
EUSC: A Clustering-based Surrogate Model to Accelerate
Evolutionary Undersampling in Imbalanced Classification

Hoang Lam Lea,∗, Dario Landa-Silvaa, Mikel Galarc, Salvador Garciab, Isaac Trigueroa

aComputational Optimisation and Learning (COL) Lab, School of Computer Science, University of Nottingham,
Nottingham NG8 1BB, United Kingdom

bDepartment of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain
cDepartment of Automatics and Computation, Universidad Pública de Navarra, Campus Arrosad́ıa s/n, 31006

Pamplona, Spain

Abstract

Learning from imbalanced datasets is highly demanded in a wide variety of real-world applica-

tions. This task faces the difficulty of skewed class distributions, at which canonical classification

methods are prone to get biased towards the classes with the majority of the examples. Among

other approaches, undersampling, which aims to reduce the size of the majority class to balance

the class distributions, has demonstrated its effectiveness in the literature. Within the family of

undersampling methods, evolutionary-based approaches are prominent, treating undersampling as

a binary optimisation problem which consists of determining which of the majority class examples

are removed. Despite their performance, the practical utilisation of evolutionary methods is limited

to relatively small datasets due to the computational cost at fitness evaluation.

In this paper, we propose a clustering-based surrogate model that enables evolutionary under-

sampling to compute fitness values faster. To compute similarities between binary chromosomes,

we use a two-stage clustering approach to group them based on an approximate phenotype (that is

given by the areas in which selected instances are), which allows us to estimate fitness values and

therefore reduce the cost of evaluation. The main novelty of this approach lies in the development

of a surrogate model for binary optimisation which is based on the meaning (phenotype) rather

than their binary representation (genotype). We conduct a thorough experimental evaluation on 44

standard datasets with various imbalanced ratios from the KEEL dataset repository. The results

show that in comparison with the original evolutionary undersampling, we can save up to 83% of

∗Corresponding author
Email address: Hoang.Le@nottingham.ac.uk (Hoang Lam Le)

Preprint submitted to Journal of LATEX Templates March 16, 2020

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

the runtime without significantly deteriorating the classification performance.

Keywords: Data Preprocessing, Evolutionary undersampling, Surrogate models,

Imbalanced classification, Fitness approximation

1. Introduction

Learning from skewed data is a challenge arising in multiple domains such as bioinformatics,

business management, or network analysis [1, 2, 3]. Focusing on two-class datasets, the problem

happens when samples from the minority class (usually the class of interest) are highly outnumbered

by the counterparts from the majority class [4, 5, 6]. The majority and minority classes are typically5

known as the ‘negative’ and ‘positive’ classes, respectively.

In skewed datasets, canonical classification algorithms may be biased towards the majority class,

being unable to appropriately predict examples from the minority class [7, 8]. Solutions tackling this

difficulty can be grouped into data preprocessing [9, 10, 11] and algorithmic modification [12, 13].

Those operating at the algorithmic level modify the learning algorithms to make them aware of10

the imbalanced situation at the learning stage, while those at data-level preprocessing intervene

in the cardinalities of positive and negative classes to make them less critically unequal. Cost-

sensitive learning [14, 15] and ensemble-based methods [16, 17, 18] have also become very popular.

Cost-sensitive techniques can be considered algorithm level modifications that try to learn more

characteristics of minority class examples by incorporating a higher cost to their misclassification.15

Ensemble-based methods usually combine an ensemble learning algorithm (e.g. Bagging, Boosting)

[16] with one of the mentioned approaches (e.g. data preprocessing [19], cost-sensitive techniques

[20]) to establish a combination of multiple base classifiers.

Data-level preprocessing solutions consist of undersampling (concerned with eliminating redun-

dant examples in the majority class [21, 22]), oversampling (generates new artificial data for the20

minority class [9, 10, 23]), and hybrid methods (a combination of the previous two) [24]. While all

approaches are proved effective in many studies, oversampling and hybrid methods tend to generate

more data, which may result in a higher computational cost. Undersampling, on the other hand,

aims at reducing the data size, which is more advantageous when employed in large datasets or big

data scenarios [25]. Among other strategies for undersampling, Evolutionary Undersampling (EUS)25

[22], an evolutionary instance selection strategy [26] for imbalanced classification, has been demon-

2

strated to be very effective in multiple studies, especially in combination with Ensemble-based

approaches [27, 28, 29].

EUS is an example of optimisation techniques to improve machine learning processes [30]. In

particular, the EUS algorithm performs a binary search guided by an Evolutionary Algorithm30

(EA) to optimise the selection of (training) examples from the majority class that improves the

classification performance. In particular, the chromosome quality is measured by classifying the

entire training dataset based on the preprocessed set represented by the chromosome. Similarly to

most previous works (e.g. in the original EUS [22]), in this paper we adopt the Nearest Neighbour

(NN) [31] rule as base classifier. The resulting preprocessed dataset, however, should be ready to35

be used by any classifier.

Despite its effectiveness, the EUS method is typically very time-consuming, especially in large

datasets, due to the cost associated to fitness evaluation. Further advancement of the EUS requires

two conditions: (1) reduce the processing time and (2) still guarantee a high classification perfor-

mance. In the recent literature, the processing time of EUS (and other instance selection/generation40

based approaches) is being reduced by using distributed approaches in big data platforms [25, 32],

increasing the need for a larger number of computing nodes.

In this work, we are interested in reducing the computational cost of EUS by using fitness

approximation approaches [33, 34], such as surrogate models [35, 36, 37], which could accelerate

the expensive computation of the classification performance of each chromosome. Surrogate-based45

methods allow us to reduce the computational cost of search algorithms, as opposed to parallelisation

techniques that merely focus on reducing processing time. This kind of approach has been widely

investigated in various problems employing evolutionary optimisation techniques [38, 39, 40, 41],

following different approaches, such as fitness inheritance and machine learning methods [34]. Ex-

isting methods are usually designed for problems in the continuous search landscape. However,50

methods for combinatorial domains have been under-explored [42, 43] due to the complexity of the

field which requires domain knowledge to apply fitness approximation.

In the field of evolutionary instance selection (for imbalanced and standard classification), prim-

itive approaches for fitness approximation have been employed to reduce the computational cost

(windowing [44]) and processing time (stratification [45]). The underlying idea of these methods55

is to consider subsets of training data for fitness evaluation, reducing the cost on larger datasets.

Whilst these approaches are important in addressing large datasets with EUS, the use of surrogate

3

models for evolutionary instance selection is an under-developed area in the literature that can

highly reduce the computational cost of this kind of search technique.

In this paper, we propose a two-stage clustering-based surrogate model for EUS (EUSC) that60

allows us to compute fitness values faster. As opposed to windowing or stratification approaches,

EUSC considers the entire training data when computing fitness values. However, it only performs

real evaluations for a limited number of chromosomes. First, a preliminary clustering stage of

majority examples allows us to transform binary chromosomes into real coding chromosomes that

represent the overall location of the instances selected in a solution. Then, in every generation, the65

entire population is clustered using the new intermediate chromosome representation to approximate

the fitness values based on their similarity and imbalanced ratio. To the best of our knowledge, this

is the first surrogate-based model for EUS, and one of the very few surrogate models that work on

a combinatorial problem [43]. The main contributions of this work are:

• We investigate the challenge of devising surrogate models for a combinatorial/binary optimi-70

sation problem (instance selection for undersampling). We discuss the weaknesses of using

the Hamming distance to compute the similarity between binary chromosomes, which would

not reflect well how similar two solutions are. The main novelty of this work lies in developing

a means to perform that similarity computation based on the phenotype of the chromosome.

• We propose a clustering-based surrogate model for EUS which highly reduces the compu-75

tational cost of this method, speeding up the algorithm without reducing significantly its

classification performance. We explore different variants of the proposed method, analysing

empirically their effectiveness. We compare the proposed surrogate model against the original

EUS algorithm and EUS with windowing evaluation on 44 standard imbalanced datasets with

various imbalance ratios. In comparison with the windowing strategy, the results obtained80

show that EUSC does not only reduces runtime enormously, but it also provides a high quality

solution which does not significantly decrease classification performance in comparison to the

original EUS.

The rest of this paper is organised as follows. In Section 2, we introduce related works, con-

sisting of EUS, recent work on accelerating fitness evaluation in evolutionary search, and existing85

approaches to speed up EUS. Next, Section 3 describes our proposal in detail. In Sections 4 and

4

5, we introduce the experimental framework used in this study, and the results with associated

analysis, respectively. Finally, we make several concluding remarks in Section 6.

2. Background

This section presents background information about EUS for imbalanced classification (Section90

2.1) and different techniques to accelerate EAs (Section 2.2). Finally, we discuss existing approaches

to accelerate evolutionary instance selection techniques (Section 2.3).

2.1. Evolutionary undersampling for imbalanced classification

In learning with skewed data, balancing the class distributions can alleviate the bias of standard

classification algorithms towards the majority class. Among other approaches, undersampling is an95

interesting alternative for large datasets as they reduce the number of samples in the majority class

(contrary to oversampling which generates artificial minority class samples), consequently, enabling

standard algorithms to be capable of identifying examples from both classes more accurately. Un-

dersampling techniques can inherit from instance reduction methods which were initially designed

for other preprocessing purposes in learning methods (instance selection and generation [26, 46]).100

The simplest way to obtain a balanced subset of the original data is to randomly undersam-

ple the majority class [10]. However, this non-heuristic approach may discard important data in

the negative class due to the randomness in this mechanism. EUS [22] on the other hand, is an

evolutionary instance selection algorithm that carries out a heuristic search to optimise the subset

of samples that are selected, and thus can increase the accuracy of a classifier on both classes.105

The search is guided by an EA, namely CHC [47], which is efficient at maintaining the balance of

exploration and exploitation by applying different mechanisms such as incest prevention, reinitial-

isation of the population when the search does not progress and the competition among parents

and offspring for selecting the elitist. The reduced set is evolved from undersampled instances until

the highest performance computed by a fitness function is achieved or stopping conditions are met.110

EUS can achieve two goals which are the balance of samples between classes and high classification

accuracy when the selected negative samples are the most representative.

Assuming binary classification, a formal specification of the problem is the following: A two-

class dataset has N− negative class instances and N+ positive class instances. Let xi be an instance

in the dataset where xi = (xi1 , xi2 , xi3 , ..., xim , xiω), with xi belonging to a class given by xiω and115

5

an m-dimensional feature space in which the feature value at the kth position of the ith sample is

denoted as xik . In the EUS approach, a candidate solution is a binary chromosome in which each

gene takes a value of {1, 0} to represent the presence or absence of an instance xi, respectively.

As only majority class instances are examined for elimination, the size of a chromosome is thus

equal to N−. Positive samples are automatically concatenated with the selected negative examples120

to form a final reduced set RS for classification. The representation of a chromosome in the EUS

algorithm is expressed as: chrj = (vx1
, vx2

, vx3
, , vxN−) where vxi

∈ {1, 0} indicates whether sample

xi is included or not.

EUS maintains a population of NP chromosomes that are assessed and ranked based on their

quality which considers two main factors: classification performance and class imbalance. The125

fitness function uses RS to classify the entire training dataset. Similarly to most previous works,

in this paper we adopt the NN rule [31] as base classifier. However, in imbalanced classification,

traditional accuracy measures are no longer valid as they neglect the fact that there is an imbal-

ance class distribution. Two commonly used alternatives are geometric mean (GM) [48] and the

area under the curve (AUC) of Receiver Operating Characteristic [49]. Both measures have been130

extensively and interchangeably used in many experimental studies of imbalanced classification. In

this paper, we will focus on the GM, defined in Equation 1 to report the classification performance.

This is not only because it has been used in many experimental studies on imbalanced classification

[5, 22, 25], but also because it can reflect the balance between the true positive rate (TPrate) and

true negative rate (TNrate) at the same time and therefore the contribution on either class does135

not have a higher impact than that of the other.

GM =
√

TPrate × TNrate (1)

The complete fitness function for a chromosome chrj looks like this:

fchrj =


GMchrj −

∣∣∣1− N+

s−

∣∣∣ · P if s− > 0

GMchrj − P if s− = 0,

(2)

where s− is the number of selected negative instances and P is a penalisation factor that focuses

on the balance between both classes. P is typically set to 0.2 as recommended by the authors, since

it provides a good trade-off between both objectives.140

6

The time required to evaluate the quality of each chromosome highly depends on the size of the

training set. In this work, we are interested in developing a fast EUS that can quickly estimate the

fitness values of chromosomes without misleading the search.

2.2. Accelerating fitness evaluation in evolutionary search

In many optimisation problems, the evaluation of a solution may have a high computational cost145

due to the function’s complexity or massive calculation. In the literature, numerous studies have

been investigated to speed up fitness evaluations [34, 50, 35]. Broadly speaking, we can find delta

evaluation approaches and fitness approximation. Delta evaluation is a way of computing only the

different parts between two solutions [51]. It can make use of previously evaluated similar regions

and reuse those parts in the evaluation of a new individual. The strategies of delta evaluation are150

based on analytical computation to identify which part in the expression that needs re-calculating.

For example, in a timetabling problem [52], instead of evaluating every timetable as only small

changes are made between one timetable and the next, it is possible to merely compute the changes

and update the previous cost with the value of that calculation.

Extensive studies have been proposed in the family of fitness approximation from a simple155

approach like fitness inheritance to advanced techniques like machine learning methods [34, 53, 35].

Fitness inheritance is initially inspired by the idea that an offspring can also inherit a fitness value

from its parents, not only its own genes. Thus, its quality can be obtained from where it derives

from instead of through a function. Two classical approaches for fitness inheritance [54] are the

averaged inheritance (adopt the average fitness of its parents) and proportional inheritance (fitness160

is weighted based on the amount of genetic material taken from each parent). These ideas were

later further investigated on several studies using for example fitness sharing in multiple objective

optimisation problems [55, 56], or using fitness inheritance with Bayesian optimisation [57].

Machine learning techniques such as clustering and supervised learning can be used in numerous

ways to alleviate fitness evaluation. Clustering algorithms including hierarchical clustering, parti-165

tion clustering, and overlapping clustering, typically aim to decrease the number of original function

evaluations [58]. These approaches split the entire population (based on the chromosome represen-

tation) into a number of groups by a clustering algorithm, and then the chromosomes closest to the

clusters’ centres are evaluated by the exact function, while other cluster members are approximated

according to their distance to the evaluated solutions [59, 60, 61]. However, this approach is mostly170

7

applicable for continuous optimisation problems only, and still challenging in combinatorial search

space due to the problem of computing the correlation among solutions to interpolate the fitness

value [43].

Supervised learning techniques aim to create a surrogate model that can approximate the fitness

function by prediction. The model is adjusted based on the known data points accumulated from the175

evaluation history. Naturally, most surrogate models are assumed spatial models which means the

prediction task is about exploiting accepted spatial relations such as a smooth change in a response

surface between the fitness values of a query point and known data-points [62]. In other words, a

data-driven model is constructed with the assumption that there is continuity among data points,

at which a small variation in decision variables will cause a smooth change in the response space.180

This makes surrogate models naturally suited to continuous optimisation problems, while not easily

applicable to combinatorial optimisation problems [42] because the response in combinatorial space

does not necessarily vary smoothly when the discrete variables produce a minor variation. Hence,

choosing an appropriate metric to express the correlation between chromosome representation and

its quality has been a difficult task, which makes combinatorial landscape analysis significantly185

challenging. More discussion can be found in [42, 43].

Both clustering and supervised learning approaches for surrogate models are under-investigated

when dealing with combinatorial or binary optimisation problems. In this paper, we will focus on a

clustering-based approach to approximate fitness values that do not require collecting enough data

to train a machine learning algorithm. However, the ideas proposed in this paper to cluster binary190

chromosomes may also be useful for supervised approaches.

2.3. Reducing processing time of evolutionary instance selection

Several primitive approaches of fitness approximation have been used for evolutionary instance

selection strategies (such as EUS), namely stratification [45] and windowing [44].

The first approach distributes the initial data into several disjoint strata which each stratum195

still preserves original class distributions. Each stratum is then individually processed by an

evolutionary-based strategy to produce different reduced sets (RSs). Finally, all RSs are joined

into a final global set. In this approach, the fitness function is not directly applied for the original

data, but it is used with each stratified small subset. The ultimate goal of stratification is to deal

with the memory consumption limitation rather than speed. The computational cost at evaluation200

8

is not reduced in total, but the real fitness function is approximated by the way it is used with a

smaller scale of data.

Windowing also splits the training data into several strata with equal class distribution, but it

computes the performance on one stratum to represent for the entire initial data. A windowing

scheme employs all strata using round-robin policy to estimate chromosomes’ fitness during multiple205

iterations of an evolutionary process. As the data quantity is reduced at each evaluation, the

demand for computation is therefore reduced. Despite many positive elements, this approach also

has several drawbacks which possibly limit it from extending in applications. Although this method

can handle larger datasets, each stratum is empirically limited to no more than tens of thousands of

instances [63] in evolutionary-based strategies. Thus, the method can alleviate the burden of fitness210

computation in relatively large scale datasets [45] but not in extreme scenarios like big data. As

such, this approach does reduce the computational cost of an evolutionary instance selection and

was first used for EUS in [25]. The windowing approach for EUS is dependant on the imbalanced

ratio (IR) (defined as the ratio of the number of instances from the negative class and the positive

class). For example, in a two-class dataset with 100k instances and an IR < 9, each evaluation215

of any chromosome is processed with more than 20k samples of a stratum (10k samples from each

class). Thus, the lower IR, the more computation is required.

In the big data context, current parallelisation approaches based on MapReduce aim at re-

ducing the processing time by splitting the datasets into several disjoint blocks (similarly to the

stratification approach) that are handled in parallel. In [25], a two-level parallel scheme combining220

MapReduce and windowing was proposed for EUS. This approach reduces both computational costs

and processing time, but relies on windowing (for imbalanced sets) to reduce the computational

cost. Note that windowing could easily be replaced by the proposed EUSC.

3. EUSC: Evolutionary undersampling with a clustering-based surrogate model

In this section, we describe the proposed EUSC framework in detail. Section 3.1 motivates225

the proposed approach, detailing the challenges to perform clustering-based fitness approximation.

Finally, Section 3.2 provides a detailed description of the proposed model.

9

3.1. Challenges to perform a cluster-based fitness approximation

As mentioned in Section 2.2, surrogate models usually rely on distance measures between so-

lutions to perform fitness approximations. As EUS encodes solutions as binary chromosomes, the230

Hamming distance appears as a natural option to measure the similarity among these binary chro-

mosomes. However, if we do so, we would be expecting this distance metric to reflect the change

of chromosomes’ representation in the fitness landscape, so that, the fitness of chromosomes varies

according to the change of the Hamming distance. In preliminary experiments, we observed that

this option was not feasible and performed poorly.235

In (imbalanced) classification, some instances may be very important when performing clas-

sification, due to their location in the classification space (e.g. those instances in the decision

boundaries between classes are typically very important). Using the genotype of the chromosome,

the Hamming distance considers the presence of all instances with equal merit, ignoring and ne-

glecting the degree of difference that the actual feature values of a particular example may reflect in240

the fitness computation, misleading the fitness inference. For example, a chromosome with only one

gene swapped would be very similar according to this metric, but it may lead to a great difference

in classification performance.

This motivates us to propose the EUSC algorithm which can address the challenge of computing

differences among different solutions. The main contribution of this work lies in establishing a245

bridge connecting the chromosomes’ representation and their quality in the fitness landscape. The

use of estimated fitness values might seem to be linked to a reduction of the performance. However,

currently we need to remember two main considerations for any existing instance selection algorithm

[26]: (1) the use of training data to compute fitness values is in itself an approximate way to measure

the quality of a solution and determine how well the resultant RS allows us to learn a concept; (2)250

the search algorithm may overfit the training data. With these ideas in mind, we aim to develop a

surrogate method capable of reducing the computation cost of EUS without misleading the search.

3.2. Two-stage clustering-based surrogate model for EUS

The main advantage in the proposed EUS with clustering is the ability to quickly obtain the

fitness value of a chromosome without always computing its classification performance. To do so,255

we propose a two-step process based on clustering, which is represented in Figure 1. Note that the

proposed surrogate model has been integrated with EUS, which was based on the CHC algorithm.

10

However, the ideas proposed here could be implemented in any evolutionary-based algorithm for un-

dersampling (or instance selection). The complete pseudo-code for EUSC is presented in Algorithm

1 which emphasises the main modifications to EUS.260

Figure 1: Two phases of an EUSC process: Chromosome transformation at phase 1 and fitness inference at phase 2.

3.2.1. Phase 1: Intermediate form for chromosomes

In EUS, the original binary representation for chromosomes is helpful to determine which sam-

ples are selected/discarded. However, as stated before, one of its major drawbacks is that it does

11

not represent the real phenotype of a chromosome, which is the actual position of the selected

instances that interferes significantly in the classification performance.265

Our first step to develop a surrogate model for EUS is related to transforming this binary

representation into a real-coding one. Note that it is key that this process is very quick to really

take advantage of a surrogate model (rather than using a real fitness evaluation). The real-coding

intermediate form is created in two steps:

• Step 1: Before commencing the EUS algorithm, the training set is first split into positive and270

negative sample sets. Then, we group all majority class samples into different regions based

on their feature values. This step will later allow us to reflect in which area the selected

instances are predominately based. In our experiments, we focus on the well-known k-means

algorithm to group data into k1 clusters {T1, T2, ...Tk1}. Note that this clustering task may

be considerably slow for big datasets, however, it is only conducted once. The information of275

these clusters is used during the search whenever a chromosome is needed to be transformed

into an intermediate form.

• Step 2: Whenever we need to approximate fitness values (initialisation or during the evo-

lutionary cycle), binary chromosomes will be transformed into intermediate forms with the

support of {T1, T2, ...Tk1
}. Note that each training instance was allocated to a cluster in the280

previous step. Each intermediate form is a vector of k1 features. Firstly, from the binary

chromosome, we count the number of selected instances (i.e. genes with a 1) that fall into

each one of the clusters. Each value of the intermediate chromosome is a real number, ob-

tained from dividing the number of selected instances by the cluster’s size. These k1 values

tell us the proportion of selected samples at each region, which is approximate information285

about the location of the selected samples in the instance space. Thus, this is a simple and

fast strategy to obtain an approximate phenotype for each binary chromosome.

3.2.2. Phase 2: Fitness computation

After transformation, a chromosome has also a real-coding representation, which allows us to

apply fitness inference following similar ideas implemented in the literature for continuous optimi-290

sation problems [59]. Algorithm 2 describes in detail the fitness inference mechanism. This stage

consists of the following three steps:

12

Algorithm 1 Evolutionary undersampling clustering-based algorithm - EUSC

Require: Training Data (TR)

1: PS, NS = Split(TR)

2: {T1, T2, ...Tk1} = Apply k1-means(NS)

3: NP = Randomly initialise the population of chromosomes

4: if Infer At Init = True then

5: Intermediate Population ← Transform binary representation (NP)

6: Fitness Inference (Intermediate Population, NP)

7: else

8: Real Evaluation (NP)

9: end if

10: while eval < MAX EVALUATIONS do

11: newPop ← Select M chromosomes from NP based on the diversity in their structure.

12: if M > k2 then

13: Intermediate Population ← Transform binary representation (newPop)

14: Fitness Inference(Intermediate Population, newPop)

15: else

16: Real Evaluation (newPop)

17: end if

18: NP = Select best candidates from NP and newPop

19: if stagnated = True then . Restart mechanism

20: NP = Mutation (Best solution in NP)

21: Real Evaluation (NP)

22: end if

23: end while

• Step 1: To compute the similarity among the current chromosomes considered for evaluation,

their intermediate forms are fed into a clustering algorithm (again we focus on k-means in our

experiments) to split the population into k2 clusters C1, C2, ..., Ck2
. In this way, the clustering295

task also indirectly groups the chromosomes into different regions in the binary space. Note

that the binary representation is still needed at evaluation time (either real or inferred) to

13

Algorithm 2 Fitness Inference

Require: Intermediate Population and Population of Chromosomes that need fitness inference

1: {C1, C2, ...Ck2} = Apply k2-means(Intermediate Population)

2: {chrR1, chrR2, ..., chrRk2
} ← Representatives for each cluster, either Centroid or Random

3: for each cluster Cj in {C1, C2, ...Ck2
} do

4: GMchrRj ← Classification performance(RSchrRj)

5: ImbchrRj ← Imbalance penalisation (chrRj)

6: FitnessRepCj
= GMchrRj

− ImbchrRj

//Infer the fitness of members in Cj using computed GMchrRj

7: for each chromosome chrm in cluster Cj {chr1Cj , chr2Cj , ..., chrkCj} do

8: Imbchrm ← Imbalance penalisation (chrm)

9: Fitnesschrm = GMchrRj
− Imbchrm

10: end for

11: end for

compute the balance between classes (See Equation 2).

• Step 2: Compute the fitness value of only k2 representatives using the real fitness func-

tion defined in Equation 2. Here we examine different approaches for the selection of rep-300

resentatives. In particular, we analyse the effect of selecting them randomly or using the

centroid chromosome from each cluster C1, C2, ..., Ck2
. As a result, we have a set of represen-

tative chromosomes {chrR1, chrR2, ..., chrRk2
} for which we can compute their GM values

{GMchrR1 , GMchrR2 , ..., GMchrRk2
}.

• Step 3: In this final step, we can now infer the fitness values for the remaining chromosomes.305

As defined in Equation 2, the fitness function consists of GM and imbalance penalisation. The

GM values of the k2 representatives will be reused for all the chromosomes belonging to the

same cluster. This means that all the members in the same cluster with the representative

simply get the representative’s GM and thus the cost of classification performance is saved.

However, the component of imbalance penalisation can be quickly computed from the binary310

chromosome for each particular solution. We are aware that transferring the same GM to all

members of a cluster may seem to be an oversimplification, and more elaborated solutions

14

will be investigated in the future. However, as we will see in the experimental section, this

simple fitness inheritance mechanism allows us to achieve very competitive results.

315

We have described above the underlying ideas of EUSC but there are a number of factors that

should also be taken into consideration. In the evolutionary search, chromosomes are evaluated

at initialisation and during the evolutionary loop. When designing EUSC, we realise that the

initialisation may be a key step for the entire search, and using approximate values to begin with

may not be ideal. Thus, in our experiments we investigate the influence of applying inference320

at both Initialisation and Evolution or merely at the Evolution phase. Note that whenever the

population NP is restarted, we have decided to only perform real fitness evaluations to ensure the

search is not misled.

4. Experimental framework

In this section, we present the experimental framework in which our proposal, the original EUS325

and the EUS with Windowing evaluation will be compared. This section begins with the description

of the used imbalanced datasets (Section 4.1) and is followed by the parameter configuration (Section

4.2). Finally, we briefly introduce the non-parametric statistical tests (Section 4.3) that will be used

to analyse the results.

4.1. Datasets330

In our experiments we consider numerous two-class imbalanced datasets with different imbal-

anced ratios, from low to high. The datasets are obtained from the KEEL dataset repository

[64] which has been used as a resource for many experiments in previous studies [27, 65]. Table

1 summarises the properties of the datasets and is sorted in the order of increasing imbalanced

ratio. The range of imbalanced ratio goes from 1.5 to 9 for low imbalanced datasets and over 9335

for highly imbalanced datasets. Each row represents a dataset showing its name (Dataset), the

number of attributes (Att), the number of samples (Samp), the percentage of examples for each

class (%Class(min,maj)) and the imbalanced ratio (IR). In total, there are 44 datasets in the

experimental setup; each one is partitioned using 5-fold stratified cross-validation which delivers an

adequate number of positive class samples in the test partitions. Thus, the performance of each340

dataset is given by an average of the 5 folds.

15

Table 1: Summary of datasets from low to highly imbalanced ratios.

Dataset Att Samp %Class (min,maj) IR

ecoli-0 vs 1 7 220 (0.35, 0.65) 0.54

glass1 9 214 (0.36, 0.64) 1.82

wisconsinImb 9 683 (0.35, 0.65) 1.86

pimaImb 8 768 (0.35, 0.65) 1.87

iris0 4 150 (0.33, 0.67) 2.00

glass0 9 214 (0.33, 0.67) 2.06

yeast1 8 1484 (0.29, 0.71) 2.46

habermanImb 3 306 (0.26, 0.74) 2.78

vehicle2 18 846 (0.26, 0.74) 2.88

vehicle1 18 846 (0.26, 0.74) 2.90

vehicle3 18 846 (0.25, 0.75) 2.99

glass-0-1-2-3 vs 4-5-6 9 214 (0.24, 0.76) 3.20

vehicle0 18 846 (0.24, 0.76) 3.25

ecoli1 7 336 (0.23, 0.77) 3.36

new-thyroid1 5 215 (0.16, 0.84) 5.14

new-thyroid2 5 215 (0.16, 0.84) 5.14

ecoli2 7 336 (0.15, 0.85) 5.46

segment0 19 2308 (0.14, 0.86) 6.02

glass6 9 214 (0.14, 0.86) 6.38

yeast3 8 1484 (0.11, 0.89) 8.10

ecoli3 7 336 (0.10, 0.90) 8.60

page-blocks0 10 5472 (0.10, 0.90) 8.79

Dataset Att Samp %Class (min,maj) IR

yeast-2 vs 4 8 514 (0.10, 0.90) 9.08

yeast-0-5-6-7-9 vs 4 8 528 (0.10, 0.90) 9.35

vowel0 13 988 (0.09, 0.91) 9.98

glass-0-1-6 vs 2 9 192 (0.09, 0.91) 10.29

glass2 9 214 (0.08, 0.92) 11.59

shuttle-c0-vs-c4 9 1829 (0.07, 0.93) 13.87

yeast-1 vs 7 7 459 (0.07, 0.93) 14.30

glass4 9 214 (0.06, 0.94) 15.46

ecoli4 7 336 (0.06, 0.94) 15.80

page-blocks-1-3 vs 4 10 472 (0.06, 0.94) 15.86

abalone9-18 8 731 (0.06, 0.94) 16.40

glass-0-1-6 vs 5 9 184 (0.05, 0.95) 19.44

shuttle-c2-vs-c4 9 129 (0.05, 0.95) 20.50

yeast-1-4-5-8 vs 7 8 693 (0.04, 0.96) 22.10

glass5 9 214 (0.04, 0.96) 22.78

yeast-2 vs 8 8 482 (0.04, 0.96) 23.10

yeast4 8 1484 (0.03, 0.97) 28.10

yeast-1-2-8-9 vs 7 8 947 (0.03, 0.97) 30.57

yeast5 8 1484 (0.03, 0.97) 32.73

ecoli-0-1-3-7 vs 2-6 7 281 (0.02, 0.98) 39.14

yeast6 8 1484 (0.02, 0.98) 41.40

abalone19 8 4174 (0.01, 0.99) 129.44

4.2. Parameter configuration

EUS has been widely used in the literature and we employ the parameter values used in [22],

including the number of evaluations, population size, penalisation factor and others, as it has been

done in most studies. EUSC includes two additional parameters, namely k1 and k2. k1 is the345

number of clusters when the majority class examples are divided in stage 1 of the algorithm, while

k2 is the number of groups into which intermediate chromosomes are categorised in stage 2. We

explored a great number of combination pairs {k1, k2} where each k1 in {2, 4, 6, 8, 10, 12, 14, 20} is

combined with each k2 in {2, 4, 6, 8, 10, 12}, resulting in a total of 48 pairs of {k1, k2}. We analysed

the performance of EUC on all datasets with these pairs and only found slight differences among350

them. Thus, we decided not to report all results in this study for the sake of simplicity as they

do not affect the conclusion of comparing the EUSC schemes to the EUS algorithm. In particular,

we have chosen the pair {6, 6} to present the outputs. Furthermore, as discussed in Section 2.1,

16

EUS uses an heuristic search to find the subset of examples which can be different depending on

the starting point of search. Hence, to make a fair comparison, we set up 10 fixed seeds to let355

each algorithm begin from the same point in 10 different executions. The results presented are the

average of these ten execusions.

To analyse the effectiveness of our EUSC proposal, we will use four different strategies (sum-

marised in Table 2), in which each is varied by two factors Representative (Rep) and Inference

(Infer). As discussed in Section 3.2.2, these two elements contribute their significant influence on360

the behaviour of the search. Rep is a boolean value to determine whether the representative is a

random or the centroid chromosome. Infer is a boolean value to determine whether fitness infer-

ence is used at both Initialisation and Evolution or merely at the Evolution phase. The results

obtained from these four schemes will be contrasted against two benchmarks: (1) the original EUS,

which is assumed to achieve the highest g-mean, but the most time-consuming approach; (2) EUS365

using windowing to evaluate its fitness function. Table 2 summarises all the parameters used in the

experiments.

Table 2: Parameters used for different configurations of EUSC.

Rep Infer Scheme Shared parameters

Random
Initialisation & Evolution R-IE Population Size = 50, Max Evaluations = 10000

Evolution R-E Probability of inclusion HUX = 0.25

Centroid
Initialisation & Evolution C-IE Measure = g-mean, k1 = 6

Evolution C-E k2 = 6, Number of Runs = 10

4.3. Non-parametric tests for statistical analysis

As there is not an established procedure to assert whether a classifier is better than another, sta-

tistical approaches have been adopted to determine whether the difference in performance obtained370

from the experiments is real or random. While a parametric test requires several assumptions to

be satisfied, such as a normal distribution of inputs and homogeneity of variance, a non-parametric

test is free from those requirements [66, 67]. In this paper, we will employ non-parametric tests,

specifically the Friedman Aligned-Ranks test [68] plus a Holm post-hoc test [69] to perform sta-

tistical analysis on the performance of the algorithms. Initially, the Friedman Aligned-Ranks test375

conducts multiple comparisons to detect statistical differences in the performance of multiple al-

gorithms. This test will establish a ranking order of all compared algorithms. Then, the Holm

17

post-hoc test is used to discover whether the highest ranking algorithm (the control algorithm)

presents statistical differences with respect to the remaining methods. In our experiment, a level

of significance of α = 0.05 is adopted. Further information discussing these tests can be referred at380

http://sci2s.ugr.es/sicidm/.

5. Analysis of results

In this section, we present an examination of the results. It begins with a detailed analysis of the

behaviour of the EUSC scheme through an evolutionary search cycle (Section 5.1), and is followed

by the report of the runtime as well as the reduction in the number of fitness function calls (Section385

5.2). Finally, we statistically compare the performance of the different algorithms (Section 5.3).

5.1. Detailed analysis of the behaviour of EUSC

EUSC approximates the fitness values for some of the chromosomes during the evolutionary,

which may change the behaviour of the original EUS. The aim of this section is to investigate

whether our fitness approximation approach produces values close to the real fitness ones and390

determine which of the four EUSC configurations perform better on the 44 used datasets. To do

so, we carry out the following two experiments.

Experiment 1. The first experiment involves an analysis of the fitness difference between approxi-

mated and true fitness values through an evolutionary search cycle. Note that the fitness difference

is reported as an average figure in relation to the number of chromosomes whose fitness is approxi-395

mated in each generation (which may differ in every generation). This is due to the nature of CHC

which does not always produce an offspring of NP elements in every generation. The number of

chromosomes to be generated depends on the population diversity. Hence, the surrogate model for

fitness approximation is only employed when the quantity of chromosomes is greater than k2. An

example of an evolutionary search process run by scheme R-IE on fold 1 of dataset ecoli2 is plotted400

in Figure 2. Two y-axes are sharing the same x-axis. The left y-axis presents the fitness difference,

while the right one expresses the number of chromosomes that are evaluated. Note that Figure 2

is only an example to characterise the behaviour of a specific EUSC on a dataset fold. However, a

similar behaviour has been observed in other datasets and the different variants.

Analysing this figure in detail, we can see how the evolutionary search cycle begins with random405

initialisation of NP chromosomes. Due to random allocation, these chromosomes have diverse fitness

18

http://sci2s.ugr.es/sicidm/

� ��� ��� ��� ���

���������

����

����

����

����

����

	�
��
��
��

�
���
��
��
�

��	�������
���������

�

��

��

��

��

��

�
��
��
��
��
��

�����������

Figure 2: Behaviour of the EUSC through generations run by method R-IE on fold 1 of dataset ecoli2.

values, resulting in a large value of fitness difference. Through generations, the value progressively

decreases and remains low at less than 0.05 until the end of the search. Particularly, in generations

90-150, 190-260, 290-370, and 420-440 where the fitness inference is used, while the chromosome

quantity follows an upward trend, the variation of fitness difference value remains mostly unchanged,410

fluctuates at somewhere between 0 and 0.05. This means that while the CHC algorithm introduces

more diversity to the population, the EUSC approach is yet effective to divide the chromosomes into

groups at which members of each group are approximate in fitness. There appear discontinuities in

the fitness difference curve, indicating that fitness approximation is not applied in these generations

as the number of generated offspring is lower than k2. Furthermore, when the upward trend of the415

chromosome quantity reaches the top value (NP), it suddenly drops to the bottom due to the

restart mechanism of the CHC algorithm. The algorithm uses a mutation process to generate a

new generation from the current best chromosome. A new similar pattern of the search restarts

from this point as the population has been refreshed.

Experiment 2. With the previous experiment, we can say that at each generation of a search,420

the EUSC does not produce a large difference between approximated and true fitness values. If

each EUSC scheme does not behaves remarkably differently, it may end up with the same number

of generations per search, resulting in a close fitness difference in total (note that the stopping

criteria is based on number of evaluations, and not number of generations). In this experiment,

we aggregate all the generated fitness differences throughout the entire search and from the 5 folds425

of each dataset, displayed in Figure 3. The aim of this experiment is to understand how different

the search of four schemes performs regarding the global fitness difference. Higher fitness difference

in an EUSC configuration infers that either more generations have been conducted in a search or

19

%�
'&&
���
��
�(%
��� �$�%

�

���
%%
���
���
�(
%�
�

���
%%
���
���
�(
%�
�

���
%%
���
���
���
(%
��
���
�
���
%%
�
���
%%
�
���
%%
�
���
%%
�
���
%%
�
���
%%
�

!�
)�
&�*
$"�
��

!�
)�
&�*
$"�
��

��
"��
���
(%
��

��
"��
���
���
�	�
(%
��
��

��
��
$
�!
�
�
��
"��
�
��
"��
�
��
"��
�
��
"��
�

*�
�%
&��
�(
%�
	

#�
��
���
"�
�%
���
��
(%
��

*�
�%
&��
�(
%�

*�
�%
&��
�(
%�
�

*�
�%
&��
���
��	
���
(%
��

)�%
�"
!%
�!�
 �

*�
�%
&��
���
��

�(
%�
	

��
��"
!�
���

#�
��
�

(�
���
���

(�
���
���

(�
���
���

(�
���
���

*�
�%
&��
���

��
�(
%�
	

("
)�
��
*�
�%
&�
*�
�%
&�
*�
�%
&�
*�
�%
&�
*�
�%
&�

%�
'&&
���
��
�(%
���

%�
�
�!
&�

��
��"
!�
��

#�
��
���
"�
�%
�

��&�%�&%

�

��

��

��

�

���

�
�"
��
���
�&!
�%
%�
�
���
�$
�!
��

������−

�����−

�����−

����−

Figure 3: Total fitness difference aggregated from evolutionary search of each EUSC scheme over 5 folds of each

dataset.

fitness difference is large in some particular EUSC schemes and some datasets. The results have

been sorted by the number of samples of datasets for the sake of studying the influence of their size.430

Centroid-based schemes (representative is the centroid chromosome) are likely to produce lower

global fitness difference with respect to the random-based counterparts (representative is a random

chromosome), denoted by a lower/nearly equal value of fitness difference in all datasets. The

higher aggregated value in these random-based approaches can be attributed to the representative

selection. The random-based schemes might obtain a very good solution and assign its fitness to435

other chromosomes, at which the least difference is generated. However, there is a probability that

the selection of a representative falls into the worst situation or nearby at which the inference task

produces substantial fitness difference and thus adds a heavy burden to the global value. Note that

if chromosomes in a cluster share approximate values, the difference may not be strongly affected

by the selection mechanism.440

In Figure 3 the four schemes tend to have a very similar behaviour in most of the datasets,

producing a similar accumulated fitness difference value. On datasets that the accumulated fitness

difference is in between 40 and 50, the four EUSC schemes gather in a finite range, meaning the

search tends to be slightly more different. On datasets with the fitness difference values above 50,

the four EUSC schemes show clear differences. These datasets are usually the ones having very445

20

high IR. It is much more diffused on datasets with both high IR and low samples, such as glass5

and glass-0-1-6 vs 5. As a result, with datasets having a low number of samples, it is reasonable

not to use EUSC as the EUS does not suffer from high computational expense.

5.2. Runtime and real evaluations reduction
��
 �
���
��
��
!�
��
�

���
��

��
��
��
��
��

�

!�
�	

��
��
��
��
��

�

!�
��

��
"
���

#�
��
��

��
"
���

#�
��
��

��
��
�

��
��
�	

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��

!�
��

�	
�

��
��
���
�!
��
�

��
��
���
��
��
��
�!
��
��

��
��

��
��

��
�

��
��
��

��
��
��

��
��
��

��
��
��

#�
��
���

�!
��
�

��
��

��
��
��
��
��
��

!�
��

�

�

�

�
�
��
��
�

 �
��

���
��

��
�

 �
��

���
��

��
�

 �
��

���
�	
�

��
�

��

��
�

�
��
��

��
��
��

�

 �
��

���
��
�	
��
��

��
�

��
��
��

�

��
�

��
�
��
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

 �
��

���
��
��
�

��

��
�

��
�
��
�

 �
��

��

 �
��

��

�

	�

���

��
�
��
��
�

(�
�#
$�

(�
�#
$	

(�
�#
$�

#�
%$
$��
��
��
&#
��
�

#�
��

�
$�

��
��
!

��

"�
��

��
�!
��
#�

��$�#�$#

�

���

���

��
�
��
�#
�

���

��

���

��

����� �!'� �

��

Figure 4: Comparison of the runtime (in seconds) of the involved algorithms in every single dataset. Runtime of the

first 22 datasets (Top), next 15 datasets (Middle), last 7 datasets (Bottom). On average in the 44 datasets, EUS

takes 30.63s, EUS windowing takes 9.03s, four EUSC schemes consume from 6.66s to 7.25s

In this section, we will compare the runtime needed by all the compared algorithms in every450

21

dataset. Figure 4 plots the comparison. For the sake of clarity and observing the influence of data

size on the runtime, we group the first 22 datasets in the top sub-plot (smaller datasets), 15 next

datasets in the middle sub-plot (medium-size datasets) and remaining 7 datasets in the bottom one

(the larger datasets used in the experiments). Looking at that figure, we can observe that:

• Overall, four EUSC schemes demanded an insignificant amount of time to perform under-455

sampling in comparison to the time required by the original EUS. This is also the case for

EUS with windowing in about half of the datasets. However, as mentioned before, the EUS

with windowing is strongly influenced by the IR. Thus, its runtime on datasets with high IR

was low and much lower when the size of those datasets is small. However, in other small

datasets (low IR) this approach consumed a mostly comparable amount of time to EUS, and460

the runtime dramatically reduced in larger ones.

• Although the four EUSC schemes have a difference in the amount of time consumed, the

variation is not significant in comparison with EUS. Over 44 datasets, the minimum and

maximum percentage of the runtime saved are 16.76% and 83.24%, respectively. Additionally,

on average in all datasets, EUS takes 30.63s, EUS windowing takes 9.03s, and the four EUSC465

schemes consume from 6.66s to 7.25s.

In addition to runtime, we also report the number of evaluations that our method saved. As

there is not a significant difference observed in the number of real fitness function calls among four

EUSC schemes, we plot the histograms with the total number of evaluations of two representative

schemes (C-E and R-IE) compared to the 10000 evaluations performed by the EUS for each dataset470

(Figure 5). As seen in the graph, the two schemes save a significant number of evaluations, up to

80% the evaluations demanded by the original EUS in virtually most datasets. This infers a huge

reduction of extensive computation in calculating the fitness for each chromosome.

5.3. Classification performance comparison

In the previous section, we have shown that our proposal is more advantageous than the original475

EUS or EUS Windowing in terms of runtime and the number of real evaluations used. However,

these gains would not be of any value if the final goal of achieving high classification performance

considerably decreased. This section thus aims to report the average g-mean of all the algorithms

in test data. Table 3 shows the results in detail. The best result for each dataset is highlighted in

22

sh
ut
tle

-c
2-
vs
-c
4

iri
s0

gl
as
s-
0-
1-
6_
vs
_5

gl
as
s-
0-
1-
6_
vs
_2

ne
w-
th
yr
oi
d2

ne
w-
th
yr
oi
d1

gl
as
s6

gl
as
s5

gl
as
s4

gl
as
s2

gl
as
s1

gl
as
s0

gl
as
s-
0-
1-
2-
3_
vs
_4
-5
-6

ec
ol
i-0

_v
s_
1

ec
ol
i-0

-1
-3
-7
_v
s_
2-
6

ha
be

rm
an

Im
b

ec
ol
i4

ec
ol
i3

ec
ol
i2

ec
ol
i1

ye
as
t-1

_v
s_
7

pa
ge

-b
lo
ck
s-
1-
3_
vs
_4

ye
as
t-2

_v
s_
8

ye
as
t-2

_v
s_
4

ye
as
t-0

-5
-6
-7
-9
_v
s_
4

wi
sc
on

sin
Im

b
ye
as
t-1

-4
-5
-8
_v
s_
7

ab
al
on

e9
-1
8

pi
m
aI
m
b

ve
hi
cle

0
ve
hi
cle

1
ve
hi
cle

2
ve
hi
cle

3
ye
as
t-1

-2
-8
-9
_v
s_
7

vo
we

l0
ye
as
t3

ye
as
t1

ye
as
t4

ye
as
t6

ye
as
t5

sh
ut
tle

-c
0-
vs
-c
4

se
gm

en
t0

ab
al
on

e1
9

pa
ge

-b
lo
ck
s0

Datasets

0

2500

5000

7500

10000
Re

al
 e
va
lu
at
io
ns C-E

EUS

sh
ut
tle

-c
2-
vs
-c
4

iri
s0

gl
as
s-
0-
1-
6_
vs
_5

gl
as
s-
0-
1-
6_
vs
_2

ne
w-
th
yr
oi
d2

ne
w-
th
yr
oi
d1

gl
as
s6

gl
as
s5

gl
as
s4

gl
as
s2

gl
as
s1

gl
as
s0

gl
as
s-
0-
1-
2-
3_
vs
_4
-5
-6

ec
ol
i-0

_v
s_
1

ec
ol
i-0

-1
-3
-7
_v
s_
2-
6

ha
be
rm

an
Im
b

ec
ol
i4

ec
ol
i3

ec
ol
i2

ec
ol
i1

ye
as
t-1

_v
s_
7

pa
ge
-b
lo
ck
s-
1-
3_
vs
_4

ye
as
t-2

_v
s_
8

ye
as
t-2

_v
s_
4

ye
as
t-0

-5
-6
-7
-9
_v
s_
4

wi
sc
on
sin

Im
b

ye
as
t-1

-4
-5
-8
_v
s_
7

ab
al
on
e9
-1
8

pi
m
aI
m
b

ve
hi
cle

0
ve
hi
cle

1
ve
hi
cle

2
ve
hi
cle

3
ye
as
t-1

-2
-8
-9
_v
s_
7

vo
we

l0
ye
as
t3

ye
as
t1

ye
as
t4

ye
as
t6

ye
as
t5

sh
ut
tle

-c
0-
vs
-c
4

se
gm

en
t0

ab
al
on
e1
9

pa
ge
-b
lo
ck
s0

Datasets

0

2500

5000

7500

10000

Re
al

 e
va

lu
at

io
ns R-IE

EUS

Figure 5: Histogram of real evaluations from the two EUSC schemes constrasted to the EUS algorithm over 44

imbalanced datasets.

boldface. The last row shows the number of times in which an algorithm has obtained the highest480

performance.

Additionally, we also highlight how much difference in terms of g-mean of the four EUSC con-

figurations and the EUS Windowing against the original EUS. Every g-mean value of each EUSC

scheme and EUS Windowing subtracts the g-mean of the EUS to produce the curves, displayed

in Figure 6. The plots lying above 0 signify better performance, while those under 0 mean worse.485

The distance measured from the baseline (y = 0) to a plot indicates how much an algorithm per-

forms better/worse than the EUS. Looking at this table and figure, we can make the following

observations:

• Despite using up to 80% more evaluations, EUS does not always achieve the highest g-mean.

In contrast, using fitness approximation approaches does not only save a lot of computation490

but also might sometimes get even better performance. From table 3, we can highlight the

configuration R-IE, which appears very competitive in comparison to the EUS algorithm,

obtaining the same number of wins out of the 44 datasets. Other algorithms find the best

solution in 5 or 6 out of 44 datasets.

23

'�
)(
(!�

��
��
*'

��
�

�&�
'�

�!
�'

'�
��
��
	�

*'
��

�!
�'

'�
��
��
	�

*'
��

#�
+
�(�

,&
$�
��

#�
+
�(�

,&
$�
��

�!
�'

'	

�!
�'

'�

�!
�'

'�

�!
�'

'�

�!
�'

'�

�!
�'

'�

�!
�'

'�
��
��
��
��

*'
��

��
�	

��
$!
���

�*
'�

�

��
$!
���

��
��
�

�*

'�
��
	

��
��

&"
�#

�"
�

��
$!
��

��
$!
��

��
$!
��

��
$!
��

,�
�'

(��
�*

'�

%�
��

��
!$
�

'�
��
��

*'
��

,�
�'

(��
�*

'�
�

,�
�'

(��
�*

'�
�

,�
�'

(��
��
�	
�

��
�*

'�
�

+
�'
�$

#'
�#
�"

�
,�

�'
(��

��
��
��
�*

'�

��
�!
$#

��
��
�

%�
"
��
"
�

*�
��
�!
��

*�
��
�!
��

*�
��
�!
��

*�
��
�!
��

,�
�'

(��
��
��
��
�*

'�

*$
+
�!
�

,�
�'

(�

,�
�'

(�

,�
�'

(�

,�
�'

(

,�
�'

(�

'�
)(
(!�

��
��
*'

��
�

'�
�"

�#
(�

��
�!
$#

��
�

%�
��

��
!$
�

'�

��(�'�('

-����

-����

-����

-����

-����

-����

����

����

��
&�$

&"
�#

��
��
�%

����
���

���

��
������#�$+�#�

Figure 6: The difference in terms of g-mean of the EUSC schemes and EUS Windowing constrated against the EUS.

• In Figure 6, four EUSC schemes oscillate around the baseline in a confined range of [-0.03,495

+0.04], while EUS Windowing fluctuates with a larger distance. This infers stable perfor-

mance of all configurations which is more consistent with the performance attained by the

EUS technique.

Although the differences of g-mean among all involved algorithms are likely inconsiderable from

what has been analysed so far, there is no evidence to confirm whether these differences are signif-500

icant. Hence, we will employ the Friedman Aligned-Ranks test to discover if there exist statistical

differences in the involved algorithms. After having the ranking table provided by the Friedman

test, we then use Holm post-hoc test to find out whether the highest-ranking algorithm statistically

outperforms the rest. Table 4 presents the results of this test. In this table, algorithms are sorted

by their ranks, from the best to the worst and each algorithm is also associated with a pHolm value505

at the same row.

• As expected, the original EUS gets the lowest ranking value and is established as the control

algorithm. Our EUSC schemes are placed in the middle of the table, while EUS Windowing

with the largest ranking value lies in the last position.

• With the level of significance α = 0.05, Holm’s test has no reported significant differences be-510

tween EUS and four EUSC schemes. However, the test reveals the EUS algorithm statistically

outperforms the EUS Windowing as p-value = 0.

24

Table 3: Average g-mean of all compared algorithms over 44 datasets.

Dataset R-IE R-E C-IE C-E EUS Windowing EUS

shuttle-c2-vs-c4 0.9690 0.9690 0.9753 0.9527 0.6449 0.9582

iris0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

glass-0-1-6 vs 5 0.9289 0.9077 0.9175 0.9176 0.9151 0.9168

glass-0-1-6 vs 2 0.6612 0.6454 0.6409 0.6426 0.6164 0.6551

new-thyroid2 0.9888 0.9871 0.9856 0.9885 0.9773 0.9885

new-thyroid1 0.9851 0.9862 0.9862 0.9882 0.9809 0.9859

glass6 0.8724 0.8779 0.8768 0.9068 0.9071 0.8646

glass5 0.8298 0.8141 0.8602 0.8336 0.9076 0.8292

glass4 0.8712 0.8638 0.8752 0.8785 0.8513 0.8798

glass2 0.6879 0.6901 0.7085 0.6975 0.6525 0.7101

glass1 0.7668 0.7669 0.7680 0.7772 0.7010 0.7787

glass0 0.8015 0.8070 0.8072 0.8046 0.6176 0.7964

glass-0-1-2-3 vs 4-5-6 0.9493 0.9483 0.9496 0.9478 0.9385 0.9461

ecoli-0 vs 1 0.9580 0.9605 0.9591 0.9601 0.9312 0.9601

ecoli-0-1-3-7 vs 2-6 0.6800 0.6611 0.6591 0.6631 0.7048 0.6692

habermanImb 0.5547 0.5634 0.5594 0.5736 0.5635 0.5642

ecoli4 0.8972 0.9055 0.9016 0.8949 0.9362 0.9000

ecoli3 0.8470 0.8375 0.8447 0.8333 0.8153 0.8335

ecoli2 0.9005 0.8988 0.8971 0.8996 0.8663 0.8998

ecoli1 0.8639 0.8660 0.8676 0.8662 0.8306 0.8677

yeast-1 vs 7 0.7106 0.7140 0.7102 0.7144 0.7079 0.7250

page-blocks-1-3 vs 4 0.9575 0.9547 0.9652 0.9581 0.9399 0.9602

yeast-2 vs 8 0.7797 0.7739 0.7911 0.7802 0.7496 0.7954

yeast-2 vs 4 0.9074 0.9003 0.9070 0.9027 0.8774 0.9071

yeast-0-5-6-7-9 vs 4 0.7747 0.7848 0.7815 0.7792 0.7663 0.7749

wisconsinImb 0.9666 0.9684 0.9652 0.9674 0.9652 0.9678

yeast-1-4-5-8 vs 7 0.6412 0.6321 0.6427 0.6396 0.6088 0.6437

abalone9-18 0.7246 0.7297 0.7138 0.7341 0.6772 0.7313

pimaImb 0.6817 0.6867 0.6831 0.6859 0.6749 0.6951

vehicle0 0.9148 0.9143 0.9166 0.9179 0.9027 0.9148

vehicle1 0.6716 0.6667 0.6678 0.6588 0.6624 0.6715

vehicle2 0.9294 0.9280 0.9257 0.9247 0.9175 0.9232

vehicle3 0.7180 0.7265 0.7222 0.7232 0.7142 0.7208

yeast-1-2-8-9 vs 7 0.6469 0.6640 0.6479 0.6588 0.6078 0.6765

vowel0 0.9921 0.9918 0.9914 0.9910 0.9719 0.9918

yeast3 0.8751 0.8722 0.8780 0.8747 0.8740 0.8749

yeast1 0.6501 0.6509 0.6527 0.6532 0.6501 0.6552

yeast4 0.8222 0.8191 0.8206 0.8126 0.7799 0.8156

yeast6 0.8326 0.8432 0.8287 0.8381 0.8080 0.8438

yeast5 0.9639 0.9593 0.9611 0.9614 0.9494 0.9585

shuttle-c0-vs-c4 0.9960 0.9960 0.9960 0.9960 0.9968 0.9960

segment0 0.9884 0.9883 0.9876 0.9890 0.9870 0.9889

abalone19 0.6600 0.6509 0.6294 0.6401 0.6061 0.6343

page-blocks0 0.9096 0.9108 0.9103 0.9111 0.9038 0.9148

Wins 13 5 6 6 6 13

25

Table 4: Average rankings of the algorithms over 44 datasets (Friedman Aligned-Ranks test and Holm post-hoc test).

Algorithm Ranking pHolm

EUS 2.7386 -

C-E 3.0568 0.4881

C-IE 3.2841 0.4881

R-IE 3.2955 0.4881

R-E 3.4091 0.3711

EUS Windowing 5.2159 0

• Although R-IE has the same number of wins with the EUS over 44 datasets, it does not show

this advantage in the Ranking and pHolm columns. This is because in the datasets that R-IE

does not outperform the best, it is usually ranked after C-E and C-IE. Hence, the benefits515

gained from winning is deducted from the loss at the lower rank.

Finally, to make sure that our proposed approach has not benefit from having the EUS Windowing

algorithm in the 1 ∗N comparison, we apply the Wilcoxon test between the original EUS and the

different EUSC schemes. Table 5 shows rankings R+ and R− together with the p-values obtained

from the Wilcoxon test. As we can see, R+ is slightly greater than R− in the first two rows and520

moderately larger in the last two rows (meaning that EUS obtains slightly better results). However,

the Wilcoxon test does not report significant differences between the EUS with a level of significance

α = 0.05.

Table 5: Results of the Wilcoxon test when the EUS algorithm is contrasted against the seven most effective EUSC

schemes.

EUS vs R+ R− p-value

C-IE 582.5 407.5 ≥ 0.2

R-IE 569.5 420.5 ≥ 0.2

C-E 629.5 360.5 0.1185

R-E 656.5 333.5 0.0598

26

6. Conclusions

This paper has investigated the challenges of using fitness approximation in evolutionary under-525

sampling for imbalance classification at which optimising the selection of instances is a challenging

binary optimisation problem. The proposed surrogate-model is based on a two-stage clustering ap-

proach that transforms binary chromosomes into real-coding ones to allow us to compute distances

between chromosomes, so that, fitness values can be approximated fairly. An extensive experimen-

tal framework was carried out to demonstrate the effectiveness of our proposal compared to the530

original evolutionary undersampling method considering multiple perspectives. The experiments

show that we are capable of drastically reducing the runtime required to perform undersampling

without significantly losing classification performance. In comparison with alternative approaches

to approximate fitness values in evolutionary undersampling (namely windowing), our method has

demonstrated to consistently reduce the runtime and maintain high quality solutions. As future535

work, we consider the integration of this surrogate-based evolutionary undersampling approach into

ensemble-based approaches [27], and its application on larger datasets.

Acknowledgement

The work of H. Lam Le was funded by a Ph.D. scholarship from the School of Computer Science

of the University of Nottingham.540

References

[1] H.-L. Dai, Imbalanced protein data classification using ensemble FTM-SVM, IEEE Transac-

tions on Nanobioscience 14 (4) (2015) 350–359.

[2] B. Zhu, B. Baesens, S. K. vanden Broucke, An empirical comparison of techniques for the class

imbalance problem in churn prediction, Information Sciences 408 (2017) 84–99.545

[3] Z. Chen, Q. Yan, H. Han, S. Wang, L. Peng, L. Wang, B. Yang, Machine learning based mobile

malware detection using highly imbalanced network traffic, Information Sciences 433 (2018)

346–364.

[4] H. He, E. A. Garcia, Learning from imbalanced data, IEEE Transactions on Knowledge &

Data Engineering (9) (2008) 1263–1284.550

27

[5] V. López, A. Fernández, S. Garćıa, V. Palade, F. Herrera, An insight into classification with

imbalanced data: Empirical results and current trends on using data intrinsic characteristics,

Information Sciences 250 (2013) 113–141.

[6] G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, G. Bing, Learning from class-

imbalanced data: Review of methods and applications, Expert Systems with Applications 73555

(2017) 220–239.

[7] A. Fernández, S. Garćıa, M. Galar, R. C. Prati, B. Krawczyk, F. Herrera, Learning from

imbalanced data sets, Springer, 2018.

[8] F. Thabtah, S. Hammoud, F. Kamalov, A. Gonsalves, Data imbalance in classification: Ex-

perimental evaluation, Information Sciences 513 (2020) 429 – 441.560

[9] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, SMOTE: synthetic minority

over-sampling technique, Journal of Artificial Intelligence Research 16 (2002) 321–357.

[10] G. E. Batista, R. C. Prati, M. C. Monard, A study of the behavior of several methods for

balancing machine learning training data, ACM SIGKDD Explorations Newsletter 6 (1) (2004)

20–29.565

[11] I. Triguero, D. Garćıa-Gil, J. Maillo, J. Luengo, S. Garćıa, F. Herrera, Transforming big data

into smart data: An insight on the use of the k-nearest neighbors algorithm to obtain quality

data, WIREs Data Mining and Knowledge Discovery 9 (2) (2019) 1289.

[12] B. Zadrozny, C. Elkan, Learning and making decisions when costs and probabilities are both

unknown, in: Proceedings of the seventh ACM SIGKDD International Conference on Knowl-570

edge Discovery and Data Mining, ACM, 2001, pp. 204–213.

[13] S.-H. Oh, Error back-propagation algorithm for classification of imbalanced data, Neurocom-

puting 74 (6) (2011) 1058–1061.

[14] P. Domingos, Metacost: A general method for making classifiers cost-sensitive, in: Proceed-

ings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data575

Mining, 1999, pp. 155–164.

28

[15] B. Krawczyk, M. Woźniak, G. Schaefer, Cost-sensitive decision tree ensembles for effective

imbalanced classification, Applied Soft Computing 14 (2014) 554–562.

[16] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, F. Herrera, A review on ensembles

for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches, IEEE580

Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42 (4)

(2011) 463–484.

[17] E. Fernandes, A. C. P. de Leon Ferreira, D. Carvalho, X. Yao, Ensemble of classifiers based on

multiobjective genetic sampling for imbalanced data, IEEE Transactions on Knowledge and

Data Engineering 14 (2019) 1041–4347.585

[18] R. Sundar, M. Punniyamoorthy, Performance enhanced boosted SVM for imbalanced datasets,

Applied Soft Computing (2019) 105601.

[19] N. V. Chawla, A. Lazarevic, L. O. Hall, K. W. Bowyer, SMOTEBoost: Improving prediction

of the minority class in boosting, in: European Conference on Principles of Data Mining and

Knowledge Discovery, Springer, 2003, pp. 107–119.590

[20] K. Li, X. Kong, Z. Lu, L. Wenyin, J. Yin, Boosting weighted ELM for imbalanced learning,

Neurocomputing 128 (2014) 15–21.

[21] S.-J. Yen, Y.-S. Lee, Cluster-based under-sampling approaches for imbalanced data distribu-

tions, Expert Systems with Applications 36 (3) (2009) 5718–5727.

[22] S. Garćıa, F. Herrera, Evolutionary undersampling for classification with imbalanced datasets:595

Proposals and taxonomy, Evolutionary Computation 17 (3) (2009) 275–306.

[23] A. Fernández, S. Garcia, F. Herrera, N. V. Chawla, SMOTE for learning from imbalanced data:

progress and challenges, marking the 15-year anniversary, Journal of Artificial Intelligence

Research 61 (2018) 863–905.

[24] E. Ramentol, Y. Caballero, R. Bello, F. Herrera, SMOTE-RSB*: a hybrid preprocessing ap-600

proach based on oversampling and undersampling for high imbalanced data-sets using smote

and rough sets theory, Knowledge and Information Systems 33 (2) (2012) 245–265.

29

[25] I. Triguero, M. Galar, S. Vluymans, C. Cornelis, H. Bustince, F. Herrera, Y. Saeys, Evo-

lutionary undersampling for imbalanced big data classification, in: 2015 IEEE Congress on

Evolutionary Computation (CEC), IEEE, 2015, pp. 715–722.605

[26] S. Garcia, J. Derrac, J. R. Cano, F. Herrera, Prototype selection for nearest neighbor classi-

fication: Taxonomy and empirical study, IEEE Transactions on Pattern Analysis & Machine

Intelligence (3) (2011) 417–435.

[27] M. Galar, A. Fernández, E. Barrenechea, F. Herrera, EUSBoost: Enhancing ensembles for

highly imbalanced data-sets by evolutionary undersampling, Pattern Recognition 46 (12)610

(2013) 3460–3471.

[28] B. Krawczyk, M. Galar, L. Jeleń, F. Herrera, Evolutionary undersampling boosting for imbal-

anced classification of breast cancer malignancy, Applied Soft Computing 38 (2016) 714–726.

[29] B. Sun, H. Chen, J. Wang, H. Xie, Evolutionary under-sampling based bagging ensemble

method for imbalanced data classification, Frontiers of Computer Science 12 (2) (2018) 331–615

350.

[30] H. Song, I. Triguero, E. Ozcan, A review on the self and dual interactions between machine

learning and optimisation., Progress in Artificial Intelligence 8 (2019) 143165.

[31] T. M. Cover, P. Hart, et al., Nearest neighbor pattern classification, IEEE Transactions on

Information Theory 13 (1) (1967) 21–27.620

[32] I. Triguero, M. Galar, H. Bustince, F. Herrera, A first attempt on global evolutionary un-

dersampling for imbalanced big data, in: 2017 IEEE Congress on Evolutionary Computation

(CEC), 2017, pp. 2054–2061.

[33] Y. Jin, M. Olhofer, B. Sendhoff, On evolutionary optimization with approximate fitness func-

tions, in: Proceedings of the 2nd Annual Conference on Genetic and Evolutionary Computa-625

tion, Morgan Kaufmann Publishers Inc., 2000, pp. 786–793.

[34] Y. Jin, A comprehensive survey of fitness approximation in evolutionary computation, Soft

Computing 9 (1) (2005) 3–12.

30

[35] Y. Jin, Surrogate-assisted evolutionary computation: Recent advances and future challenges,

Swarm and Evolutionary Computation 1 (2) (2011) 61–70.630

[36] A. Rosales-Prez, J. A. Gonzalez, C. A. C. Coello, H. J. Escalante, C. A. Reyes-Garcia,

Surrogate-assisted multi-objective model selection for support vector machines, Neurocom-

puting 150 (2015) 163 – 172.

[37] Y. Sun, H. Wang, B. Xue, Y. Jin, G. G. Yen, M. Zhang, Surrogate-assisted evolutionary deep

learning using an end-to-end random forest-based performance predictor, IEEE Transactions635

on Evolutionary Computation (2019) 1–1.

[38] A. E. Brownlee, J. A. Wright, Constrained, mixed-integer and multi-objective optimisation

of building designs by nsga-ii with fitness approximation, Applied Soft Computing 33 (2015)

114–126.

[39] I. Bertini, M. De Felice, A. Pannicelli, S. Pizzuti, Soft computing based optimization of com-640

bined cycled power plant start-up operation with fitness approximation methods, Applied Soft

Computing 11 (6) (2011) 4110–4116.

[40] M. Salami, T. Hendtlass, A fast evaluation strategy for evolutionary algorithms, Applied Soft

Computing 2 (3) (2003) 156–173.

[41] T. Chugh, C. Sun, H. Wang, Y. Jin, Surrogate-assisted evolutionary optimization of large645

problems, in: High-Performance Simulation-Based Optimization, Springer, 2020, pp. 165–187.

[42] A. Moraglio, A. Kattan, Geometric generalisation of surrogate model based optimisation to

combinatorial spaces, in: European Conference on Evolutionary Computation in Combinatorial

Optimization, Springer, 2011, pp. 142–154.

[43] T. Bartz-Beielstein, M. Zaefferer, Model-based methods for continuous and discrete global650

optimization, Applied Soft Computing 55 (2017) 154–167.

[44] J. Bacardit, D. E. Goldberg, M. V. Butz, X. Llorà, J. M. Garrell, Speeding-up pittsburgh learn-

ing classifier systems: Modeling time and accuracy, in: International Conference on Parallel

Problem Solving from Nature, Springer, 2004, pp. 1021–1031.

31

[45] J. R. Cano, F. Herrera, M. Lozano, Stratification for scaling up evolutionary prototype selec-655

tion, Pattern Recognition Letters 26 (7) (2005) 953–963.

[46] I. Triguero, J. Derrac, S. Garcia, F. Herrera, A taxonomy and experimental study on proto-

type generation for nearest neighbor classification, IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews) 42 (1) (2011) 86–100.

[47] L. J. Eshelman, The CHC adaptive search algorithm: How to have safe search when engaging660

in nontraditional genetic recombination, Foundations of Genetic Algorithms 1 (1991) 265–283.

[48] R. Barandela, J. S. Sánchez, V. Garca, E. Rangel, Strategies for learning in class imbalance

problems, Pattern Recognition 36 (3) (2003) 849–851.

[49] A. P. Bradley, The use of the area under the roc curve in the evaluation of machine learning

algorithms, Pattern Recognition 30 (7) (1997) 1145–1159.665

[50] D. Buche, N. N. Schraudolph, P. Koumoutsakos, Accelerating evolutionary algorithms with

gaussian process fitness function models, IEEE Transactions on Systems, Man, and Cybernet-

ics, Part C (Applications and Reviews) 35 (2) (2005) 183–194.

[51] L. Bianchi, M. Dorigo, Ant colony optimization and local search for the probabilistic traveling

salesman problem: a case study in stochastic combinatorial optimization, PhD dissertation,670

Université libre de Bruxelles (2006).

[52] P. Ross, D. Corne, H.-L. Fang, Improving evolutionary timetabling with delta evaluation and

directed mutation, in: International Conference on Parallel Problem Solving from Nature,

Springer, 1994, pp. 556–565.

[53] L. Shi, K. Rasheed, A survey of fitness approximation methods applied in evolutionary algo-675

rithms, in: Computational intelligence in expensive optimization problems, Springer, 2010, pp.

3–28.

[54] R. E. Smith, B. A. Dike, S. Stegmann, Fitness inheritance in genetic algorithms, in: Proceed-

ings of the 1995 ACM Symposium on Applied computing, ACM, 1995, pp. 345–350.

[55] K. Sastry, D. E. Goldberg, M. Pelikan, Don’t evaluate, inherit, in: Proceedings of the 3rd680

Annual Conference on Genetic and Evolutionary Computation, Morgan Kaufmann Publishers

Inc., 2001, pp. 551–558.

32

[56] L. T. Bui, H. A. Abbass, D. Essam, Fitness inheritance for noisy evolutionary multi-objective

optimization, in: Proceedings of the 7th Annual Conference on Genetic and Evolutionary

Computation, ACM, 2005, pp. 779–785.685

[57] M. Pelikan, K. Sastry, Fitness inheritance in the bayesian optimization algorithm, in: Genetic

and Evolutionary Computation Conference, Springer, 2004, pp. 48–59.

[58] D. Xu, Y. Tian, A comprehensive survey of clustering algorithms, Annals of Data Science 2 (2)

(2015) 165–193.

[59] H.-S. Kim, S.-B. Cho, An efficient genetic algorithm with less fitness evaluation by clustering,690

in: Evolutionary Computation, 2001. Proceedings of the 2001 Congress on, Vol. 2, IEEE, 2001,

pp. 887–894.

[60] Y. Jin, B. Sendhoff, Reducing fitness evaluations using clustering techniques and neural network

ensembles, in: Genetic and Evolutionary Computation Conference, Springer, 2004, pp. 688–

699.695

[61] A. C. Mart́ınez-Estudillo, C. Hervás-Mart́ınez, F. J. Mart́ınez-Estudillo, N. Garćıa-Pedrajas,

Hybridization of evolutionary algorithms and local search by means of a clustering method,

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 36 (3) (2005)

534–545.

[62] R. Li, M. T. Emmerich, J. Eggermont, E. G. Bovenkamp, T. Back, J. Dijkstra, J. H. Reiber,700

Metamodel-assisted mixed integer evolution strategies and their application to intravascular

ultrasound image analysis, in: 2008 IEEE Congress on Evolutionary Computation (IEEE World

Congress on Computational Intelligence), IEEE, 2008, pp. 2764–2771.

[63] J. Derrac, S. Garćıa, F. Herrera, Stratified prototype selection based on a steady-state memetic

algorithm: a study of scalability, Memetic Computing 2 (3) (2010) 183–199.705

[64] I. Triguero, S. González, J. M. Moyano, S. Garćıa López, J. Alcalá Fernández, J. Lu-

engo Mart́ın, A. Fernández Hilario, J. Dı́az, L. Sánchez, F. Herrera, et al., Keel 3.0: an open

source software for multi-stage analysis in data mining, International Journal of Computational

Intelligence Systems 10 (2017) 1238–1249.

33

[65] S. Garćıa, Z.-L. Zhang, A. Altalhi, S. Alshomrani, F. Herrera, Dynamic ensemble selection for710

multi-class imbalanced datasets, Information Sciences 445 (2018) 22–37.

[66] J. Demšar, Statistical comparisons of classifiers over multiple data sets, Journal of Machine

Learning Research 7 (2006) 1–30.

[67] J. Derrac, S. Garćıa, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric

statistical tests as a methodology for comparing evolutionary and swarm intelligence algo-715

rithms, Swarm and Evolutionary Computation 1 (1) (2011) 3–18.

[68] J. Hodges, E. L. Lehmann, et al., Rank methods for combination of independent experiments

in analysis of variance, The Annals of Mathematical Statistics 33 (2) (1962) 482–497.

[69] S. Holm, A simple sequentially rejective multiple test procedure, Scandinavian Journal of

Statistics (1979) 65–70.720

34

