
Page 0 of 58

School of Industrial & ICT
Engineering

Development of a real-time
system oriented to the control
and sensorization of a Ball &

Plate system

Degree in Industrial Engineering

End of Degree Project

Author: Jon Garnica Izco

Director: Dr. Gabriel Lera Carreras

 Pamplona, June 3rd 2021

ACKNOWLEDGEMENTS

After four months working on this End of Degree Project, I am writing this
acknowledgement chapter to eventually end it up. It has been a time of continuous
learning that has helped me to better understand and put into practice most of the main
control and electronics concepts that I have learnt during the degree.

I would like to start by thanking my project director Dr. Gabriel Lera Carreras for his
commendable help during all these months. It has been truly a pleasure to work
alongside him and I feel like I have learnt much more than could have ever expected. He
has always been willing to help me solve every problem that may have arisen regardless
of the site or the day. Without him it would have been much more difficult to get this job
done.

 I would also like to thank Dr. Iñaki Arocena Elorza who gave us his selfless help in
the hardware field of the project, chiefly when taking the first steps. Thanks to him, I got
to understand in depth the inner functioning of the table which turned to be a very
important part of the project that aided me to better comprehend all the succeeding steps
that I took.

Last, I would like to show my gratitude to the Public University of Navarre and all the
professors that I have had during these years, that have made me have the necessary
knowledge to carry out this work.

ABSTRACT

The main objective of this End of Degree Project is the development of a real-time system
oriented to the control and sensorisation of a Ball & Plate system designed in 1997. It will
be tried to adapt the system to the nowadays technology by means of replacing the initial
controller card with an Arduino DUE board and substituting the original system’s camera
by a mobile phone duly programmed to fulfil this task.

In addition, an initialization of the main components of the system will be carried out
including in it the definition of the table’s reference position and a relation between the
samples taken by the camera in pixel units and the real position of the ball in centimetres.

Lastly, there will be taken the first steps in the design of a controller to control the
trajectory of a ball on the plate.

KEYWORDS

Ball & Plate

Controller

Open and close loop control

Arduino

RESUMEN

El objetivo principal de este Trabajo Fin de Grado es el desarrollo de un sistema en
tiempo real para el control y la sensorización de un sistema Ball & Plate diseñado en 1997.
Se tratará de adaptar el sistema a la tecnología actual introduciendo un Arduino DUE como
microcontrolador y la cámara de un teléfono móvil como sensor de posición.

Además, se llevará a cabo una inicialización de los principales componentes del sistema
en la que se definirá la posición de referencia de la mesa y se establecerá una relación entre
las muestras tomadas y la posición real de la bola en centímetros.

Por último, se darán los primeros pasos en el diseño de un controlador que permita el
control de la trayectoria de la bola sobre el plato.

PALABRAS CLAVE

Sistema Ball & Plate

Controlador

Control en lazo abierto y cerrado

Arduino

Table of Contents

1. Introduction .. 1

2. Objectives ... 2

3. State of the art research .. 3

3.1. Marketable prototypes ... 3

3.1.1. Leybold GMBH .. 3

3.1.2. Quanser .. 4

3.2. Non-marketable prototypes ... 4

4. Methodology. Plant’s Transfer Function Obtention. ... 5

4.1. Ball & Plate Dynamic Modelling .. 5

4.2. Ball & Plate Model Simplification.. 7

4.3. Transfer function obtention ... 8

5. System’s description ... 10

5.1. Plate ... 10

5.2. Motors ... 10

5.3. Drivers .. 12

5.4. Motherboard ... 13

5.4.1. 74LS00 connection analysis .. 14

5.4.2. 5 V signal obtention .. 15

5.4.3. Control connector pins .. 16

5.4.4. Power connector pins .. 17

5.5. Arduino DUE ... 17

5.6. Camera .. 18

6. Initialization of components .. 19

6.1. Table’s reference position ... 19

6.2. Ball’s position relationship initialization .. 20

7. Controller design .. 24

7.1. Open-loop plate control .. 24

7.2. Controller design .. 25

7.2.1. Plant discretization ... 25

7.2.2. Controller obtention using the pole assignment method. 25

7.2.3. Controller implementation. ... 31

8. Conclusion and future plans ... 32

9. Bibliography .. 33

10. Ancillaries .. 35

10.1. Camera Android programming code ... 35

10.1.1. Camera Preview [21] .. 35

10.2. Scilab controller simulations.. 38

10.3. Real time control code .. 40

Table of Figures
Figure 1: System sketch description [3] ... 2

Figure 2: Reference system definition .. 5

Figure 3: Linearized vs. nonlinearized servo system response. .. 8

Figure 4: Plate rotation diagram for one of the axes. .. 10

Figure 5: 400 Hz pulse wave construction. ... 11

Figure 6: 74LS00 connection………………………………….. .. 13

Figure 7: Reference system of the table. .. 13

Figure 8: 7805 voltage regulation circuit. ... 15

Figure 9: 7824 and 7812 voltage regulation circuits. ... 15

Figure 10: 25 pin control connector description .. 16

Figure 11: 9 pin power connector description. ... 17

Figure 12: Voltage divider circuit (5V-3.3V). ... 17

Figure 13: Plate's reference position obtention flowchart. .. 19

Figure 14: Camera's and plate's reference systems. .. 20

Figure 15: Ball position processing decision flowchart. .. 22

Figure 16: Flowchart of the process carried on to define the relation 22

Figure 17: Open-loop control flowchart. .. 24

Figure 18: Control structure for pole assigment designing method [20] 25

Figure 19: System's discrete step response. ... 28

Figure 20: System's continuous step response. ... 28

Figure 21: Closed loop control action. .. 29

Figure 22: Closed loop prefiltered discrete step response..30

Figure 23: Closed loop prefiltered continuous step response..30

Figure 24: Controller's prefiltered action. .. 30

Table of Images
Image 1: Leybold’s Ball & Plate [5]. .. 3

Image 2: Leybold’s Inverted Pendulum [6]. ………………………………………………………...……3

Image 3: Leybold’s Twin Rotor MIMO [7]. ………………………………………………………………….3

Image 4: Quanser's Inverted Pendulum [10]. .. 4

Image 5: Quanser's Twin Rotor MIMO [11]. ………………………………………………………………4

Image 6: Quanser’s Ball & Plate [12]. …………………………………………………………….………….4

Image 7: Example of homemade Ball & Plate prototype [13]... .…..4

Image 8: Motor image. .. 10

Image 9: Two pole rotor-four coil stator functioning diagram [16] 11

Image 10: Representation of a 100 toothed rotor and stator [15] 11

Image 11: Driver. .. 12

Image 12: System's motherboard. .. 13

Table of Equations
Equation 1: Euler-Lagrange general form equation. ... 5

Equation 2: Kinetic energy equation for the ball. ... 5

Equation 3: Potential energy equation for the ball. ... 6

Equation 4: Kinetic energy equation for the plate. .. 6

Equation 5: Kinetic energy equation of the system. .. 6

Equation 6: Potential energy equation of the system. .. 6

Equation 7: Expressions that define the system’s dynamics. ... 6

Equation 8: Ball & Plate simplified position dynamic model. .. 7

Equation 9: Plant's first transfer function term. ... 8

Equation 10: Plant's second transfer function term. ... 9

Equation 11: System's global transfer function. ... 9

Equation 12: Camera's data structure. ... 21

Equation 13: Relation between the ball’s position in pixels and in centimetres. 23

Equation 14: Plant’s discretized transfer function. ... 25

Equation 15: Pole assignment conditions. .. 26

Equation 16: Controller expression. .. 28

Equation 17: Closed loop system expression. .. 28

Equation 18: Prefilter expression. ... 29

Equation 19: Closed loop filtered expression. ... 29

Equation 20: Controller samples. ... 31

Equation 21: Prefilter samples. ... 31

PARAMETER IDENTIFICATION

BALL & PLATE DYNAMICS

Variable Definition Units

qi i-th generalized coordinate (either position or angle) m/°/rad

q̇i First derivative of the i-th generalized coordinate by time /
°
 /

K Kinetic energy of the system J
V Potential energy of the system J
Qi i-th generalized force J

x, y Position coordinates in the plate m
α, β Plate inclination angles °/rad

r Ball centre radius vector m
v Ball centre velocity vector m/s
rb Ball radius m
ω Angular velocity vector of rotating ball rad/s
Ω Angular velocity vector of rotating plate rad/s
Ib Ball inertia kg·m2

Ip Plate inertia kg·m2
mb Ball mass kg

PARAMETER VALUES

Variable Definition Value

Kα Servo system static gain 0.1878 rad/MU
Kb Ball-plate system gain 4.6 m/rad·s2

Kx Ball position sensor constant 5.56 MU/m
K (=Kα · Kb · Kx) Overall system gain 4.803 s-2

Δα Plate angle step size
0.000628 rad

0.03598 °
f Typical driving frequency 400 Hz

ω α | f=400 Hz Nominal angular velocity of the plate 0.2513 rad/s

αmax/-αmin Limit plate angle
0.1878 rad

10.76 °
xmax/-xmin Limit ball position 0.18 m

ω Servo system nominal speed 1.338 s-1

Tm Servo system equivalent time constant 0.187 s
dx × dy Size of the plate area 0.4 × 0.4 m

l Pivot-plate margin distance 0.2 m
d Diameter of a stepper shaft 0.016 m

Δφ Stepping motor step size
0.0157 rad

0.9°

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 1 of 48

Jon Garnica Izco

1. Introduction

The Ball & Plate apparatus is a MIMO (multiple inputs-multiple outputs), open-loop
unstable and nonlinear system which englobes the fields of mechanical and electrical
engineering, automatic control, and computer science. For this reason, it is a very useful tool
for education in mechatronics that can give the students a practical and illustrative view of
these fields. Moreover, as it also concerns real time control, it can be seen the importance
of the integration and communication between all the components to achieve a proper
operation of the system. [1]

The system consists of a table tennis ball of almost negligible mass, a table containing
a plate whose inclination with respect to both axes can be regulated by the action of a pair
of synchronous step motors, and a camera which provides the position of the ball in real
time to enable the control to be done.

The prototype employed in this project was designed in 1997 using a technology from
that time. Nowadays, most of this technology is completely outdated and needs an
adaptation to current times to be usable again.

Originally, a control card operated from an old-time PC was used to carry out the control
task. It was decided to replace it with an Arduino DUE microcontroller because it is the best
for real-time controlling tasks from the whole Arduino family. To program it, it was used
the Sloeber interface which is an Eclipse IDE that offers a wider range of possibilities than
the Arduino IDE, such as real-time control. [2]

On the other hand, the camera was substituted by a mobile phone that, thanks to a new
Android program development, was able to detect the position of the ball and send it every
33 ms. Thanks to this change, despite it is a task that has not been accomplished because it
is out of the scope of this project, it could be possible to establish a wireless connection with
the phone (either Bluetooth or IP connection) so that the system could be controlled
remotely.

This document will follow a similar structure to the one described in the content table.
First, there will be described the objectives that have been set for this project, stating the
steps followed to achieve each of them. Then, it is included a state-of-the-art research
about marketable and non-marketable prototypes related to the Ball & Plate apparatus that
can be found in real life. Another chapter will be dedicated to the plant’s transfer function
obtention, including in it all the calculations and theorical development necessaries to fulfil
this task. Finally, to end up the contextualization of the project, it is introduced a system
description where each of the main components of the system are described in depth
(plate, motors, drivers, motherboard, microcontroller, camera…) and where it is explained
the logic that the table follows.

Further on, to start with the automatic control part of the project, it is opened a new
section related to the initialization of components. In it, it is described the process
followed to find a horizontal reference position for the plate, as well as a relationship
between the position of the ball in pixels and in centimetres.

Then, having all the necessary components appropriately initialized, it is started the
controller design in sights of fulfilling the assignment of controlling the ball’s trajectory.
Nevertheless, for this controller obtention it could not be invested as much time as
necessary to define one that fitted in with this task. The final design is only a first approach
of what it should eventually do.

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 2 of 48 Jon Garnica Izco

2. Objectives

The objective of this End of Degree Project is the start-up of the Ball & Plate system. To
accomplish it, it is necessary to follow several steps:

1. Comprehension of the inner functioning of the table.

2. Adaptation of the system to the actual technology.

3. Definition of the plate’s horizontal position as reference position for the plate.

4. Demonstration of the method used to convert the camera’s samples in pixels to
centimetres.

5. Open-loop control of the plate.

6. First approach to the design of a controller to control the trajectory of a ball on

the plate.

Figure 1: System sketch description [3].

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 3 of 48 Jon Garnica Izco

3. State of the art research

The ball and plate system have an eminently educational application, not only for
students but also for companies which can employ this example as a guideline to develop
other products. It can be taken as a good example because its behaviour is certainly complex
as it is a nonlinear, multivariant and open-loop unstable system. [1]

The principal ball and plate systems can be catalogued in two categories: marketable and

non-marketable. The first ones are those produced and commercialized by companies,
whereas the second ones are those referred to the homemade systems where people who
have mechatronic as a hobby develop prototypes that can serve as inspiration to others or
even, if they have it patented, sell it to companies for a certain price. [4]

3.1. Marketable prototypes

There are several companies that trade products which are related to or based on the
Ball & Plate system.

3.1.1. Leybold GMBH

Leybold is a company that mainly distributes physical, chemical, biological, and
technological equipment for almost all of the branches of each field. Inside the Control
and Automation, they present a large list of prototypes, not only including the Ball & Plate
apparatus, but also the Inverted Pendulum or the Twin Rotor MIMO among some others.

 Image 1: Leybold’s Ball & Plate [5]. Image 2: Leybold’s Inverted Pendulum [6]. Image 3: Leybold’s Twin Rotor MIMO [7].

The Inverted Pendulum is similar to the Ball & Plate apparatus but instead of having

two possible direction movements it has only one. The aim of system is to, by moving
back and forward the trolley where the pendulum in joint, make it to remain in a vertical
position even when receiving a disturbance. It is a stability problem with only one degree
of freedom.

On the other hand, the Twin Rotor MIMO has a behaviour that resembles a helicopter
but having a fixed attack angle of the rotors and controlling the aerodynamic forces by
varying the speed of the motors. It shares with the Ball & Plate that it is a stability
problem and a MIMO system too.

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 4 of 48 Jon Garnica Izco

3.1.2. Quanser

Quanser is a company whose main objective is to “provide a modern framework for
engineering education through a physical grounding of mathematical theory, manifested
in a way that lets students see and feel how the mathematics flow out from the theory
and into the physical world” [8].

They develop prototypes for the fields of automatic control, robotics, aerospace,
mechatronics, and electrical, earthquake and mechanical engineering. In the control one
they have a much broader product offer than Leybold as they have more variants for each
model. For example, they have seven types of inverted pendulums, each of them with a
different actuator, a robust appearance Ball & Plate system, 5 simulators, one gyroscope,
one Twin Rotor… [9]

Image 4: Quanser's Inverted Pendulum [10]. Image 5: Quanser's Twin Rotor MIMO [11]. Image 6: Quanser’s Ball & Plate [12].

3.2. Non-marketable prototypes

As it has been said before, these are the prototypes developed by people who make
homemade designs. Unlike the marketable ones, the cost is much lower, and, in addition, it
gives the possibility of designing it to fulfil whichever are the requirements. They can also
be a good chance for students in view of learning not only the control point but also the
mechanical one.

Image 7: Example of homemade Ball & Plate prototype [13].

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 5 of 48 Jon Garnica Izco

4. Methodology. Plant’s Transfer Function Obtention.

The main objective of this chapter is the plant’s transfer function obtention as it will
be necessary to design a controller that fit in correctly with the system. It has been decided
to introduce this chapter because it is important to understand where the plant’s expression
comes from in order to design an accurate controller and to be able to know how certain
modifications in the system may affect the plant’s expression.

 Before starting, it is important to highlight that during this whole chapter where there
are going to be obtained different equations that describe the system’s behaviour, it has
been followed the CE 151 Ball & Plate User’s Manual [14]. Each of the variable’s meanings
can be seen in the PARAMETER IDENTIFICATION table attached above.

In addition, to understand the relation existent between angles α, β and position
variables x, y it is included a diagram where this relation can be observed, as well as what
it is defined as positive directions for all of them.

4.1. Ball & Plate Dynamic Modelling

To obtain a definition of the system’s dynamic, it is followed the general form of the
Euler-Lagrange equation which will have to be applied to both the ball and the plate.

𝑑

𝑑𝑡

𝜕𝐾

𝜕�̇�𝑖
−

𝜕𝐾

𝜕𝑞𝑖
+

𝜕𝑉

𝜕𝑞𝑖
= 𝑄𝑖

Equation 1: Euler-Lagrange general form equation.

 Before starting to define each of the energy terms, it is convenient to define Qi. This
variable is referred to the generalized force given by the torque generated by the servo
including the transmission system. Therefore, it will be null for the position variables as
they do not have influence in it, whereas, for the angular ones, it will have a certain value.
These values will be obtained using the following torque equation 𝑸𝒊 = 𝑭𝒊 𝒅 𝐜𝐨𝐬 (𝒊) for
each of the angles, where d is the horizontal distance between the pivot (which is coaxial
to the motor axis) and the point of the plate where the force is applied. Writing it in a
vector form:

𝑄 = 𝑄 𝑄 𝑄 𝑄 = 0 0 𝐹 𝑑 𝑐𝑜𝑠𝛼 𝐹 𝑑 𝑐𝑜𝑠𝛽

Once defined this vector, the kinetic and potential energy equations of the ball are
introduced.

𝐾 =
1

2
 𝑚 𝑣 +

1

2
 𝐼 𝜔 =

1

2
 𝑚 �̇� + 𝑦 ̇ + 𝐼

�̇�

𝑟
+

�̇�

𝑟

Equation 2: Kinetic energy equation for the ball.

Figure 2: Reference system definition

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 6 of 48 Jon Garnica Izco

𝑉 = 𝑚 𝑔 ℎ = −𝑚 𝑔 (𝑥 𝑠𝑖𝑛𝛼 + 𝑦 𝑠𝑖𝑛𝛽)

Equation 3: Potential energy equation for the ball.

It has been added a negative sign before the potential energy expression because, as
it can be observed in Error! Reference source not found., if either α or β increase
following the positive sense defined, the potential energy decreases, whereas if the
angles decrease, the potential energy increases. This is solved by adding that negative
sign.

Repeating the same process for the plate:

𝐾 =
1

2
 (𝐼 + 𝐼) �̇� + �̇� +

1

2
 𝑚 |Ω × 𝑟|

Where the angular velocity - position cross product presents the following structure:

|Ω × 𝑟| =
−�̇�
�̇�
0

×
𝑥
𝑦
0

 = �̇� 𝑦 + �̇� 𝑥 + 2�̇��̇�𝑥𝑦

Introducing the obtained term in the plate’s kinetic energy equation:

𝐾 =
1

2
 [(𝐼 + 𝐼) �̇� + �̇� + 𝑚 (�̇� 𝑦 + �̇� 𝑥 − 2�̇��̇�𝑥𝑦)]

Equation 4: Kinetic energy equation for the plate.

It is not included the potential energy term of the plate because it remains constant.

Putting together the above equations it is obtained that the kinetic and potential
energy equations of the system are:

𝐾 = 𝐾 + 𝐾 =
1

2
𝐼 + 𝐼 �̇� + �̇� + 𝑚 �̇� 𝑦 + �̇� 𝑥 + 2�̇��̇�𝑥𝑦 + 𝑚 +

𝐼

𝑟
(�̇� + �̇�)

Equation 5: Kinetic energy equation of the system.

𝑉 = 𝑉 = 𝑚 𝑔 (𝑥 𝑠𝑖𝑛𝛼 + 𝑦 𝑠𝑖𝑛𝛽)

Equation 6: Potential energy equation of the system.

Introducing all these equations in the Euler-Lagrange one and applying each of the
derivatives they are finally obtained the equations that describe the system’s dynamic.

𝒙: 𝒎𝒃 +
𝑰𝒃

𝒓𝒃
𝟐

�̈� − 𝒎𝒃 �̇�𝟐𝒙 + �̇��̇�𝒚 + 𝒎𝒃𝒈𝒔𝒊𝒏𝜶 = 𝟎

𝒚: 𝒎𝒃 +
𝑰𝒃

𝒓𝒃
𝟐

�̈� − 𝒎𝒃 �̇�𝟐𝒙 + �̇��̇�𝒚 + 𝒎𝒃𝒈𝒔𝒊𝒏𝜷 = 𝟎

𝜶: 𝑰𝒑 + 𝑰𝒃 + 𝒎𝒃𝒙𝟐 �̈� + 𝒎𝒃 �̈�𝒙𝒚 + �̇��̇�𝒚 + �̇�𝒙�̇� + 𝟐�̇��̇�𝒙 + 𝒎𝒃𝒈𝒙𝒄𝒐𝒔𝜶 = 𝑭𝜶 𝒅 𝒄𝒐𝒔𝜶

𝜷 ∶ 𝑰𝒑 + 𝑰𝒃 + 𝒎𝒃𝒚𝟐 �̈� + 𝒎𝒃 �̈�𝒙𝒚 + �̇��̇�𝒚 + �̇�𝒙�̇� + 𝟐�̇��̇�𝒙 + 𝒎𝒃𝒈𝒙𝒄𝒐𝒔𝜷 = 𝑭𝜷 𝒅 𝒄𝒐𝒔𝜷

Equation 7: Expressions that define the system’s dynamics.

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 7 of 48 Jon Garnica Izco

4.2. Ball & Plate Model Simplification

The aforementioned position expressions are the exact description of the system’s
position dynamics. Nevertheless, several assumptions can be made to simplify it.

1) The angular equations might be neglected. As the frequency introduced in the
stepper (400 Hz) is below the plate’s acceleration limit, no steps can be lost and,
added up to the fact that the ball’s load moment is almost null due to its very
small weight, the α and β plate angles can be considered directly as inputs
instead of the angular forces.

2) When analysing the position expression, it can be observed that the centrifugal
force term 𝑚 �̇� 𝑥 + �̇��̇�𝑦 , when being compared to the other gravitational ones
and fixing the motor frequency to 400 Hz, shows a, roughly, 1:25 ratio between
them. This means that the gravitational terms are 25 times bigger than the
centrifugal one. Therefore, this centrifugal term can be neglected.

3) As the angle variations are low (≈±5°), the sine function can be mathematically

approached to its argument.

𝒔𝒊𝒏𝜶 ≈ 𝜶

4) The ball’s inertia is:

𝑰𝒃 =
𝟐

𝟓
𝒎𝒃 𝒓𝒃

𝟐

 Considering all these possible simplifications, the final model obtained is:

𝒎𝒃 +

𝟐
𝟓

𝒎𝒃 𝒓𝒃
𝟐

𝒓𝒃
𝟐

�̈� − 𝒎𝒃𝒈𝒔𝒊𝒏𝜶 = 𝟎

𝟏 +
𝟐

𝟓
�̈� = 𝒈𝒔𝒊𝒏𝜶

Equation 8: Ball & Plate simplified position dynamic model.

�̈� =
𝟓

𝟕
 𝒈 𝒔𝒊𝒏𝜶 ≈ 𝑲𝒃𝜶 �̈� =

𝟓

𝟕
 𝒈 𝒔𝒊𝒏𝜷 ≈ 𝑲𝒃 𝜷

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 8 of 48 Jon Garnica Izco

4.3. Transfer function obtention

Before finally obtaining the plant’s transfer function, several steps need to be taken.
First, the state equations that represent the system’s model based on the state vector will
be defined. This vector contains the three variables on which the system mainly depends:
the ball’s position (x), the ball’s velocity (v) and the plate’s slope (α).

𝑥 =
𝑥
𝑣
𝛼

Applying derivatives to this vector and using the equations expressed in the previous
paragraph, the state equations can be easily determined. In the first place, if the first
vector component (x) is derived, it is trivial to see that it is equal to the second of the
vector’s components (v).

�̇� = 𝒗

Then, the velocity’s derivative is equal to the ball’s acceleration, whose expression has
been deduced before (Equation 8). However, as it is being analysed is the overall system,
the constant that multiplies the angular term in Equation 8 will no longer be only referred
to the ball but to the whole system. For this reason, the constant (K) will be the product
of the ball’s constant (Kb), the servo system static gain (Kα) and the ball position sensor
constant (Kx). This last two constants are defined in two of the system’s description
chapter’s paragraphs (5.2 Motors, 5.6 Camera).

�̇� = �̈� = 𝐾 · 𝐾 · 𝐾 · 𝛼 = 𝑲 · 𝜶

Applying the Laplace transform to this expression, it is obtained the first part of the
system’s transfer function.

ℒ[�̈�] = ℒ[𝐾 · 𝛼] → 𝑠 · 𝑥(𝑠) = 𝐾 · 𝛼(𝑠) →
𝑥(𝑠)

𝛼(𝑠)
=

𝐾

𝑠

Equation 9: Plant's first transfer function term.

Last, to obtain the expression for the angular velocity term, it is previously required
to understand the servo system dynamics. Before, in the simplification model paragraph,
it has been said that the angular term could be neglected, and that the plate’s angles were
directly system’s inputs. Nevertheless, due to the servo system’s dynamics, the response
is not instantaneous, so it must be modelled. The problem is that, as it is a nonlinear
process, the difficulty of finding an expression that describes this behaviour increases.
To avoid this issue, despite making a certain error, it is approximated to a first order
response which depends on the first order system time constant (Tm).

Figure 3: Linearized vs. nonlinearized servo system response.

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 9 of 48 Jon Garnica Izco

The angle reached by the motor will depend on the time constant Tm. This constant
can take values between 0 and the result of the quotient between the maximum angle
amplitude and the servo’s minimum angular velocity. Depending on the value chosen,
the first-order graph will have a higher or lower slope: if Tm increases, the slope also
does, and vice versa.

To obtain the time constant it is used the MU unit. This unit is different depending on
if it is referred to angle or distance movements, but its main goal is to represent these
variations in decimal fractions, being 1 the maximum variations that they can
experiment. For example, if it is said to the plate to rotate 1 MU, what it is really being
said is that it must rotate the maximum angle possible (10°), whereas if it is wanted to
move the ball 1 MU, what it is being told in metric units is that it is desired to move the
ball 18 cm.

𝑇 , =
𝛼

𝜔
=

1 𝑀𝑈

1.338
𝑟𝑎𝑑

𝑠

= 0.747 𝑠

𝑇 𝜖 0 ,
 𝛼

𝜔
= 0.747

Following the user’s manual [14], the value chosen for this variable, based on several
closed loop simulations looking for the worst possible signal, is , = 𝟎. 𝟏𝟖𝟕 𝒔𝒆𝒄𝒐𝒏𝒅𝒔.

As the servo system’s behaviour has been approached to a first order one which depends
on the estimated time constant, it will follow the expression:

𝛼(𝑠) =
1

𝑇 · 𝑠 + 1
 𝑢 (𝑠) →

𝛼(𝑠)

𝑢 (𝑠)
=

1

𝑇 · 𝑠 + 1

Equation 10: Plant's second transfer function term.

Where α is the real angle and uα is the desired one.

Therefore, joining Equation 9 and Equation 10, it is finally obtained the system’s
global transfer function F(s) in the Laplace domain.

𝑭(𝒔) =
𝑲

𝒔𝟐 · (𝑻𝒎 · 𝒔 + 𝟏)

 There is a last modification needed to be done before arriving to the final transfer
function expression because the units used in the user manual are MU instead of degrees
and centimetres. Therefore, there will be needed to apply a series of unit conversions
until finally obtaining the expression in the desired units.

𝑭(𝒔) =
 𝑲𝒃

𝒎

𝒓𝒂𝒅 · 𝒔𝟐 · 𝑲𝒙

𝑴𝑼
𝒎

· 𝑲𝜶

𝐫𝐚𝐝
𝐌𝐔

𝒔𝟐 · (𝑻𝒎 · 𝒔 + 𝟏)
=

𝒚𝒙[𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝑴𝑼]

𝒖𝜶[𝒂𝒏𝒈𝒖𝒍𝒂𝒓 𝑴𝑼]

𝑭(𝒔) =
 𝑲𝒃

𝒎

𝒓𝒂𝒅 · 𝒔𝟐 ·
𝝅 𝒓𝒂𝒅
𝟏𝟖𝟎°

·
𝟏𝟎𝟎 𝒄𝒎

𝟏𝒎
𝒔𝟐 · (𝑻𝒎 · 𝒔 + 𝟏)

=

𝒚𝒙[𝑴𝑼]

𝑲𝒙

𝑴𝑼
𝒎

𝑲𝜶

𝐫𝐚𝐝
𝐌𝐔

· 𝒖𝜶[𝑴𝑼]

Equation 11: System's global transfer function.

𝑭(𝒔) =
 𝑲𝒃 ·

𝝅
𝟏𝟖𝟎

· 𝟏𝟎𝟎

𝒔𝟐 · (𝟎. 𝟏𝟖𝟕 · 𝒔 + 𝟏)

𝒄𝒎

°

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 10 of 48 Jon Garnica Izco

5. System’s description

5.1. Plate

It consists of a 0.4 x 0.4 m square piece of metal. Its centre of mass is joint to the base
unit through a shaft located on the middle of the plate making the load moment to be null
with respect to this point and helping to simplify the system dynamics. To adjust its
inclination, there are attached a pair of tight threads to each of the four plate edges.
Between both edges, each thread is winded onto a pivot coaxial to the motors which, as it
has a smaller diameter that the motor, applies to the system a reduction factor that makes
the plate to rotate at a more adjusted velocity.

As the thread is winded onto the pivot, when it starts to spin, it provokes the emergence
of a pair of opposite tensile forces in the edges of the plate to which this thread is attached,
making the table to start tilting in the desired direction.

Figure 4: Plate rotation diagram for one of the axes.

5.2. Motors

There are two M061-LE08 synchronous step motors from the Superior Electric house,
which operate with a DC voltage of 1.25 V and a current on 3.8 A, and have a relation
between the number of steps and revolutions of 200 step/rev. Its angular velocity depends
on the frequency of the pulse signal introduced. Typically, this frequency will be fixed to 400
Hz, but it could be modified if desired, always considering the dynamics of the system to
avoid reaching excessively high speeds.

 Image 8: Motor image.

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 11 of 48 Jon Garnica Izco

Stepper motors are composed of a rotor and a stator. The stator has 4 coils joint by
pairs with phases A and B, whereas the rotor is a permanent magnet with two poles.
However, as both the stator and the rotor are toothed having a hundred teeth (two
sections of 50 teeth), it will take the motor to complete a full revolution 200 steps. [15]

The functioning of this motor consists of the consecutive energization of coils. This
way, when a current appears in one of the coils, it is generated a magnetic field that
makes the rotor spin in that direction. Once it is aligned with this field, the following coil
starts to get energized, creating a new magnetic field in a perpendicular direction to
the previous one that begins to attract the rotor in this new direction. [15]

Thanks to this successive coil functioning, it is possible to configure the motor in a full
or half step setting: if when the next coil starts working, the previous one has already
stopped, it works in full step mode; but if when the next coil starts working, the previous
one has not stopped yet, it will be created a magnetic field in the bisector direction
between them that would make the rotor to take only half a step. [16] In this project it
has been set in a half step mode.

Image 9: Two pole rotor-four coil stator functioning diagram [16].

Image 10: Representation of a 100 toothed rotor and stator (the number of phases does not correspond with the
project's one) [15].

To create the 400 Hz pulse wave, as the function in charge of creating it could only be
called from the main program from millisecond to millisecond, it was only called two out
of five times, getting this way globally a 2.5 ms period. This solution solves the wave
generation problem, but it may provoke the apparition of some others such as vibration.

Figure 5: 400 Hz pulse wave construction.

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 12 of 48 Jon Garnica Izco

5.3. Drivers

As a need of having external access to the motors, there are included two drivers
which link them either to the system’s motherboard or directly to the control connector.
It is configured with inverse logic, this is, when it receives a ‘0’ it is understood as ‘true’
and when it receives a ‘1’ it is understood as ‘false’.

Image 11: Driver.

On the one hand, the left terminals of the image are the ones connected to the motor.
There exists a voltage difference between Vm and Vom (mass of the system) of 32 V
provided by the power supply. This voltage is the one necessary to excite the coils and
to generate a magnetic field capable of making the rotor to start rotating. However, to
make it work, it is also needed a pulse wave to make this voltage oscillate between 0 and
32 V and to, this way, excite consecutively coils A and B to make the rotor rotate.

On the other hand, the right terminals are more related with the configuration and,
some of them, are connected to the control connector. The following information has
been obtained from the driver’s datasheet: [17]

 𝐏𝐔: it is the pin through which it will be introduced the pulse wave. As it has been
said in the last paragraph, it will be the one in charge of introducing the logic of when
must each of the coils be excited. It goes negated because the driver has inverse logic.
There is included a 4700 μF capacitor to filter the signal and avoid
misunderstandings in the pulse wave. It must be always included.

 𝐂𝐖/𝐂𝐂𝐖: it tells the direction of rotation of the motor. If it receives a ‘0’ it rotates
counterclockwise, whereas if it receives a ‘1’ it rotates clockwise.

 𝐇/𝐅: it defines if the stepper takes half or full steps. This pin is not linked to the
control connector so there is no possibility of modifying it. It is set as a ‘1’ by default,
so it takes half steps instead of full, what makes the plate movement smoother.

 𝐀𝐖𝐎: “all windings off”. When the motor is not receiving pulses and it remains still
and it cannot be moved because there is a holding torque. If this pin is on a low
level, it deactivates this torque, and the plate can be moved manually; but if it is on
a high level, it maintains this holding torque.

 𝐑𝐄𝐃𝐔𝐂𝐄 𝐂𝐔𝐑𝐑𝐄𝐍𝐓: it is used to adjust the current supply to the motor. In can be
configured in two ways: first, in a 0/1 logic – when receiving a ‘0’ it provides 1.0 A,
whereas when receiving a ‘1’ it provides 3.8 A; second, if there is introduced a
potentiometer, this current can be regulated.

 𝐋𝐎𝐆𝐈𝐂 𝐂𝐎𝐌𝐌𝐎𝐍: it is internally joint to Vom. It is the mass of the circuit.
 𝐎𝐏𝐓𝐎 𝐒𝐔𝐏𝐏𝐋𝐘 𝐎𝐔𝐓: it enables the user the use of an internal power supply.

There is no external access to this pin.
 𝐎𝐏𝐓𝐎 𝐒𝐔𝐏𝐏𝐋𝐘 𝐈𝐍: connection for opto-isolator power supply. No external access.

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 13 of 48 Jon Garnica Izco

5.4. Motherboard

The motherboard’s main objectives are directing the plate in each of the four
possible directions (clockwise or counterclockwise rotation for each axis) and to
indicate when does the plate arrive to one of the limits, this is, detecting when the
end switch, located in the direction that the plate was moving, gets closed. Therefore, to
accomplish these goals, there is included a 74LS00 device which is based on a NAND
logic and whose connections can be observed in the figure below (Figure 6). From all the
14 pins there will only be external access to DIR1 and DIR2 as direction inputs, and SW
OUT 1 and SW OUT 2 as end switch outputs, which currently are on a high-level state
(plus the GND terminal that will be common to the whole system).

Figure 6: 74LS00 connection. Image 12: System's motherboard.

To fully understand the aforementioned diagram, it is necessary to determine the
reference system that has been employed to know what it is referred to when speaking
about directions. These assignments have been made with respect to the side where the
control and power connections are emplaced.

Figure 7: Reference system of the table.

As it can be seen in Figure 6, the only difference between the upper and lower half is
the axis with respect to which the action is applied. Therefore, to avoid repetitions, the
analysis will only be made for one of them, the lower one.

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 14 of 48 Jon Garnica Izco

5.4.1. 74LS00 connection analysis

First, the direction introduced through DIR1 is compared to a high state value (‘1’).
The logic followed in the direction terminal is that if DIR1=0, the plate rotates towards
the left side, whereas if DIR1=1, it goes to the right one. As the gate employed is a NAND,
the exit value will be the result of a negated boolean multiplication between both entries,
and since one of them is always on a high level, the exit will be a negation of the direction
entry.

Then, this exit is short-circuited with both entries of the second NAND gate and
shunted to the right-side end switch, whereas the exit of this gate is linked to the left
contact. This makes the functioning of the contacts to depend on the direction selected.
For example, the left contact will only work if the plate is rotating towards the left side,
and so it will do for the right one. For this reason, despite there is not a pin for each of
the switches but only one (SW OUT 1), it can be identified which of the four contacts has
been closed with only one output.

As an example, let us suppose that it is wanted to rotate the plate towards the left
side until reaching the end switch. It would be introduced a ‘0’ in DIR1 - to tell the motor
that it must move the plate to the left – and it will make a ‘1’ to appear in the exit of the
first gate and in the inputs of the second one. In terms of voltage, a ‘1’ is equal to 5 V so,
regardless of whether the right contact is closed or not, there will not be any change in
voltage and SW OUT 1 will remain on a high level. Here it can be seen that the switches
working directly depends on the direction in which the plate is moving.

However, after going through the second gate, it would appear a ‘0’ (0 V) on the output
of it, which means that, if the left contact gets closed, it will appear a voltage drop that
would provoke a change of state in SW OUT 1 from ‘1’ to ‘0’. With this change of state,
it is notified to the controller that the plate cannot rotate more in that direction and it
will order the motor to stop. To avoid creating a short-circuit when this voltage drop
happens, it is included the 4.7kΩ R3 resistance.

To sum up the explanation, there are included two logic tables containing as inputs
all the possible directions and end contact values, and SW OUT as an output.

Table 1: Logic table 1 for directions and switches of the first axis. Table 2: Logic table 2 for directions and switches of the second axis.

The cases where “not possible” appears are referred to the ones where a contact from
one side is closed when the plate is rotating towards the opposite one. It is not possible
for this to happen because the plate is the only component which is able of opening and
closing the contacts.

DIR1 SW RIGHT SW LEFT SW OUT 1
0 Opened Opened 1
0 Opened Closed 0
0 Closed Opened 1 (not possible)
0 Closed Closed 0 (not possible)
1 Opened Opened 1
1 Opened Closed 1 (not possible)
1 Closed Opened 0
1 Closed Closed 0 (not possible)

DIR2 SW UP SW DOWN SW OUT 2
0 Opened Opened 1
0 Opened Closed 0
0 Closed Opened 1 (not possible)
0 Closed Closed 0 (not possible)
1 Opened Opened 1
1 Opened Closed 1 (not possible)
1 Closed Opened 0
1 Closed Closed 0 (not possible)

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 15 of 48 Jon Garnica Izco

5.4.2. 5 V signal obtention

For the system to work properly it is necessary to power the 74LS00 with 5 V. To
obtain them, it is included in the motherboard a 7805 device a voltage regulator that
reduces a 12 V input voltage to a 5 V one. Normally, there are added a pair of capacitors
in parallel to filter the signal and reduce noise.

Figure 8: 7805 voltage regulation circuit.

Originally, these 12 V were supplied by the PC and were used to power the camera
and the system’s circuit. Nevertheless, since this camera was no longer going to be
employed, it was necessary to supply this voltage in some other way. After having a look
to the system’s manual [14], it was found that one of the pins of the power supply
connector was at a 32 V voltage (voltage required for the motors to work).

Therefore, this voltage could be employed and brought to the input of the 7805 device
after being previously reduced to 12 V by using a pair of voltage regulators. There were
needed two of them because with only one, due to the 20 V voltage drop, the
temperature of the device turned to be excessively high, and it was convenient to
reduce it.

This temperature increment could be quantified having a look to the 7812 datasheet,
where it was found that this device had a TO-220 encapsulation meaning that its
thermal coefficient was of 20 °C/W. Knowing the voltage and the current it is easily
obtained the power dissipated (20V · 71mA = 1.42W) and, with it, the increment in
temperature (1.42W · 20°C/W = 28.4 °C).

 For this reason, instead of using only one to reduce from 32 V to 12 V, it was used a
pair of them: one from 32 V to 24 V (7824 device) and another from 24 to 12 V (7812
device) with a silicon heatsink joint to them to reduce the increment in temperature.

Figure 9: 7824 and 7812 voltage regulation circuits.

This circuit was built in a PCB taking as input of the circuit the VM pin (32 V) of one
of the drivers and welding the output and the mass of the circuit to the 12 V and GND
pins of the motherboard, respectively. This way it could be obtained the voltage needed
without adding external components, getting a much more compact appearance and
increasing its ease of use.

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 16 of 48 Jon Garnica Izco

5.4.3. Control connector pins

Once the logic that the table follows has been defined, the only remaining point is the
identification of each of the control connector pins and the definition of the signals
related to them. In other words, to find out he relation between the system signals and
correspondent control connector pins. From all the 25 available pins there are only used
eight of them and they are connected in the way described in the below diagram (Figure
10).

Figure 10: 25 pin control connector description

From the eight signals, four of them are external inputs (DIR1, DIR2, PULSE1, and
PULSE2), two are outputs (SWOUT1 and SWOUT2) and the two remaining are the ones
related with ground and the 12 V DC voltage.

 DIR: they are the terminals through which it will be indicated the direction of
rotation in each of the axes.

o DIR1 (pin 20): if it is introduced a ‘0’ or a low level, the plate will rotate
towards the left side, whereas if it is introduced a ‘1’ it will rotate towards
the right one.

o DIR2 (pin 22): if it is introduced a ‘0’ or a low level, the plate will rotate
towards the upper side, whereas if it is introduced a ‘1’ it will rotate towards
the lower one.

 PULSE 1 and 2 (pins 2 and 4): they are the pins through which the pulse wave,
necessary for the motors to work, will be introduced. Depending on the period of
this wave, the speed of rotation will be higher or lower. According to the system’s
manual, the maximum frequency recommended for this signal is 400Hz (2.5
milliseconds period) for both PULSE1 and PULSE2, so it has been the one selected.
Apart from that, as it is wanted to spend as little time as possible generating the
pulses, it was searched the minimum width that the system could understand as a
pulse. For this purpose, a PWM wave with a switching frequency fixed to 400 Hz was
introduced, and the duty cycle was reduced until it reached a point where the table
stopped working because it was no longer able to recognize the pulses. The duty
cycle correspondent to this point was between the 4 and 5% (10 μs – 12.5 μs pulse
width), so it was decided to fix this width to 12 μs.

 SW OUT 1 and 2 (pins 7 and 8): these pins will notify the controller when the plate
arrives to one of the end switches. In normal conditions, they will be at 5V (‘1’ in
digital logic) and they will turn to a 0 V voltage when closing one of the
correspondent contacts.

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 17 of 48 Jon Garnica Izco

5.4.4. Power connector pins

Figure 11: 9 pin power connector description.

 The power connector has 9 pins from which most of them remain unused. Originally,
the system also employed the second and the fourth pin to supply a 12 V voltage to the
camera, but since that camera is no longer being used, they have become useless.

 Vm (pins 6 and 7): these pins are at a 32 V voltage and they supply the necessary
voltage for both motors to work (one for each). Moreover, as it can be seen in the
5.4.2 5 V signal obtention chapter, they are used to obtain the 12 V that are
employed in the motherboard.

 Vom (pin 5): it is the ground of the power supply and of the whole system as they
are all connected.

5.5. Arduino DUE

As it has been said before, the device selected for the task of controlling the system has
been the Arduino DUE. This microcontroller board is based on the Atmel SAM3X8E ARM
Cortex-M3 CPU and it is a very appropriate controller to carry-on real-time tasks. [18]

This microcontroller has a special characteristic that is its operating voltage. Instead of
being 5 V as most of the Arduino microcontrollers, it is 3.3 V. Given that the table’s output
pins (SW OUT 1 and SW OUT 2) are at a 5 V voltage, it was needed to introduce a voltage
divider to reduce it to 3.3 V when connecting them to the microcontroller. This task has a
major importance because if this voltage is not reduced, the chances of irreversibly
damaging the Arduino are very high.

To lower it, a 10 kΩ resistor joint to another 20 kΩ one was included, so that the current
was not excessively high, and it could not damage the system.

Figure 12: Voltage divider circuit (5V-3.3V).

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 18 of 48 Jon Garnica Izco

From all the inputs/output pins that it offers, they have only been used the digital
ones because all the signals involved were only digital. Below, they are shown the pins
that have been used to connect the table to the Arduino.

 Pin 46: PULSE 1.
 Pin 47: PULSE 2.
 Pin 48: SW OUT 1.
 Pin 49: SW OUT 2.
 Pin 50: DIR 1.
 Pin 51: DIR 2.

For its power supply it is employed the Arduino’s programmable port connected to
the computer. It was wanted to use the 12 V existent between pins 25 and GND of the
control connector as input voltage of the microcontroller (it admits voltages between 7
and 12 V as input voltages), but it was observed that if the table remained stopped for a
certain time, the voltage in these pins suddenly dropped to around 5 V and the table
started having an unexpected behaviour. An attempt was made to discover the reason
why this happened, without reaching any result, so it was decided to use the
programmable port as power supply and lay aside the other option.

5.6. Camera

The device employed as a camera is a Huawei smartphone with an Android
operating system. There has been developed an application capable of detecting the ball
on the plate thanks to the contrast in colours between them (white ball vs. black plate).
It is important to try to avoid light bulbs or solar light because, in case of appearing any
kind of reflection on the plate, it could not be able of detecting the ball.

The sampling period has been set to 33 ms, slightly below the one of the original
camera (40 ms), but this difference is not enough to make problems related with this
question to appear. It also has a 256 x 256 pixels resolution, which is equal to the initial
one. Nevertheless, in case of looking for a better resolution, it could be increased, but for
the goal of this project it is enough.

The camera sends every 33 ms the information of the accumulated number of
frames and the coordinates in pixels of the last sample taken from the ball’s position.
This sample, after being applied a certain relationship between pixel and distance units,
is translated to the distance in meters in both axes with respect to the reference system
of the plate so that it can be more understandable by the user.

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 19 of 48 Jon Garnica Izco

6. Initialization of components

6.1. Table’s reference position

First, it is needed to define a reference position with respect to which the rotations
of the plate will be made. This position will be the one at which the plate is completely
horizontal, that is, the one at which when placing the ball on the table it remains still.

The regulation will be first done for one of the axes and then for the other. In the first
place and regardless of where the plate is initially, it is selected a direction of rotation
(CCW) and it is indicated to the table to start moving until reaching the correspondent
end switch. Once arrived, the direction is changed, and it starts rotating towards the
opposite switch until reaching it. During this second path, it is stored in an auxiliar
variable the number of steps that the motor has taken until getting to close the contact
so that it is known how many steps are there necessary to go from one side of the table
to the other. Knowing this, it is trivial to find the point at which the plate will remain
horizontal. It is just needed to cover half of the steps taken to reach this point. After
completing the process in this axis, it is repeated for the other one, making the plate to
finally end in the desired position.

Figure 13: Plate's reference position obtention flowchart.

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 20 of 48 Jon Garnica Izco

6.2. Ball’s position relationship initialization

The camera sends a string every 33 ms indicating where the ball was the last time it
was seen. This string contains the number of frames that have been taken since the
camera started to take samples and the ball’s coordinates in pixel units. The importance
of knowing the number of frames resides in being capable of determining if any sample
has been lost. If this value had not be included, it would not be possible to know this.

But in sights of carrying on the control task, the ball’s position is the value that
matters the most. This value is provided in pixels so it must be found a way of modifying
it to have it as a distance in metres with respect to the centre of the plate, which will be
taken as reference system.

The main difficulty in defining the relation between the value of the sample in pixels
and in centimetres is the low stability of the camera’s mount. The mount selected was
not designed for this purpose, so it is very unstable and, in case of needing to remove the
smartphone from it, it is almost impossible to place it again in the same position that it
was before removing it. For this reason, it is necessary carry on a calibration every time
the system is initialized to know the pixel coordinates of each of the plate edges.

Figure 14: Camera's and plate's reference systems.

The way of getting to do this without needing to calibrate the camera manually
each time is the following one: first, and after having reach the reference position of the
table, it is said to the plate to rotate an angle of -5° in both axes, making the ball to move
to the bottom left corner. Once it has arrived, samples of its position are taken until 4
seconds have passed since the plate moved to that angle. Then, from all the samples, it
is only taken the last of them and it is stored in a variable.

Afterwards, it is said to the plate to rotate 10° in the opposite direction in both axes,
arriving to a +5° angle position, which makes the ball move to the upper right corner.
Once arrived, it is repeated the sampling process and the last of them is stored in another
variable. This way, it is known the position in pixels of the ball in both corners and,
knowing that in metres these points are (-18 cm, -18 cm) and (18 cm, 18 cm), it can be
obtained the relation between the sample in pixels and centimetres. When this task is
done, it is told to the plate to go back to its reference position.

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 21 of 48 Jon Garnica Izco

Nevertheless, the data sent by the camera is a string type and has the following
structure:

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠, 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒, 𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒)

Equation 12: Camera's data structure.

 To know when does a string finish, it will be searched the “CR” bytecode of carriage

return. This bytecode is coded as 0x0A, which is a 10 in decimal, and it is sent to mark
the ending of a string. There are other ways of indicating this end (LF o CR/LF) but in
this case, CR has been the mode employed. [19] When this byte arrives, it is known that
the string has finished.

Thus, to make this data usable, it is necessary to convert this string to six float
variables (three for each corner). To fulfil this task what it will be done is to read the
strings and, as the values are separated by commas, look for them so that each of the
values can be differentiated and stored in different integer variables. However, this is an
operating mode that will work for the first two values but not for the third and last of
them because there is not a comma after it. For this last value, it will not be necessary to
look for any character because the string was already cut before with the CR search, so
when arriving to the end it will stop and store the last value read.

However, the camera will not only send the position of the ball in each moment. There
are some scenarios in which instead of a string it will send some data that it is not
desired to be processed:

 CE151: every time that the system is initialized it is sent this starting message,
so whenever a string starts with a “C” it must know that it is due to the
initialization and that it must not take it.

 Partial string: the first sample may not start right in the beginning but at a
certain position of the string, which means that, instead of sending a complete
sample, it would only send a partial one. Therefore, the first one should never
be analysed and always dismissed.

 -2: it is unusual that this happens because the camera’s height is fixed, but if
the camera observes the ball bigger than a certain size it will send a -2. This
notification could also be helpful to detect reflections on the plate because for
the camera they are seen as big-sized white stains and if any of them interfere
with the ball detection, it will be notified.

 -3: it will be returned in case of not detecting the ball.

For this reason, there will be included some conditions that must be fulfilled to
process the data received, avoiding all these possible errors. These processes are
shown in the following flowcharts to have a more visual representation of them.

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 22 of 48 Jon Garnica Izco

Figure 15: Ball position processing decision flowchart.

Figure 16: Flowchart of the process carried on to define the relation
between the position of the ball in pixels and in centimetres.

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 23 of 48 Jon Garnica Izco

The ball positions in the upper and lower corner, after applying the conversion from
string to float, are stored in four variables called xpos1, xpos2, ypos1 and ypos2, but to
make them usable, it is necessary to convert them from pixels to centimetres. As this
relation is linear, they can be written as the following equation system for each of the
coordinates, where ‘1’ corresponds to the sample of the position of the ball when the
plate is on a (-5°, -5°) angle and ‘2’ to the one when the plate is on a (5°, 5°) angle:

 X-coordinate:

𝑥1 [𝑐𝑚] = 𝑚𝑥 · 𝑥[𝑝𝑖𝑥𝑒𝑙𝑠] + 𝑛𝑥 → 𝑥1 [𝑐𝑚] = 𝑚𝑥 · 𝑥𝑝𝑜𝑠1 + 𝑛𝑥

𝑥2 [𝑐𝑚] = 𝑚𝑥 · 𝑥[𝑝𝑖𝑥𝑒𝑙𝑠] + 𝑛𝑥 → 𝑥2 [𝑐𝑚] = 𝑚𝑥 · 𝑥𝑝𝑜𝑠2 + 𝑛𝑥

 Y-coordinate

𝑦1 [𝑐𝑚] = 𝑚𝑦 · 𝑦 [𝑝𝑖𝑥𝑒𝑙𝑠] + 𝑛𝑦 → 𝑦1 [𝑐𝑚] = 𝑚𝑦 · 𝑦𝑝𝑜𝑠1 + 𝑛𝑦

𝑦2 [𝑐𝑚] = 𝑚𝑦 · 𝑦 [𝑝𝑖𝑥𝑒𝑙𝑠] + 𝑛𝑦 → 𝑦2 [𝑐𝑚] = 𝑚𝑦 · 𝑦𝑝𝑜𝑠2 + 𝑛𝑦

Solving this equation system, it is obtained that:

𝑛𝑥 = −18 −
36

𝑥𝑝𝑜𝑠2 − 𝑥𝑝𝑜𝑠1
· 𝑥𝑝𝑜𝑠1

𝑚𝑥 =
36

𝑥𝑝𝑜𝑠2 − 𝑥𝑝𝑜𝑠1

𝑛𝑦 = 18 +
36

𝑦𝑝𝑜𝑠2 − 𝑦𝑝𝑜𝑠1
· 𝑦𝑝𝑜𝑠1

𝑚𝑦 = −
36

𝑦𝑝𝑜𝑠2 − 𝑦𝑝𝑜𝑠1

Substituting in the initial expression it is obtained that the relation between pixels

and centimetres is:

𝑥 [𝑐𝑚] =
36

𝑥𝑝𝑜𝑠2 − 𝑥𝑝𝑜𝑠1
· 𝑥 [𝑝𝑖𝑥𝑒𝑙𝑠] − 18 ∗

𝑥𝑝𝑜𝑠1 + 𝑥𝑝𝑜𝑠2

𝑥𝑝𝑜𝑠2 − 𝑥𝑝𝑜𝑠1

𝑦 [𝑐𝑚] =
−36

(𝑦𝑝𝑜𝑠2 − 𝑦𝑝𝑜𝑠1)
· 𝑦 [𝑝𝑖𝑥𝑒𝑙𝑠] + 18 ∗

𝑦𝑝𝑜𝑠1 + 𝑦𝑝𝑜𝑠2

𝑦𝑝𝑜𝑠2 − 𝑦𝑝𝑜𝑠1

Equation 13: Relation between the ball’s position in pixels and in centimetres.

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 24 of 48 Jon Garnica Izco

7. Controller design

Once the table is already fully initialized, the control task can be carried out. The
objective is to move the ball to a series of specific points of the plate trying to model a
trajectory. To do it, the system’s position reference will be changing from time to time to
the different points that it is wanted to move the ball. This time between changes must be
sufficient for the ball to arrive to each position and stabilize there before moving to the next
one.

7.1. Open-loop plate control

First, before introducing the controller it is advisable to start with an open-loop
control of the system, this is, being able of moving the plate to a desired angle or to make
it describe a certain rotation trajectory. The process is the same that the one depicted in
the table’s reference position obtention with the only difference that now, instead of
rotating until reaching a switch, the angle rotation will be marked in advance and, from
it, it will be deduced the number of steps that are needed to take to reach that position.
To do this conversion it is employed a relationship given by the system’s user’s manual
[14] which relates the motor step size with the angle rotated per each step
(Δα=0.03598 °/step).

Figure 17: Open-loop control flowchart.

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 25 of 48 Jon Garnica Izco

7.2. Controller design

The above approach can be used if it is only wished to control the table’s position
independently of the ball’s position, as the system plant is unstable. But as the goal of
this system is to define a way to be able to control the ball’s trajectory, it will be
necessary to close the loop and define a controller capable of controlling the ball. Apart
from that, it is important to highlight that, to carry out all the controller simulations, it
has been used the Scliab environment.

7.2.1. Plant discretization

Before starting with the controller design, it is mandatory to discretize the continuous
plant obtained before and convert it to the Z-domain. To do it, instead of carrying on
calculations by hand, it has been used the Scliab LTI library which has a specific function
that executes the Z-transform (lti_toDiscrete(function, sample period)) for a certain
sample period. In this case, as it has already been said, it has been selected a 33
milliseconds one.

𝐺𝑚(𝑧) = 0.000246193 ·
(𝑧 + 0.256214) · (𝑧 + 3.57341)

 (𝑧 − 1) · (𝑧 − 0.838223)

Equation 14: Plant’s discretized transfer function.

7.2.2. Controller obtention using the pole assignment method.

To define this controller, different options were shuffled. Initially, it was thought to
use the same PID controller as the one used in the user’s manual but modifying certain
parameters just to adjust it to the actual system. However, it turned to be more complex
and inefficient than what it was first thought, and it was decided to change of idea. Then,
it was thought of using the root locus designing method, but the controller obtained
did not fulfil the requirements as it should. Hence, in the end, it was chosen the pole
assignment designing method as it enables placing the poles where it is the most
convenient to meet the specifications [20]. Regarding the project, the only specification
that has been imposed is to have a null position error, but to accomplish this task it is
not needed to apply any extra condition because the plant already has two integers that
make this error to be zero. The block diagram of the system can be represented as
follows:

Figure 18: Control structure for pole assignment designing method [20].

Where B(z) and β(z) are the open loop zeros whereas A(z) and α(z) are the poles.

𝐵(𝑧) = 0.000246193 · (𝑧 + 0.256214) · (𝑧 + 3.57341)

𝐴(𝑧) = (𝑧 − 1) · (𝑧 − 0.838223)

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 26 of 48 Jon Garnica Izco

To make the calculations easier, the position of the poles and zeros as well as the
plant’s gain will be substituted by a series of variables.

 K = 0.000246193
 C1 =−0.256214
 C2 =−3.57341
 P = 0.838223

Rewriting the plant’s expression using these new variables it results:

𝐺𝑚(𝑧) = 𝐾 ·
(𝑧 − 𝐶1) · (𝑧 − 𝐶2)

 (𝑧 − 1) · (𝑧 − 𝑃)

It is also convenient to, beforehand, write the expressions of the controller D(z) and
the closed loop poles γ(z) as a function of B(z), β(z), A(z) and α(z) to clear out what it
is it going to be pursued.

𝐷(𝑧) =
β(z)

α(z)
=

𝛽 · 𝑧 + 𝛽 · 𝑧 + 𝛽 · 𝑧 + ··· +𝛽

𝛼 · 𝑧 + 𝛼 · 𝑧 + 𝛼 · 𝑧 + 𝛼

γ(z) = 𝐴(𝑧) · α(𝑧) + 𝐵(𝑧) · β(𝑧) = 𝑧 + 𝛾 · 𝑧 +𝛾 · 𝑧 +··· +𝛾

Once all these expressions have been defined, the design can be started. First, it is
necessary to define the degree of these polynomials. The number closed loop poles, as it
has been said before, is equal to the sum of the number of poles of the plant plus the
controller ones, so the degree of this polynomial will directly depend on these two.

𝑛 = 𝑛 + 𝑛

The controller, in order not to have any delays, must have the same number of
poles than zeros (if it had more poles than zeros, it would introduce an undesired delay
in the control).

𝑛 = 𝑛

Last, it must also fulfil a condition related with the number of requirements ‘c’ that
have been imposed to the system, such as damping, settling time, overshoot… this
condition is directly related with the number of closed loop poles and it is mandatory to
be accomplished for the assignation problem to have solution.

𝑛 = 𝑛 − 1 + 𝑐

Getting together the second and third equation, it results the following equation
system:

𝑛 = 𝑛 + 𝑛

𝑛 = 𝑛 = 𝑛 − 1 + 𝑐

Equation 15: Pole assignment conditions.

From that system, knowing that the number of conditions is equal to 0 and the
number of poles of the plant is equal to 3 it is trivial to know which will be the degree of
each of the polynomials.

𝑛 = 𝑛 = 2

𝑛 = 5

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 27 of 48 Jon Garnica Izco

 Knowing this coefficients, D(z) and γ(z) can be again reformulated in a more
compact and defined style.

𝐷(𝑧) =
𝛽 · 𝑧 + 𝛽 · 𝑧 + 𝛽

𝛼 · 𝑧 + 𝛼 · 𝑧 + 𝛼

γ(z) = 𝑧 + 𝛾 · 𝑧 +𝛾 · 𝑧 +𝛾 · 𝑧 +𝛾 · 𝑧+𝛾

The P pole of the system’s plant (P = 0.838223) might be cancelled to make the

calculations easier because it is a non-hazardous pole that will not provoke the
apparition of non-desired behaviours on the loop. By cancelling it, it is removed one
unknown of the problem, getting more simplified. Instead of it, it will be placed a pole in
0.927 that will not worsen the system and, moreover, will make the system to stabilise
in 2 seconds, which is enough time for the ball to arrive and stabilise on a certain point.
It will be represented as zp.

Furthermore, the closed loop polynomial can also be simplified by adding the pole

that will be cancelled (P), the pole that will be added at 0.9 (zp) and another three
dominated poles (zd) which, in order to be dominated by the other one, must satisfy the
following condition.

|𝑧𝑝| > 𝑧𝑑 → |0.927| = 0.659 > 𝑧𝑑

For this reason, the three last poles will be placed in z= - 0.6, z= - 0.61 and z=- 0.62 to

make them the slowest possible while still being dominated by zp. After carrying on all
these calculations, they present the following form:

𝐷(𝑧) =
(𝛽 · 𝑧 + 𝛽 · 𝑧)(𝑧 − 𝑃)

𝛼 · 𝑧 + 𝛼 · 𝑧 + 𝛼

𝛾(z) = (𝑧 − 𝑧𝑝)(𝑧 − 𝑃)(𝑧 + 0.6)(𝑧 + 0.61)(𝑧 + 0.62)

Recalling the above expression 𝛾(z) = 𝐴(𝑧) · α(𝑧) + 𝐵(𝑧) · β(𝑧) it can be formed an
equation system to obtain the five remaining unknown parameters. For this task, it will
be used the Scilab program, and the problem will be solved by means of converting it to
a matrixial system. It is important to highlight that, as it was expected, the P pole will be
cancelled.

[(𝑧 − 1) · (𝑧 − 𝑃)] · [𝛼 · 𝑧 + 𝛼 · 𝑧 + 𝛼] + 𝐾 · [(𝑧 − 𝐶1) · (𝑧 − 𝐶2)] · [(𝛽 · 𝑧 + 𝛽 · 𝑧)(𝑧 − 𝑃)] =

= (𝑧 − 𝑧𝑝)(𝑧 − 𝑃)(𝑧 + 0.6)(𝑧 + 0.61)(𝑧 + 0.62) = 0.21033 - 1.26153z + 2.8124z² -2.7569z³ +z⁴

⎣
⎢
⎢
⎢
⎡

 1 0 0 0 0
−2 1 0 1 0
 1 −2 1 −(𝑐1 + 𝑐2) 1
 0 1 −2 𝑐1 · 𝑐2 −(𝑐1 + 𝑐2)
 0 0 1 0 𝑐1 · 𝑐2 ⎦

⎥
⎥
⎥
⎤

 ·

⎣
⎢
⎢
⎢
⎡

𝛼
𝛼
𝛼

𝐾𝛽
𝐾𝛽

⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡

 1
 −2.7569
 2.8124

− 1.26153
 0.21033 ⎦

⎥
⎥
⎥
⎤

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 28 of 48 Jon Garnica Izco

 After solving this system, the coefficients are obtained:

𝛼 = 1.

𝛼 = −0.7722657

𝛼 = 0.2237037

𝐾𝛽 = 0.0153568

𝐾𝛽 = −0.0146026

Substituting the terms in the controller it is obtained its final expression.

𝐃(𝐳) = 𝟔𝟐. 𝟑𝟕𝟕𝟐 ·
(𝐳 − 𝟎. 𝟗𝟓𝟎𝟖𝟗) · (𝐳 − 𝟎. 𝟖𝟑𝟖𝟐𝟐𝟑)

 (𝐳^𝟐 − 𝟎. 𝟕𝟕𝟐𝟐𝟔𝟔𝐳 + 𝟎. 𝟐𝟐𝟑𝟕𝟎𝟒)

Equation 16: Controller expression.

 Now, having the controller already designed, it can be tested how much does it fit in
the system by doing some closed loop simulations. To do it, first it is necessary to obtain
the system’s closed loop expression.

𝑻(𝒛) =
𝑫(𝒛) · 𝑮𝒎(𝒛)

𝟏 + 𝑫(𝒛) · 𝑮𝒎(𝒛)
= 𝟎. 𝟎𝟏𝟓𝟑𝟓𝟔𝟖

(𝒛 − 𝟎. 𝟗𝟓𝟖𝟗) ∗ (𝒛 + 𝟎. 𝟐𝟓𝟔𝟐𝟏𝟒) · (𝒛 + 𝟑. 𝟓𝟕𝟑𝟒𝟏)

(𝒛 − 𝟎. 𝟗𝟐𝟔𝟗𝟎𝟗) · (𝒛 − 𝟎. 𝟔𝟐) · (𝒛 − 𝟎. 𝟔𝟏) · (𝒛 − 𝟎. 𝟔)

Equation 17: Closed loop system expression.

Before starting to simulate, it is convenient to convert this expression back to the
Laplace domain using a zero-order holder to observe not only the samples but all the
points between them. In the following diagrams it is shown the response of the system
when introducing a step input.

It is observed that the settling time is in line with the previously established one as it
starts following the reference after 2 seconds has passed. It can also be seen that a certain
overshoot appears that will cause the ball to pass the point where it should go and,
afterwards, return to it. This behaviour could be acceptable as the overshoot is not
excessively high, but when having a look to the control action it is seen that it cannot be
acceptable.

Figure 19: System's discrete step response. Figure 20: System's continuous step response.

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 29 of 48 Jon Garnica Izco

Figure 21: Closed loop control action.

The control action has huge over and undershoots. This means that if, for example, it
is wanted to move the ball 1 cm, the angle that will be indicated first to rotate will be of
60º, which is much more than the greatest angle that the system can offer.

To reduce this over and undershoot, a prefilter is included to cancel the closed loop
zero at z=0.95089, which is what causes the appearance of this behaviour. It will be also
necessary to introduce in the prefilter a certain gain (1-0.95089=0.0491098) to
compensate this cancellation.

𝐹(𝑧) =
0.0491098 · 𝑧

(𝑧 − 0.95089)

Equation 18: Prefilter expression.

𝑻(𝒛) = 𝟎. 𝟎𝟎𝟎𝟕𝟓𝟒𝟏𝟕
𝐳 · (𝐳 + 𝟎. 𝟐𝟓𝟔𝟐𝟏𝟒) · (𝐳 + 𝟑. 𝟓𝟕𝟑𝟒𝟏)

 (𝐳 − 𝟎. 𝟗𝟐𝟔𝟗𝟎𝟗) · (𝐳 − 𝟎. 𝟔𝟐) · (𝐳 − 𝟎. 𝟔𝟏) · (𝐳 − 𝟎. 𝟔)

Equation 19: Closed loop filtered expression.

Figure 22: System’s diagram including the prefilter. [20]

 𝑟 : ball’s reference position.
 𝑟 ′: ball’s reference position after being applied the prefilter.
 𝑒 : position error. Difference between the position of the ball in a certain time

instant and its reference.
 𝑎 : controller’s action.
 𝑦 : system’s response. Position of the ball in a certain time instant.

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 30 of 48 Jon Garnica Izco

Figure 23: Closed loop prefiltered discrete step response. Figure 24: Closed loop prefiltered continuous step response.

Comparing the obtained response with the one above it can be seen that, thanks to
the zero cancellation, the response’s overshoot has fully disappeared making it much
smoother than what it initially was. Nonetheless, it is interesting to highlight that the
settling time remains invariant as the dominant closed loop pole responsible of this task
has not disappeared from the transfer function.

Figure 25: Controller's prefiltered action.

Regarding the controller’s action, the over and undershoots have been considerably

reduced. This means that, with this modification, if it is desired to move the ball, for
instance, 3 cm, it would be necessary for the plate to rotate 9°, which is less than the
maximum admissible for the plate; but if the distance to move would be greater than 3
cm it would reappear the same problem than before but in a smaller magnitude than
before. From all the controllers designed, it was the one that performed the best.

To avoid rotations bigger than the maximum admissible for the plate that could
endanger the system, it is introduced a rate limiter so that, in case of being requested
an angle rotation greater than 10°, it would limit it not letting demand one greater than
this magnitude. It will affect the settling time in those cases making it greater than what
it was expected, but it is a security measure necessary to implement to protect the
system.

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 31 of 48 Jon Garnica Izco

7.2.3. Controller implementation.

In order to implement the controller in the Arduino board, it is previously needed to
apply the inverse Z-transform to the controller and the prefilter to obtain their
expressions in a sample form. To facilitate the obtention of these expressions, they are
converted to their z-1 form.

D(𝑧) = 62.3772 ·
(1 − 0.95089 z) · (1 − 0.838223 z)

 (1 − 0.772266 z + 0.223704 z)

(1 − 0.772266 z + 0.223704 z) · D(z) = 62.3772 · (1 − 1.789113 · 𝑧 + 0.797058 · 𝑧) · 𝛿(𝑧)

𝑑 − 0.772266 𝑑 + 0.223704 𝑑 = 62.3772 · (𝛿 − 1.789113 · 𝛿 + 0.797058 · 𝛿)

𝒅𝒌 = 𝟎. 𝟕𝟕𝟐𝟐𝟔𝟔 𝒅𝒌 𝟏 − 𝟎. 𝟐𝟐𝟑𝟕𝟎𝟒 𝒅𝒌 𝟐 + 𝟔𝟐. 𝟑𝟕𝟕𝟐 · (𝜹𝒌 − 𝟏. 𝟕𝟖𝟗𝟏𝟏𝟑 · 𝜹𝒌 𝟏 + 𝟎. 𝟕𝟗𝟕𝟎𝟓𝟕𝟗 · 𝜹𝒌 𝟐)

Equation 20: Controller samples.

𝐹(𝑧) =
0.0491098 · 𝑧

(𝑧 − 0.95089)
=

𝑟′(𝑧)

𝑟(𝑧)

(1 − 0.95089 · 𝑧) · 𝑟′(𝑧) = 0.0491098 · 𝑧 · 𝑟(𝑧)

𝑟 − 0.95089 · 𝑟 = 0.0491098 · 𝛿

𝒓 𝒌 = 𝟎. 𝟗𝟓𝟎𝟖𝟗 · 𝒓𝒌 𝟏 + 𝟎. 𝟎𝟒𝟗𝟏𝟎𝟗𝟖 · 𝜹𝒌 𝟏

Equation 21: Prefilter samples.

Where δ(z) is referred to the input of the system.

As it can be seen, both expressions depend on previous samples of the controller or
the prefilter and the input. Therefore, it will be necessary to store in a vector every
sample taken and only discard them when they are no longer usable.

Once this implementation has been completed, the only missing step is testing the
system’s behaviour in a real environment.

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 32 of 48 Jon Garnica Izco

8. Conclusion and future plans

After having implemented the designed controller in the Arduino board to test the
system’s real behaviour, it was observed that the components initialization was correctly
reproduced both for the table and the ball, but the controller task, as it was expected, was
not. The design of this controller was beyond the scope of this project and was only a first
approximation of what would be necessary to carry out the control task, since arriving at a
correct design requires a lot of time. Despite this fact, all the objectives described in the
beginning such as the adaptation of the system to introduce an Arduino as a microcontroller
and a phone camera as a position sensor, the initialization of components or the open loop
control of the table, have been fully accomplished, so the project can be considered as a
success.

As future plans, there can be inserted some sources of error that may affect to the
controller’s behaviour when being implemented. For example, a significant vibration
appears on the plate due to the way that the pulse wave has been created and the type of
motors employed that causes the ball to start bouncing and lose contact with the plate’s
surface. This contact lose complicates the control of the ball because in those instants
where the ball is suspended it is not possible to modify its position. Another source of error
may be controller’s action that, as it has been said before, has an overshoot that might
demand an excessively high angle when trying to reach a certain point making the action
too aggressive and not enabling the ball to smoothly move.

Some proposed solutions to these problems could be designing a better controller with
a softer control action that took into account the possible disturbances that the system
may suffer; finding another way of creating the 400 Hz pulse wave introduced in the step
motors to decrease the plate vibrations; or using a heavier ball instead of a table tennis
one to remove the ball’s bouncing (it must be taken into account that both the change in
ball and frequency provokes a change in the system’s dynamics, so its transfer function
should also be modified).

Apart from designing a better controller, it could also be interesting to substitute the
wired connection between the camera and the microcontroller by a Bluetooth or IP
connection so that it could be monitored from any place without needing wires. Moreover,
this change would allow the phone’s port to be used as a power port instead of a data traffic
one, thus eliminating the phone battery problem. Obviously, this kind of connection is less
reliable that the other as interferences may have a greater influence, so more caution in the
communication will be required.

Moreover, it could also be designed an interface containing a series of buttons with
geometrical figures that, when being pressed, would indicate the system to draw with the
ball that shape. For example, if the triangle button would be pressed, it would be said to the
table to draw a triangular shape with the ball. For all this kind of tasks it would be critical
to ensure a correct timing for each of them to avoid endangering the system functioning.

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 33 of 48 Jon Garnica Izco

9. Bibliography

[1] A. Kastner, J. Inga, F. Koepf, T. Blauth, M. Flad and S. Hohmann, “Model-Based Control of
a Large-Scale Ball-on-Plate System With Experimental Validation,” in IEEE International
Conference on Mechatronics, Ilmenau, March 2019.

[2] R. L. Giacco, “Eclipse,” [Online]. Available: http://eclipse.baeyens.it/index.shtml.
[Accessed 26 05 26].

[3] Humusoft, “Humusoft - CE151,” [Online]. Available:
https://www.humusoft.cz/models/ce151/. [Accessed 15 05 2021].

[4] A. A. Puerta, “Diseño y control de un sistema Ball and Beam con,” Dep. Ingeniería de
Sistemas y Automática, Escuela Técnica Superior de Ingeniería de la Universidad de
Sevilla, Sevilla, 2018.

[5] Leybold, “Leybold Ball & Plate,” [Online]. Available: https://www.leybold-
shop.com/ve6-3-5-9.html. [Accessed 05 05 2021].

[6] Leybold, “Leybold Inverted Pendulum,” [Online]. Available: https://www.leybold-
shop.com/ve6-3-5-11.html. [Accessed 05 05 2021].

[7] Leybold, “Leybold Twin Rotor MIMO,” [Online]. Available: https://www.leybold-
shop.com/ve6-3-5-12.html. [Accessed 05 05 2021].

[8] Quanser, “Quanser - Company mission,” [Online]. Available:
https://www.quanser.com/about/company-values-mission/. [Accessed 8 5 2021].

[9] Quanser, “Quanser - Control Systems,” [Online]. Available:
https://www.quanser.com/solution/control-systems/. [Accessed 9 5 2021].

[10] Quanser, “Quanser Inverted Pendulum,” [Online]. Available:
https://www.quanser.com/products/linear-flexible-joint-inverted-pendulum/.
[Accessed 05 05 2021].

[11] Quanser, “Quanser MIMO Twin Rotor,” [Online]. Available:
https://www.quanser.com/products/quanser-aero/. [Accessed 05 05 2021].

[12] Quanser, “Quanser Ball & Plate,” [Online]. Available:
https://www.quanser.com/products/2-dof-ball-balancer/. [Accessed 05 05 2021].

[13] D. H. Amor, “Arduino Project Hub,” Arduino, 21 05 2016. [Online]. Available:

YYGRgZGhgYGBoYHBgYGBkYGBoZGhgYGBgcIy4lHCErIRkYJjgmKy8xNTc1HCQ7QDs0Py
40NTEBDAwMEA8QHxISHjQkISE0NDQ0NDQ0NDQ0NDQ0NDQ0MTQ0NDQ0NDQ0NDQ
0NDQ0NDQ0NDQ0NDQ0NDQ0NDE0NDQ0NP/AABEIASwAqAMBIgACEQEDEQH/.
[Accessed 26 05 2021].

[14] T. -. Humusoft, CE 151 BALL & PLATE APPARATUS - USER'S MANUAL., 1992-1996.

[15] Industrial-Electronics.com, “industrial-electronics.com. "The Slo-Syn synchronous step
motor".,” [Online]. Available: http://www.industrial-electronics.com/emct_2e_5i.html.

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 34 of 48 Jon Garnica Izco

[16] T. E. Components, “TME Electronics Components. Motores paso a paso.,” 08 09 2020.
[Online]. Available: https://www.tme.eu/es/news/library-articles/page/41861/Motor-
paso-a-paso-tipos-y-ejemplos-del-uso-de-motores-paso-a-
paso/#:~:text=El%20motor%20paso%20a%20paso,eje%20cada%201%2C8%C2%B0..
[Accessed 15 05 2021].

[17] S. Electric, Installation instructions for SLO-SYN model SS2000MD4M-O microstep
drive/oscillator, Schneider Electric.

[18] Arduino, “Arduino DUE properties,” Arduino, [Online]. Available:
https://store.arduino.cc/arduino-due. [Accessed 15 05 2021].

[19] Wikipedia, 10 05 2021. [Online]. Available: https://en.wikipedia.org/wiki/Newline.
[Accessed 18 05 2021].

[20] G. L. Carreras, “Apuntes de Control Digital,” Pamplona, 2020.

[21] P. Abeles, “CameraPreview.java example from the BoofCV library for Android(C),” 2011-
2014.

[22] S. Electric, “bibus.hu,” [Online]. Available:
https://www.bibus.hu/fileadmin/editors/countries/bihun/product_data/kollmorgen/
documents/superiorelectric_series_ss2000md4mo_manual_en.pdf. [Accessed 27 05
2021].

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 35 of 48 Jon Garnica Izco

10. Ancillaries

10.1. Camera Android programming code

10.1.1. Camera Preview [21]

/*
 * Copyright (c) 2011-2014, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.example.ce151;
//package org.boofcv.example.android;

import android.content.Context;
import android.hardware.Camera;
import android.util.Log;
import android.view.SurfaceHolder;
import android.view.SurfaceView;
import android.view.View;
import android.view.ViewGroup;

import java.io.IOException;

/**
 * Displays (or hides) the camera preview. Adjusts the camera preview so that
the
displayed ratio is the same
 * as the input image ratio.
 *
 * @author Peter Abeles
 */
public class CameraPreview extends ViewGroup implements SurfaceHolder.Callback
{
 private final String TAG = "CameraPreview";

 SurfaceView mSurfaceView;
 SurfaceHolder mHolder;
 Camera mCamera;
 Camera.PreviewCallback previewCallback;
 boolean hidden;

 public CameraPreview(Context context, Camera.PreviewCallback
previewCallback,
boolean hidden) {
 super(context);
 this.previewCallback = previewCallback;
 this.hidden = hidden;

 mSurfaceView = new SurfaceView(context);
 addView(mSurfaceView);

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 36 of 48 Jon Garnica Izco

 // Install a SurfaceHolder.Callback so we get notified when
the
 // underlying surface is created and destroyed.
 mHolder = mSurfaceView.getHolder();
 mHolder.addCallback(this);
 // deprecated setting, but required on Android versions prior
to 3.0
 // mHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
 }

 public void setCamera(Camera camera) {
 mCamera = camera;
 if (mCamera != null) {
 // need to start the preview here because it is
possible for it to be paused and
resumed and not
 // have surfaceChanged called if the orientation
doesn't need to be changed.
Yes, you will have
 // to start and stop the camera in the more common
situations
 startPreview();
 // Need to adjust the layout for the new camera
 requestLayout();
 }
 }

 @Override
 protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec)
{
 int width,height;
 if(hidden) {
 // make the view small, effectively hiding it
 width=height=2;
 } else {
 // We purposely disregard child measurements so that
the SurfaceView will center
the camera
 // preview instead of stretching it.
 width = resolveSize(getSuggestedMinimumWidth(),
widthMeasureSpec);
 height = resolveSize(getSuggestedMinimumHeight(),
heightMeasureSpec);
 }
 setMeasuredDimension(width, height);
 }

 @Override
 protected void onLayout(boolean changed, int l, int t, int r, int b) {
 if(mCamera == null)
 return;

 if (changed && getChildCount() > 0) {
 final View child = getChildAt(0);

 final int width = r - l;
 final int height = b - t;

 Camera.Size size =
mCamera.getParameters().getPreviewSize();
 int previewWidth = size.width;
 int previewHeight = size.height;

 // Center the child SurfaceView within the parent.
 if (width * previewHeight > height * previewWidth) {
 final int scaledChildWidth = previewWidth *
height / previewHeight;
 l = (width - scaledChildWidth) / 2;
 t = 0;
 r = (width + scaledChildWidth) / 2;
 b = height;

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 37 of 48 Jon Garnica Izco

 } else {
 final int scaledChildHeight = previewHeight *
width / previewWidth;
 l = 0;
 t = (height - scaledChildHeight) / 2;
 r = width;
 b = (height + scaledChildHeight) / 2;
 }
 child.layout(l,t,r,b);
 }
 }

 protected void startPreview() {
 try {
 mCamera.setPreviewDisplay(mHolder);
 mCamera.setPreviewCallback(previewCallback);
 mCamera.startPreview();
 } catch (Exception e){
 Log.d(TAG, "Error starting camera preview: " +
e.getMessage());
 }
 }

 @Override
 public void surfaceCreated(SurfaceHolder holder) {
 if (mCamera == null) {
 Log.d(TAG, "Camera is null. Bug else where in code.
");
 return;
 }

 startPreview();
 }

 @Override
 public void surfaceDestroyed(SurfaceHolder holder) {}

 @Override
 public void surfaceChanged(SurfaceHolder holder, int format, int w,
int h) {}
}

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 38 of 48 Jon Garnica Izco

10.2. Scilab controller simulations

// Control
clear
s=%s;
z=%z;
Tm=0.033;
// Tm=0.1;
ts = 2
// zp=0.9;
zp = exp(-4.6*Tm/ts)

// Modelo planta
Kb = 4.6;
KG = Kb * 100 * %pi /180
Gs = lti_system(KG/((s^2)*(0.187*s+1))) // cms/grado
//lti_stepPlot(Gs) // con una referencia de un grado recorre los 18 cms en 2.3
segundos

Gmz = lti_toDiscrete(Gs, Tm)
 cer pol K] = lti_getZpk(Gmz)
c1 = real(cer(1))
c2 = real(cer(2))
p = real(pol(3))

//Cálculo controlador
A=[1 0 0 0 0;
 -2 1 0 1 0;
 1 -2 1 -(c1+c2) 1;
 0 1 -2 c1*c2 -(c1+c2);
 0 0 1 0 c1*c2;
]

gammaz = (z-zp)*(z-0.6)*(z-0.61)*(z-0.62)
//cgamma = flipdim(coeff(gammaz),2)(2:$)
cgamma = flipdim(coeff(gammaz),2)

// b=[1; -zp; 0; 0; 0;]
 b = cgamma'
x=inv(A)*b

alfa0=x(1);
alfa1=x(2);
alfa2=x(3);
beta0=x(4)/K;
beta1=x(5)/K;

Beta=(beta0*z+beta1)*(z-p);
Alfa=alfa0*z^2+alfa1*z+alfa2;

Dz=lti_system(Beta/Alfa, Tm)

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 39 of 48 Jon Garnica Izco

Tz = lti_feedback(Dz*Gmz)
lti_stepPlot(Tz)
// Simulación
tfin = 3;
tk = 0: Tm : tfin;
tc = 0: Tm/100 : tfin;

Sa = lti_feedback(Dz,Gmz)
ak = lti_simul(Sa, 'step', tk);
y = lti_simul(Gs, zoh(ak, Tm), tc);
plot(tc,y)
plot(tk, ak, 'ro')

// Prefiltrado
cer = -beta1/beta0
Fz = lti_system((1-cer)*z/(z-cer), Tm)
Tyz=Fz*Tz
lti_stepPlot(Tyz)
rk = lti_simul(Fz,'step',tk);
ak = lti_simul(Sa, rk, tk);
y = lti_simul(Gs, zoh(ak, Tm), tc);
plot(tc,y)
plot(tk, ak, 'ro')

Siz = lti_system(Gmz,Dz)
Tyr = Fz*Tz
lti_stepPlot(Tyr)

[Dk]=lti_invZeta(Dz)
[Fk]=lti_invZeta(Fz)

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 40 of 48 Jon Garnica Izco

10.3. Real time control code

// Do not remove the include below
#include "CE151.h"

#include "FreeRTOS.h"
#include "task.h"
#include "semphr.h"
#include "timers.h"

#include "converter.h"
#include "analogSignal.h"

#include <assert.h>

/***
 * Prototypes
 ***/

void controlTask(void *pvParameters);
void commTask(void *pvParameters);

void rtPrint(const char * cad);
void rtPrintFlush(void);
template <typename T> void rtPrint(const char * openStr, const T & x, const
char *
endStr = nullptr);
void rtPrint(const char * openStr, const double & x, const char * endStr =
nullptr);

class MotorPasoAPaso
{
public:
 enum Direccion { CCW = LOW, CW = HIGH };

private:
 Direccion direc { CCW };
 int pFin;
 digitalOutput dir;
 digitalOutput pulso;

 const double pasosGrado {M_PI/(0.000628*180)};
 int nPasosObjetivo {0};
 int nPasos {0};

public:
 // Stablish direction of rotation
 void assignDirection(Direccion d) { direc = d;
dir.write((bool)direc); }
 // It takes a step at 400 Hz on the initialization stage
 void initStep(void) { pulso.on(); delayMicroseconds(12);
pulso.off(); delayMicroseconds(2500); }

 MotorPasoAPaso(int pinDir, int pinPulso, int pinFin);
 bool finCarrera(void) { return (digitalRead(pFin) == LOW); }

 void init(void); //It initializes moving the plate to a 0° position

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 41 of 48 Jon Garnica Izco

 void setAngle(double angle); // Fix the objective
 void step(void); // if it is necessary it takes a step

};

void MotorPasoAPaso::setAngle(double angle)
{
 // *** Here it is coordinated the access to the nPasosObjetivo
variable. Thi function will be called from the control task.
 nPasosObjetivo = (int) (pasosGrado*angle);
};

void MotorPasoAPaso::step(void)
{

 if (nPasos == nPasosObjetivo) return;
 Direccion nuevaDireccion = (nPasos < nPasosObjetivo)? CW : CCW;
 // If we cannot take a step, we return doing nothing
 if (finCarrera() && (nuevaDireccion == direc)) return;
 // If the direction of rtotaion has been changed, it is actualised.

 if (nuevaDireccion != direc) assignDirection(nuevaDireccion
);
 // We take a step and we actualise the number of steps taken
 pulso.on();
 delayMicroseconds(12);
 pulso.off();
 nPasos += (direc == CW)? 1 : -1;
}

MotorPasoAPaso::MotorPasoAPaso(int pinDir, int pinPulso, int pinFin) :
dir(pinDir), pulso(pinPulso)
{
 pFin = pinFin;
 pinMode(pFin, INPUT);
}

// It must be called before starting to take real time steps

void MotorPasoAPaso::init(void)
{
 assignDirection(CCW);
 do { initStep(); } while (!finCarrera());

// We have arrived to one of the end switches
// Turn around and start counting steps
 assignDirection(CW);
 int pasos {0};
 do { ++pasos; initStep(); } while (!finCarrera());

// Knowing the number of steps we can place the plate on the reference
position (0°)
 assignDirection(CCW);
 for(int i = 0; i <= pasos/2; i++) initStep();
// Now it must be in the desired reference position
 nPasos = 0;
}

MotorPasoAPaso motorX(50, 46, 48);

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 42 of 48 Jon Garnica Izco

MotorPasoAPaso motorY(51, 47, 49);

const int frecPulsos {400};
const int periodoPulsos = 3;
int count {0};

void pulsosMotor(TimerHandle_t) // It is called every “periodoPulsos”
{
 motorX.step();
 motorY.step();
}

struct commData
{
 double accX, accY; // Desired position of the plate in each moment
 double bolaX, bolaY;
};

unsigned int limPriority(unsigned int asked)
{
 return tskIDLE_PRIORITY + std::min(asked, (unsigned
int)(configMAX_PRIORITIES - 1));
}

QueueHandle_t commQueue {nullptr};
SemaphoreHandle_t arduinoSema {nullptr}; // Mutex for function from the
Arduino’s API

void inicializaMesa(void)
{
 motorX.init();
 motorY.init();
}

int leerDatosCamara(int * pframe, int * py, int * px);
void limpiarDatosCamara(void);

float mx,my,nx,ny;

void inicializaBola (void)
{

 motorX.assignDirection(MotorPasoAPaso::CCW);
 motorY.assignDirection(MotorPasoAPaso::CCW);
 for(int n = 0; n < 120; n++)
 {
 motorX.initStep();
 motorY.initStep();
 }
 delay(4000);
 int xpos1, ypos1;
 int frame;
 limpiarDatosCamara();
 int err = leerDatosCamara(&frame, & ypos1, &xpos1);
 if (err != 0)
 {
 Serial.println("Error calibrando camara 1");

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 43 of 48 Jon Garnica Izco

 return;
 }

 motorX.assignDirection(MotorPasoAPaso::CW);
 motorY.assignDirection(MotorPasoAPaso::CW);
 for(int n = 0; n < 240; n++)
 {
 motorX.initStep();
 motorY.initStep();
 }
 delay(4000);
 int xpos2, ypos2;
 limpiarDatosCamara();
 err = leerDatosCamara(&frame, & ypos2, &xpos2);
 if (err != 0)
 {
 Serial.println("Error calibrando camara 2");
 return;
 }

 motorX.assignDirection(MotorPasoAPaso::CCW);
 motorY.assignDirection(MotorPasoAPaso::CCW);
 for(int n = 0; n < 120; n++)
 {
 motorX.initStep();
 motorY.initStep();
 }

 Serial.print(xpos1);
 Serial.print(", ");
 Serial.println(ypos1);

 Serial.print(xpos2);
 Serial.print(", ");
 Serial.println(ypos2);

 // Ball calibration

 mx=36.00/(xpos2-xpos1);
 nx=-18.00-mx*xpos1;

 my=-36.00/(ypos2-ypos1);
 ny=18.00-my*ypos1;

}

void limpiarDatosCamara(void)
{
 while(SerialUSB.dtr() && SerialUSB.available())
 {
 String xtrans;
 const char term = 10;
 xtrans=SerialUSB.readStringUntil(term);
 }

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 44 of 48 Jon Garnica Izco

}
int leerDatosCamara(int * pframe, int * py, int * px)
{
 String xtrans;

 while(!SerialUSB.dtr() || !SerialUSB.available());

 const char term = 10;
 ººxtrans=SerialUSB.readStringUntil(term); //Read the data received
as a string

 if (xtrans.startsWith("C"))
 {
 Serial.println(xtrans);
 return -1;
 }

 if (xtrans.startsWith("-"))
 {
 Serial.print("Error: "); Serial.println(xtrans);
 return xtrans.toInt();
 }

 int firstComa = xtrans.indexOf(",");
 String frame = xtrans.substring(0, firstComa);

 int secondComa = xtrans.indexOf(",", firstComa+1);

 String xpos = xtrans.substring(firstComa+1, secondComa);
 String ypos = xtrans.substring(secondComa+1);

 *pframe = frame.toInt();
 *py = ypos.toInt();
 *px = xpos.toInt();
 return 0;
 }

void leerPosBola(float*py, float*px){
 int xpixel, ypixel, frame;
 leerDatosCamara(&frame, &ypixel, &xpixel);
 *px=mx*xpixel+nx;
 *py=my*ypixel+ny;
}

// The setup function runs once when you press reset or power the board
void setup()
{
 Serial.begin(115200); // Computer (Programming port DUE)
 SerialUSB.begin(115200); // Camera (Native port DUE)
 while(!Serial);
 Serial.println("[DBG] : A la espera ...");

 Serial.println("[DBG] : Inicializando la mesa");
 inicializaMesa();
 Serial.println("[DBG] : Inicializando la bola");
 inicializaBola();

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 45 of 48 Jon Garnica Izco

 Serial.println("[DBG] : Creando objetos de FreeRTOS");
 Serial.flush();

 arduinoSema = xSemaphoreCreateMutex();

if (!arduinoSema)

Serial.println("[DBG] : No se pudo crear el mutex Arduino");
assert(arduinoSema);

 commQueue = xQueueCreate(1, sizeof(commData));

if (!commQueue)

Serial.println("[DBG] : No se pudo crear la cola de comunicación");
assert(commQueue);

 Serial.println("[DBG] : Creando tareas");
 Serial.flush();

 TaskHandle_t controlTaskHandle { nullptr };

 // As it is configured, FreeRTOS 10 is the maximum priority

BaseType_t xRet = xTaskCreate(controlTask, "ControlTask", 512, nullptr,
limPriority(1), &controlTaskHandle);

xRet &= xTaskCreate(commTask, "CommTask", 512, (void*)controlTaskHandle,
limPriority(3), nullptr);

 if (xRet == pdPASS) Serial.println("[DBG] : Tareas creadas");
 else Serial.println("[DBG] : No se pudieron crear las tareas");
 assert(xRet == pdPASS);

 TimerHandle_t

motorTimer = xTimerCreate("PulsosMotor", pdMS_TO_TICKS(periodoPulsos),
pdTRUE, nullptr, pulsosMotor);

 if (motorTimer != NULL) Serial.println("[DBG] : Temporizadores creados");
 else Serial.println("[DBG] : No se pudieron crear los temporizadores");

 Serial.flush();
 assert(motorTimer != NULL);

BaseType_t retMotor= xTimerStart(motorTimer, 0);

if (retMotor != pdFALSE) Serial.println("[DBG] : Temporizadores iniciados");
else Serial.println("[DBG] : No se pudieron iniciar los temporizadores");

Serial.flush();
assert(retMotor);

 // start FreeRTOS
 vTaskStartScheduler();
}

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 46 of 48 Jon Garnica Izco

unsigned long idleCounter {0};
void loop(void) { ++idleCounter; }

/*--*/
/*---------------------- Tasks ---------------------*/
/*--*/

// Global data...
const unsigned int sampleTime {33}; // milisegundos
const unsigned int commTime {1000}; // milisegundos
constexpr unsigned commPeriod = commTime/sampleTime;

unsigned long lostSamplesNumber {0};
unsigned long badConversionsNumber {0};
unsigned long maxLoopMicros {0};

 void controlTask(void *) // The control task.
 {
 rtPrint("[DBG] : Control task starts.\n");

 commData eldato;

 TickType_t xpreviousWakeTime = xTaskGetTickCount();
 TickType_t xLastWakeTime {xpreviousWakeTime};

 double postFrefantx {0.00};
 double postFrefanty {0.00};
 double err1x {0.00};
 double err2x {0.00};
 double err1y {0.00};
 double err2y {0.00};
 double accionx1 {0.00};
 double accionx2 {0.00};
 double acciony1 {0.00};
 double acciony2 {0.00};

 limpiarDatosCamara();

 while(true)
 {
 static unsigned long sampleNumber {0};

 // Read ball position

 float x,y;

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 47 of 48 Jon Garnica Izco

 leerPosBola(&y,&x);

//control task

 float xdeseo=x;
 float ydeseo=y;
 float postFrefx=0.95089*postFrefantx+0.0491098*xdeseo;
 float postFrefy=0.95089*postFrefanty+0.0491098*ydeseo;

 double errx = postFrefx - x;
 double erry = postFrefy - y;

 double accionx = 0.772266 *accionx1-0.223704 *accionx2+62.3772*(errx
-1.789113 * err1x +0.7970579 * err2x);
 double acciony = 0.772266 *acciony1-0.223704 *acciony2+62.3772*(erry
-1.789113 * err1y +0.7970579 * err2y);

 if (accionx < -10) accionx = -10;
 if (accionx > 10) accionx = 10;
 if (acciony < -10) acciony = -10;
 if (acciony > 10) acciony = 10;

 motorX.setAngle(accionx);
 motorY.setAngle(-acciony);

 accionx2=accionx1; accionx1=accionx;
 acciony2=acciony1; acciony1=acciony;
 postFrefantx = postFrefx;
 err2x = err1x; err1x = errx;
 postFrefanty = postFrefy;
 err2y = err1y; err1y = erry;

 if (++sampleNumber % commPeriod == 0)
 {
 // Send data to the monitor
 eldato.accX = accionx;
 eldato.accY = -acciony;
 eldato.bolaX = x;
 eldato.bolaY = y;

 // We are going to wait at most 2 millisconds
 xQueueSend(commQueue, (const void *) & eldato, pdMS_TO_TICKS(2));
 }
 }
}

void commTask(void *pvParameters)
{
 (void) pvParameters;

 commData elDato;

 while(true)
 {
 xQueueReceive(commQueue, (void * const) & elDato, portMAX_DELAY);
 rtPrint("--> Pos. bola X: ", elDato.bolaX, " ");
 rtPrint("--> Pos. bola Y: ", elDato.bolaY, "\n");
 rtPrint(" Angulo solicitado X: ", elDato.accX, " ");

Development of a real-time system oriented to
the control and sensorisation of a Ball & Plate system June 3, 2021

Page 48 of 48 Jon Garnica Izco

 rtPrint(" Angulo solicitado Y: ", elDato.accY, "\n");
 }
}

// rtPrint functions definition

void rtPrint(const char * cad)
{
 if (Serial && arduinoSema)
 {
 xSemaphoreTake(arduinoSema, portMAX_DELAY);
 Serial.print(cad);
 xSemaphoreGive(arduinoSema);
 }
}

void rtPrintFlush(void)
{
 if (Serial && arduinoSema)
 {
 xSemaphoreTake(arduinoSema, portMAX_DELAY);
 Serial.flush();
 xSemaphoreGive(arduinoSema);
 }
}

template <typename T> void rtPrint(const char * openStr, const T & x, const
char *
endStr)
{
 if (Serial && arduinoSema)
 {
 xSemaphoreTake(arduinoSema, portMAX_DELAY);
 Serial.print(openStr); Serial.print(x);
 if (endStr) Serial.print(endStr);
 xSemaphoreGive(arduinoSema);
 }
}

void rtPrint(const char * openStr, const double & x, const char * endStr)
{
 constexpr int nDec {6};
 if (Serial && arduinoSema)
 {
 xSemaphoreTake(arduinoSema, portMAX_DELAY);
 Serial.print(openStr); Serial.print(x, nDec);
 if (endStr) Serial.print(endStr);
 xSemaphoreGive(arduinoSema);
 }
}

