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24 ABSTRACT

25 Commercial production of the ornamental plant dipladenia (Mandevilla spp.) is 

26 threatened by dipladenia leaf and stem spot disease, caused by the bacterium 

27 Pseudomonas savastanoi. P. savastanoi includes four pathovars of woody hosts 

28 differentiated by a characteristic host range in olive, oleander, ash and broom plants. 

29 However, isolates from dipladenia have not been ascribed to any particular lineage or P. 

30 savastanoi pathovar. Here we report that isolates from dipladenia represent a distinct, 

31 clonal lineage. First, dipladenia isolates display very similar plasmid profiles, including a 

32 plasmid encoding the iaaM gene for biosynthesis of indole-3-acetic acid. Second, 

33 multilocus sequence analysis and core-genome single-nucleotide-polymorphisms 

34 phylogenies showed a monophyletic origin for dipladenia isolates, which cluster with 

35 isolates from oleander (pathovar nerii) in a distinct clade well separated from other P. 

36 savastanoi strains. Metabolic profiling and cross-pathogenicity tests in olive, oleander, 

37 ash, broom and dipladenia clearly distinguished dipladenia isolates from the four P. 

38 savastanoi pathovars. Comparative genomics of the draft genome sequence of the 

39 dipladenia strain Ph3 with the other four pathovars showed that Ph3 encodes very few 

40 strain-specific genes, and a similar set of virulence genes to pv. nerii, including its 

41 repertoire of type III secretion system effectors. However, hierarchical clustering based 

42 on the catalogue of effectors and their allelic variants clearly separated Ph3 from pv. nerii 

43 strains. Based on their distinctive pathogenicity profile, we propose a de novo pathovar 

44 for P. savastanoi isolates from dipladenia, P. savastanoi pv. mandevillae pv. nov., for 

45 which strain Ph3 (CFBP 8832PT) has been designated as the pathotype strain.
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46 INTRODUCTION

47 Dipladenia (Mandevilla spp.) encompasses 176 accepted species according 

48 to the World Checklist of Selected Plant Families (https://wcsp.science.kew.org), 

49 which are evergreen creeper bushes, sometimes reaching up to ten meters high, 

50 native to tropical regions from Central and South America. Plants from this genus 

51 are highly appreciated for their smooth and intense green leaves, and for their 

52 trumpet-shaped flowers in red, pink, white or yellow, held by long stalks. Mostly 

53 marketed as herbaceous-looking young plants, mature dipladenias are woody-

54 stemmed vines. Additionally, the flowering period begins in spring and commonly 

55 extends until fall, converting dipladenia into a profitable product for the 

56 ornamentals market. In fact, the current high commercial demand of dipladenia 

57 places this crop in a privileged position among the top ornamental leaders in the 

58 new emerging markets (Oder et al. 2016). However, commercial production is 

59 severely threatened by dipladenia leaf and stem spot (MaLSS) disease. This 

60 emergent disease is caused by the most prevalent bacterial pathogen of 

61 dipladenia, Pseudomonas savastanoi. The first report of this disease dates back 

62 to 2010 in the USA (Putnam et al. 2010), with European outbreaks occurring over 

63 the following years in France, Germany (Eltlbany et al. 2012), Slovenia (Pirc et 

64 al. 2015) and Spain (Caballo-Ponce and Ramos 2016). With Spain and Italy as 

65 the main producers of dipladenia in Europe, this emergent disease has also 

66 become a serious concern for European growers. The rapid spread of the 

67 pathogen within greenhouses, difficulties for disease management and the visual 

68 symptoms of MaLSS are responsible for the loss of a large number of plants, 

69 which are classified as unmarketable, as reported for up to 70% of the dipladenia 

70 in Slovenian greenhouses (Pirc et al. 2015).

71 P. savastanoi belongs to Pseudomonas syringae sensu lato, a bacterial 

72 complex with an unresolved taxonomic status comprising 15 previously defined 

73 Pseudomonas species associated with plants and the water cycle, and that can 
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74 be separated into 13 distinct phylogroups (PG) (Berge et al. 2014; Gomila et al. 

75 2017). The species P. savastanoi belongs to phylogroup 3 (PG3), the only 

76 phylogroup comprising bacteria that cause tumorous overgrowths (knots) in 

77 woody hosts (Lamichhane et al. 2014). In particular, P. savastanoi currently 

78 comprises four different pathovars of woody hosts, namely P. savastanoi pv. 

79 savastanoi (Psv), P. savastanoi pv. nerii (Psn), P. savastanoi pv. fraxini (Psf) and 

80 P. savastanoi pv. retacarpa (Psr), including strains isolated from olive (Olea 

81 europaea), oleander (Nerium oleander), ash (Fraxinus excelsior) and broom 

82 (Retama sphaerocarpa), respectively (Bull et al. 2010; Gardan et al. 1992). These 

83 pathovars produce knots (Psv, Psn and Psr) or excrescences (Psf), typically in 

84 the trunks, stems and branches of infected plants (Caballo-Ponce et al. 2017a). 

85 In turn, P. savastanoi infections of dipladenia are characterized by the generation 

86 of necrotic spots surrounded by a chlorotic halo on leaves and stems, as well as 

87 knot formation on stems (Eltlbany et al. 2012; Caballo-Ponce and Ramos 2016). 

88 Besides the diversity of symptoms produced by these pathovars, their hosts are 

89 also phylogenetically diverse, belonging to the family Oleaceae (olive, ash, and 

90 many other hosts), Apocynaceae (oleander and dipladenia) and Fabaceae 

91 (broom), among other plant hosts (Caballo-Ponce et al. 2017a; Morris et al. 

92 2019).

93 Despite its economic impact, there is a paucity of information on the 

94 management of MaLSS, its progress in infected plants and the biology and 

95 genetics of P. savastanoi strains infecting dipladenia. In particular, the pathogen 

96 has not been ascribed to any particular lineage or pathovar within the species P. 

97 savastanoi. Metabolic profiling of seven P. savastanoi isolates from France and 

98 Germany initially identified the causal agent of MaLSS as Psn or P. savastanoi 

99 pv. glycinea, a pathogen of soybean (Glycine max). On the other hand, BOX-

100 PCR fingerprints and phylogenetic analysis of partial nucleotide sequences of the 

101 16S rRNA gene showed that these seven isolates clustered together with Psn 

102 and Psv strains. However, cross-pathogenicity tests performed in olive and 

Page 4 of 54



Eloy Caballo-Ponce Phytopathology

5

103 oleander could not confidently classify the isolates as members of any of these 

104 two pathovars (Eltlbany et al. 2012). Although partial sequencing of the rpoD 

105 gene from two Slovenian isolates showed a closer proximity to Psn strains (Pirc 

106 et al. 2015), results from pathogenicity tests in oleander plants were not reported. 

107 Additionally, hybridization analyses of Southern-blotted plasmid restriction 

108 digests with probes generated from plasmid-borne P. syringae genes, showed 

109 that the profiles obtained from seven dipladenia isolates were highly similar but 

110 clearly distinct from those of Psv and Psn strains, which showed high strain-

111 specific variability (Eltlbany et al. 2012). Moreover, and unlike most P. savastanoi 

112 strains, dipladenia isolates do not trigger a hypersensitive response (HR) in 

113 tobacco leaves (Pirc et al. 2015; Caballo-Ponce and Ramos 2016). All these initial 

114 observations suggest that P. savastanoi strains infecting dipladenia might 

115 constitute a separate, homogeneous lineage holding a distinct set of plasmids. 

116 This perceived homogeneity contrasts with the variability previously observed for 

117 the four P. savastanoi pathovars from woody hosts: although they correspond to 

118 well-defined genetic lineages, they show a degree of variability in intrapathovar 

119 virulence gene repertoires, plasmid profile, virulence, arbitrarily-primed PCR, 

120 real-time PCR and high-resolution melting analysis (Pérez-Martínez et al. 2008; 

121 Tegli et al. 2010; Gori et al. 2012; Moretti et al. 2017; Moreno-Pérez et al. 2020), 

122 among other characteristics. Nevertheless, and because dipladenias are 

123 reproduced vegetatively, we cannot discount the possibility that the small number 

124 of dipladenia isolates characterized so far belong to a particular clonal lineage 

125 that was dispersed with plant material, rather than being representative of their 

126 variability as a whole. Therefore, characterization of these isolates deserves 

127 attention.

128 In this work we obtained the draft genome sequence of P. savastanoi Ph3 and 

129 used it in comparative genomic analyses with P. savastanoi strains isolated from 

130 olive, oleander, ash and broom. Phylogenetic analysis and metabolic and plasmid 

131 profiling, in combination with cross-pathogenicity tests, revealed genomic and 

Page 5 of 54



Eloy Caballo-Ponce Phytopathology

6

132 phenotypic features differentiating P. savastanoi strains isolated from dipladenia 

133 from all four well-established P. savastanoi pathovars of woody hosts. We 

134 propose a new pathovar closely related to Psn, P. savastanoi pv. mandevillae 

135 (Psm) pv. nov., as the causal agent of MaLSS and Psm Ph3 (CFBP 8832PT) as 

136 its pathotype strain. 
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137 MATERIALS AND METHODS

138 Bacterial strains, media and growth conditions. Wild-type P. savastanoi strains 

139 used in this study are listed in Table 1. Psm Ph3 derivatives transformed with 

140 plasmids are described below. P. savastanoi was grown at 28 °C in lysogeny 

141 broth (LB) medium (Bertani 1951), super optimal broth (SOB) (Hanahan 1983) 

142 and in King’s B (KB) medium (King et al. 1954). When required, media were 

143 supplemented with the appropriate antibiotics at the following final 

144 concentrations: kanamycin (Km) 10 µg/ml; nitrofurantoin 20 µg/ml; and 

145 cycloheximide 100 µg/ml.  

146 Plasmid DNA techniques. Plasmid minipreparations of Psm isolates were 

147 made as previously described (Zhou et al. 1990) with some modifications to 

148 minimize the isolation of chromosomal DNA (Murillo and Keen 1994). Plasmids 

149 were separated by electrophoresis in 0.8 % agarose gels in TAE buffer for 4 hours 

150 at 60V, and then stained with ethidium bromide before imaging. A DNA probe 

151 from the iaaM gene was amplified and labeled by PCR using primers and 

152 digoxigenin-dNTPs from the Dig labeling mix kit (Roche Applied Science, 

153 Mannheim, Germany) according to the supplier’s instructions. Plasmid 

154 preparations blotted on nylon membranes were hybridized with the probe at 65 

155 °C as previously described (Pérez-Martínez et al. 2008).

156 Bioinformatics methods. Genome sequencing of Psm strain Ph3. P. 

157 savastanoi Ph3 was grown overnight at 28 ºC in LB broth, bacteria were then 

158 collected by centrifugation and genomic DNA was purified using the JetFlex 

159 Genomic DNA Purification Kit (Genomed, Löhne, Germany) according to the 

160 manufacturer’s guidelines. The resulting DNA sample was purified by two 

161 subsequent extractions with 25:24:1 phenol-chloroform-isoamyl alcohol and 24:1 

162 chloroform:isoamyl alcohol (volumetric proportions), precipitated with 100 % 

163 ethanol and 3 M sodium acetate pH 5.2 and resuspended in bi-distilled water. 

164 The purity and concentration of genomic DNA were measured 
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165 spectrophotometrically. DNA was sequenced at the Center for Biomedical 

166 Research of La Rioja (CIBIR, Spain) using Illumina Genome Analyzer IIx. The 

167 sequencing yielded over 22.5 million reads (coverage, 250x) that were imported 

168 as a pair-end file and assembled with CLC Genomics Workbench v. 7.0.4 with 

169 default settings, producing 256 contigs with a total length of 5.87 Mb and an 

170 average GC content of 58.1 %. The genome was automatically annotated upon 

171 submission to GenBank (accession no. NIAX00000000) at National Centre for 

172 Biotechnology Information (NCBI).

173 Phylogenetic analyses. Phylogenetic relationships were predicted by 

174 multilocus sequence analysis (MLSA) using partial sequences of the gyrB, rpoD, 

175 gapA, rpoA and recA genes. Sequences corresponding to Psv, Psn, Psf and Psr 

176 strains were downloaded from GenBank. For Psm isolates, partial sequences 

177 were generated following PCR amplification with GoTaq Flexi DNA polymerase 

178 (Promega, Madison, WI, USA) and the primers listed in Table S1. Sequencing 

179 was performed by STAB VIDA, Lda. (Caparica, Portugal). A maximum likelihood 

180 phylogeny based on the concatenated sequence of these five genes (total length 

181 3219 nt), using the Tamura-Nei model and with 100 bootstraps replicates, was 

182 constructed using MEGA7 (Kumar et al. 2016). The P. savastanoi phylogeny was 

183 also analyzed using core genome single nucleotide polymorphisms (SNPs) with 

184 the programs Parsnp v1.2 and Gingr v1.2 (Treangen et al. 2014), and 100 

185 bootstrap replicates; trees were visualized and manipulated using MEGA 7 

186 (Kumar et al. 2016).

187 Comparative genomic analyses. The core genome analyses were performed 

188 using the Bacterial Pan Genome Analysis (BPGA) tool BPGA v1.3 (Chaudhari et 

189 al. 2016) with assemblies downloaded from the NCBI. Using the USEARCH 

190 algorithm (Edgar 2010) within BPGA, and with a threshold of 0.9 (90 % BLASTP 

191 identity), we identified orthologous genes, strain-specific genes and genes 

192 encoded in two to four genomes (accessory genes). The list of strain-specific 

193 genes was annotated using BLASTP and Sma3s.v2 software (Casimiro-Soriguer 
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194 et al. 2017) and then manually classified into functional categories according to 

195 the predicted functions of their annotated products. Virulence gene repertoires 

196 were predicted using PIFAR, a tool for the identification of plant-bacteria 

197 interaction factors in bacterial genomes (Martínez-García et al. 2016). Average 

198 nucleotide identity (ANI) was calculated with the orthologous ANI algorithm using 

199 BLASTN, implemented in the standalone program OAT 

200 (https://www.ezbiocloud.net/tools/orthoani) (Lee et al. 2016).

201 Prediction of T3SS and its effectors. Structural and regulatory components of 

202 the type III secretion system (T3SS) were identified using the web-based tool 

203 T346 Hunter (Martínez-García et al. 2015). Prediction of T3SS effectors (T3Es) 

204 was made using PIFAR (Martínez-García et al. 2016), which searches for T3Es 

205 homologs on three other platforms, namely, The Pseudomonas syringae 

206 Genome Resources (http://www.pseudomonas-syringae.org/), Ralsto T3E 

207 (Peeters et al. 2013) and The Xanthomonas Resource 

208 (http://www.xanthomonas.org/). The identified T3Es sequences were manually 

209 examined for truncations, disruptions and frameshifts using the bioinformatics 

210 software platform Geneious 8.1.9 (Kearse et al. 2012) and the genome browser 

211 Artemis 16.0.0 (Carver et al. 2012). Hierarchical clustering of P. savastanoi 

212 strains based on their T3E content was performed using Morpheus as previously 

213 reported (Moreno-Pérez et al. 2020).

214 Metabolic profiling of P. savastanoi. The transformation of 95 compounds by 

215 P. savastanoi strains was examined with Biolog GN2 microplates (Biolog, Inc., 

216 Hayward, CA, USA). Bacteria were incubated on LB plates at 28 ºC for two days, 

217 collected and resuspended in 0.4% NaCl to an OD590 of 0.2. After loading the 

218 plate with these bacterial suspensions (150 µl/well), plates were incubated at 28 

219 ºC in an orbital shaker at 150 rpm and monitored for one week. When the 

220 substrates are oxidized by the strains, a purple dye develops visible patterns of 

221 positive (deep purple) and negative (clear) wells. Partial oxidation (light purple) 

222 was taken as a weak positive (w). Hierarchical clustering of P. savastanoi strains 
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223 based on their metabolic profiles was performed with a presence-absence matrix 

224 with values of “0” (-), “1” (w) and “2” (+). To measure the distance between strains, 

225 the similarity matrix was made with the Euclidean distance method using 

226 Morpheus software (https://software.broadinstitute.org/morpheus/). Then, the 

227 tree was constructed by the neighbor-joining method using MEGA7 (Kumar et al. 

228 2016).

229 Plant infections. Bacterial suspensions in 10 mM MgCl2 containing 

230 approximately 108 colony forming units (cfu)/ml were infiltrated into the abaxial 

231 side of Nicotiana tabacum cv. Xanthi leaves using a needle-less syringe, to test 

232 for HR elicitation. Symptoms were recorded 48 hours post-infiltration with a high-

233 resolution camera (Canon D6200, Canon Corporation, Tokyo, Japan). Psm 

234 strains do not induce the HR on tobacco plants, but it is not known whether their 

235 T3Es are not recognized or if this is due to a non-functional T3SS in this host. To 

236 differentiate between these alternatives, we decided to evaluate the HR-inducing 

237 activity of a Psm strain ectopically expressing a T3E known to induce the HR on 

238 tobacco. Then, plasmid pAME8 (Macho et al. 2009), a pBBR1-MCS4 derivative 

239 encoding a transcriptional fusion of avrRpt2 from P. syringae pv. tomato strain 

240 1065 to the nptII and lacZ promoters, was transformed into Psm Ph3 cells by 

241 electroporation as previously described (Pérez-Martínez et al. 2007). 

242 Transformants were selected on LB agar plates containing Km and single 

243 colonies were verified by PCR. One of the transformants (Ph3-AvrRpt2) was 

244 selected to test elicitation of the hypersensitive response (HR) in N. tabacum cv. 

245 Xanthi leaves as described above.

246 Plant material was sanitized with 300 g/hl of Bordeaux mixture (20% CuSO4) 

247 and, after 3 weeks, was washed with 70% ethanol and air dried prior to 

248 inoculation. Dipladenia plants (Mandevilla spp.) var. pink flowers, O. europaea 

249 plants derived from a seed germinated in vitro (originally collected from an 

250 “Arbequina” plant), N. oleander plants accession “white” supplied by Viveros 

251 Guzmán (Málaga, Spain), and F. excelsior and R. sphaerocarpa plants native 
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252 from Valladolid and supplied by Viveros Fuenteamarga (Valladolid, Spain) were 

253 wounded along the stem with a scalpel, and approximately 106 cfu were placed 

254 per wound. For broom plants, around 107 cfu/wound were inoculated using a 

255 needle coupled to a syringe. After inoculation, wounds were wrapped with 

256 parafilm (Bemis, Neenah, WI, USA) for 7 days. Three dipladenia plants and two 

257 plants of the other hosts per strain were inoculated as previously described 

258 (Penyalver et al. 2006; Moreno-Pérez et al. 2020). The number of wound sites 

259 infected per plant varied between 5 and 10, depending on the size of the plant. 

260 Plants were kept in a greenhouse for three months under natural photoperiod (15 

261 hours light/9 hours dark) at room temperature (approximately 26 °C day/18 °C 

262 night). The resulting symptoms were captured with a high-resolution camera 

263 (Canon D6200, Canon Corporation, Tokyo, Japan) 90 days after inoculation. P. 

264 savastanoi cells were recovered from dipladenia as follows: Knots developed 

265 after infection were excised from the plants and homogenized by mechanical 

266 disruption in 10 mM MgCl2 using a mortar and a pestle, and serial dilutions were 

267 plated on LB containing nitrofurantoin 20 µg/ml and cycloheximide 100 µg/ml. 

268 To monitor the systemic infection of Psm Ph3 in dipladenia plants, Ph3 was 

269 transformed by electroporation with plasmid pLRM1-GFP, constitutively 

270 expressing the green fluorescent protein (GFP) from the PA1/04/03 promoter 

271 (Rodriguez-Moreno et al. 2009). The transformant (Ph3-GFP) was inoculated in 

272 dipladenia stems and plants were examined with a stereoscopic fluorescence 

273 microscope (Leica MZ FLIII) equipped with a 100 W mercury lamp and a filter set 

274 GFP2 (excitation 480/40 nm; extinction 510 nm LP). Images were captured 23 

275 days after infection with a high-resolution digital camera (Nikon DXM 1200).
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276 RESULTS

277 P. savastanoi from dipladenia represent a distinct, clonal lineage highly related 

278 to P. savastanoi pv. nerii. Isolates causing MaLSS from France and Germany 

279 were very similar to each other (Eltlbany et al. 2012), and the same occurred for 

280 local pathogen populations from Slovenia (Pirc et al. 2015), and Spain (Caballo-

281 Ponce and Ramos 2016). However, it is not clear if they represent highly similar 

282 local populations or are representative of the MaLSS pathogen. To test this, we 

283 compared diverse phenotypic and genotypic characteristics of a reference 

284 collection comprising a representative isolate from each of the five countries 

285 where the disease has been reported (Table 1).

286 Isolates from dipladenia display highly conserved plasmid profiles. Unlike 

287 oleander and olive isolates (Caponero et al. 1995; Pérez-Martínez et al. 2008), 

288 seven P. savastanoi isolates from dipladenia showed nearly identical patterns 

289 after native plasmid digestion with Bst1107I and PstI (Eltlbany et al. 2012). 

290 However, these observations were restricted to French and German Psm isolates 

291 and the number and sizes of native plasmids could not be determined. We 

292 therefore examined the plasmid profiles of the five Psm strains collection. 

293 Psm strains displayed very similar plasmid patterns (Figure 1), with bands of 

294 approximately 19, 23, 50, 55 and 73 kb present in all the isolates, with the 

295 exception of the 73 kb plasmid missing in Psm 1397. Psm Ph5 also showed two 

296 additional plasmid bands of approximately 43 and 82 kb. This high conservation 

297 is striking and suggests clonality, although plasmid profiles have been reported 

298 to be either highly conserved (Gutiérrez-Barranquero et al. 2013; von Bodman 

299 and Shaw 1987) or highly variable (Pérez-Martínez et al. 2008;  Sato et al. 1982; 

300 Ullrich et al. 1993) within pathovars of the P. syringae complex.

301 The approximately 50 kb plasmid of the five Psm isolates hybridized to an 

302 iaaM-specific probe in Southern blot analyses (Figure S1), confirming previous 

303 data using digested plasmid DNA (Eltlbany et al. 2012). Gene iaaM is required 
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304 for the biosynthesis of high levels of the phytohormone indoleacetic acid and is 

305 essential for the induction of tumors by Psv NCPPB 3335 (Aragón et al. 2014). 

306 Our results, therefore, suggest that indoleacetic acid might also be essential for 

307 the induction of symptoms by Psm in dipladenia. 

308 MLSA, core-genome SNPs and ANI analyses reveal a close relationship 

309 between Psm and Psn strains. To determine their evolutionary relationships, we 

310 carried out an MLSA analysis of the Psm reference collection and all sequenced 

311 P. savastanoi strains from woody hosts using concatenated partial DNA 

312 sequences of genes gyrB, rpoD, gapA, rpoA and recA.

313 The high conservation of these genes provided little resolution. Nevertheless, 

314 all Psm isolates clustered together with a few Psn strains in a distinct clade that 

315 was well-separated from the remaining P. savastanoi strains (Figure 2). In 

316 addition, this tree showed a very similar topology to that obtained using SNPs 

317 from a core genome alignment of all sequenced P. savastanoi strains (Moreno-

318 Pérez et al. 2020), including the draft genome of Psm Ph3 obtained in this work 

319 (see below; Figure S2). ANI is extensively used to measure overall similarity 

320 between genomes, with a recommended cut-off of 95-96% ANI to delineate 

321 species (Lee et al. 2016). Using the OAT program, the Psm Ph3 genome showed 

322 99.90-99.91% identity with Psn strains Psn23, CFBP 5067 and ICMP 16944, and 

323 99.78% to Psn ICMP 13781, whereas identity was lower than 99.83% with the 

324 genomes of all other sequenced P. savastanoi strains from woody hosts. Taken 

325 together, these results suggest a monophyletic origin for the Psm genetic lineage 

326 and a closer association with pathovar nerii.

327 Metabolic profiling distinguish Psm isolates from other P. savastanoi from 

328 woody hosts. We carried out a comparative metabolic analysis using Biolog GN2 

329 plates to identify differences in nutrient assimilation across P. savastanoi strains 

330 isolated from ash, dipladenia, oleander, broom and olive. Results revealed that 

331 all 14 strains tested yielded complete and negative oxidation for 22 and 23 

332 compounds, respectively (Figure 3, Table S2).  However, the five Psm strains 
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333 tested were  unable to oxidize 13 compounds that could be partially or completely 

334 oxidized by the remaining nine tested strains of pathovars Psv, Psn, Psf and Psr. 

335 Most of these compounds were sugars (e.g. L-fucose, maltose, L-rhamnose and 

336 D-melibiose), but also nucleosides (e.g. thymidine and uridine), D-amino acids 

337 (e.g. D-serine) and small organic acids (e.g. D, L-lactic acid). Other compounds 

338 differentiating P. savastanoi pathovars were L-pyroglutamic acid, transformed by 

339 all strains except for Psr CECT 4861, and L-ornithine, exclusively oxidized by Psn 

340 strains. In a dendrogram obtained from hierarchical cluster analysis of the 

341 metabolic profiles, the five Psm isolates were grouped in a distinct branch that 

342 was separated from the remaining P. savastanoi strains analyzed, including all 

343 Psn strains (Figure 3). Importantly, clustering largely agrees with pathovar 

344 assignation, suggesting the metabolic adaptation of these bacteria to their plant 

345 hosts.

346 P. savastanoi isolates from dipladenia show a distinctive host range and cause 

347 systemic infections. Cross-pathogenicity tests. P. savastanoi pathovars 

348 savastanoi, nerii, fraxini and retacarpa are differentiated by cross-pathogenicity 

349 tests in olive, oleander, ash and Spanish broom (Caballo-Ponce et al. 2017a;  

350 Moreno-Pérez et al. 2020;  Ramos et al. 2012). We therefore examined the 

351 pathogenicity of the Psm reference collection on these hosts in comparison with 

352 strains of the other pathovars from woody hosts, to determine their pathovar 

353 assignation.

354 Pathogenicity of representative strains of Psv, Psn, Psf and Psr in olive, 

355 oleander, ash and Spanish broom (Figure 4A and Table 2) was consistent with 

356 previously published results (Alvarez et al. 1998;  Iacobellis et al. 1998;  Janse 

357 1982;  Janse 1991;  Moreno-Pérez et al. 2020;  Ramos et al. 2012). Additionally, 

358 dipladenia stems did not show any symptoms after inoculation with diverse 

359 strains of Psv (NCPPB 3335, CFBP 1670 and PseNe107), Psf (NCPPB 1006, 

360 NCPPB 1464 and CFBP 5062) and Psr (CECT 4861) (Figure 4B). However, 

361 different Psn strains promoted the generation of different symptoms in dipladenia: 
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362 CFBP 5067 and ITM 519 induced the formation of knot-like overgrowths, whereas 

363 Psn Psn23 infections were asymptomatic (Figure 4).

364 The five Psm isolates displayed comparable pathogenicity patterns that also 

365 distinguished them from the other four pathovars, inducing symptoms in 

366 dipladenia, olive and ash (Figure 4 and Table 2). On dipladenia stems, as 

367 expected, all Psm isolates induced knots, reaching similar in planta populations 

368 of 107 - 108 cfu per knot. On olive stems, they also induced knots that were similar 

369 to those induced by Psv NCPPB 3335 (Figure 4A). All dipladenia isolates were 

370 also pathogenic on ash, inducing knots or a swelling at the point of inoculation. 

371 Virulence in ash, however, was strain-dependent: Psm Ph5 was the most virulent 

372 strain, inducing nine knots and one swelling-like structure, whereas Psm Ph3 

373 exclusively caused swellings (Table 2). In contrast, none of the dipladenia 

374 isolates were pathogenic on either oleander or Spanish broom (Figure 4A, Table 

375 2). 

376 In summary, our results demonstrate a distinctive host range for Psm isolates 

377 separating them from the four recognized P. savastanoi pathovars of woody 

378 hosts. Thus, a de novo pathovar is assigned to P. savastanoi isolated from 

379 dipladenia: P. savastanoi pv. mandevillae pv. nov.

380 Psm isolates produce systemic infections in dipladenia, leading to plant death. 

381 While assaying the pathogenicity of Psm in dipladenia, we occasionally observed 

382 the induction of typical symptoms in plant parts far from the point of inoculation, 

383 suggesting that the pathogen might spread systemically. To confirm this 

384 hypothesis, Psm Ph3 was transformed with pLRM1-GFP, a plasmid expressing 

385 the green fluorescent protein (GFP) from a constitutive promoter (Rodriguez-

386 Moreno et al. 2009). The resulting strain, Ph3-GFP, was inoculated in dipladenia 

387 stems. After 23 days, we observed clear disease symptoms in the inoculated 

388 points as well as in non-inoculated stems of the infected plants (Figure 5A). 

389 Likewise, symptomatic non-infected petioles (Figure 5B) and leaves (Figure 5C) 

390 displayed strong GFP fluorescence, whereas no fluorescence was detected in 
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391 the petioles (Figure 5D) and leaves (Figure 5E) of a non-infected plant. These 

392 results thus demonstrate the movement of the pathogen along the plant, causing 

393 a systemic infection. Secondary symptoms were more evident with time (Figure 

394 5F), and 90 days after inoculation, the basal two-thirds of most stems were 

395 covered with tumors. Leaves showed a pronounced wilting, retaining their color 

396 at first but then turning brown and desiccating; however, the basal leaves 

397 remained green and apparently healthy.   

398 Comparative genomics of Psm Ph3 with other P. savastanoi pathovars from 

399 woody hosts. Comparative genomics between phylogenetically related strains 

400 has been frequently used to identify strain/pathovar-specific elements that might 

401 contribute to host range definition. We therefore obtained a draft genome 

402 sequence of Psm Ph3, which yielded a predicted number of genes (5589) and 

403 proteins (5111) similar to those previously reported for other P. savastanoi 

404 genomes (Moreno-Pérez et al. 2020). To unveil Psm Ph3-specific genetic 

405 features, we carried out a comparative genomic analysis with the four Psn 

406 genomes available in GenBank (Dillon et al. 2019;  Moreno-Pérez et al. 2020;  

407 Nowell et al. 2016) using two complementary bioinformatics tools, the bacterial 

408 pan-genome analysis (BPGA) tool and PIFAR.

409 Psm Ph3 contains very few strain-specific genes. The analyses identified a 

410 core genome composed of 4084 genes, with 720 to 885 accessory genes 

411 (present in 2-4 genomes) and 42 to 697 strain-specific genes (Figure 6). Strain-

412 specific genes were annotated and classified into gene ontology (GO) categories 

413 using Sma3s.v2 software. The most abundant category found was DNA binding 

414 (> 80 genes), followed by ion binding, oxidoreductase activity and signal 

415 transducer activity, composed by 37-42 genes (Figure S3). In addition, the 43 

416 Psm Ph3 strain-specific genes were annotated using BLASTP and manually 

417 classified into six main categories. The most abundant category comprises 19 

418 genes encoding hypothetical proteins, followed by DNA replication, 

419 recombination, mutation and repair (11 genes) and type IV secretion system 
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420 elements (8 genes). Thirty of these strain-specific genes were found in a single 

421 contig (NZ_NIAX01000040, 27.7 kb), which mostly encoded typical plasmid 

422 proteins (Table 3), suggesting that the majority of the strain-specific genes found 

423 in the genome of strain Ph3 are encoded in a plasmid not present in any of the 

424 Psn strains examined.

425 The Psm Ph3 genome contains a similar set of virulence genes to Psn strains. 

426 The comparative genomic analysis of Psm Ph3 with four Psn strains using PIFAR 

427 revealed the presence of characteristic genes involved in the 

428 virulence/pathogenicity of P. savastanoi. Among those, strain Ph3 contains 

429 genes involved in the metabolism of the phytohormones indole-3-acetic acid 

430 (iaaM, iaaH and iaaL) and cytokinins (idi and ptz) (Figure S4), which were shown 

431 to be necessary for tumor induction by Psv NCPPB 3335 (Aragón et al. 2014; 

432 Añorga et al. 2020). In this sense, estimation of IAA production in culture 

433 supernatants of all Psm strains included in this analysis using the Salkowski 

434 reagent (Gordon and Weber 1951) yielded similar concentrations to those 

435 obtained for Psv NCPPB 3335 (data not shown). Other typical 

436 pathogenicity/virulence factors of P. savastanoi found in the genome of Psm Ph3 

437 were a complete T3SS canonical cluster (T-PAI), an additional T3SS resembling 

438 that found in Rhizobium species (R-PAI), a complete set of type IV secretion 

439 system type A (T4SS-A) genes (virB1-virB11 and virD4), incomplete sets of 

440 T4SS-B and T4SS-C and two different type VI secretion system (T6SS) clusters 

441 (Figure S4). Furthermore, genes coding for enzymes involved in cyclic-di-GMP 

442 metabolism (BifA and DgcP) and AHL quorum sensing elements (PssI and 

443 PssR), as well as the WHOP region, involved in the catabolism of phenolics and 

444 exclusively found in P. syringae and P. savastanoi pathovars of woody hosts 

445 (Caballo-Ponce et al. 2017b), were also found. 

446 The Psm Ph3 type III secretion system effector repertoire is highly similar but 

447 not identical to that of Psn strains. A previous comparative genomics analysis 

448 showed that the P. savastanoi pathovars from woody hosts contained variable 
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449 T3E repertoires, but that they correlated closely with pathogenic specialization 

450 (Moreno-Pérez et al. 2020). The T3E pool of Psm Ph3, determined here using 

451 PIFAR (Martínez-García et al. 2016), consisted of 20 complete effectors and eight 

452 truncated proteins (HopAS1, AvrPto1, HopAO1, HopAZ1, HopAA1, HopA2, 

453 HopM1 and HopW1). Taking into account the phylogenetic proximity between 

454 Psm and Psn strains (Figure 2, Figure S2), it was particularly interesting to 

455 compare their T3E repertoires. The analysis determined a core of 28 T3Es, 

456 highlighting the very close relationship between Psm and Psn strains (Figure 7). 

457 This Psn-Psm core includes the 24 T3Es included in the soft-core genome (≥ 

458 95% of the strains) of the four previously established P. savastanoi pathovars of 

459 woody hosts (Moreno-Pérez et al. 2020), plus HopG1, HopBM1, AvrRpm2 and a 

460 novel putative T3E (WP_032074452) recently identified in all P. savastanoi 

461 strains sequenced (Moreno-Pérez et al. 2020). Notably, Psm Ph3 and all four Psn 

462 strains encode specific truncations of AvrPto1 and HopA2, as well as a complete 

463 version of HopAT1 not found in any of the other three P. savastanoi pathovars. 

464 However, a truncated version of HopAS1 was exclusively found in the Psm Ph3 

465 genome. Furthermore, all Psn strains contain two specific T3E, HopBD1 and 

466 HopAF1-1, the latter being absent in strain Psn23. In addition to these, HopAY1 

467 is present in Psm Ph3 and all Psn strains except for Psn23 (Figure 7). 

468 Despite the phylogenetic proximity between Psn and Psm strains (Figure 2, 

469 Figure S2) and their highly similar T3E content, hierarchical clustering based on 

470 T3E content, including the observed strain-specific T3E truncations, clearly 

471 separated Psm Ph3 from the four Psn strains (Figure 7), suggesting that Psm 

472 Ph3 encodes exclusive versions of several T3Es that might contribute to define 

473 the pathogenicity profile of Psm strains.

474 Heterologous expression of AvrRpt2 restore HR elicitation to Psm Ph3 in 

475 tobacco plants. Strains of P. syringae sensu lato are characterized by their ability 

476 to induce the hypersensitive response (HR) in tobacco plants, which is dependent 

477 on the translocation into plant cells of T3Es recognized by plant resistance (R) 
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478 proteins and is a key test in the LOPAT scheme for diagnosis of fluorescent 

479 pseudomonads (Hueck 1998;  Lelliott et al. 1966). Additionally, the T3SS plays a 

480 key role in P. savastanoi-host plant interactions (Caballo-Ponce et al. 2017a). 

481 However, Slovenian (Pirc et al. 2015) and Spanish (Caballo-Ponce and Ramos 

482 2016) Psm isolates induce the HR on tomato but not on tobacco, suggesting that 

483 their specific T3E repertories are recognized in tomato but not in tobacco plants. 

484 Psm Ph3 (France), Ph5 (Germany) and 1397 (USA) (Table 1), did not trigger an 

485 HR on N. tabacum cv. Xanthi leaves (not shown). To test whether heterologous 

486 expression in Psm of an HR-inducing T3E in tobacco restored the ability of the 

487 strain to elicit the HR in this host, Psm strain Ph3-AvrRpt2, expressing the 

488 avrRpt2 gene from P. syringae pv. tomato 1065, was infiltrated in tobacco leaves. 

489 Gene avrRpt2 is known to elicit a visible HR in N. tabacum cv. Xanthi (Mudgett 

490 and Staskawicz 1999) and, thus, necrosis of the inoculated tissue typical of HR 

491 was observed in tobacco leaves infiltrated with Psm Ph3 expressing avrRpt2 

492 while no visible HR was triggered by the wild type strain (Figure 8). Therefore, 

493 the inability of Psm Ph3 to induce the HR in tobacco is likely due to a differential 

494 T3E repertoire compared to other strains of P. syringae sensu lato.

495
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497 DISCUSSION

498 In this work, we undertook the characterization and comparative analysis of 

499 representative strains isolated from dipladenia in the five countries where MaLSS 

500 has been reported (Table 1). Our combination of cross-pathogenicity tests, 

501 metabolic and plasmid profiling, and phylogenetic analyzes, combined with 

502 comparative genomic analyses of Psm Ph3 with other P. savastanoi strains, 

503 allowed us to identify a homogeneous group of P. savastanoi strains clearly 

504 differentiated from those included in the four established P. savastanoi pathovars 

505 of woody hosts. Based on the unique capabilities of these strains, we propose 

506 that the causal agent of MaLSS be identified as a new pathovar of P. savastanoi 

507 with the name P. savastanoi pv. mandevillae pv. nov., and strain Ph3 (CFBP 

508 8832PT), whose draft genome sequence is reported here, be designated as the 

509 pathotype strain. Following the international standards for naming pathovars of 

510 phytopathogenic bacteria (Dye et al. 1980), Psm strains Ph3, Ph5 and MSI13L 

511 (Table 1) were included in a permanent collection, the Collection Francaise de 

512 Bacteries Phytopathogenes (CFBP). Two additional Psm strains, Ph8 (CFBP 

513 8834) and MSI14S (CFBP 8836), isolated in France (Eltlbany et al. 2012) and 

514 Spain (Caballo-Ponce and Ramos, 2016), respectively, were also included in this 

515 collection.

516 Psm isolates from France and Germany showed similarity in their patterns of 

517 restriction digestion of plasmid DNA as well as their corresponding patterns of 

518 Southern hybridization with iaaM and iaaL probes (Eltlbany et al. 2012). Here we 

519 further show that the native plasmid profile is highly conserved among 

520 representative Psm strains from all countries where MaLSS has been reported, 

521 with all of them containing a native plasmid encoding the iaaM gene (Figure 1, 

522 Figure S1). In addition, we found a contig (NZ_NIAX01000110, approximately 7.7 

523 Kb) in the Ph3 draft genome encoding the iaaMH operon, the iaaL and matE 

524 genes, which are involved in the biosynthesis and transport of IAA-Lys in Psn 
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525 (Tegli et al. 2020). This contig shows conserved synteny with the genomes of 

526 most Psv, Psn and Psr strains and is likely plasmid-encoded, as has been shown 

527 for the iaaM gen in most Psn and only a few Psv strains (Caponero et al. 1995; 

528 Zhao et al. 2005; Pérez-Martínez et al. 2008). However, while the size of the 

529 iaaM-encoding plasmids in Psn and Psv is highly variable among strains (65 kb 

530 to 100 kb), all Psm strains contain a native plasmid of approximately 50 kb 

531 encoding the iaaM gene (Figure S1). This high conservation of the plasmids, 

532 together with the monophyletic origin of the Psm genetic lineage, its close 

533 association with some Psn strains (Figure 2), and the fact that dipladenia and 

534 oleander are the only P. savastanoi hosts of the Apocynaceae family (Caballo-

535 Ponce et al. 2017a), reinforces the hypothesis of a recent emergence of Psm 

536 strains from a Psn population (Eltlbany et al. 2012). 

537 Psm strains are also highly homogeneous in their ability to assimilate 

538 substrates, but distinct from strains of the other four pathovars (Figure 3, Table 

539 S2). In particular, Psm strains were unable to oxidize 13 substrates assimilated 

540 by all other P. savastanoi strains, suggesting the loss of a large number of 

541 metabolic activities during pathovar differentiation. These differences are evident 

542 in a dendrogram from hierarchical cluster analysis of metabolic profiles, where 

543 Psm strains are clearly separated from the other pathovars and in sharp contrast 

544 with the close phylogenetic relationship between Psn and Psm strains (Figure 2, 

545 Figure S2). The discrepancy between nutritional profiles and phylogenetic 

546 relationship has also been observed with other Psv strains (Ramos et al. 2012), 

547 other P. syringae pathovars and nonpathogenic pseudomonads (Mithani et al. 

548 2011; Rico and Preston, 2008), and is likely a result of host specialization. In this 

549 sense, Oksinska et al. (2011) established a link between the ability of 

550 Pseudomonas reactans to transform two of the substrates not oxidized by Psm 

551 strains, (N-acetyl-D-glucosamine and D-threalose), among other compounds, 

552 and its efficiency to colonize wheat seedlings. In addition, thuA and thuB mutants 

553 of Sinorhizobium meliloti, affected in trehalose catabolism, were reported to be 
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554 more competitive than the wild-type strain to invade alfalfa roots and form 

555 nitrogen-fixing nodules (Jensen et al. 2005). Therefore, the exclusive and 

556 homogeneous metabolic profile of Psm strains suggest evolutive adaptation to 

557 their plant host and, together with phylogenetic analyses and plasmid-based 

558 molecular methods, facilitates the unequivocal identification of P. savastanoi 

559 strains belonging to this pathovar.

560 Our results confirm the differential host range previously reported for Psv, Psn, 

561 Psf and Psr strains (Moreno-Pérez et al. 2020). They also reveal a well-defined 

562 and distinctive host range for the five Psm strains, which caused disease in olive, 

563 ash and dipladenia but not in oleander (Figure 4, Table 2). Psm and Psn showed 

564 similar host ranges, with two of the three Psn strains examined inducing knot-like 

565 overgrowths in dipladenia stems (Figure 4). However, the lack of pathogenicity of 

566 Psm in the oleander cultivar we used and its natural association with dipladenia 

567 are defining phenotypes separating this pathovar from Psn. Additionally, 

568 pathovars Psv, Psn and Psm all induced symptoms in olive and ash. Although 

569 remarkable, it is not surprising that closely related pathovars share common 

570 hosts, at least in inoculations under controlled conditions. For instance, P. 

571 savastanoi pv. glycinea R4 was isolated from a diseased soybean (Glycine max), 

572 its natural host. However, this bacterium is also pathogenic to bean (Phaseolus 

573 vulgaris) and mung bean (Vigna radiata), which are typical hosts of the closely 

574 related pathovar P. savastanoi pv. phaseolicola (Baltrus et al. 2012). In fact, 

575 overlapping host ranges appear to be a common trend in the P. syringae complex 

576 (Morris et al. 2019). Despite this, bacteria display an ecological host range that 

577 has traditionally justified their pathovar classification. In this sense, disease 

578 outbreaks of MaLSS all over the world have always been associated to typical, 

579 clonal Psm strains and not to bacteria from any other P. savastanoi pathovar. 

580 This could be explained by different factors, including the dissemination of a 

581 particular clone with propagative plant material or the likely requirement of various 

582 genetic determinants besides T3SS that would ultimately ensure successful plant 
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583 infection, such as those involved in metabolism or competitive abilities. Our 

584 results, thus, support the notion that the novel pathovar Psm originates from an 

585 ancestral Psn lineage that lost the ability to infect oleander and specialized in 

586 infecting dipladenia plants in field conditions, causing the emergent MaLSS 

587 disease worldwide.

588 Here we demonstrated that Psm Ph3 caused systemic infections in dipladenia. 

589 The migration of P. savastanoi along the host plant has already been reported for 

590 Psv and Psn strains (Wilson 1935;  Wilson and Magie 1964; Penyalver et al. 

591 2006), taking place through xylem vessels by Psv (Maldonado-González et al. 

592 2013;  Marchi et al. 2009;  Rodriguez-Moreno et al. 2009) and using the laticifers 

593 and the xylem by Psn (Wilson and Magie 1964). Since dipladenia and oleander 

594 belong to the same plant family, Psn and Psm might use a common 

595 mechanism(s) for their dissemination through the plant. When occurring, 

596 systemic infection of dipladenia causes complete wilting, a phenomenon not 

597 reported before in naturally infected plants. Nevertheless, the potential 

598 occurrence of systemic infections in the field is critically relevant for nurseries and 

599 should be taken into account during the implementation of their disease 

600 management programs. 

601 Comparison of the Ph3 genome with those of the four sequenced Psn strains 

602 yielded 43 Ph3 singleton genes (identity <90%), 30 of which are likely plasmid-

603 encoded (Table 3). These results suggest that Ph3 might contain a plasmid not 

604 present in any of the Psn strains examined, perhaps involved in the virulence 

605 and/or the host range of the strain. According to this, in addition to 10 hypothetical 

606 proteins, three transcriptional regulators and a gene coding for a murein-

607 degrading enzyme were found among these singleton genes. The relevance of 

608 transcription factors in the regulation of virulence in P. syringae has been recently 

609 highlighted by the identification of the binding motifs of 100 transcription factors 

610 in the P. savastanoi pv. phaseolicola 1448A genome, 25 of which were 

611 demonstrated to be virulence-associated master regulators (Fan et al. 2020). On 
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612 the other hand, degradation and modification of peptidoglycan by murein-

613 degrading enzymes has been correlated with subversion of host immunity in 

614 Gram-negative bacterial pathogens (Juan et al. 2018). Nevertheless, 

615 identification of these Ph3 singleton genes in the genome of other Psm strains 

616 isolated in different locations would shed light on their role as host range 

617 determinants.

618 It is well known that the T3E repertoire is highly variable across strains of the 

619 P. syringae complex (Baltrus et al. 2011;  Dillon et al. 2019) and is crucial for the 

620 establishment of compatible and incompatible interactions with plant hosts 

621 (Jones and Dangl 2006). Although the T3E repertoires of Psn and Psm strains 

622 are highly similar, several T3E sequences show truncations specifically encoded 

623 by either Ph3 (HopAS1) or both Ph3 and all Psn strains (HopAO2, AvrPto1). In 

624 fact, hierarchical clustering of the strains based on their T3E content revealed 

625 these allelic variants to be crucial and sufficient in separating Psm Ph3 from all 

626 other Psn strains (Figure 7). Nevertheless, other more subtle allelic differences 

627 not considered in this study could also be relevant for the host range of Psm 

628 strains. On the other hand, the inability of Psm strains to elicit an HR in N. 

629 tabacum leaves might be due either to the absence of effector(s) recognized by 

630 the plant immune system or to codification of specific T3E(s) suppressing 

631 effector-triggered immunity in N. tabacum. Thus, it could be possible that the T3E 

632 variants identified in Psm Ph3 are the result of the adaptation of this pathogen to 

633 dipladenia to avoid recognition by the plant immune system. In this sense, the 

634 observed truncations of AvrPto1 and HopAS1 in Psm Ph3 might have been 

635 selected for pathogenicity in dipladenia and, at the same time, are responsible 

636 for the inability of the strain to elicit an HR in tobacco leaves. In fact, AvrPto1 from 

637 P. syringae pv. tomato is differentially recognized by tomato and tobacco plants, 

638 as point mutations in the C-terminal region of this protein abolish the avirulence 

639 in tobacco but not in tomato (Shan et al. 2000). Furthermore, while HopAS1 is 

640 broadly present in P. syringae strains and contributes to virulence in tomato, 
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641 strains pathogenic in Arabidopsis carry truncated HopAS1 variants (Sohn et al. 

642 2012). In P. savastanoi, T3E truncations exclusively encoded by several 

643 pathovars have been recently identified and their role in host range has been 

644 proposed (Moreno-Pérez et al. 2020).

645 Description of P. savastanoi pv. mandevillae pv. nov. 

646 On LB plates, the bacterium forms circular, smooth, flat, cream-colored 

647 colonies that are resistant to 20 μg/ml nitrofurantoin. On KB plates, colonies are 

648 weakly fluorescent under UV light. Unlike most P. savastanoi, strains were 

649 negative for all LOPAT tests (levan production, oxidase, arginine dihydrolase, 

650 pectinolytic activity, and tobacco hypersensitivity). However, MLSA of 

651 concatenated partial sequences of gyrB, rpoD, gapA, rpoA and recA genes place 

652 the strains in phylogroup 3 (genomospecies 2) of the P. syringae complex 

653 clustering in a monophyletic lineage and, together with Psn strains, in a distinct 

654 clade that is well-separated from strains of the remaining P. savastanoi 

655 pathovars. Strains yield an amplicon of approximately 1.1 kb in PCR tests 

656 targeting the 3’ end of gene repA and the 5’ end of gene rulA, whereas other P. 

657 savastanoi strains produce smaller bands or no specific amplicons (Eltlbany et 

658 al. 2012). In Biolog GN2 plates, the strains are impaired in the transformation of 

659 13 compounds that are partially or completely oxidized by strains of the other four 

660 P. savastanoi pathovars, i.e. N-acetyl-D-glucosamine, L-fucose, maltose, D-

661 melibiose, L-rhamnose, D-trehalose, D,L-lactic acid, D-serine, uridine, thymidine, 

662 2-Aminoethanol, α-D-glucose-1-phosphate, D-glucose-6-phosphate. Strains of 

663 Psm are differentiated from the other four P. savastanoi pathovars of woody hosts 

664 by knot formation on dipladenia (Mandevilla spp., natural host), olive (Olea 

665 europaea) and ash (Fraxinus excelsior), and because they are not pathogenic in 

666 broom (Retama sphaerocarpa) and oleander (Nerium oleander) accession 

667 “white”. The pathotype strain of pathovar mandevillae is Ph3 (syn. CFBP8832PT).

668
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951 Table 1. Wild-type Pseudomonas savastanoi strains used in this study

Strain (syn.)a Host of isolation
Country of 
isolation

Year of 
isolation

Reference

pv. fraxini

NCPPB 1464
Fraxinus 
excelsior

United Kingdom 1963 Janse (1981)

NCPPB 1006 F. excelsior United Kingdom 1961 Janse (1981)
CFBP 5062 F. excelsior The Netherlands 1978 Janse (1991)

pv. mandevillae
Ph3 (CFBP 
8832)

Mandevilla 
sanderi

France 2008 Eltlbany et al. (2012)

MSI13L 
(CFBP 8835)

Mandevilla spp. Spain 2013
Caballo-Ponce and 

Ramos (2016)
Ph5 (CFBP 
8833)

M. sanderi Germany 2008 Eltlbany et al. (2012)

1397 M. splendens United States 2010 Putnam et al. (2010)
NIB Z 1413 M. sanderi Slovenia 2010 Pirc et al. (2015)

pv. nerii
Psn23 Nerium oleander Italy 2004 Tegli et al. (2011)
CFBP 5067 N. oleander Spain 2007 Janse (1991)
ITM 519
(ICMP 13546)

N. oleander Italy Before 1985 Surico et al. (1985)

pv. savastanoi

NCPPB 3335 Olea europaea France 1984
Pérez-Martínez et al. 

(2007)/D.E. Stead
CFBP 1670 O. europaea Italy Before 1959 D. Sutic
PseNe107 O. europaea Nepal 2007 Balestra et al. (2009)
DAPP-PG722 O. europaea Italy 2007 Hosni et al. (2011)

pv. retacarpa

CECT 4861
Retama 
sphaerocarpa

Spain 1996 Alvarez et al. (1998)
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952 apv, pathovar; syn., synonymous name in other bacterial collections; NCPPB, 

953 National Collection of Plant Pathogenic Bacteria (United Kingdom); CFBP, 

954 French Collection of Plant-associated Bacteria.

955
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956 Table 2. Cross-pathogenicity tests of P. savastanoi strains isolated from 

957 dipladenia or diverse woody hosts.

Host of isolation/Straina Dipladeniab Oliveb Oleanderb Ashb Broomb

Dipladenia
   Psm Ph3 10K 10K - 10S -
   Psm MSI13L 10K 10K - 5S 5K -
   Psm Ph5 10K 10K - 1S 9K -
   Psm 1397 10K 10K - 9S 1K -
   Psm NIB Z 1413 10K 10K - 8S 2K -
Olive
   Psv NCPPB 3335 - 10K - 10S -
Oleander
   Psn Psn23 - 1S 9K 8K 2E 10S -
Ash
   Psf NCPPB 1006 - - - 10E -
Broom
   Psr CECT 4861 - - - 10S 10K

958 aDipladenia, Mandevilla spp.; olive, Olea europaea; oleander, Nerium oleander; 

959 ash, Fraxinus excelsior; broom, Retama sphaerocarpa; Psm, Psv, Psn, Psf, and 

960 Psr, P. savastanoi pathovars mandevillae, savastanoi, nerii, fraxini, and 

961 retacarpa, respectively.

962 bK, Knot; S, swelling; E, excrescence; -, similar to the negative control (plants 

963 inoculated with 10 mM MgCl2). For each host and strain, numbers indicate the 

964 amount of a particular symptom generated out of 10 inoculation points.

965
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966 Table 3. Strain-specific proteins identified in P. savastanoi pv. mandevillae Ph3 

967 classified into functional categories. 

Protein IDa Description

DNA replication, recombination, mutation and repair
WP_058886974 Prophage PssSM-03, GDSL-like lipase/acylhydrolase family 

protein
WP_080719059 Putative ATP-dependent helicase
WP_095178651 Transposase ISPsy4
WP_095178747 MobC
WP_095178748 Nickase
WP_095178772 Putative Rep protein
WP_095178774 ParA-like partition protein
WP_095178775 ParB-like partition protein
WP_095178777 Resolvase
WP_095178897 Tyrosine recombinase XerC
Metabolism
WP_095178718 ATP phosphoribosyltransferase
WP_095178778 Membrane-bound lytic murein transglycosylase C

Toxins, antitoxins
WP_095178754 Type II toxin-antitoxin system RelE/ParE family toxin 
WP_095178755 Putative addiction module antidote protein 

Secretion System
WP_095178757 Type IV secretion system protein (VirD4)
WP_095178758 Type IV secretion system protein (VirB11)
WP_095178760 Type IV secretion system protein (VirB9)
WP_095178761 Type IV secretion system protein (VirB8)
WP_095178762 Type IV secretion system protein (VirB6)
WP_095178765 Type IV secretion system protein (VirB4)
WP_095178767 Type IV secretion system protein (VirB2)
WP_176467475 Type IV secretion system protein (VirB5)

Transcriptional regulator
WP_095178756 Putative transcriptional regulator
WP_095178773 TrfB protein 
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WP_095178779 Transcription elongation protein (SprT domain)

Hypothetical Protein
WP_005754776, WP_095178749, WP_095178750, WP_095178751, WP_095178752, 
WP_095178753, WP_095178768, WP_095178769, WP_095178770, WP_095178771, 
WP_095178776, WP_095178834, WP_095178863, WP_095178905, WP_095178907, 
WP_095178908, WP_095178957, WP_095179008

968 aBolded protein numbers indicate products from genes encoded in contig 

969 NZ_NIAX01000040 (27720 nt).

970
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Figure 1. Plasmid profile of P. savastanoi pv. mandevillae strains isolated in different countries. Native 
plasmids of P. savastanoi pv. savastanoi ITM 317 (M) were used as DNA molecular size marker. clp, 

chromosome and linearized plasmids. Strains are described in Table 1. 
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Figure 2. Phylogenetic analysis of P. savastanoi strains isolated from diverse woody hosts. The tree was 
constructed using MEGA7 (Kumar et al. 2016) with the maximum-likelihood method and concatenated 

partial sequences of gyrB, rpoD, gapA, rpoA and recA genes (total length 3219 nt). The tree was rooted with 
P. syringae pv. aesculi NCPPB 3681. 
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Figure 3. Hierarchical clustering of P. savastanoi strains based on their metabolic profiles. The similarity 
matrix was constructed using Euclidean distance with Morpheus software; cluster analysis was performed 

with the neighbor-joining method using MEGA7 (Kumar et al. 2016). The scale represents the linkage 
distance. Black, gray, and white boxes indicate complete, partial, and negative oxidation of the substrate, 
respectively. The 22 and 23 substrates showing for all the strains tested complete and negative oxidation, 

respectively, are indicated in Table S2. 
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Figure 4. Cross pathogenicity tests of P. savastanoi strains. (A) Symptoms most frequently generated by P. 
savastanoi strains at 90 days post-inoculation (dpi) in olive, oleander, ash, broom and dipladenia (see Table 
2 for details). 5 Psm strains: P. savastanoi pv. mandevillae (Psm) Ph3, MSI13L, Ph5, 1397 and NIBZ1413. 

(B) Symptoms induced in dipladenia stems by the indicated P. savastanoi strains at 90 dpi. Psn, Psv, Psf and 
Psr, P. savastanoi pathovars nerii, savastanoi, fraxini, and retacarpa, respectively. MgCl2, negative control 

plants inoculated with 10 mM MgCl2; +, virulent strain in the corresponding host; -, strain inducing no 
symptoms (similar to the negative control plants). 
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Figure 5. Systemic infection caused by P. savastanoi pv. mandevillae (Psm) Ph3 on dipladenia plants. (A) 
Development of secondary symptoms induced at 23 days post-inoculation by the GFP-tagged derivative of 
Ph3-GFP. The asterisk indicate the inoculation point. White boxes correspond to the petiole and leaf areas 
whose epifluorescence images are shown in (B) and (C), respectively. (D) and (E), epifluorescence images 
of a petiole and leaf from a non-infected dipladenia plant (negative control). The red background in these 

images is due to chlorophyll fluorescence. (F) Bacterial wilt of dipladenia plants infected with Psm Ph3 at 90 
days post-inoculation. 

178x59mm (300 x 300 DPI) 

Page 46 of 54

https://apsjournals.apsnet.org/action/showImage?doi=10.1094/PHYTO-11-20-0526-R&iName=master.img-004.jpg&w=374&h=123


 

Figure 6. Comparative genomic analysis of P. savastanoi pv. nerii (Psn) and P. savastanoi pv. mandevillae 
(Psm) strains. The flower plot diagram represents the number of genes in the core-genome (center), the 
accessory genes (petals) and the strain-specific genes (in brackets). Numbers were calculated using the 

pan-genome analysis tool BPGA (Chaudhari et al. 2016). 
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Figure 7. Distribution of T3SS effectors differentially encoded by P. savastanoi pv. mandevillae (Psm) and P. 
savastanoi pv. nerii (Psn). The yellow square frames T3SS effectors (T3Es) differentially encoded between 

Psm Ph3 and Psn strains (HopaAS1, HopAF1-1, HopAY1 and HopBD1) and T3Es that Psm Ph3 and Psn 
strains encode differently than the other three P. savastanoi pathovars of woody hosts (AvrPto1, HopAT1 
and HopA2). The hierarchical clustering tree of P. savastanoi strains based on their T3E repertories (left) 

was generated using Morpheus. All sequenced strains of Psm and Psn, as well as a representative strain of 
P. savastanoi pathovars savastanoi (Psv), fraxini (Psf) and retacarpa (Psr) were included in this analysis. 
The asterisks indicate a specific truncation of HopA2 only found in Psm Ph3 and Psn strains, different from 
that encoded by all other sequenced P. savastanoi strains. PT, pathotype strain; #, T3SS effectors included 

in the core genome of Psm Ph3 and Psn strains. 
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Figure 8. Restoration of HR elicitation to P. savastanoi pv. mandevillae Ph3 in tobacco leaves by 
heterologous expression of the T3SS effector AvrRpt2. Hypersensitive response (HR) of Nicotiana tabacum 

cv. Xanthi leaves 48h after infection with wild-type Ph3 or Ph3 expressing the T3SS effector AvrRpt2 from P. 
syringae pv. tomato 1065 (Ph3-AvrRpt2). 
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Figure S1. Localization of the iaaM gene in a native plasmid of P. savastanoi pv. 

mandevillae (Psm) strains. (A) Gel electrophoresis of plasmid preparations from the 

indicated Psm strains. (B) Southern blot hybridization of the plasmids shown in (A) 

using an iaaM probe. M, linear DNA molecular weight marker II DIG-labelled (Roche, 

Mannheim, Germany); clp, chromosome and linearized plasmids. The lower 

hybridization band likely corresponds to chromosomal DNA and/or linearized 

plasmids, given their width and undefined borders, and because the genomic context 

of one of the two iaaM paralogs found in the Psm Ph3 genome contains typical 

chromosomally-encoded genes (contig NZ_NIAX01000097). 
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Figure S2. Maximum likelihood phylogenetic tree of P. savastanoi core genome 

SNPs. The tree was rooted with P. syringae pv. ciccaronei ICMP 5710. Values in 

nodes are Bootstrap percentages from 100 replicates; the scale represents 

substitutions per site. Psv, Psn, Psf, Psr and Psm, P. savastanoi pathovars 

savastanoi, nerii, fraxini, retacarpa and mandevillae, respectively. P. savastanoi 

strains are described in Table 1 or were previously described (Moreno-Pérez et al., 

2020). 
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Figure S3. Predicted biological function of P. savastanoi pv. mandevillae (Psm) and 
P. savastanoi pv. nerii (Psn) strain-specific genes. Specific genes were classified by 
their predicted molecular function using Sma3s_v2 software (Casimiro-Soriguer et 
al., 2017). 
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Figure S4. Bioinformatics prediction of the virulence gene repertoires of P. 
savastanoi strains using PIFAR. Black boxes and white boxes, presence or absence, 
respectively, of the indicated gene or gene set; asterisks, genes not found in the 
genome but identified by PCR; grey boxes, partial codification of core genes; striped 
box, a ptz gen (cytokinins biosynthesis) not found in the assembly but found in the 
unassembled reads. MDR, multidrug resistance transporter; ACR, acridine-like 
transporter from the resistance/nodulation/cell division (RND) family; SMR, small 
multidrug transporter family; MATE, multidrug and toxic compound extrusion family; 
OEP, outer membrane efflux protein (RND family); attC and attG, attachment gene 
homologs (Agrobacterium tumefaciens); xadM, adhesion gene homolog 
(Xanthomonas oryzae); Cellulose, cellulose synthase; Hema, hemagglutinin-repeat 
protein; Usher, outer membrane usher protein; Fimbrial, fimbrial protein. T-PAI, 
canonical tripartite T3SS; R-PAI, rhizobial T3SS; T4SS, type IV secretion system; 
T6SS, type VI secretion system. WHOP, genomic island carrying four operons and 
other genes involved in degradation of phenolics (Caballo-Ponce et al., 2017).  
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Table S1. Primers used in this study 

Name Sequence (5’→3’) 

gyrB_F351 GTGGTCGCGACCTTGTGC 
gyrB_R920 AAGTATCCGGCGGCTTG 
rpoD_F383 CGCCAAACGTATCGAAGAAG 
rpoD_R1055 GCTATTTTCAGGCCGGTTTC 
gapA_F220 GACCGTCAATGGTGACCG 
gapA_R931 GCCCATTCGTTGTCGTACC 
rpoA_F22 ATGCAGATTTCGGTAAATGAGT 
rpoA_R350 GGGTTAACGATCTCGACATC 
recA_F197 GATCGTGGAAATCTACGGTCC 
recA_R935 GAGCGCTTTGCAGATTTCC 
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