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ABSTRACT 
 

The main objective of this End of Degree Project is the development of a real-time system 
oriented to the control and sensorisation of a Ball & Plate system designed in 1997. It will 
be tried to adapt the system to the nowadays technology by means of replacing the initial 
controller card with an Arduino DUE board and substituting the original system’s camera 
by a mobile phone duly programmed to fulfil this task.  

In addition, an initialization of the main components of the system will be carried out 
including in it the definition of the table’s reference position and a relation between the 
samples taken by the camera in pixel units and the real position of the ball in centimetres. 

Lastly, there will be taken the first steps in the design of a controller to control the 
trajectory of a ball on the plate.  
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RESUMEN 
 

El objetivo principal de este Trabajo Fin de Grado es el desarrollo de un sistema en 
tiempo real para el control y la sensorización de un sistema Ball & Plate diseñado en 1997. 
Se tratará de adaptar el sistema a la tecnología actual introduciendo un Arduino DUE como 
microcontrolador y la cámara de un teléfono móvil como sensor de posición.  

Además, se llevará a cabo una inicialización de los principales componentes del sistema 
en la que se definirá la posición de referencia de la mesa y se establecerá una relación entre 
las muestras tomadas y la posición real de la bola en centímetros. 

Por último, se darán los primeros pasos en el diseño de un controlador que permita el 
control de la trayectoria de la bola sobre el plato.  
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PARAMETER IDENTIFICATION 
 

BALL & PLATE DYNAMICS 

Variable Definition Units 

qi i-th generalized coordinate (either position or angle) m/°/rad 

q̇i First derivative of the i-th generalized coordinate by time  / 
°
 /  

K Kinetic energy of the system J 
V Potential energy of the system J 
Qi i-th generalized force J 

x, y Position coordinates in the plate m 
α, β Plate inclination angles °/rad 

r Ball centre radius vector m 
v  Ball centre velocity vector m/s 
rb Ball radius m 
ω Angular velocity vector of rotating ball rad/s 
Ω Angular velocity vector of rotating plate rad/s 
Ib Ball inertia kg·m2 

Ip Plate inertia kg·m2 
mb Ball mass kg 

 

PARAMETER VALUES 

Variable Definition Value 

Kα Servo system static gain 0.1878 rad/MU 
Kb Ball-plate system gain 4.6 m/rad·s2 

Kx Ball position sensor constant 5.56 MU/m 
K (=Kα · Kb · Kx) Overall system gain 4.803 s-2 

Δα Plate angle step size 
0.000628 rad 

0.03598 ° 
f Typical driving frequency 400 Hz 

ω α | f=400 Hz Nominal angular velocity of the plate 0.2513 rad/s 

αmax/-αmin Limit plate angle 
0.1878 rad 

10.76 ° 
xmax/-xmin Limit ball position 0.18 m 

ω Servo system nominal speed 1.338 s-1 

Tm Servo system equivalent time constant 0.187 s 
dx × dy Size of the plate area 0.4 × 0.4 m 

l Pivot-plate margin distance 0.2 m 
d Diameter of a stepper shaft 0.016 m 

Δφ Stepping motor step size 
0.0157 rad  

0.9° 
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1. Introduction 
 

The Ball & Plate apparatus is a MIMO (multiple inputs-multiple outputs), open-loop 
unstable and nonlinear system which englobes the fields of mechanical and electrical 
engineering, automatic control, and computer science. For this reason, it is a very useful tool 
for education in mechatronics that can give the students a practical and illustrative view of 
these fields. Moreover, as it also concerns real time control, it can be seen the importance 
of the integration and communication between all the components to achieve a proper 
operation of the system. [1] 

The system consists of a table tennis ball of almost negligible mass, a table containing 
a plate whose inclination with respect to both axes can be regulated by the action of a pair 
of synchronous step motors, and a camera which provides the position of the ball in real 
time to enable the control to be done. 

The prototype employed in this project was designed in 1997 using a technology from 
that time. Nowadays, most of this technology is completely outdated and needs an 
adaptation to current times to be usable again.  

Originally, a control card operated from an old-time PC was used to carry out the control 
task. It was decided to replace it with an Arduino DUE microcontroller because it is the best 
for real-time controlling tasks from the whole Arduino family. To program it, it was used 
the Sloeber interface which is an Eclipse IDE that offers a wider range of possibilities than 
the Arduino IDE, such as real-time control. [2] 

On the other hand, the camera was substituted by a mobile phone that, thanks to a new 
Android program development, was able to detect the position of the ball and send it every 
33 ms. Thanks to this change, despite it is a task that has not been accomplished because it 
is out of the scope of this project, it could be possible to establish a wireless connection with 
the phone (either Bluetooth or IP connection) so that the system could be controlled 
remotely.  

This document will follow a similar structure to the one described in the content table. 
First, there will be described the objectives that have been set for this project, stating the 
steps followed to achieve each of them. Then, it is included a state-of-the-art research 
about marketable and non-marketable prototypes related to the Ball & Plate apparatus that 
can be found in real life. Another chapter will be dedicated to the plant’s transfer function 
obtention, including in it all the calculations and theorical development necessaries to fulfil 
this task. Finally, to end up the contextualization of the project, it is introduced a system 
description where each of the main components of the system are described in depth 
(plate, motors, drivers, motherboard, microcontroller, camera…) and where it is explained 
the logic that the table follows. 

Further on, to start with the automatic control part of the project, it is opened a new 
section related to the initialization of components. In it, it is described the process 
followed to find a horizontal reference position for the plate, as well as a relationship 
between the position of the ball in pixels and in centimetres.   

Then, having all the necessary components appropriately initialized, it is started the 
controller design in sights of fulfilling the assignment of controlling the ball’s trajectory. 
Nevertheless, for this controller obtention it could not be invested as much time as 
necessary to define one that fitted in with this task. The final design is only a first approach 
of what it should eventually do. 
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2. Objectives 
 

The objective of this End of Degree Project is the start-up of the Ball & Plate system. To 
accomplish it, it is necessary to follow several steps: 

1. Comprehension of the inner functioning of the table. 
 

2. Adaptation of the system to the actual technology. 
 

3. Definition of the plate’s horizontal position as reference position for the plate. 
 

4. Demonstration of the method used to convert the camera’s samples in pixels to 
centimetres. 

 
5. Open-loop control of the plate. 

 
6. First approach to the design of a controller to control the trajectory of a ball on 

the plate. 

 

 

Figure 1: System sketch description [3]. 
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3. State of the art research 
 

The ball and plate system have an eminently educational application, not only for 
students but also for companies which can employ this example as a guideline to develop 
other products. It can be taken as a good example because its behaviour is certainly complex 
as it is a nonlinear, multivariant and open-loop unstable system. [1] 

 
The principal ball and plate systems can be catalogued in two categories: marketable and 

non-marketable. The first ones are those produced and commercialized by companies, 
whereas the second ones are those referred to the homemade systems where people who 
have mechatronic as a hobby develop prototypes that can serve as inspiration to others or 
even, if they have it patented, sell it to companies for a certain price. [4] 

 

3.1. Marketable prototypes 
 

There are several companies that trade products which are related to or based on the 
Ball & Plate system. 

3.1.1. Leybold GMBH 
 

Leybold is a company that mainly distributes physical, chemical, biological, and 
technological equipment for almost all of the branches of each field. Inside the Control 
and Automation, they present a large list of prototypes, not only including the Ball & Plate 
apparatus, but also the Inverted Pendulum or the Twin Rotor MIMO among some others.  

 

                                    

      Image 1: Leybold’s Ball & Plate [5].       Image 2: Leybold’s Inverted Pendulum [6].      Image 3: Leybold’s Twin Rotor MIMO [7]. 

 
The Inverted Pendulum is similar to the Ball & Plate apparatus but instead of having 

two possible direction movements it has only one. The aim of system is to, by moving 
back and forward the trolley where the pendulum in joint, make it to remain in a vertical 
position even when receiving a disturbance. It is a stability problem with only one degree 
of freedom.  

On the other hand, the Twin Rotor MIMO has a behaviour that resembles a helicopter 
but having a fixed attack angle of the rotors and controlling the aerodynamic forces by 
varying the speed of the motors. It shares with the Ball & Plate that it is a stability 
problem and a MIMO system too.  
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3.1.2. Quanser 

Quanser is a company whose main objective is to “provide a modern framework for 
engineering education through a physical grounding of mathematical theory, manifested 
in a way that lets students see and feel how the mathematics flow out from the theory 
and into the physical world” [8].  

They develop prototypes for the fields of automatic control, robotics, aerospace, 
mechatronics, and electrical, earthquake and mechanical engineering. In the control one 
they have a much broader product offer than Leybold as they have more variants for each 
model. For example, they have seven types of inverted pendulums, each of them with a 
different actuator, a robust appearance Ball & Plate system, 5 simulators, one gyroscope, 
one Twin Rotor… [9] 

                                

Image 4: Quanser's Inverted Pendulum [10].     Image 5: Quanser's Twin Rotor MIMO [11].     Image 6:  Quanser’s Ball & Plate [12]. 

 

3.2. Non-marketable prototypes 
 

As it has been said before, these are the prototypes developed by people who make 
homemade designs. Unlike the marketable ones, the cost is much lower, and, in addition, it 
gives the possibility of designing it to fulfil whichever are the requirements. They can also 
be a good chance for students in view of learning not only the control point but also the 
mechanical one. 

 

 
 

Image 7: Example of homemade Ball & Plate prototype [13]. 
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4. Methodology. Plant’s Transfer Function Obtention. 
 

The main objective of this chapter is the plant’s transfer function obtention as it will 
be necessary to design a controller that fit in correctly with the system. It has been decided 
to introduce this chapter because it is important to understand where the plant’s expression 
comes from in order to design an accurate controller and to be able to know how certain 
modifications in the system may affect the plant’s expression. 

 Before starting, it is important to highlight that during this whole chapter where there 
are going to be obtained different equations that describe the system’s behaviour, it has 
been followed the CE 151 Ball & Plate User’s Manual [14]. Each of the variable’s meanings 
can be seen in the PARAMETER IDENTIFICATION table attached above.  

In addition, to understand the relation existent between angles α, β and position 
variables x, y it is included a diagram where this relation can be observed, as well as what 
it is defined as positive directions for all of them. 

             
 
 
         

4.1. Ball & Plate Dynamic Modelling 
 

To obtain a definition of the system’s dynamic, it is followed the general form of the 
Euler-Lagrange equation which will have to be applied to both the ball and the plate. 

 
𝑑

𝑑𝑡

𝜕𝐾

𝜕�̇�𝑖
−

𝜕𝐾

𝜕𝑞𝑖
+

𝜕𝑉

𝜕𝑞𝑖
= 𝑄𝑖 

Equation 1: Euler-Lagrange general form equation. 

 Before starting to define each of the energy terms, it is convenient to define Qi. This 
variable is referred to the generalized force given by the torque generated by the servo 
including the transmission system. Therefore, it will be null for the position variables as 
they do not have influence in it, whereas, for the angular ones, it will have a certain value. 
These values will be obtained using the following torque equation 𝑸𝒊 = 𝑭𝒊 𝒅 𝐜𝐨𝐬 (𝒊) for 
each of the angles, where d is the horizontal distance between the pivot (which is coaxial 
to the motor axis) and the point of the plate where the force is applied. Writing it in a 
vector form: 

𝑄 = 𝑄  𝑄  𝑄  𝑄 = 0   0   𝐹  𝑑 𝑐𝑜𝑠𝛼   𝐹  𝑑 𝑐𝑜𝑠𝛽  
 

Once defined this vector, the kinetic and potential energy equations of the ball are 
introduced. 

𝐾 =   
1

2
 𝑚  𝑣 +

1

2
 𝐼  𝜔   =   

1

2
 𝑚 �̇� + 𝑦 ̇ + 𝐼  

�̇�

𝑟
+

�̇�

𝑟
  

Equation 2: Kinetic energy equation for the ball. 

Figure 2: Reference system definition 
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𝑉 = 𝑚  𝑔 ℎ =  −𝑚  𝑔 (𝑥 𝑠𝑖𝑛𝛼 + 𝑦 𝑠𝑖𝑛𝛽) 

Equation 3: Potential energy equation for the ball. 

It has been added a negative sign before the potential energy expression because, as 
it can be observed in Error! Reference source not found., if either α or β increase 
following the positive sense defined, the potential energy decreases, whereas if the 
angles decrease, the potential energy increases. This is solved by adding that negative 
sign. 

 
Repeating the same process for the plate: 

𝐾 =   
1

2
 (𝐼 + 𝐼 ) �̇� + �̇� + 

1

2
 𝑚  |Ω × 𝑟|  

Where the angular velocity - position cross product presents the following structure: 

|Ω × 𝑟| =  
−�̇�
�̇�
0

×
𝑥
𝑦
0

 =  �̇� 𝑦 + �̇� 𝑥 + 2�̇��̇�𝑥𝑦 

Introducing the obtained term in the plate’s kinetic energy equation: 

𝐾 =   
1

2
 [(𝐼 + 𝐼 ) �̇� + �̇� + 𝑚 (�̇� 𝑦 + �̇� 𝑥 − 2�̇��̇�𝑥𝑦) ] 

Equation 4: Kinetic energy equation for the plate. 

It is not included the potential energy term of the plate because it remains constant. 

Putting together the above equations it is obtained that the kinetic and potential 
energy equations of the system are: 

𝐾 = 𝐾 + 𝐾 =
1

2
𝐼 + 𝐼 �̇� + �̇�  + 𝑚 �̇� 𝑦 + �̇� 𝑥 + 2�̇��̇�𝑥𝑦 + 𝑚 +

𝐼

𝑟
(�̇� + �̇� )  

Equation 5: Kinetic energy equation of the system. 

𝑉 = 𝑉 =  𝑚  𝑔 (𝑥 𝑠𝑖𝑛𝛼 + 𝑦 𝑠𝑖𝑛𝛽) 

Equation 6: Potential energy equation of the system. 
 

Introducing all these equations in the Euler-Lagrange one and applying each of the 
derivatives they are finally obtained the equations that describe the system’s dynamic.  
 

𝒙:  𝒎𝒃 +
𝑰𝒃

𝒓𝒃
𝟐

�̈� − 𝒎𝒃 �̇�𝟐𝒙 + �̇��̇�𝒚 + 𝒎𝒃𝒈𝒔𝒊𝒏𝜶 = 𝟎 

𝒚:  𝒎𝒃 +
𝑰𝒃

𝒓𝒃
𝟐

�̈� − 𝒎𝒃 �̇�𝟐𝒙 + �̇��̇�𝒚 + 𝒎𝒃𝒈𝒔𝒊𝒏𝜷 = 𝟎 

𝜶:      𝑰𝒑 + 𝑰𝒃 + 𝒎𝒃𝒙𝟐 �̈� + 𝒎𝒃 �̈�𝒙𝒚 + �̇��̇�𝒚 + �̇�𝒙�̇� + 𝟐�̇��̇�𝒙 + 𝒎𝒃𝒈𝒙𝒄𝒐𝒔𝜶 =  𝑭𝜶 𝒅 𝒄𝒐𝒔𝜶   

𝜷 ∶      𝑰𝒑 + 𝑰𝒃 + 𝒎𝒃𝒚𝟐 �̈� + 𝒎𝒃 �̈�𝒙𝒚 + �̇��̇�𝒚 + �̇�𝒙�̇� + 𝟐�̇��̇�𝒙 + 𝒎𝒃𝒈𝒙𝒄𝒐𝒔𝜷 =  𝑭𝜷 𝒅 𝒄𝒐𝒔𝜷 

Equation 7: Expressions that define the system’s dynamics. 
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4.2. Ball & Plate Model Simplification  
  

The aforementioned position expressions are the exact description of the system’s 
position dynamics. Nevertheless, several assumptions can be made to simplify it.  

1) The angular equations might be neglected. As the frequency introduced in the 
stepper (400 Hz) is below the plate’s acceleration limit, no steps can be lost and, 
added up to the fact that the ball’s load moment is almost null due to its very 
small weight, the α and β plate angles can be considered directly as inputs 
instead of the angular forces.  
 

2) When analysing the position expression, it can be observed that the centrifugal 
force term 𝑚 �̇� 𝑥 + �̇��̇�𝑦 , when being compared to the other gravitational ones 
and fixing the motor frequency to 400 Hz, shows a, roughly, 1:25 ratio between 
them. This means that the gravitational terms are 25 times bigger than the 
centrifugal one. Therefore, this centrifugal term can be neglected. 

 
3) As the angle variations are low (≈±5°), the sine function can be mathematically 

approached to its argument. 

𝒔𝒊𝒏𝜶 ≈ 𝜶 

4) The ball’s inertia is: 

𝑰𝒃 =
𝟐

𝟓
𝒎𝒃 𝒓𝒃

𝟐 

 

  Considering all these possible simplifications, the final model obtained is: 

𝒎𝒃 +

𝟐
𝟓

𝒎𝒃 𝒓𝒃
𝟐

𝒓𝒃
𝟐

�̈� − 𝒎𝒃𝒈𝒔𝒊𝒏𝜶 = 𝟎 

𝟏 +
𝟐

𝟓
�̈� = 𝒈𝒔𝒊𝒏𝜶 

 
 

 

 

Equation 8: Ball & Plate simplified position dynamic model. 

  

�̈� =
𝟓

𝟕
 𝒈 𝒔𝒊𝒏𝜶 ≈ 𝑲𝒃𝜶 �̈� =

𝟓

𝟕
 𝒈 𝒔𝒊𝒏𝜷 ≈ 𝑲𝒃 𝜷 
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4.3. Transfer function obtention 
 

Before finally obtaining the plant’s transfer function, several steps need to be taken. 
First, the state equations that represent the system’s model based on the state vector will 
be defined. This vector contains the three variables on which the system mainly depends: 
the ball’s position (x), the ball’s velocity (v) and the plate’s slope (α). 

𝑥 =  
𝑥
𝑣
𝛼

  

Applying derivatives to this vector and using the equations expressed in the previous 
paragraph, the state equations can be easily determined. In the first place, if the first 
vector component (x) is derived, it is trivial to see that it is equal to the second of the 
vector’s components (v).  

�̇� = 𝒗 

Then, the velocity’s derivative is equal to the ball’s acceleration, whose expression has 
been deduced before (Equation 8). However, as it is being analysed is the overall system, 
the constant that multiplies the angular term in Equation 8 will no longer be only referred 
to the ball but to the whole system. For this reason, the constant (K) will be the product 
of the ball’s constant (Kb), the servo system static gain (Kα) and the ball position sensor 
constant (Kx). This last two constants are defined in two of the system’s description 
chapter’s paragraphs (5.2 Motors, 5.6 Camera). 

�̇�  =  �̈�  =  𝐾 · 𝐾 · 𝐾 ·  𝛼 =  𝑲 ·  𝜶 

Applying the Laplace transform to this expression, it is obtained the first part of the 
system’s transfer function. 

ℒ[ �̈� ] = ℒ[ 𝐾 · 𝛼]   →    𝑠 · 𝑥(𝑠) = 𝐾 · 𝛼(𝑠)   →   
𝑥(𝑠)

𝛼(𝑠)
=

𝐾

𝑠
 

Equation 9: Plant's first transfer function term. 

Last, to obtain the expression for the angular velocity term, it is previously required 
to understand the servo system dynamics. Before, in the simplification model paragraph, 
it has been said that the angular term could be neglected, and that the plate’s angles were 
directly system’s inputs. Nevertheless, due to the servo system’s dynamics, the response 
is not instantaneous, so it must be modelled. The problem is that, as it is a nonlinear 
process, the difficulty of finding an expression that describes this behaviour increases. 
To avoid this issue, despite making a certain error, it is approximated to a first order 
response which depends on the first order system time constant (Tm). 

 

Figure 3: Linearized vs. nonlinearized servo system response. 



Development of a real-time system oriented to  
the control and sensorisation of a Ball & Plate system  June 3, 2021 

 

Page 9 of 48 Jon Garnica Izco 

The angle reached by the motor will depend on the time constant Tm. This constant 
can take values between 0 and the result of the quotient between the maximum angle 
amplitude and the servo’s minimum angular velocity. Depending on the value chosen, 
the first-order graph will have a higher or lower slope: if Tm increases, the slope also 
does, and vice versa.  

To obtain the time constant it is used the MU unit. This unit is different depending on 
if it is referred to angle or distance movements, but its main goal is to represent these 
variations in decimal fractions, being 1 the maximum variations that they can 
experiment. For example, if it is said to the plate to rotate 1 MU, what it is really being 
said is that it must rotate the maximum angle possible (10°), whereas if it is wanted to 
move the ball 1 MU, what it is being told in metric units is that it is desired to move the 
ball 18 cm. 

𝑇 , =
𝛼

𝜔
=

1 𝑀𝑈

1.338
𝑟𝑎𝑑

𝑠

= 0.747 𝑠 

𝑇  𝜖 0 ,
 𝛼

𝜔
= 0.747  

Following the user’s manual [14], the value chosen for this variable, based on several 
closed loop simulations looking for the worst possible signal, is  , = 𝟎. 𝟏𝟖𝟕 𝒔𝒆𝒄𝒐𝒏𝒅𝒔. 

As the servo system’s behaviour has been approached to a first order one which depends 
on the estimated time constant, it will follow the expression: 

𝛼(𝑠) =
1

𝑇 · 𝑠 + 1
 𝑢 (𝑠)  →    

𝛼(𝑠)

𝑢 (𝑠)
=

1

𝑇 · 𝑠 + 1
 

Equation 10: Plant's second transfer function term. 

Where α is the real angle and uα is the desired one.  

Therefore, joining Equation 9 and Equation 10, it is finally obtained the system’s 
global transfer function F(s) in the Laplace domain. 

𝑭(𝒔) =
𝑲 

𝒔𝟐 · (𝑻𝒎 · 𝒔 + 𝟏)
 

 There is a last modification needed to be done before arriving to the final transfer 
function expression because the units used in the user manual are MU instead of degrees 
and centimetres. Therefore, there will be needed to apply a series of unit conversions 
until finally obtaining the expression in the desired units. 

𝑭(𝒔) =
 𝑲𝒃

𝒎

𝒓𝒂𝒅 · 𝒔𝟐 · 𝑲𝒙

𝑴𝑼
𝒎

· 𝑲𝜶

𝐫𝐚𝐝
𝐌𝐔

 

𝒔𝟐 · (𝑻𝒎 · 𝒔 + 𝟏)
=

𝒚𝒙[𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝑴𝑼]

𝒖𝜶[𝒂𝒏𝒈𝒖𝒍𝒂𝒓 𝑴𝑼]
 

𝑭(𝒔) =
 𝑲𝒃

𝒎

𝒓𝒂𝒅 · 𝒔𝟐 ·
𝝅 𝒓𝒂𝒅
𝟏𝟖𝟎°

·
𝟏𝟎𝟎 𝒄𝒎

𝟏𝒎
𝒔𝟐 · (𝑻𝒎 · 𝒔 + 𝟏)

=

𝒚𝒙[𝑴𝑼]

𝑲𝒙

𝑴𝑼
𝒎

  

𝑲𝜶

𝐫𝐚𝐝
𝐌𝐔

· 𝒖𝜶[𝑴𝑼]
 

 

 

 
Equation 11: System's global transfer function. 

𝑭(𝒔) =
 𝑲𝒃 ·

𝝅 
𝟏𝟖𝟎

· 𝟏𝟎𝟎

𝒔𝟐 · (𝟎. 𝟏𝟖𝟕 · 𝒔 + 𝟏)
 

𝒄𝒎

°
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5. System’s description 
 

5.1. Plate 

It consists of a 0.4 x 0.4 m square piece of metal. Its centre of mass is joint to the base 
unit through a shaft located on the middle of the plate making the load moment to be null 
with respect to this point and helping to simplify the system dynamics. To adjust its 
inclination, there are attached a pair of tight threads to each of the four plate edges. 
Between both edges, each thread is winded onto a pivot coaxial to the motors which, as it 
has a smaller diameter that the motor, applies to the system a reduction factor that makes 
the plate to rotate at a more adjusted velocity. 

As the thread is winded onto the pivot, when it starts to spin, it provokes the emergence 
of a pair of opposite tensile forces in the edges of the plate to which this thread is attached, 
making the table to start tilting in the desired direction. 

 

Figure 4: Plate rotation diagram for one of the axes. 

5.2. Motors 

There are two M061-LE08 synchronous step motors from the Superior Electric house, 
which operate with a DC voltage of 1.25 V and a current on 3.8 A, and have a relation 
between the number of steps and revolutions of 200 step/rev. Its angular velocity depends 
on the frequency of the pulse signal introduced. Typically, this frequency will be fixed to 400 
Hz, but it could be modified if desired, always considering the dynamics of the system to 
avoid reaching excessively high speeds.  

 

      Image 8: Motor image. 
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Stepper motors are composed of a rotor and a stator. The stator has 4 coils joint by 
pairs with phases A and B, whereas the rotor is a permanent magnet with two poles. 
However, as both the stator and the rotor are toothed having a hundred teeth (two 
sections of 50 teeth), it will take the motor to complete a full revolution 200 steps. [15] 

The functioning of this motor consists of the consecutive energization of coils. This 
way, when a current appears in one of the coils, it is generated a magnetic field that 
makes the rotor spin in that direction. Once it is aligned with this field, the following coil 
starts to get energized, creating a new magnetic field in a perpendicular direction to 
the previous one that begins to attract the rotor in this new direction. [15] 

Thanks to this successive coil functioning, it is possible to configure the motor in a full 
or half step setting: if when the next coil starts working, the previous one has already 
stopped, it works in full step mode; but if when the next coil starts working, the previous 
one has not stopped yet, it will be created a magnetic field in the bisector direction 
between them that would make the rotor to take only half a step. [16] In this project it 
has been set in a half step mode. 

 

Image 9: Two pole rotor-four coil stator functioning diagram [16]. 

 

Image 10: Representation of a 100 toothed rotor and stator (the number of phases does not correspond with the 
project's one) [15]. 

To create the 400 Hz pulse wave, as the function in charge of creating it could only be 
called from the main program from millisecond to millisecond, it was only called two out 
of five times, getting this way globally a 2.5 ms period. This solution solves the wave 
generation problem, but it may provoke the apparition of some others such as vibration. 

 
Figure 5: 400 Hz pulse wave construction. 
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5.3. Drivers  

As a need of having external access to the motors, there are included two drivers 
which link them either to the system’s motherboard or directly to the control connector. 
It is configured with inverse logic, this is, when it receives a ‘0’ it is understood as ‘true’ 
and when it receives a ‘1’ it is understood as ‘false’. 

 

Image 11: Driver. 

On the one hand, the left terminals of the image are the ones connected to the motor. 
There exists a voltage difference between Vm and Vom (mass of the system) of 32 V 
provided by the power supply. This voltage is the one necessary to excite the coils and 
to generate a magnetic field capable of making the rotor to start rotating. However, to 
make it work, it is also needed a pulse wave to make this voltage oscillate between 0 and 
32 V and to, this way, excite consecutively coils A and B to make the rotor rotate. 

On the other hand, the right terminals are more related with the configuration and, 
some of them, are connected to the control connector. The following information has 
been obtained from the driver’s datasheet: [17] 

 𝐏𝐔: it is the pin through which it will be introduced the pulse wave. As it has been 
said in the last paragraph, it will be the one in charge of introducing the logic of when 
must each of the coils be excited. It goes negated because the driver has inverse logic. 
There is included a 4700 μF capacitor to filter the signal and avoid 
misunderstandings in the pulse wave. It must be always included. 

 𝐂𝐖/𝐂𝐂𝐖: it tells the direction of rotation of the motor. If it receives a ‘0’ it rotates 
counterclockwise, whereas if it receives a ‘1’ it rotates clockwise. 

 𝐇/𝐅: it defines if the stepper takes half or full steps. This pin is not linked to the 
control connector so there is no possibility of modifying it. It is set as a ‘1’ by default, 
so it takes half steps instead of full, what makes the plate movement smoother.  

 𝐀𝐖𝐎: “all windings off”. When the motor is not receiving pulses and it remains still 
and it cannot be moved because there is a holding torque. If this pin is on a low 
level, it deactivates this torque, and the plate can be moved manually; but if it is on 
a high level, it maintains this holding torque. 

 𝐑𝐄𝐃𝐔𝐂𝐄 𝐂𝐔𝐑𝐑𝐄𝐍𝐓: it is used to adjust the current supply to the motor. In can be 
configured in two ways: first, in a 0/1 logic – when receiving a ‘0’ it provides 1.0 A, 
whereas when receiving a ‘1’ it provides 3.8 A; second, if there is introduced a 
potentiometer, this current can be regulated. 

 𝐋𝐎𝐆𝐈𝐂 𝐂𝐎𝐌𝐌𝐎𝐍: it is internally joint to Vom. It is the mass of the circuit. 
 𝐎𝐏𝐓𝐎 𝐒𝐔𝐏𝐏𝐋𝐘 𝐎𝐔𝐓: it enables the user the use of an internal power supply. 

There is no external access to this pin. 
 𝐎𝐏𝐓𝐎 𝐒𝐔𝐏𝐏𝐋𝐘 𝐈𝐍: connection for opto-isolator power supply. No external access. 
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5.4. Motherboard 
 

The motherboard’s main objectives are directing the plate in each of the four 
possible directions (clockwise or counterclockwise rotation for each axis) and to 
indicate when does the plate arrive to one of the limits, this is, detecting when the 
end switch, located in the direction that the plate was moving, gets closed. Therefore, to 
accomplish these goals, there is included a 74LS00 device which is based on a NAND 
logic and whose connections can be observed in the figure below (Figure 6). From all the 
14 pins there will only be external access to DIR1 and DIR2 as direction inputs, and SW 
OUT 1 and SW OUT 2 as end switch outputs, which currently are on a high-level state 
(plus the GND terminal that will be common to the whole system). 

      

Figure 6: 74LS00 connection.                                 Image 12: System's motherboard. 

To fully understand the aforementioned diagram, it is necessary to determine the 
reference system that has been employed to know what it is referred to when speaking 
about directions. These assignments have been made with respect to the side where the 
control and power connections are emplaced. 

  

Figure 7: Reference system of the table. 

As it can be seen in Figure 6, the only difference between the upper and lower half is 
the axis with respect to which the action is applied. Therefore, to avoid repetitions, the 
analysis will only be made for one of them, the lower one.  
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5.4.1. 74LS00 connection analysis 

First, the direction introduced through DIR1 is compared to a high state value (‘1’). 
The logic followed in the direction terminal is that if DIR1=0, the plate rotates towards 
the left side, whereas if DIR1=1, it goes to the right one. As the gate employed is a NAND, 
the exit value will be the result of a negated boolean multiplication between both entries, 
and since one of them is always on a high level, the exit will be a negation of the direction 
entry.  

Then, this exit is short-circuited with both entries of the second NAND gate and 
shunted to the right-side end switch, whereas the exit of this gate is linked to the left 
contact. This makes the functioning of the contacts to depend on the direction selected. 
For example, the left contact will only work if the plate is rotating towards the left side, 
and so it will do for the right one. For this reason, despite there is not a pin for each of 
the switches but only one (SW OUT 1), it can be identified which of the four contacts has 
been closed with only one output. 

As an example, let us suppose that it is wanted to rotate the plate towards the left 
side until reaching the end switch. It would be introduced a ‘0’ in DIR1 - to tell the motor 
that it must move the plate to the left – and it will make a ‘1’ to appear in the exit of the 
first gate and in the inputs of the second one. In terms of voltage, a ‘1’ is equal to 5 V so, 
regardless of whether the right contact is closed or not, there will not be any change in 
voltage and SW OUT 1 will remain on a high level. Here it can be seen that the switches 
working directly depends on the direction in which the plate is moving.  

However, after going through the second gate, it would appear a ‘0’ (0 V) on the output 
of it, which means that, if the left contact gets closed, it will appear a voltage drop that 
would provoke a change of state in SW OUT 1 from ‘1’ to ‘0’. With this change of state, 
it is notified to the controller that the plate cannot rotate more in that direction and it 
will order the motor to stop. To avoid creating a short-circuit when this voltage drop 
happens, it is included the 4.7kΩ R3 resistance. 

To sum up the explanation, there are included two logic tables containing as inputs 
all the possible directions and end contact values, and SW OUT as an output. 

 

 
Table 1: Logic table 1 for directions and switches of the first axis.         Table 2: Logic table 2 for directions and switches of the second axis. 

The cases where “not possible” appears are referred to the ones where a contact from 
one side is closed when the plate is rotating towards the opposite one. It is not possible 
for this to happen because the plate is the only component which is able of opening and 
closing the contacts. 

DIR1 SW RIGHT SW LEFT SW OUT 1 
0 Opened Opened 1 
0 Opened Closed 0 
0 Closed Opened 1 (not possible) 
0 Closed Closed 0 (not possible) 
1 Opened Opened 1 
1 Opened Closed 1 (not possible) 
1 Closed Opened 0 
1 Closed Closed 0 (not possible) 

DIR2 SW UP SW DOWN SW OUT 2 
0 Opened Opened 1 
0 Opened Closed 0 
0 Closed Opened 1 (not possible) 
0 Closed Closed 0 (not possible) 
1 Opened Opened 1 
1 Opened Closed 1 (not possible) 
1 Closed Opened 0 
1 Closed Closed 0 (not possible) 
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5.4.2. 5 V signal obtention 

For the system to work properly it is necessary to power the 74LS00 with 5 V. To 
obtain them, it is included in the motherboard a 7805 device a voltage regulator that 
reduces a 12 V input voltage to a 5 V one. Normally, there are added a pair of capacitors 
in parallel to filter the signal and reduce noise. 

 

 

Figure 8: 7805 voltage regulation circuit. 

Originally, these 12 V were supplied by the PC and were used to power the camera 
and the system’s circuit. Nevertheless, since this camera was no longer going to be 
employed, it was necessary to supply this voltage in some other way. After having a look 
to the system’s manual [14], it was found that one of the pins of the power supply 
connector was at a 32 V voltage (voltage required for the motors to work).  

Therefore, this voltage could be employed and brought to the input of the 7805 device 
after being previously reduced to 12 V by using a pair of voltage regulators. There were 
needed two of them because with only one, due to the 20 V voltage drop, the 
temperature of the device turned to be excessively high, and it was convenient to 
reduce it.  

This temperature increment could be quantified having a look to the 7812 datasheet, 
where it was found that this device had a TO-220 encapsulation meaning that its 
thermal coefficient was of 20 °C/W. Knowing the voltage and the current it is easily 
obtained the power dissipated (20V · 71mA = 1.42W) and, with it, the increment in 
temperature (1.42W · 20°C/W = 28.4 °C).  

 For this reason, instead of using only one to reduce from 32 V to 12 V, it was used a 
pair of them: one from 32 V to 24 V (7824 device) and another from 24 to 12 V (7812 
device) with a silicon heatsink joint to them to reduce the increment in temperature.  

 

 

Figure 9: 7824 and 7812 voltage regulation circuits. 

This circuit was built in a PCB taking as input of the circuit the VM pin (32 V) of one 
of the drivers and welding the output and the mass of the circuit to the 12 V and GND 
pins of the motherboard, respectively. This way it could be obtained the voltage needed 
without adding external components, getting a much more compact appearance and 
increasing its ease of use. 
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5.4.3.  Control connector pins 

Once the logic that the table follows has been defined, the only remaining point is the 
identification of each of the control connector pins and the definition of the signals 
related to them. In other words, to find out he relation between the system signals and 
correspondent control connector pins. From all the 25 available pins there are only used 
eight of them and they are connected in the way described in the below diagram (Figure 
10). 

 

Figure 10: 25 pin control connector description 

From the eight signals, four of them are external inputs (DIR1, DIR2, PULSE1, and 
PULSE2), two are outputs (SWOUT1 and SWOUT2) and the two remaining are the ones 
related with ground and the 12 V DC voltage.  

 DIR: they are the terminals through which it will be indicated the direction of 
rotation in each of the axes.  
 

o DIR1 (pin 20):  if it is introduced a ‘0’ or a low level, the plate will rotate 
towards the left side, whereas if it is introduced a ‘1’ it will rotate towards 
the right one.  

o DIR2 (pin 22):  if it is introduced a ‘0’ or a low level, the plate will rotate 
towards the upper side, whereas if it is introduced a ‘1’ it will rotate towards 
the lower one. 
 

 PULSE 1 and 2 (pins 2 and 4): they are the pins through which the pulse wave, 
necessary for the motors to work, will be introduced. Depending on the period of 
this wave, the speed of rotation will be higher or lower. According to the system’s 
manual, the maximum frequency recommended for this signal is 400Hz (2.5 
milliseconds period) for both PULSE1 and PULSE2, so it has been the one selected. 
Apart from that, as it is wanted to spend as little time as possible generating the 
pulses, it was searched the minimum width that the system could understand as a 
pulse. For this purpose, a PWM wave with a switching frequency fixed to 400 Hz was 
introduced, and the duty cycle was reduced until it reached a point where the table 
stopped working because it was no longer able to recognize the pulses. The duty 
cycle correspondent to this point was between the 4 and 5% (10 μs – 12.5 μs pulse 
width), so it was decided to fix this width to 12 μs. 
 

 SW OUT 1 and 2 (pins 7 and 8): these pins will notify the controller when the plate 
arrives to one of the end switches. In normal conditions, they will be at 5V (‘1’ in 
digital logic) and they will turn to a 0 V voltage when closing one of the 
correspondent contacts. 
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5.4.4. Power connector pins 
 

 

Figure 11: 9 pin power connector description. 

 The power connector has 9 pins from which most of them remain unused. Originally, 
the system also employed the second and the fourth pin to supply a 12 V voltage to the 
camera, but since that camera is no longer being used, they have become useless. 

 Vm (pins 6 and 7): these pins are at a 32 V voltage and they supply the necessary 
voltage for both motors to work (one for each). Moreover, as it can be seen in the 
5.4.2 5 V signal obtention chapter, they are used to obtain the 12 V that are 
employed in the motherboard.  

 Vom (pin 5):  it is the ground of the power supply and of the whole system as they 
are all connected. 

 

5.5. Arduino DUE 
 

As it has been said before, the device selected for the task of controlling the system has 
been the Arduino DUE. This microcontroller board is based on the Atmel SAM3X8E ARM 
Cortex-M3 CPU and it is a very appropriate controller to carry-on real-time tasks. [18] 

This microcontroller has a special characteristic that is its operating voltage. Instead of 
being 5 V as most of the Arduino microcontrollers, it is 3.3 V. Given that the table’s output 
pins (SW OUT 1 and SW OUT 2) are at a 5 V voltage, it was needed to introduce a voltage 
divider to reduce it to 3.3 V when connecting them to the microcontroller. This task has a 
major importance because if this voltage is not reduced, the chances of irreversibly 
damaging the Arduino are very high. 

To lower it, a 10 kΩ resistor joint to another 20 kΩ one was included, so that the current 
was not excessively high, and it could not damage the system.  

 

Figure 12: Voltage divider circuit (5V-3.3V). 
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From all the inputs/output pins that it offers, they have only been used the digital 
ones because all the signals involved were only digital. Below, they are shown the pins 
that have been used to connect the table to the Arduino. 

 Pin 46: PULSE 1. 
 Pin 47: PULSE 2. 
 Pin 48: SW OUT 1. 
 Pin 49: SW OUT 2. 
 Pin 50: DIR 1. 
 Pin 51: DIR 2. 

For its power supply it is employed the Arduino’s programmable port connected to 
the computer. It was wanted to use the 12 V existent between pins 25 and GND of the 
control connector as input voltage of the microcontroller (it admits voltages between 7 
and 12 V as input voltages), but it was observed that if the table remained stopped for a 
certain time, the voltage in these pins suddenly dropped to around 5 V and the table 
started having an unexpected behaviour. An attempt was made to discover the reason 
why this happened, without reaching any result, so it was decided to use the 
programmable port as power supply and lay aside the other option. 

 

5.6. Camera 
 

The device employed as a camera is a Huawei smartphone with an Android 
operating system. There has been developed an application capable of detecting the ball 
on the plate thanks to the contrast in colours between them (white ball vs. black plate). 
It is important to try to avoid light bulbs or solar light because, in case of appearing any 
kind of reflection on the plate, it could not be able of detecting the ball.  

The sampling period has been set to 33 ms, slightly below the one of the original 
camera (40 ms), but this difference is not enough to make problems related with this 
question to appear. It also has a 256 x 256 pixels resolution, which is equal to the initial 
one. Nevertheless, in case of looking for a better resolution, it could be increased, but for 
the goal of this project it is enough. 

The camera sends every 33 ms the information of the accumulated number of 
frames and the coordinates in pixels of the last sample taken from the ball’s position. 
This sample, after being applied a certain relationship between pixel and distance units, 
is translated to the distance in meters in both axes with respect to the reference system 
of the plate so that it can be more understandable by the user. 
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6. Initialization of components 
 

6.1. Table’s reference position 

First, it is needed to define a reference position with respect to which the rotations 
of the plate will be made. This position will be the one at which the plate is completely 
horizontal, that is, the one at which when placing the ball on the table it remains still.  

The regulation will be first done for one of the axes and then for the other. In the first 
place and regardless of where the plate is initially, it is selected a direction of rotation 
(CCW) and it is indicated to the table to start moving until reaching the correspondent 
end switch. Once arrived, the direction is changed, and it starts rotating towards the 
opposite switch until reaching it. During this second path, it is stored in an auxiliar 
variable the number of steps that the motor has taken until getting to close the contact 
so that it is known how many steps are there necessary to go from one side of the table 
to the other. Knowing this, it is trivial to find the point at which the plate will remain 
horizontal. It is just needed to cover half of the steps taken to reach this point. After 
completing the process in this axis, it is repeated for the other one, making the plate to 
finally end in the desired position.  

 

Figure 13: Plate's reference position obtention flowchart. 
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6.2. Ball’s position relationship initialization 

The camera sends a string every 33 ms indicating where the ball was the last time it 
was seen. This string contains the number of frames that have been taken since the 
camera started to take samples and the ball’s coordinates in pixel units. The importance 
of knowing the number of frames resides in being capable of determining if any sample 
has been lost. If this value had not be included, it would not be possible to know this.  

But in sights of carrying on the control task, the ball’s position is the value that 
matters the most. This value is provided in pixels so it must be found a way of modifying 
it to have it as a distance in metres with respect to the centre of the plate, which will be 
taken as reference system.  

The main difficulty in defining the relation between the value of the sample in pixels 
and in centimetres is the low stability of the camera’s mount. The mount selected was 
not designed for this purpose, so it is very unstable and, in case of needing to remove the 
smartphone from it, it is almost impossible to place it again in the same position that it 
was before removing it. For this reason, it is necessary carry on a calibration every time 
the system is initialized to know the pixel coordinates of each of the plate edges.  

 

Figure 14: Camera's and plate's reference systems. 

The way of getting to do this without needing to calibrate the camera manually 
each time is the following one: first, and after having reach the reference position of the 
table, it is said to the plate to rotate an angle of -5° in both axes, making the ball to move 
to the bottom left corner. Once it has arrived, samples of its position are taken until 4 
seconds have passed since the plate moved to that angle. Then, from all the samples, it 
is only taken the last of them and it is stored in a variable.  

Afterwards, it is said to the plate to rotate 10° in the opposite direction in both axes, 
arriving to a +5° angle position, which makes the ball move to the upper right corner. 
Once arrived, it is repeated the sampling process and the last of them is stored in another 
variable. This way, it is known the position in pixels of the ball in both corners and, 
knowing that in metres these points are (-18 cm, -18 cm) and (18 cm, 18 cm), it can be 
obtained the relation between the sample in pixels and centimetres. When this task is 
done, it is told to the plate to go back to its reference position. 
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Nevertheless, the data sent by the camera is a string type and has the following 
structure: 

 

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠, 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒, 𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒) 

Equation 12: Camera's data structure. 

 
 To know when does a string finish, it will be searched the “CR” bytecode of carriage 

return. This bytecode is coded as 0x0A, which is a 10 in decimal, and it is sent to mark 
the ending of a string. There are other ways of indicating this end (LF o CR/LF) but in 
this case, CR has been the mode employed. [19] When this byte arrives, it is known that 
the string has finished. 

Thus, to make this data usable, it is necessary to convert this string to six float 
variables (three for each corner). To fulfil this task what it will be done is to read the 
strings and, as the values are separated by commas, look for them so that each of the 
values can be differentiated and stored in different integer variables. However, this is an 
operating mode that will work for the first two values but not for the third and last of 
them because there is not a comma after it.  For this last value, it will not be necessary to 
look for any character because the string was already cut before with the CR search, so 
when arriving to the end it will stop and store the last value read. 

However, the camera will not only send the position of the ball in each moment. There 
are some scenarios in which instead of a string it will send some data that it is not 
desired to be processed: 

 CE151: every time that the system is initialized it is sent this starting message, 
so whenever a string starts with a “C” it must know that it is due to the 
initialization and that it must not take it. 
 

 Partial string: the first sample may not start right in the beginning but at a 
certain position of the string, which means that, instead of sending a complete 
sample, it would only send a partial one. Therefore, the first one should never 
be analysed and always dismissed. 
 

 -2: it is unusual that this happens because the camera’s height is fixed, but if 
the camera observes the ball bigger than a certain size it will send a -2. This 
notification could also be helpful to detect reflections on the plate because for 
the camera they are seen as big-sized white stains and if any of them interfere 
with the ball detection, it will be notified. 
 

 -3: it will be returned in case of not detecting the ball.  
 

For this reason, there will be included some conditions that must be fulfilled to 
process the data received, avoiding all these possible errors. These processes are 
shown in the following flowcharts to have a more visual representation of them. 
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Figure 15: Ball position processing decision flowchart. 

 

Figure 16: Flowchart of the process carried on to define the relation  
between the position of the ball in pixels and in centimetres. 
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The ball positions in the upper and lower corner, after applying the conversion from 
string to float, are stored in four variables called xpos1, xpos2, ypos1 and ypos2, but to 
make them usable, it is necessary to convert them from pixels to centimetres. As this 
relation is linear, they can be written as the following equation system for each of the 
coordinates, where ‘1’ corresponds to the sample of the position of the ball when the 
plate is on a (-5°, -5°) angle and ‘2’ to the one when the plate is on a (5°, 5°) angle: 

 

 X-coordinate: 

𝑥1 [𝑐𝑚] = 𝑚𝑥 · 𝑥[𝑝𝑖𝑥𝑒𝑙𝑠] + 𝑛𝑥    →      𝑥1 [𝑐𝑚] = 𝑚𝑥 · 𝑥𝑝𝑜𝑠1 + 𝑛𝑥 

𝑥2 [𝑐𝑚] = 𝑚𝑥 · 𝑥[𝑝𝑖𝑥𝑒𝑙𝑠] + 𝑛𝑥   →      𝑥2 [𝑐𝑚] = 𝑚𝑥 · 𝑥𝑝𝑜𝑠2 + 𝑛𝑥 

  
 

 Y-coordinate 
 

𝑦1 [𝑐𝑚] = 𝑚𝑦 · 𝑦 [𝑝𝑖𝑥𝑒𝑙𝑠] + 𝑛𝑦    →      𝑦1 [𝑐𝑚] = 𝑚𝑦 · 𝑦𝑝𝑜𝑠1 + 𝑛𝑦 
 

𝑦2 [𝑐𝑚] = 𝑚𝑦 · 𝑦 [𝑝𝑖𝑥𝑒𝑙𝑠] + 𝑛𝑦   →      𝑦2 [𝑐𝑚] = 𝑚𝑦 · 𝑦𝑝𝑜𝑠2 + 𝑛𝑦 
 
 

Solving this equation system, it is obtained that: 
 

𝑛𝑥 = −18 −
36

𝑥𝑝𝑜𝑠2 − 𝑥𝑝𝑜𝑠1
· 𝑥𝑝𝑜𝑠1 

 

𝑚𝑥 =
36

𝑥𝑝𝑜𝑠2 − 𝑥𝑝𝑜𝑠1
 

 

𝑛𝑦 = 18 +
36

𝑦𝑝𝑜𝑠2 − 𝑦𝑝𝑜𝑠1
· 𝑦𝑝𝑜𝑠1 

 

𝑚𝑦 = −
36

𝑦𝑝𝑜𝑠2 − 𝑦𝑝𝑜𝑠1
 

 
Substituting in the initial expression it is obtained that the relation between pixels 

and centimetres is: 
 

𝑥 [𝑐𝑚] =
36

𝑥𝑝𝑜𝑠2 − 𝑥𝑝𝑜𝑠1
· 𝑥 [𝑝𝑖𝑥𝑒𝑙𝑠] − 18 ∗

𝑥𝑝𝑜𝑠1 + 𝑥𝑝𝑜𝑠2

𝑥𝑝𝑜𝑠2 − 𝑥𝑝𝑜𝑠1
 

 

𝑦 [𝑐𝑚] =
−36

(𝑦𝑝𝑜𝑠2 − 𝑦𝑝𝑜𝑠1)
· 𝑦 [𝑝𝑖𝑥𝑒𝑙𝑠] + 18 ∗

𝑦𝑝𝑜𝑠1 + 𝑦𝑝𝑜𝑠2

𝑦𝑝𝑜𝑠2 − 𝑦𝑝𝑜𝑠1
 

 

Equation 13: Relation between the ball’s position in pixels and in centimetres. 
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7. Controller design 
 

Once the table is already fully initialized, the control task can be carried out. The 
objective is to move the ball to a series of specific points of the plate trying to model a 
trajectory. To do it, the system’s position reference will be changing from time to time to 
the different points that it is wanted to move the ball. This time between changes must be 
sufficient for the ball to arrive to each position and stabilize there before moving to the next 
one.  

7.1. Open-loop plate control 

First, before introducing the controller it is advisable to start with an open-loop 
control of the system, this is, being able of moving the plate to a desired angle or to make 
it describe a certain rotation trajectory. The process is the same that the one depicted in 
the table’s reference position obtention with the only difference that now, instead of 
rotating until reaching a switch, the angle rotation will be marked in advance and, from 
it, it will be deduced the number of steps that are needed to take to reach that position. 
To do this conversion it is employed a relationship given by the system’s user’s manual 
[14] which relates the motor step size with the angle rotated per each step 
(Δα=0.03598 °/step).  

 

 

Figure 17: Open-loop control flowchart. 
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7.2. Controller design  

The above approach can be used if it is only wished to control the table’s position 
independently of the ball’s position, as the system plant is unstable. But as the goal of 
this system is to define a way to be able to control the ball’s trajectory, it will be 
necessary to close the loop and define a controller capable of controlling the ball. Apart 
from that, it is important to highlight that, to carry out all the controller simulations, it 
has been used the Scliab environment. 

7.2.1. Plant discretization 

Before starting with the controller design, it is mandatory to discretize the continuous 
plant obtained before and convert it to the Z-domain. To do it, instead of carrying on 
calculations by hand, it has been used the Scliab LTI library which has a specific function 
that executes the Z-transform (lti_toDiscrete(function, sample period)) for a certain 
sample period. In this case, as it has already been said, it has been selected a 33 
milliseconds one. 

 

𝐺𝑚(𝑧) = 0.000246193 ·
(𝑧 + 0.256214) · (𝑧 + 3.57341)

 (𝑧 − 1) ·  (𝑧 − 0.838223)
  

Equation 14: Plant’s discretized transfer function. 

 

7.2.2. Controller obtention using the pole assignment method. 
 

To define this controller, different options were shuffled. Initially, it was thought to 
use the same PID controller as the one used in the user’s manual but modifying certain 
parameters just to adjust it to the actual system. However, it turned to be more complex 
and inefficient than what it was first thought, and it was decided to change of idea. Then, 
it was thought of using the root locus designing method, but the controller obtained 
did not fulfil the requirements as it should. Hence, in the end, it was chosen the pole 
assignment designing method as it enables placing the poles where it is the most 
convenient to meet the specifications [20]. Regarding the project, the only specification 
that has been imposed is to have a null position error, but to accomplish this task it is 
not needed to apply any extra condition because the plant already has two integers that 
make this error to be zero. The block diagram of the system can be represented as 
follows: 

 

Figure 18: Control structure for pole assignment designing method [20]. 

Where B(z) and β(z) are the open loop zeros whereas A(z) and α(z) are the poles. 

𝐵(𝑧) = 0.000246193 · (𝑧 + 0.256214) · (𝑧 + 3.57341) 

𝐴(𝑧) = (𝑧 − 1) ·  (𝑧 − 0.838223) 
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To make the calculations easier, the position of the poles and zeros as well as the 
plant’s gain will be substituted by a series of variables.  

 K = 0.000246193 
 C1 =−0.256214 
 C2 =−3.57341 
 P = 0.838223 

Rewriting the plant’s expression using these new variables it results: 

𝐺𝑚(𝑧) = 𝐾 ·
(𝑧 − 𝐶1) · (𝑧 − 𝐶2)

 (𝑧 − 1) ·  (𝑧 − 𝑃)
 

It is also convenient to, beforehand, write the expressions of the controller D(z) and 
the closed loop poles γ(z) as a function of B(z), β(z), A(z) and α(z) to clear out what it 
is it going to be pursued. 

𝐷(𝑧) =
β(z)

α(z)
=

𝛽 · 𝑧 + 𝛽 · 𝑧 + 𝛽 · 𝑧  + ··· +𝛽

𝛼 · 𝑧 + 𝛼 · 𝑧 + 𝛼 · 𝑧  + 𝛼
 

γ(z) = 𝐴(𝑧) · α(𝑧) + 𝐵(𝑧) · β(𝑧) = 𝑧 + 𝛾 · 𝑧 +𝛾 · 𝑧 +··· +𝛾  

Once all these expressions have been defined, the design can be started. First, it is 
necessary to define the degree of these polynomials. The number closed loop poles, as it 
has been said before, is equal to the sum of the number of poles of the plant plus the 
controller ones, so the degree of this polynomial will directly depend on these two. 

𝑛 = 𝑛 + 𝑛  

The controller, in order not to have any delays, must have the same number of 
poles than zeros (if it had more poles than zeros, it would introduce an undesired delay 
in the control). 

𝑛 = 𝑛  

Last, it must also fulfil a condition related with the number of requirements ‘c’ that 
have been imposed to the system, such as damping, settling time, overshoot… this 
condition is directly related with the number of closed loop poles and it is mandatory to 
be accomplished for the assignation problem to have solution. 

𝑛 = 𝑛 − 1 + 𝑐 

Getting together the second and third equation, it results the following equation 
system: 

𝑛 = 𝑛 + 𝑛  

𝑛 = 𝑛 = 𝑛 − 1 + 𝑐 

Equation 15: Pole assignment conditions. 

From that system, knowing that the number of conditions is equal to 0 and the 
number of poles of the plant is equal to 3 it is trivial to know which will be the degree of 
each of the polynomials. 

𝑛 = 𝑛 = 2 

𝑛 = 5 
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 Knowing this coefficients, D(z) and γ(z) can be again reformulated in a more 
compact and defined style. 

 

𝐷(𝑧) =
𝛽 · 𝑧 + 𝛽 · 𝑧 + 𝛽

𝛼 · 𝑧 + 𝛼 · 𝑧 + 𝛼
 

γ(z) = 𝑧 + 𝛾 · 𝑧 +𝛾 · 𝑧 +𝛾 · 𝑧 +𝛾 · 𝑧+𝛾  

 
The P pole of the system’s plant (P = 0.838223) might be cancelled to make the 

calculations easier because it is a non-hazardous pole that will not provoke the 
apparition of non-desired behaviours on the loop. By cancelling it, it is removed one 
unknown of the problem, getting more simplified. Instead of it, it will be placed a pole in 
0.927 that will not worsen the system and, moreover, will make the system to stabilise 
in 2 seconds, which is enough time for the ball to arrive and stabilise on a certain point. 
It will be represented as zp.  

 
Furthermore, the closed loop polynomial can also be simplified by adding the pole 

that will be cancelled (P), the pole that will be added at 0.9 (zp) and another three 
dominated poles (zd) which, in order to be dominated by the other one, must satisfy the 
following condition. 

 
|𝑧𝑝| > 𝑧𝑑 →   |0.927| = 0.659 > 𝑧𝑑  

 
For this reason, the three last poles will be placed in z= - 0.6, z= - 0.61 and z=- 0.62 to 

make them the slowest possible while still being dominated by zp. After carrying on all 
these calculations, they present the following form: 

 
 

𝐷(𝑧) =
(𝛽 · 𝑧 + 𝛽 · 𝑧)(𝑧 − 𝑃)

𝛼 · 𝑧 + 𝛼 · 𝑧 + 𝛼
 

 
𝛾(z) = (𝑧 − 𝑧𝑝)(𝑧 − 𝑃)(𝑧 + 0.6)(𝑧 + 0.61)(𝑧 + 0.62) 

 

Recalling the above expression 𝛾(z) = 𝐴(𝑧) · α(𝑧) + 𝐵(𝑧) · β(𝑧) it can be formed an 
equation system to obtain the five remaining unknown parameters. For this task, it will 
be used the Scilab program, and the problem will be solved by means of converting it to 
a matrixial system. It is important to highlight that, as it was expected, the P pole will be 
cancelled. 

 
[(𝑧 − 1) ·  (𝑧 − 𝑃)] · [𝛼 · 𝑧 + 𝛼 · 𝑧 + 𝛼 ] + 𝐾 · [(𝑧 − 𝐶1) · (𝑧 − 𝐶2)] · [(𝛽 · 𝑧 + 𝛽 · 𝑧)(𝑧 − 𝑃)] = 
 
= (𝑧 − 𝑧𝑝)(𝑧 − 𝑃)(𝑧 + 0.6)(𝑧 + 0.61)(𝑧 + 0.62) = 0.21033 - 1.26153z + 2.8124z² -2.7569z³ +z⁴ 
 

⎣
⎢
⎢
⎢
⎡

  1   0   0 0 0
−2   1   0 1 0
  1 −2   1 −(𝑐1 + 𝑐2) 1
  0   1 −2 𝑐1 · 𝑐2 −(𝑐1 + 𝑐2)
  0   0   1 0 𝑐1 · 𝑐2 ⎦

⎥
⎥
⎥
⎤

 · 

⎣
⎢
⎢
⎢
⎡

 

𝛼
𝛼
𝛼

𝐾𝛽
𝐾𝛽

 

⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡

   1
 −2.7569
  2.8124

− 1.26153
   0.21033 ⎦

⎥
⎥
⎥
⎤
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 After solving this system, the coefficients are obtained: 

𝛼 = 1.        

𝛼 = −0.7722657 

𝛼 = 0.2237037 

𝐾𝛽 = 0.0153568 

𝐾𝛽 =  −0.0146026 

Substituting the terms in the controller it is obtained its final expression. 
 

𝐃(𝐳) = 𝟔𝟐. 𝟑𝟕𝟕𝟐 ·
(𝐳 − 𝟎. 𝟗𝟓𝟎𝟖𝟗) · (𝐳 − 𝟎. 𝟖𝟑𝟖𝟐𝟐𝟑)

           (𝐳^𝟐 − 𝟎. 𝟕𝟕𝟐𝟐𝟔𝟔𝐳 + 𝟎. 𝟐𝟐𝟑𝟕𝟎𝟒)
 

Equation 16: Controller expression. 
 

 Now, having the controller already designed, it can be tested how much does it fit in 
the system by doing some closed loop simulations. To do it, first it is necessary to obtain 
the system’s closed loop expression. 

 
 

𝑻(𝒛) =
𝑫(𝒛) · 𝑮𝒎(𝒛)

𝟏 + 𝑫(𝒛) · 𝑮𝒎(𝒛)
= 𝟎. 𝟎𝟏𝟓𝟑𝟓𝟔𝟖

(𝒛 − 𝟎. 𝟗𝟓𝟖𝟗) ∗ (𝒛 + 𝟎. 𝟐𝟓𝟔𝟐𝟏𝟒) · (𝒛 + 𝟑. 𝟓𝟕𝟑𝟒𝟏)

(𝒛 − 𝟎. 𝟗𝟐𝟔𝟗𝟎𝟗) · (𝒛 − 𝟎. 𝟔𝟐) · (𝒛 − 𝟎. 𝟔𝟏) · (𝒛 − 𝟎. 𝟔)
 

Equation 17: Closed loop system expression. 
 

Before starting to simulate, it is convenient to convert this expression back to the 
Laplace domain using a zero-order holder to observe not only the samples but all the 
points between them. In the following diagrams it is shown the response of the system 
when introducing a step input. 

 

    
 

It is observed that the settling time is in line with the previously established one as it 
starts following the reference after 2 seconds has passed. It can also be seen that a certain 
overshoot appears that will cause the ball to pass the point where it should go and, 
afterwards, return to it. This behaviour could be acceptable as the overshoot is not 
excessively high, but when having a look to the control action it is seen that it cannot be 
acceptable. 

Figure 19: System's discrete step response. Figure 20: System's continuous step response. 
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Figure 21: Closed loop control action. 

The control action has huge over and undershoots. This means that if, for example, it 
is wanted to move the ball 1 cm, the angle that will be indicated first to rotate will be of 
60º, which is much more than the greatest angle that the system can offer.  

To reduce this over and undershoot, a prefilter is included to cancel the closed loop 
zero at z=0.95089, which is what causes the appearance of this behaviour. It will be also 
necessary to introduce in the prefilter a certain gain (1-0.95089=0.0491098) to 
compensate this cancellation. 

𝐹(𝑧) =
0.0491098 · 𝑧

(𝑧 − 0.95089) 
 

Equation 18: Prefilter expression. 

 

𝑻(𝒛) = 𝟎. 𝟎𝟎𝟎𝟕𝟓𝟒𝟏𝟕
𝐳 · (𝐳 + 𝟎. 𝟐𝟓𝟔𝟐𝟏𝟒) · (𝐳 + 𝟑. 𝟓𝟕𝟑𝟒𝟏)

 (𝐳 − 𝟎. 𝟗𝟐𝟔𝟗𝟎𝟗) · (𝐳 − 𝟎. 𝟔𝟐) · (𝐳 − 𝟎. 𝟔𝟏) · (𝐳 − 𝟎. 𝟔)
 

Equation 19: Closed loop filtered expression. 

 

 

Figure 22: System’s diagram including the prefilter. [20] 

 𝑟 : ball’s reference position. 
 𝑟 ′: ball’s reference position after being applied the prefilter. 
 𝑒 : position error. Difference between the position of the ball in a certain time 

instant and its reference. 
 𝑎 : controller’s action. 
 𝑦 : system’s response. Position of the ball in a certain time instant. 
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Figure 23: Closed loop prefiltered discrete step response.             Figure 24: Closed loop prefiltered continuous step response. 

Comparing the obtained response with the one above it can be seen that, thanks to 
the zero cancellation, the response’s overshoot has fully disappeared making it much 
smoother than what it initially was. Nonetheless, it is interesting to highlight that the 
settling time remains invariant as the dominant closed loop pole responsible of this task 
has not disappeared from the transfer function.  

 

 

Figure 25: Controller's prefiltered action. 

 
Regarding the controller’s action, the over and undershoots have been considerably 

reduced. This means that, with this modification, if it is desired to move the ball, for 
instance, 3 cm, it would be necessary for the plate to rotate 9°, which is less than the 
maximum admissible for the plate; but if the distance to move would be greater than 3 
cm it would reappear the same problem than before but in a smaller magnitude than 
before. From all the controllers designed, it was the one that performed the best. 

To avoid rotations bigger than the maximum admissible for the plate that could 
endanger the system, it is introduced a rate limiter so that, in case of being requested 
an angle rotation greater than 10°, it would limit it not letting demand one greater than 
this magnitude. It will affect the settling time in those cases making it greater than what 
it was expected, but it is a security measure necessary to implement to protect the 
system. 
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7.2.3. Controller implementation. 
 

In order to implement the controller in the Arduino board, it is previously needed to 
apply the inverse Z-transform to the controller and the prefilter to obtain their 
expressions in a sample form. To facilitate the obtention of these expressions, they are 
converted to their z-1 form. 

D(𝑧) = 62.3772 ·
(1 − 0.95089 z ) · (1 − 0.838223 z )

           (1 − 0.772266 z + 0.223704 z )
 

(1 − 0.772266 z + 0.223704 z ) · D(z) = 62.3772 · (1 − 1.789113 · 𝑧 + 0.797058 · 𝑧 ) · 𝛿(𝑧) 

𝑑 − 0.772266 𝑑 + 0.223704 𝑑 = 62.3772 · (𝛿 − 1.789113 · 𝛿 + 0.797058 · 𝛿 ) 

𝒅𝒌 = 𝟎. 𝟕𝟕𝟐𝟐𝟔𝟔 𝒅𝒌 𝟏 − 𝟎. 𝟐𝟐𝟑𝟕𝟎𝟒 𝒅𝒌 𝟐 + 𝟔𝟐. 𝟑𝟕𝟕𝟐 · (𝜹𝒌 − 𝟏. 𝟕𝟖𝟗𝟏𝟏𝟑 · 𝜹𝒌 𝟏 + 𝟎. 𝟕𝟗𝟕𝟎𝟓𝟕𝟗 · 𝜹𝒌 𝟐) 

Equation 20: Controller samples. 

𝐹(𝑧) =
0.0491098 · 𝑧

(𝑧 − 0.95089) 
=

𝑟′(𝑧)

𝑟(𝑧)
 

(1 − 0.95089 · 𝑧 ) · 𝑟′(𝑧) = 0.0491098 · 𝑧 · 𝑟(𝑧) 

𝑟 − 0.95089 · 𝑟 = 0.0491098 · 𝛿  

𝒓 𝒌 = 𝟎. 𝟗𝟓𝟎𝟖𝟗 · 𝒓𝒌 𝟏 + 𝟎. 𝟎𝟒𝟗𝟏𝟎𝟗𝟖 · 𝜹𝒌 𝟏 

Equation 21: Prefilter samples. 

 
Where δ(z) is referred to the input of the system. 

As it can be seen, both expressions depend on previous samples of the controller or 
the prefilter and the input. Therefore, it will be necessary to store in a vector every 
sample taken and only discard them when they are no longer usable.  

Once this implementation has been completed, the only missing step is testing the 
system’s behaviour in a real environment. 
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8. Conclusion and future plans 
 

After having implemented the designed controller in the Arduino board to test the 
system’s real behaviour, it was observed that the components initialization was correctly 
reproduced both for the table and the ball, but the controller task, as it was expected, was 
not. The design of this controller was beyond the scope of this project and was only a first 
approximation of what would be necessary to carry out the control task, since arriving at a 
correct design requires a lot of time. Despite this fact, all the objectives described in the 
beginning such as the adaptation of the system to introduce an Arduino as a microcontroller 
and a phone camera as a position sensor, the initialization of components or the open loop 
control of the table, have been fully accomplished, so the project can be considered as a 
success.  

As future plans, there can be inserted some sources of error that may affect to the 
controller’s behaviour when being implemented. For example, a significant vibration 
appears on the plate due to the way that the pulse wave has been created and the type of 
motors employed that causes the ball to start bouncing and lose contact with the plate’s 
surface. This contact lose complicates the control of the ball because in those instants 
where the ball is suspended it is not possible to modify its position. Another source of error 
may be controller’s action that, as it has been said before, has an overshoot that might 
demand an excessively high angle when trying to reach a certain point making the action 
too aggressive and not enabling the ball to smoothly move. 

Some proposed solutions to these problems could be designing a better controller with 
a softer control action that took into account the possible disturbances that the system 
may suffer; finding another way of creating the 400 Hz pulse wave introduced in the step 
motors to decrease the plate vibrations; or using a heavier ball instead of a table tennis 
one to remove the ball’s bouncing (it must be taken into account that both the change in 
ball and frequency provokes a change in the system’s dynamics, so its transfer function 
should also be modified).  

Apart from designing a better controller, it could also be interesting to substitute the 
wired connection between the camera and the microcontroller by a Bluetooth or IP 
connection so that it could be monitored from any place without needing wires. Moreover, 
this change would allow the phone’s port to be used as a power port instead of a data traffic 
one, thus eliminating the phone battery problem. Obviously, this kind of connection is less 
reliable that the other as interferences may have a greater influence, so more caution in the 
communication will be required.  

Moreover, it could also be designed an interface containing a series of buttons with 
geometrical figures that, when being pressed, would indicate the system to draw with the 
ball that shape. For example, if the triangle button would be pressed, it would be said to the 
table to draw a triangular shape with the ball. For all this kind of tasks it would be critical 
to ensure a correct timing for each of them to avoid endangering the system functioning.  
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10. Ancillaries 
 

10.1. Camera Android programming code 
 

10.1.1. Camera Preview [21] 
 

/* 
 * Copyright (c) 2011-2014, Peter Abeles. All Rights Reserved. 
 * 
 * This file is part of BoofCV (http://boofcv.org). 
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"); 
 * you may not use this file except in compliance with the License. 
 * You may obtain a copy of the License at 
 * 
 *   http://www.apache.org/licenses/LICENSE-2.0 
 * 
 * Unless required by applicable law or agreed to in writing, software 
 * distributed under the License is distributed on an "AS IS" BASIS, 
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
 * See the License for the specific language governing permissions and 
 * limitations under the License. 
 */ 
 
package com.example.ce151; 
//package org.boofcv.example.android; 
 
import android.content.Context; 
import android.hardware.Camera; 
import android.util.Log; 
import android.view.SurfaceHolder; 
import android.view.SurfaceView; 
import android.view.View; 
import android.view.ViewGroup; 
 
import java.io.IOException; 
 
/** 
 * Displays (or hides) the camera preview.  Adjusts the camera preview so that 
the 
displayed ratio is the same 
 * as the input image ratio. 
 * 
 * @author Peter Abeles 
 */ 
public class CameraPreview extends ViewGroup implements SurfaceHolder.Callback 
{ 
        private final String TAG = "CameraPreview"; 
 
        SurfaceView mSurfaceView; 
        SurfaceHolder mHolder; 
        Camera mCamera; 
        Camera.PreviewCallback previewCallback; 
        boolean hidden; 
 
        public CameraPreview(Context context, Camera.PreviewCallback 
previewCallback, 
boolean hidden ) { 
                super(context); 
                this.previewCallback = previewCallback; 
                this.hidden = hidden; 
 
                mSurfaceView = new SurfaceView(context); 
                addView(mSurfaceView); 
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                // Install a SurfaceHolder.Callback so we get notified when 
the 
                // underlying surface is created and destroyed. 
                mHolder = mSurfaceView.getHolder(); 
                mHolder.addCallback(this); 
                // deprecated setting, but required on Android versions prior 
to 3.0 
        //        mHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS); 
        } 
 
        public void setCamera(Camera camera) { 
                mCamera = camera; 
                if (mCamera != null) { 
                        // need to start the preview here because it is 
possible for it to be paused and 
resumed and not 
                        // have surfaceChanged called if the orientation 
doesn't need to be changed.  
Yes, you will have 
                        // to start and stop the camera in the more common 
situations 
                        startPreview(); 
                        // Need to adjust the layout for the new camera 
                        requestLayout(); 
                } 
        } 
 
        @Override 
        protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) 
{ 
                int width,height; 
                if( hidden ) { 
                        // make the view small, effectively hiding it 
                        width=height=2; 
                } else { 
                        // We purposely disregard child measurements so that 
the SurfaceView will center 
the camera 
                        // preview instead of stretching it. 
                        width = resolveSize(getSuggestedMinimumWidth(), 
widthMeasureSpec); 
                        height = resolveSize(getSuggestedMinimumHeight(), 
heightMeasureSpec); 
                } 
                setMeasuredDimension(width, height); 
        } 
 
        @Override 
        protected void onLayout(boolean changed, int l, int t, int r, int b) { 
                if( mCamera == null ) 
                        return; 
 
                if (changed && getChildCount() > 0) { 
                        final View child = getChildAt(0); 
 
                        final int width = r - l; 
                        final int height = b - t; 
 
                        Camera.Size size = 
mCamera.getParameters().getPreviewSize(); 
                        int previewWidth = size.width; 
                        int previewHeight = size.height; 
 
                        // Center the child SurfaceView within the parent. 
                        if (width * previewHeight > height * previewWidth) { 
                                final int scaledChildWidth = previewWidth * 
height / previewHeight; 
                                l = (width - scaledChildWidth) / 2; 
                                t = 0; 
                                r = (width + scaledChildWidth) / 2; 
                                b = height; 
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                        } else { 
                                final int scaledChildHeight = previewHeight * 
width / previewWidth; 
                                l = 0; 
                                t = (height - scaledChildHeight) / 2; 
                                r = width; 
                                b = (height + scaledChildHeight) / 2; 
                        } 
                        child.layout(l,t,r,b); 
                } 
        } 
 
        protected void startPreview() { 
                try { 
                        mCamera.setPreviewDisplay(mHolder); 
                        mCamera.setPreviewCallback(previewCallback); 
                        mCamera.startPreview(); 
                } catch (Exception e){ 
                        Log.d(TAG, "Error starting camera preview: " + 
e.getMessage()); 
                } 
        } 
 
        @Override 
        public void surfaceCreated(SurfaceHolder holder) { 
                if (mCamera == null) { 
                        Log.d(TAG, "Camera is null.  Bug else where in code. 
"); 
                        return; 
                } 
 
                startPreview(); 
        } 
 
        @Override 
        public void surfaceDestroyed(SurfaceHolder holder) {} 
 
        @Override 
        public void surfaceChanged(SurfaceHolder holder, int format, int w, 
int h) {} 
} 
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10.2. Scilab controller simulations 
 
// Control 
clear 
s=%s; 
z=%z; 
Tm=0.033; 
// Tm=0.1; 
ts = 2 
// zp=0.9; 
zp = exp(-4.6*Tm/ts) 
 
// Modelo planta 
Kb = 4.6; 
KG = Kb * 100 * %pi /180 
Gs = lti_system(KG/((s^2)*(0.187*s+1)))  // cms/grado 
//lti_stepPlot(Gs)  // con una referencia de un grado recorre los 18 cms en 2.3 
segundos 
 
Gmz = lti_toDiscrete(Gs, Tm) 
                    cer pol K] = lti_getZpk(Gmz) 
c1 = real(cer(1)) 
c2 = real(cer(2)) 
p = real(pol(3)) 
 
//Cálculo controlador 
A=[ 1  0  0    0        0; 
   -2  1  0    1        0; 
    1 -2  1 -(c1+c2)    1; 
    0  1 -2   c1*c2  -(c1+c2); 
    0  0  1    0       c1*c2; 
] 
 
gammaz = (z-zp)*(z-0.6)*(z-0.61)*(z-0.62) 
//cgamma = flipdim(coeff(gammaz),2)(2:$) 
cgamma = flipdim(coeff(gammaz),2) 
 
// b=[1; -zp; 0; 0; 0;] 
 b = cgamma' 
x=inv(A)*b 
 
alfa0=x(1); 
alfa1=x(2); 
alfa2=x(3); 
beta0=x(4)/K; 
beta1=x(5)/K; 
 
Beta=(beta0*z+beta1)*(z-p); 
Alfa=alfa0*z^2+alfa1*z+alfa2; 
 
Dz=lti_system(Beta/Alfa, Tm) 
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Tz = lti_feedback(Dz*Gmz) 
lti_stepPlot(Tz) 
// Simulación 
tfin = 3; 
tk = 0: Tm : tfin; 
tc = 0: Tm/100 : tfin; 
 
Sa = lti_feedback(Dz,Gmz) 
ak = lti_simul(Sa, 'step', tk); 
y = lti_simul(Gs, zoh(ak, Tm), tc); 
plot(tc,y) 
plot(tk, ak, 'ro') 
 
// Prefiltrado 
cer = -beta1/beta0 
Fz = lti_system((1-cer)*z/(z-cer), Tm) 
Tyz=Fz*Tz 
lti_stepPlot(Tyz) 
rk = lti_simul(Fz,'step',tk); 
ak = lti_simul(Sa, rk, tk); 
y = lti_simul(Gs, zoh(ak, Tm), tc); 
plot(tc,y) 
plot(tk, ak, 'ro' ) 
 
Siz = lti_system(Gmz,Dz) 
Tyr = Fz*Tz 
lti_stepPlot(Tyr) 
 
[Dk]=lti_invZeta(Dz) 
[Fk]=lti_invZeta(Fz) 
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10.3. Real time control code 
 

// Do not remove the include below 
#include "CE151.h" 
 
#include "FreeRTOS.h" 
#include "task.h" 
#include "semphr.h" 
#include "timers.h" 
 
#include "converter.h" 
#include "analogSignal.h" 
 
#include <assert.h> 
 
/*************************************************** 
 *                    Prototypes 
 ***************************************************/ 
 
void controlTask( void *pvParameters ); 
void commTask(void *pvParameters ); 
 
void rtPrint(const char * cad ); 
void rtPrintFlush( void ); 
template <typename T> void rtPrint(const char * openStr, const T & x, const 
char * 
endStr = nullptr ); 
void rtPrint(const char * openStr, const double & x, const char * endStr = 
nullptr ); 
 
 
 
 
class MotorPasoAPaso 
{ 
public: 
        enum Direccion { CCW = LOW, CW = HIGH }; 
 
private: 
        Direccion direc { CCW }; 
        int pFin; 
        digitalOutput dir; 
        digitalOutput pulso; 
 
        const double pasosGrado {M_PI/(0.000628*180)}; 
        int nPasosObjetivo {0}; 
        int nPasos {0}; 
 
public: 
        // Stablish direction of rotation 
        void assignDirection( Direccion d ) { direc = d; 
dir.write((bool)direc); } 
        // It takes a step at 400 Hz on the initialization stage 
        void initStep( void ) { pulso.on();  delayMicroseconds(12); 
pulso.off();  delayMicroseconds(2500); } 
 
        MotorPasoAPaso( int pinDir, int pinPulso, int pinFin ); 
        bool finCarrera( void ) { return (digitalRead(pFin) == LOW); } 
 
        void init( void ); //It initializes moving the plate to a 0° position 
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        void setAngle( double angle );  // Fix the objective 
        void step( void );  // if it is necessary it takes a step 
 
}; 
 
void MotorPasoAPaso::setAngle( double angle ) 
{ 
        // *** Here it is coordinated the access to the nPasosObjetivo 
variable. Thi function will be called from the control task. 
        nPasosObjetivo = (int) (pasosGrado*angle); 
}; 
 
 
void MotorPasoAPaso::step( void ) 
{ 
 
        if (nPasos == nPasosObjetivo) return; 
        Direccion nuevaDireccion = (nPasos < nPasosObjetivo)? CW : CCW; 
        // If we cannot take a step, we return doing nothing 
        if ( finCarrera() && (nuevaDireccion == direc) ) return; 
        // If the direction of rtotaion has been changed, it is actualised. 
 
        if ( nuevaDireccion != direc )        assignDirection( nuevaDireccion 
); 
        // We take a step and we actualise the number of steps taken 
        pulso.on(); 
        delayMicroseconds(12); 
        pulso.off(); 
        nPasos += (direc == CW)? 1 : -1; 
} 
 
 
MotorPasoAPaso::MotorPasoAPaso( int pinDir, int pinPulso, int pinFin ) : 
dir(pinDir), pulso(pinPulso) 
{ 
        pFin = pinFin; 
        pinMode(pFin, INPUT); 
} 
 
// It must be called before starting to take real time steps  
 
void MotorPasoAPaso::init( void ) 
{ 
        assignDirection(CCW); 
        do { initStep(); } while (!finCarrera()); 
 
// We have arrived to one of the end switches 
// Turn around and start counting steps 
        assignDirection(CW); 
        int pasos {0}; 
        do { ++pasos; initStep(); } while (!finCarrera()); 
 
// Knowing the number of steps we can place the plate on the reference 
position (0°) 
        assignDirection(CCW); 
        for( int i = 0; i <= pasos/2; i++ )        initStep(); 
// Now it must be in the desired reference position 
        nPasos = 0; 
} 
 
MotorPasoAPaso motorX(50, 46, 48); 
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MotorPasoAPaso motorY(51, 47, 49); 
 
 
const int frecPulsos {400}; 
const int periodoPulsos = 3; 
int count {0}; 
 
void pulsosMotor( TimerHandle_t )  // It is called every “periodoPulsos” 
{ 
 motorX.step(); 
 motorY.step(); 
} 
 
 
struct commData 
{ 
        double accX, accY;    // Desired position of the plate in each moment 
        double bolaX, bolaY; 
}; 
 
unsigned int limPriority( unsigned int asked ) 
{ 
        return tskIDLE_PRIORITY + std::min(asked, (unsigned 
int)(configMAX_PRIORITIES - 1) ); 
} 
 
 
 
QueueHandle_t commQueue {nullptr}; 
SemaphoreHandle_t arduinoSema {nullptr}; // Mutex for function from the 
Arduino’s API 
 
void inicializaMesa( void ) 
{ 
        motorX.init(); 
        motorY.init(); 
} 
 
int leerDatosCamara(int * pframe, int * py, int * px); 
void limpiarDatosCamara(void); 
 
float mx,my,nx,ny; 
 
void inicializaBola (void) 
{ 
 
 motorX.assignDirection(MotorPasoAPaso::CCW); 
 motorY.assignDirection(MotorPasoAPaso::CCW); 
 for( int n = 0; n < 120; n++) 
 { 
  motorX.initStep(); 
  motorY.initStep(); 
 } 
 delay(4000); 
 int xpos1, ypos1; 
 int frame; 
 limpiarDatosCamara(); 
 int err = leerDatosCamara(&frame, & ypos1, &xpos1); 
 if ( err != 0 ) 
 { 
  Serial.println("Error calibrando camara 1"); 
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  return; 
 } 
 
 motorX.assignDirection(MotorPasoAPaso::CW); 
 motorY.assignDirection(MotorPasoAPaso::CW); 
 for( int n = 0; n < 240; n++) 
 { 
  motorX.initStep(); 
  motorY.initStep(); 
 } 
 delay(4000); 
 int xpos2, ypos2; 
 limpiarDatosCamara(); 
 err = leerDatosCamara(&frame, & ypos2, &xpos2); 
 if ( err != 0 ) 
 { 
  Serial.println("Error calibrando camara 2"); 
  return; 
 } 
 
 motorX.assignDirection(MotorPasoAPaso::CCW); 
 motorY.assignDirection(MotorPasoAPaso::CCW); 
  for( int n = 0; n < 120; n++) 
  { 
   motorX.initStep(); 
   motorY.initStep(); 
  } 
 
 
 
  Serial.print(xpos1); 
  Serial.print(", "); 
  Serial.println(ypos1); 
 
  Serial.print(xpos2); 
  Serial.print(", "); 
  Serial.println(ypos2); 
 
 
 // Ball calibration 
 
 
 mx=36.00/(xpos2-xpos1); 
 nx=-18.00-mx*xpos1; 
 
 my=-36.00/(ypos2-ypos1); 
 ny=18.00-my*ypos1; 
 
 
 
} 
 
void limpiarDatosCamara(void) 
{ 
 while(SerialUSB.dtr() && SerialUSB.available()) 
 { 
   String xtrans; 
   const char term = 10; 
   xtrans=SerialUSB.readStringUntil(term); 
 } 
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} 
int leerDatosCamara(int * pframe, int * py, int * px) 
{ 
 String xtrans; 
 
 while(!SerialUSB.dtr() || !SerialUSB.available()); 
 
   const char term = 10; 
   ººxtrans=SerialUSB.readStringUntil(term); //Read the data received 
as a string  
 
   if (xtrans.startsWith("C")) 
   { 
  Serial.println(xtrans); 
    return -1; 
   } 
 
 
  if ( xtrans.startsWith("-")) 
  { 
   Serial.print("Error: "); Serial.println(xtrans); 
   return xtrans.toInt(); 
  } 
 
 
      int firstComa = xtrans.indexOf(","); 
      String frame = xtrans.substring(0, firstComa); 
     
      int secondComa = xtrans.indexOf(",", firstComa+1); 
 
      String xpos = xtrans.substring(firstComa+1,  secondComa); 
      String ypos = xtrans.substring(secondComa+1); 
      
      *pframe = frame.toInt(); 
      *py = ypos.toInt(); 
      *px = xpos.toInt(); 
      return 0; 
    } 
 
 
void leerPosBola(float*py, float*px){ 
 int xpixel, ypixel, frame; 
 leerDatosCamara(&frame, &ypixel, &xpixel); 
 *px=mx*xpixel+nx; 
 *py=my*ypixel+ny; 
} 
 
// The setup function runs once when you press reset or power the board 
void setup() 
{ 
        Serial.begin(115200);     // Computer (Programming port DUE) 
        SerialUSB.begin(115200);  // Camera (Native port DUE) 
        while(!Serial); 
        Serial.println("[DBG] : A la espera ..."); 
 
 
        Serial.println("[DBG] : Inicializando la mesa"); 
        inicializaMesa(); 
        Serial.println("[DBG] : Inicializando la bola"); 
        inicializaBola(); 
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        Serial.println("[DBG] : Creando objetos de FreeRTOS"); 
        Serial.flush(); 
 
        arduinoSema = xSemaphoreCreateMutex(); 
 
if (!arduinoSema)  

Serial.println("[DBG] : No se pudo crear el mutex Arduino"); 
assert( arduinoSema ); 

 
 commQueue = xQueueCreate(1, sizeof(commData)); 
 
if (!commQueue)  

Serial.println("[DBG] : No se pudo crear la cola de comunicación"); 
assert( commQueue ); 

 
        Serial.println("[DBG] : Creando tareas"); 
        Serial.flush(); 
 
 
 
 
        TaskHandle_t controlTaskHandle { nullptr }; 
 
    // As it is configured, FreeRTOS 10 is the maximum priority 
 
BaseType_t xRet = xTaskCreate(controlTask, "ControlTask", 512, nullptr, 
limPriority(1), &controlTaskHandle); 
 
xRet &= xTaskCreate(commTask, "CommTask", 512, (void* )controlTaskHandle, 
limPriority(3), nullptr); 
 
        if (xRet == pdPASS)        Serial.println("[DBG] : Tareas creadas"); 
        else Serial.println("[DBG] : No se pudieron crear las tareas"); 
        assert( xRet == pdPASS ); 
 
    TimerHandle_t 
 
motorTimer = xTimerCreate( "PulsosMotor", pdMS_TO_TICKS(periodoPulsos), 
pdTRUE, nullptr, pulsosMotor ); 
 
 if ( motorTimer != NULL ) Serial.println("[DBG] : Temporizadores creados"); 
 else Serial.println("[DBG] : No se pudieron crear los temporizadores"); 
 
        Serial.flush(); 
        assert( motorTimer != NULL ); 
 
BaseType_t retMotor= xTimerStart(motorTimer, 0); 
 
if ( retMotor != pdFALSE) Serial.println("[DBG] : Temporizadores iniciados"); 
else Serial.println("[DBG] : No se pudieron iniciar los temporizadores"); 
 

Serial.flush(); 
assert( retMotor ); 

 
        // start FreeRTOS 
        vTaskStartScheduler(); 
} 
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unsigned long idleCounter {0}; 
void loop( void ) { ++idleCounter; } 
 
 
/*--------------------------------------------------*/ 
/*---------------------- Tasks ---------------------*/ 
/*--------------------------------------------------*/ 
 
 
// Global data... 
const unsigned int sampleTime {33}; // milisegundos 
const unsigned int commTime {1000}; // milisegundos 
constexpr unsigned commPeriod = commTime/sampleTime; 
 
 
unsigned long lostSamplesNumber {0}; 
unsigned long badConversionsNumber {0}; 
unsigned long maxLoopMicros {0}; 
 
 
 
  void controlTask(void *)  // The control task. 
  { 
    rtPrint("[DBG] : Control task starts.\n"); 
 
 
    commData eldato; 
 
 
    TickType_t xpreviousWakeTime = xTaskGetTickCount(); 
    TickType_t xLastWakeTime {xpreviousWakeTime}; 
 
 
    double postFrefantx {0.00}; 
    double postFrefanty {0.00}; 
    double err1x {0.00}; 
    double err2x {0.00}; 
    double err1y {0.00}; 
    double err2y {0.00}; 
    double accionx1 {0.00}; 
    double accionx2 {0.00}; 
    double acciony1 {0.00}; 
    double acciony2 {0.00}; 
 
    limpiarDatosCamara(); 
 
    while(true) 
    { 
         static unsigned long sampleNumber {0}; 
 
 // Read ball position 
 
              float x,y; 
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          leerPosBola(&y,&x); 
 
//control task 
 
         float xdeseo=x; 
         float ydeseo=y; 
         float postFrefx=0.95089*postFrefantx+0.0491098*xdeseo; 
         float postFrefy=0.95089*postFrefanty+0.0491098*ydeseo; 
 
         double errx = postFrefx - x; 
         double erry = postFrefy - y; 
 
         double accionx = 0.772266 *accionx1-0.223704 *accionx2+62.3772*(errx 
-1.789113 * err1x  +0.7970579 * err2x); 
         double acciony = 0.772266 *acciony1-0.223704 *acciony2+62.3772*(erry 
-1.789113 * err1y  +0.7970579 * err2y); 
 
         if (accionx < -10 ) accionx = -10; 
         if (accionx >  10 ) accionx =  10; 
         if (acciony < -10 ) acciony = -10; 
         if (acciony >  10 ) acciony =  10; 
 
         motorX.setAngle(accionx); 
         motorY.setAngle(-acciony); 
 
         accionx2=accionx1; accionx1=accionx; 
         acciony2=acciony1; acciony1=acciony; 
         postFrefantx = postFrefx; 
         err2x = err1x;  err1x = errx; 
         postFrefanty = postFrefy; 
         err2y = err1y;  err1y = erry; 
 
 
        if (++sampleNumber % commPeriod == 0) 
        { 
  // Send data to the monitor 
                eldato.accX = accionx; 
                eldato.accY = -acciony; 
                eldato.bolaX = x; 
                eldato.bolaY = y; 
 
  // We are going to wait at most 2 millisconds 
         xQueueSend(commQueue, (const void *) & eldato, pdMS_TO_TICKS(2) ); 
        } 
   } 
} 
 
 
 
void commTask(void *pvParameters ) 
{ 
        (void) pvParameters;   
 
    commData elDato; 
 
    while(true) 
    { 
        xQueueReceive(commQueue, (void * const) & elDato, portMAX_DELAY); 
        rtPrint("-->    Pos. bola X: ", elDato.bolaX, " "); 
        rtPrint("-->    Pos. bola Y: ", elDato.bolaY, "\n"); 
        rtPrint("  Angulo solicitado X: ", elDato.accX, " "); 
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        rtPrint("  Angulo solicitado Y: ", elDato.accY, "\n"); 
    } 
} 
 
 
 
 
 
// rtPrint functions definition 
 
void rtPrint(const char * cad ) 
{ 
        if (Serial && arduinoSema) 
        { 
               xSemaphoreTake(arduinoSema, portMAX_DELAY ); 
               Serial.print(cad); 
                xSemaphoreGive(arduinoSema); 
        } 
} 
 
void rtPrintFlush( void ) 
{ 
        if (Serial && arduinoSema) 
        { 
               xSemaphoreTake(arduinoSema, portMAX_DELAY ); 
               Serial.flush(); 
                xSemaphoreGive(arduinoSema); 
        } 
} 
 
template <typename T> void rtPrint(const char * openStr, const T & x, const 
char * 
endStr ) 
{ 
        if (Serial && arduinoSema) 
        { 
               xSemaphoreTake(arduinoSema, portMAX_DELAY ); 
               Serial.print(openStr); Serial.print(x); 
               if ( endStr ) Serial.print(endStr); 
                xSemaphoreGive(arduinoSema); 
        } 
} 
 
void rtPrint(const char * openStr, const double & x, const char * endStr ) 
{ 
        constexpr int nDec {6}; 
        if (Serial && arduinoSema) 
        { 
               xSemaphoreTake(arduinoSema, portMAX_DELAY ); 
               Serial.print(openStr); Serial.print(x, nDec); 
               if ( endStr ) Serial.print(endStr); 
                xSemaphoreGive(arduinoSema); 
        } 
} 
 


