motion (fBm) model, the experimental 407 

semivariogram can be described as a function of the lag (Eq. 5): 408 
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 409 

𝛾𝛾(ℎ) = 𝑙𝑙1−𝐻𝐻ℎ𝐻𝐻         (5) 410 

 411 

where l is the crossover length and H is the Hurst coefficient. After a log-log 412 

transformation, H is estimated as the slope of the semivariance versus the lag 413 

distance. Afterward, the fractal dimension is obtained from the Hurst coefficient 414 

as D = 2 - H (Smith, 2014). 415 

 416 

Data analysis 417 

The analysis presented here focused on the suitability of different measurement 418 

techniques for surface roughness parameterization in agricultural soils. For doing 419 

so, data needed to be processed to ensure that different measurements were 420 

comparable (i.e., profile length and sampling interval). First, the point clouds (for 421 

each experimental plot) obtained with TLS and SfM photogrammetry were co-422 

registered to the same reference system using the ICP algorithm implemented in 423 

OPALS. The standard deviation obtained of the point-to-plane residuals was less 424 

than 2 mm for the three plots (this value was based on more than 1000 425 

correspondences). Next, profiles were extracted from the TLS and SfM 426 

photogrammetry point clouds coinciding with the location of the profiles measured 427 

with the profilometer. The extraction of these profiles was done to imitate the 428 

profilometer measurement principle. First, all the points of the cloud closer than 429 

1.5 mm (comparable to the laser beam size (3 mm) of the profilometer) to the 430 

profile centerline were selected from the TLS and SfM photogrammetry point 431 

clouds. Then, these points were (1) processed to avoid occlusions (i.e., hollow 432 

spaces) in order to obtain just one height data for every profile length; (2) binned 433 
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at bin intervals of 5 mm to resemble the measurement interval of the profilometer; 434 

and (3) interpolated to avoid empty data (shadowed regions). Finally, profiles 435 

were limited to 4-m-long in order to avoid surface roughness modifications in the 436 

beginning and the end of the profiles. 437 

Measurement techniques were compared in two steps. First, a comparison based 438 

on 2D roughness data (i.e., profiles) was performed both in parallel and 439 

perpendicular to the tillage direction. This comparison was made following three 440 

criteria: (1) visual analysis of the profiles obtained with the different techniques; 441 

(2) analytical comparison of the profiles using scatterplots, regression analysis 442 

and RMSE estimation, and special dependence analysis; and (3) evaluation in 443 

terms of the roughness parameters values extracted from the profiles. To analyze 444 

the differences between techniques, a paired t-test (Montgomery, 1991) 445 

comparing roughness parameters values obtained from the profiles obtained with 446 

the three techniques has been carried out. Second, a 3D roughness analysis was 447 

carried out using point clouds obtained with TLS and SfM photogrammetry. Here, 448 

two elements were compared: (1) multidirectional roughness parameters values 449 

(using four profiles obtained in every 15º azimuth); and (2) DEM comparison 450 

(where DEMs were obtained for TLS and SfM photogrammetry, respectively, by 451 

computing the mean height value on the point cloud for 5 mm grid size and using 452 

a linear interpolation for the empty pixels).    453 

 454 

 455 

Results 456 

 457 

Point density analysis 458 



20 
 

It must be taken into account that the point cloud distribution was conditioned by 459 

the data acquisition geometry. In this sense, the point density of TLS was ~2 460 

times higher than that of SfM photogrammetry (Table 2 and Table 4), and what 461 

is more, the distribution of this point density was rather different (Fig. 4). SfM 462 

photogrammetry provided a more homogeneous distribution throughout the soil 463 

surface, whereas TLS (probably due to its side looking geometry) led to a higher 464 

number of points at the border of the plots and around soil aggregates. This TLS 465 

acquisition geometry also provided a higher point density Standard Deviation 466 

(SD) (Table 4), in particular for rougher surface conditions. The difference in the 467 

number of pixels without data was also remarkable (Table 4). SfM 468 

photogrammetry had none empty pixels, whereas TLS had a high number due to 469 

shadowing effects in the roughest surfaces (~13% in MP), although this value 470 

decreased markedly for the CH and HC plots (~6% and ~2%, respectively). 471 

 472 

Table 4. Mean point density per pixel (5 mm x 5 mm), Standard Deviation (SD) 473 
and proportion of pixels without data (%) for the different plots obtained by TLS 474 
and SfM photogrammetry techniques. 475 
Technique Plot Mean (p/pixel) SD (p/pixel) No data (%) 
 MP 30.3 33.1 13.48 
TLS CH 24.3 24.0 5.83 
 HC 29.4 22.0 1.56 
 MP 17.2 8.0 0 
SfM CH 12.4 4.7 0 
 HC 10.6  3.0 0 

 476 

 477 
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 478 

Fig. 4. Mean point density per pixel (for a 5x5 mm grid) obtained with TLS 479 

technique for MP plot (A), CH plot (B) and HC plot (C), and obtained with SfM 480 

photogrammetry technique for MP plot (D), CH plot (E) and HC plot (F). 481 

 482 

Visual analysis 483 

A first visual exploration of the same profiles obtained with the three techniques 484 

revealed interesting details (Fig. 5). Although, the analyzed profiles generally 485 

showed very similar geometries, some differences were noticed, particularly in 486 

the roughest classes (MP and CH). Both TLS and SfM photogrammetry resulted 487 

in smoothed profiles when compared to the profilometer (PRO), with SfM 488 

photogrammetry yielding the smoothest profiles (Fig. 5). Profiles obtained from 489 

both techniques were unable to accurately describe sudden elevation changes 490 

(both positive and negative) typical at the edges of soil clods and larger 491 

aggregates (Fig. 5). In the CH and HC classes, the agreement was higher, but 492 
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still, some slight differences were observed when height variations occurred at 493 

small distances (Fig. 5).  494 

 495 

 496 

Fig. 5. Example height profiles of the different roughness classes in parallel (P) 497 

and perpendicular (T) to the tillage direction obtained with the different 498 

measurement techniques. The right panel is a zoomed version of the detail zone 499 

drawn with the red rectangle. 500 

 501 

Scatterplot analysis 502 

Scatterplots representing the height of each point of the profiles obtained with the 503 

different techniques were represented for each roughness class and direction 504 

(parallel and perpendicular to the tillage) (Fig. 6-8). For each scatterplot, a linear 505 

regression was fitted, and the agreement between techniques was evaluated by 506 

means of the root mean square error (RMSE) and the coefficient of determination 507 

(R2). 508 

In the MP roughness class (Fig. 6), TLS and SfM photogrammetry techniques 509 

had a good agreement with the profilometer (PRO) in both parallel (Fig. 6A-B) 510 

and perpendicular (Fig. 6D-E) to the tillage direction. However, they agreed better 511 

(higher R2 and lower RMSE) in the perpendicular direction (RMSE ~13 mm and 512 
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R2 ~0.9) (Fig. 6D-E) than in parallel (RMSE ~20 mm and R2 ~0.7) (Fig. 6A-B). 513 

When comparing TLS and SfM photogrammetry, RMSE decreased and R2 514 

increased, especially in the perpendicular direction (R2 > 0.95) (Fig. 6F). 515 

However, in parallel (Fig. 6C) to tillage, some disagreement appeared in medium-516 

high elevation values of TLS and in medium-low of SfM photogrammetry, which 517 

could represent interpolated TLS data in shadowed regions.   518 

In the CH roughness class (Fig. 7), the differences between TLS and SfM 519 

photogrammetry with PRO were lower than in the MP class, with values of ~7 520 

mm in the parallel direction (Fig. 7A-B) and ~8 mm in perpendicular (Fig. 7D-E). 521 

Also, the goodness-of-fit between the TLS and SfM photogrammetry techniques 522 

was higher with a lower RMSE (~5 mm) and higher correlation than in MP (Fig. 523 

7C and 7F), especially in the perpendicular direction (R2 ~0.95) (Fig. 7F). In this 524 

case, the number of outliers was lower than in the MP class. 525 

The HC roughness class (Fig. 8) presented the lowest differences between TLS 526 

and SfM photogrammetry with PRO, yielding RMSE values ~5 mm in both 527 

directions (Fig. 8A-B and 8D-E). Also, the values between TLS and SfM 528 

photogrammetry presented the best fit with an RMSE of ~3 mm and high 529 

correlation and slope values (Fig. 8C and 8F), especially in the perpendicular 530 

direction (slope and R2 > 0.95) (Fig. 8F). In this case, the presence of 531 

disagreement was almost null.   532 
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 533 

Fig. 6. Scatter-plots of profile heights acquired using different measurement 534 

techniques for Moldboard Plough (MP) class in parallel (top) and perpendicular 535 

(bottom) to the tillage direction. Dotted line (red) represents the identity (1:1) line 536 

and solid line (blue) represents the linear regression.  537 

 538 

Fig. 7. Scatter-plots of profile heights acquired using different measurement 539 

techniques for Chisel (CH) class in parallel (top) and perpendicular (bottom) to 540 
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the tillage direction. Dotted line (red) represents the identity (1:1) line and solid 541 

line (blue) represents the linear regression.   542 

 543 

Fig. 8. Scatter-plots of profile heights acquired using different measurement 544 

techniques for Harrowed Compacted (HC) class in parallel (top) and 545 

perpendicular (bottom) to the tillage direction. Dotted line (red) represents the 546 

identity (1:1) line and solid line (blue) represents the linear regression. 547 

 548 

To analyze any possible spatial dependence (i.e., systematic error propagation) 549 

between profiles obtained with the different techniques, the mean RMSE in 550 

segments of 5 height records (i.e., 25 mm) between the profiles obtained with the 551 

different techniques for each experimental plot was carried out (Fig. 9). In 552 

general, the spatial dependence analysis confirmed the results observed in the 553 

scatterplots (Fig. 6-8). However, it should be noted that in TLS-SfM and PRO-554 

SfM a small spatial dependence was observed (especially in rougher plots), 555 

slightly increasing the RMSE at the edges of the profiles.  556 

 557 
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  558 

Fig. 9. Mean RMSE in segments of 5 height records (25 mm) between the profiles 559 

(n=8) obtained with the different techniques for each plot. 560 

 561 

Roughness parameters analysis 562 

Figure 10 presents the mean values and standard deviations of the roughness 563 

parameters obtained with the three techniques for each experimental plot and 564 

measurement direction. The standard deviation of heights (s) showed very similar 565 

class mean values and standard deviations for the three techniques analyzed 566 

(Fig. 10A). However, PRO presented slightly higher values followed by TLS and 567 

SfM photogrammetry. The difference in MP roughness class between the TLS 568 

and SfM photogrammetry technique was inappreciable. As expected, the MP 569 

class presented higher values followed by CH and HC, and also the perpendicular 570 

(T) direction showed higher values than the parallel (P) direction. The correlation 571 

length (l) presented a different behavior with lower values (and deviations) for CH 572 

class, followed by MP and HC (with higher values and especially larger 573 

deviations), and the perpendicular direction also showed higher values than the 574 

parallel direction (Fig. 10B). Regarding the different techniques, in general, PRO 575 

showed the lowest values followed by TLS and SfM photogrammetry. The initial 576 
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slope of the autocorrelation function (ρ'(0)), although being similar to l in concept, 577 

presented a very different behavior, with higher values for the HC class, followed 578 

by CH and MP and higher values in parallel than in perpendicular (Fig. 10C). The 579 

differences between the measurement techniques were higher than in any other 580 

parameter evaluated with higher values for PRO followed by TLS and SfM 581 

photogrammetry. 582 

The tortuosity (TS) showed higher values for PRO followed by TLS and SfM 583 

photogrammetry, and also higher values for the MP class followed by CH and HC 584 

(Fig. 10D). However, no remarkable differences were appreciated between the 585 

parallel and perpendicular directions. The peak frequency (F) took higher values 586 

for PRO or TLS depending on the roughness class and lower values for SfM 587 

photogrammetry (Fig. 10E). In general, the MP class showed lower values 588 

followed by CH and HC (except for PRO technique) and no remarkable 589 

differences were observed between parallel and perpendicular directions. The 590 

fractal dimension (D) behaved similarly, with higher values for PRO followed by 591 

TLS and SfM photogrammetry, lower values for the MP roughness class followed 592 

by CH and HC, and with no important differences between the parallel and 593 

perpendicular directions (Fig. 10F). 594 

 595 
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 596 

Fig. 10. Roughness parameters values for the different measurement techniques 597 

and for the different roughness classes analyzed: Moldboard Plough (MP), Chisel 598 

(CH) and Harrowed Compacted (HC), in parallel (P) and perpendicular (T) to 599 

tillage direction. 600 

  601 

Statistically (Table 5), Significant differences were observed in all cases except 602 

for the peak frequency (F) parameter measured with PRO and TLS (p-value > 603 

0.05), the correlation length (l) measured by TLS and SfM photogrammetry (p-604 

value > 0.01) and with PRO and TLS (p-value > 0.001), and the standard 605 

deviation of heights (s) measured by TLS and SfM photogrammetry (p-value > 606 

0.001). Regarding the mean relative differences (%) obtained for each parameter, 607 

differences between PRO and SfM photogrammetry were the highest ones, 608 
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followed by PRO-TLS and TLS-SfM photogrammetry (with the exception of the 609 

peak frequency (F)). 610 

 611 

Table 5. Paired t-test of the different techniques. Mean relative differences (%) 612 
and p-values obtained for the different roughness parameters. No asterisks 613 
implies significant differences.   614 

Paired techniques s l ρ'(0) F TS D 
PRO – TLS 7.9 -30.8* 57.4 -1.8*** 40.7 7.5 
PRO – SfM 11.0 -50.3 77.8 29.1 65.5 14.0 
TLS – SfM 3.1* -14.2** 44.4 29.6 40.7 6.8 

* p-value > 0.001 615 
** p-value > 0.01 616 
*** p-value > 0.05  617 
 618 

To analyze the high-frequency roughness, mean autocorrelation functions were 619 

visualized for the different measurement techniques (Fig. 11). In all roughness 620 

conditions and both directions (except MP in parallel), PRO showed lower l and 621 

higher ρ'(0) values, followed by TLS and SfM photogrammetry. The mean 622 

autocorrelation functions showed that for HC (P) SfM photogrammetry had the 623 

most smoothened profiles (i.e., higher autocorrelation values), whereas for MP 624 

(P) TLS was actually more smoothened than SfM photogrammetry, but only for 625 

spatial lags shorter than 400 mm. In this way, it could be confirmed that profiles 626 

obtained from TLS and especially SfM photogrammetry presented lower high-627 

frequency roughness information (i.e., smoothing) when compared to the profiles 628 

obtained with PRO. 629 
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 630 

Fig. 11. Mean autocorrelation function for the different measurement techniques 631 

and for the different roughness classes in parallel (P) and perpendicular (T) to 632 

tillage direction. 633 

 634 

Multi directional roughness parameter analysis 635 

To analyze the multidirectional behavior of roughness parameters with TLS and 636 

SfM photogrammetry techniques, polar plots were used to represent mean values 637 

of the roughness parameters. For the MP roughness class (Fig. 12), s showed a 638 

similar behavior for both techniques (with little exceptions), with higher values at 639 

the 90º direction (i.e., perpendicular to tillage). The correlation length (l) also 640 

presented a similar behavior with both techniques, but no clear directionality was 641 

observed with a rather large variability at different directions. Parameter ρ'(0) 642 

showed differences between techniques (higher values with TLS) and a notable 643 

anisotropic behavior with peak values in the 0º direction (i.e., parallel to tillage). 644 

On the other hand, tortuosity (TS) and peak frequency (F) presented higher values 645 

for the TLS technique and no significant directional behavior. Finally, the fractal 646 



31 
 

dimension (D) showed almost identical values for both techniques and isotropic 647 

behavior. 648 

Regarding the CH roughness class (Fig. 13), s and l parameters presented very 649 

similar values with both techniques. However, these showed an anisotropic 650 

behavior (especially l) with low values in the 0º direction and higher values in the 651 

30º or 105º directions. Parameter ρ'(0) presented higher values with TLS and a 652 

strong anisotropic behavior with higher values in the 0º direction. Finally, 653 

parameters TS, F, and D showed clear differences with higher values obtained 654 

for TLS (only slight differences in D) and no significant directional behavior. 655 

For the HC roughness class (Fig. 14), the s parameter presented similar values 656 

with both techniques and an anisotropic behavior with lower values in the near 657 

parallel directions. The parameter l showed little differences with higher values 658 

for the SfM photogrammetry technique (especially in some directions) and a clear 659 

anisotropic behavior with lower values in the near parallel directions. Parameter 660 

ρ'(0) presented clear differences with higher values observed for TLS and a 661 

strong directional behavior with highest values in the 0º direction. Finally, 662 

parameters TS, F, and D showed large differences with higher values for the TLS 663 

technique (fewer differences in D) and isotropic behavior (except TS with a peak 664 

in the 0º direction). 665 
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  666 

Fig. 12. Multi directional roughness parameter values from TLS and SfM 667 

photogrammetry techniques in Moldboard Plough (MP) class. 668 

 669 
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Fig. 13. Multi directional roughness parameter values from TLS and SfM 670 

photogrammetry techniques in Chisel (CH) class. 671 

 672 

Fig. 14. Multi directional roughness parameter values from TLS and SfM 673 

photogrammetry techniques in Harrowed Compacter (HC) class. 674 

 675 

DEM analysis 676 

The hillshade DEMs obtained with the TLS and SfM photogrammetry techniques 677 

and their differences are shown in Figure 15. In general, DEMs obtained with TLS 678 

seemed to be more detailed than with SfM photogrammetry. This phenomenon 679 

is better appreciated in CH and HC classes where a difference in the higher 680 

frequency roughness components is apparent between TLS and SfM 681 

photogrammetry. Also, a small spatial dependence of the errors between the 682 

center (in light blue) and the edges (in light red) of the plot was observed in the 683 
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rougher classes (MP and CH). This confirmed what was observed in the RMSE 684 

analysis of the profiles (Fig. 9). 685 

Regarding the differences between roughness classes, in the MP class (Fig. 686 

15C), some dark blue zones (with higher values for TLS) were observed due to 687 

interpolated shadowed regions (no data) for TLS. Also, little dark red zones (with 688 

higher values for SfM photogrammetry) appeared in the lower part of some 689 

aggregates because of the smoothing surface behavior of SfM photogrammetry, 690 

especially in the border of the plot (due to a higher zenith incidence angle for 691 

TLS). In the center of the plot, a light blue color was predominant (0-5 mm), which 692 

could be caused by a higher detailed geometry of the clods (medium and high 693 

parts) with TLS, comparing with the surface smoothing behavior with SfM 694 

photogrammetry. For the CH class (Fig. 15F), the differences were lower than in 695 

MP, with just some small red zones (with higher values for SfM photogrammetry) 696 

along the border of the experimental plot caused by the same phenomenon 697 

explained for MP class. Finally, the differences observed in the HC class (Fig. 698 

15I) were practically null. 699 

It should be noted that the blue zones that appear in different corners of the three 700 

experimental plots were caused by the reference spheres used for the TLS co-701 

registration. 702 

 703 
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 704 

Fig. 15. Hillshade DEMs with 5 mm grid size obtained for TLS (left column) and 705 

SfM photogrammetry (center column), and their difference (TLS-SfM) (right 706 

column); for Moldboard Plough (MP) class (top), Chisel (CH) class (middle) and 707 

Harrowed Compacted (HC) class (bottom). 708 

 709 

 710 

Discussion 711 

 712 

The analysis performed here is unique since it considers different roughness (i.e., 713 

tillage) classes and significantly larger experimental plots than other studies on 714 

this topic. Also, it is the first time here that height profiles obtained with different 715 
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SSR techniques are directly compared due to the precise co-registration 716 

achieved, including the profilometer, considered the standard in the past. 717 

However, it must be taken into account that the analysis compares surface 718 

roughness datasets obtained with the three techniques, and not the techniques 719 

in absolute terms (since not all the possible variants and setting of the techniques 720 

are explored, e.g., different acquisition heights for SfM photogrammetry, etc.). 721 

Such an analysis should be most welcome. 722 

The final point clouds obtained with the TLS and SfM photogrammetry techniques 723 

had a very good correspondence. On the one hand, after SfM photogrammetry 724 

referencing, GCP mean errors ranged between 1.1 mm (for HC class) and 1.9 725 

mm (for MP class). These values are comparable to Bretar et al. (2013), Snapir 726 

et al. (2014), and Gilliot et al. (2017), who reported errors of ~1.5 mm. On the 727 

other hand, the average distance between the corresponding points among TLS 728 

scans for each plot was ~1 mm (similar to Milenković et al., 2015), except for MP 729 

(2.5 mm) due to a very rough terrain that imposed shadowed regions and thus 730 

affected the ICP correspondences. Finally, the average distance between point 731 

clouds obtained by the TLS and SfM photogrammetry techniques was less than 732 

2 mm for all the three plots. 733 

Regarding the bidirectional (parallel and perpendicular to tillage direction) 734 

analysis of the different measurement techniques, the visual analysis provided 735 

interesting information. The rougher the surface, the more evident the smoothing 736 

of the profiles obtained by TLS and SfM photogrammetry techniques was with 737 

respect to PRO, with profiles obtained with SfM photogrammetry yielding the 738 

smoothest ones (Fig. 5 and 11). On the one hand, interpolated shadowed regions 739 

in TLS due to large aggregates on the soil surface (Heng et al., 2010) caused 740 
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considerable differences in some parts of the profiles. Therefore, the eventual 741 

availability of a nadir-looking TLS acquisition (e.g., installed on a lifting platform 742 

or even on board a Remotely Piloted Aerial System) could circumvent this 743 

limitation. This is not easy to achieve due to the sensing time required by TLS 744 

equipment and the necessity to accurately determine the position of the sensor 745 

to precisely locate the obtained point cloud. Altogether, TLS seems to provide 746 

accurate height information even for high-frequency elevation variations but, with 747 

the present setting (i.e., side looking surveys), the reliability of this technique is 748 

affected by shadowing effects especially in rougher surfaces (MP and CH) (Table 749 

4). On the other hand, it must be remarked that the resolution of laser-based 750 

techniques (i.e., PRO and TLS) will have a negligible improvement by reducing 751 

the distance (due to the laser beam diameter), while the resolution of SfM 752 

photogrammetry will definitively improve with shorter distances (and higher 753 

number of photos). In this regard, an improvement in resolution (including high-754 

frequency roughness) should be explored in the future in the application of SfM 755 

photogrammetry to surface roughness studies. 756 

The scatterplot analysis provided very interesting information regarding the 757 

profiles co-registration obtained with the different techniques. As expected, the 758 

overall adjustment between the different techniques decreased (higher RMSE 759 

and lower R2) when surface roughness increased. This fact could be due to that 760 

errors in the X/Y direction have a greater effect on the deviation in Z in areas of 761 

higher local slopes (i.e., rougher surfaces). The various degrees of adjustment 762 

achieved between the different techniques was also remarkable. In this sense, a 763 

greater adjustment (lower RMSE and higher R2) was clearly seen between TLS 764 

and SfM photogrammetry with respect to PRO. This fact seemed unexpected if 765 
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we consider that TLS and SfM photogrammetry are techniques based on 766 

absolutely different technologies. However, it must be taken into account that the 767 

methodology to extract the profiles from the point clouds was rather similar in 768 

both cases. In this sense, the number of points used to calculate the height at 769 

each point of the profile is a key element, being much more similar between TLS 770 

and SfM photogrammetry than with PRO. At the same time, there was also a 771 

slightly greater adjustment between PRO and SfM photogrammetry with respect 772 

to TLS. These discrepancies in the adjustment were expected taking into account 773 

the methodology used for point clouds and profiles co-registration. Both the 774 

profiles obtained with PRO (the beginning and end points) and GCPs used in SfM 775 

photogrammetry were referenced using a total station, while TLS point clouds 776 

were co-registered (and referenced) with SfM photogrammetry point clouds using 777 

the ICP algorithm. These methodological details could have impact in the results 778 

obtained.   779 

Regarding the roughness parameters values obtained with different techniques, 780 

the slight differences for parameter s observed in the presented work are in 781 

agreement with the harrowed and ploughed surfaces studied by Thomsen et al. 782 

(2015). In this sense, for the harrowed field, they reported lower s values with 783 

stereo-photogrammetry (-16%) than with TLS. Also, the only analysis comparing 784 

laser profilometer with stereo-photogrammetry showed higher s values (~50%) 785 

and l values (~20%) for the laser profilometer (Blaes and Defourny, 2008). On 786 

the other hand, differences between roughness classes were clear with 787 

parameter s, which confirmed the results of the different studies where s has been 788 

proposed for distinguishing different roughness classes (Helming et al., 1993; 789 

Magunda et al., 1997; Kamphorst et al., 2000; Vermang et al., 2013; Bauer et al., 790 
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2015; Martinez-Agirre et al., 2016). For the horizontal parameter l, there is no 791 

agreement in the literature. Some authors (Davidson et al., 2003; Baghdadi et al., 792 

2008) reported increasing values for l for increasing roughness conditions, while 793 

others observed similar values in different roughness classes (Álvarez-Mozos et 794 

al., 2005; Verhoest et al., 2008). This parameter has been found to be strongly 795 

dependent on the scale of measurement with large values corresponding to larger 796 

sampling intervals (Barber et al., 2016) and low-frequency roughness 797 

components (Martinez-Agirre et al., 2017). For the rest of the parameters 798 

analyzed, the general behavior with SfM photogrammetry and, to a lesser extent, 799 

with TLS was the underestimation of the different parameters values when 800 

compared to PRO. 801 

In the multi-directional analysis, both techniques (TLS and SfM photogrammetry) 802 

agreed in the directional behavior of the different roughness parameters 803 

analyzed. Few analyses have evaluated the multi-directional behavior of 804 

roughness parameters in agricultural soils (Blaes and Defourny, 2008; Snapir et 805 

al., 2014), concluding that both s and especially l were conditioned by tillage 806 

direction. In this analysis, this phenomenon is especially relevant for ρ'(0), with 807 

higher values in parallel to the tillage direction and lower values in directions near 808 

to the perpendicular, and to a lesser extent for s and l in CH and HC roughness 809 

classes. For these two parameters (especially for l), the highest values are 810 

obtained in oblique to the tillage direction (15º-75º or 105º-175º); this seems 811 

logical in the case of l since the distance between the tillage marks were greater 812 

than in perpendicular (90º). Finally, it should be noted that MP roughness class 813 

provided the most isotropic roughness, because the multiple moldboards broke 814 

and turned over the soil providing a very rough surface in all directions. The other 815 
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classes were indeed smoother but produced some king of a slight furrow pattern. 816 

This type of information is of great interest in radar remote sensing, since it has 817 

been observed that, in agricultural soils, radar backscatter could be greatly 818 

affected by the directionality of the soil roughness (Wegmueller et al., 2011; 819 

Marzahn et al., 2012b). 820 

Regarding the DEMs obtained with TLS and SfM photogrammetry, it could be 821 

said that both techniques were valid to represent the surface roughness of the 822 

typical agricultural soils. Despite this, some limitations must be taken into 823 

account. On the one hand, the high accuracy and resolution of TLS were limited 824 

by the data acquisition geometry (scans positions), thus generating shadowed 825 

regions without data, especially in the roughest soils. On the other hand, despite 826 

of the good geometry of the SfM photogrammetry acquisition (from a lifting 827 

platform), the generated DEMs (and also the point clouds) showed a certain 828 

smoothing concerning to other techniques, which was particularly apparent when 829 

horizontal roughness parameters were calculated. As mentioned previously, the 830 

limitations of TLS could be avoided with a nadiral geometry, and the limitations 831 

of SfM photogrammetry with a shorter acquisition distance (and a greater 832 

number) of photos. 833 

 834 

 835 

Conclusions 836 

 837 

The results obtained demonstrate the ability of both TLS and SfM 838 

photogrammetry techniques to measure surface roughness over agricultural 839 

soils. This is considered relevant since the experimental setting enabled a direct 840 



41 
 

comparison of profiles measured with different techniques, due to the precise co-841 

registration achieved. The agreement between the elevation profiles obtained 842 

with TLS and SfM photogrammetry when compared to those obtained with a 843 

nadir-looking profilometer was reasonable, and RMSE values were below 10 mm 844 

for smooth and intermediate roughness conditions. Rough soils (MP) were more 845 

challenging and RMSE values as high as 20 mm were obtained for this class. Yet 846 

these differences were not that relevant when different roughness parameters 847 

were computed. Parameter s, and to a lesser extent l, showed similar values 848 

when measured with the different techniques. However, some other roughness 849 

parameters, more sensitive to the spatial arrangement of height variations, such 850 

as ρ'(0), F or TS, showed lower of high-frequency elevation information in profiles 851 

obtained from TLS and especially in SfM photogrammetry data in comparison to 852 

PRO. This smoothing effect seems to be inherent to the experimental setup in 853 

the case of SfM photogrammetry surveys and related to shadowed zones in the 854 

TLS data due to its oblique viewing geometry. The first could be improved with a 855 

shorter acquisition distance (and a greater number of photos), and the latter could 856 

be avoided if a nadir-looking observation were available. In the future, the viability 857 

of a nadir-looking TLS setting and a better experimental setup of SfM 858 

photogrammetry should be further explored. Altogether, both TLS and SfM 859 

photogrammetry provide very powerful 3D information that enables a detailed 860 

analysis of surface roughness directionality, which is relevant for applications 861 

such as radar scattering or hydrology and soil erosion processes. 862 
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