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Abstract

We consider the problem of cleaning a transboundary river, proposed by Ni and Wang
(2007). A river is modeled as a segment divided into subsegments, each occupied by
one region, from upstream to downstream. The waste is transferred from one region
to the next at some rate. Since this transfer rate may be unknown, the social planner
could have uncertainty over each region’s responsibility. Two natural candidates
to distribute the costs in this setting would be the method that assigns to each
region its expected responsibility and the one that assigns to each region its median
responsibility. We show that the latter is equivalent to the Upstream Responsibility
method (Alcalde-Unzu et al., 2015) and the former is a new method that we call
Expected Responsibility. We compare both solutions and analyze them in terms of
a new property of monotonicity.
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1 Introduction

Motivation and overview of results

The cleaning process of the waste present in river channels is a task that has to be under-
taken frequently. Given that most rivers flow through different regions or even countries,
the costs of the cleaning activities have to be divided between all governments involved,
probably depending on the responsibilities that each of the regions has for the waste dis-
charged.1 In many cases, however, for instance when there is physical uncertainty or
monitoring difficulties, it is tough to determine what region is responsible for a particular
amount of pollution. For example, as stated in Segerson (1988), when there is nonpoint
source pollution, it is impossible to identify with certainty the source of the waste present
in each part of the river or to calculate the amount discharged by each region.

The literature has considered several solutions that allocate the costs for these problems.
On the one hand, Ni and Wang (2007) proposed the Local Responsibility Sharing (LRS)
and the Upstream Equal Sharing (UES) solutions. The first allocates the cost of cleaning
each part of the river totally to the region located in that segment. The second considers
that regions located upstream of a segment have also some responsibility over the waste
present in that segment and it allocates the cost of cleaning each segment between all these
responsible regions equally.2 However, these solutions are not taking into account that the
waste is transferred with the water, from upstream to downstream at a particular rate.
Alcalde-Unzu et al. (2015) explicitly introduced this fact into the model and showed that
if the social planner knows this transfer rate t, she can calculate with certainty the total
amount of waste discharged by each region. If, however, there is uncertainty over the value
of t, they showed that the social planner can infer some information on that transfer rate
by analyzing the cleaning costs of all segments. Then, they proposed a new solution, the
Upstream Responsibility (UR), which assigns to each region the waste of which it would
be responsible if the transfer rate was equal to its expected value.

In those cases where there is uncertainty over the value of t, there is also uncertainty
over each region’s responsibility. Given that the expected value and the median are the
two most important centrality measures of random variables, if the social planner wanted
to distribute the costs among the regions according to their responsibilities, two natural
candidates would be the method that assigns to each region its expected responsibility, and
the one that assigns to each region its median responsibility. Assuming that the uncertainty
on the tranfer rate takes the form of a uniform variable, we show that this second method
is equivalent to the UR method, meanwhile the consideration of expected responsibilities

1The literature has also focused on how to distribute fairly the benefits of the river among the different

regions. See for example Ambec and Ehlers (2008), Ambec and Sprumont (2002), Ansink et al. (2017),

Ansink and Weikard (2012, 2015), van den Brink et al. (2012), van den Brink et al. (2007, 2014),

Khmelnitskaya (2010), Özturk (2020), and Wang (2011).
2Dong et al. (2012) proposed the Downstream Equal Sharing solution (DES), which is in the same

vein as UES, but considering that the regions that should pay for cleaning a segment are the ones situated

downstream instead of the upstream ones.
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defines a new method that we call Expected Responsibility (ER) method. We compare
both methods and we show that the most upstream (respectively, downstream) region pays
less (respectively, more) with the UR method than with the ER one; and an intermediate
region pays more (respectively, less) with the UR method than with the ER one if the cost
of cleaning the preceding region is higher (respectively, lower) than the cost of cleaning its
own segment.

We introduce in this paper a new property of monotonicity. This property requires that
if a region discharges more waste, the method used should guarantee that it will not pay
less. We show that the UR method satisfies this basic property, but this is not the case
of the ER method. The reason is that, when a region discharges more waste, two effects
appear: it increases the costs of cleaning the segments, which tends to increase the costs
allocated to the regions, but, at the same time, it changes the information that the social
planner can deduce on the transfer rate from the cleaning cost vector, which affects how
the solution distributes all costs among the regions. If the second effect dominates the
first, which can occur with the ER solution but not with the UR one, a region discharging
more waste could pay less. Moreover, we show that it is not only that the UR method
satisfies this basic incentive compatibility property, but also that, within a general family
of solutions, there is no other solution satisfying this property that assigns costs closer to
regions’ expected responsibilities.

Related literature

This paper is related to the literature that studies the allocation of the costs of transbound-
ary rivers using game theoretical and/or axiomatic models, which has two main approaches.
On the one hand, some papers assumed that the cost of cleaning each part of the river is
exogenously given. In this setting, some papers study a single river and model it as a line:
besides the contributions of Ni and Wang (2007) and Alcalde-Unzu et al. (2015) described
above, van den Brink and van der Laan (2008) showed additional characterizations of the
LRS and UES solutions, and Sun et al. (2019) characterized combinations of the LRS and
UES solutions. Other papers study a river with tributaries and/or forks and model it as
a network: Dong et al. (2012) proposed extensions of the LRS and UES solutions to this
case and also proposed the DES solution as a dual of the UES one; and, more recently, van
den Brink et al. (2018) provided different characterizations of these solutions and studied a
different extension of the UES solution to this case of a river network. On the other hand,
other papers such as Gengenbach et al. (2010) and van der Laan and Moes (2012) took a
substantially different approach by assuming that the cost allocation method adopted may
affect the decision of each region about how much waste to discharge.

Remainder

The paper is organized as follows. Section 2 describes the model and reviews some previ-
ous results of the literature. Section 3 analyzes two natural methods for allocating costs
according to responsibilities: the expected responsibility and the median responsibility.
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Section 4 is devoted to the study of the monotonicity property. Section 5 concludes with
some remarks.

2 Notation and definitions

We study the same basic model as in Alcalde-Unzu et al. (2015). Consider a river modeled
as a line divided into n segments of the same size from upstream to downstream, with each
region located in one of the segments. Formally, let N = {1, ..., n} ⊂ N be the set of regions
such that i is situated upstream of i+1. The regions discharged waste that flowed through
the river. The cost of cleaning each segment i ∈ N is ci ≥ 0, being C = (c1, ..., cn) ∈ R

n
+

the cleaning cost vector. We assume that
∑n

i=1 ci > 0 because otherwise the problem has
no interest. We also assume that each of these costs depends linearly on the amount of
waste present in the segment in question. The river has a transfer rate t that measures the
proportion of waste that has been transferred from one segment of the river to the next.
The social planner knows that t is situated within an interval [t, t], where t ∈ [0, 1) and
t ∈ (0, 1]. It is assumed that this uncertainty on t takes the form of an uniform variable.3

Then, a cost allocation problem is a tuple (C, t, t).4

There are two solution concepts for allocating the costs among the regions. A cost allocation
rule, proposed by Alcalde-Unzu et al. (2015), is a mapping x that assigns to each problem
(C, t, t) a matrix of size n × n, (xj

i (C, t, t))i,j∈N , such that all its components are non–
negative and

∑

i∈N

xj
i (C, t, t) = cj for all j ∈ N . Then, xj

i (C, t, t) represents the part of the

cost of cleaning segment j that region i pays. On the other hand, a cost allocation method,
proposed by Ni and Wang (2007), is a function x that assigns to each cost allocation
problem (C, t, t) a vector of size n, (xi(C, t, t))i∈N ∈ R

n
+, such that

∑

i∈N

xi(C, t, t) =
∑

i∈N

ci.

Then, xi(C, t, t) represents the total cost that is allocated to region i. It is easy to see that,
for any cost allocation rule, there is only one cost allocation method associated, while there
could be multiple cost allocation rules associated with each cost allocation method. In this
paper, we mainly focus on cost allocation methods.

The first solutions proposed in the literature for cost allocation problems were the LRS
and UES methods introduced by Ni and Wang (2007) and also studied by van den Brink
and van der Laan (2008).

Definition 1 The Local Responsibility Sharing (LRS) method, α, is such that for all

problems (C, t, t) and all i ∈ N , αi(C, t, t) = ci.

3In Section 5 we discuss how the results obtained along the paper depend on this assumption about

the distribution of this random variable that describes the uncertainty on t.
4Several extensions of this basic model (e.g., segments of different sizes, river with tributaries and/or

forks and different transfer rates across segments) can be developed as suggested in Alcalde-Unzu et al.

(2015). Additionally, Ni and Wang (2007) and Alcalde-Unzu et al. (2015) included N in the description

of a cost allocation problem, but we omit it here because the information it contains is already included

in C.
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Definition 2 The Upstream Equal Sharing (UES) method, β, is such that for all problems

(C, t, t) and all i ∈ N , βi(C, t, t) =
n
∑

j=i

cj
j
.

Neither of these two solutions take into account any information about the transfer rate
to allocate the costs and, therefore, they do not try to infer how much responsibility each
region has in the waste discharged in the river. In order to understand the relevance of
this information, consider first the case in which the transfer rate is known by the social
planner (t = t = t). Then, she could use this information to calculate the total amount of
waste that each region has discharged. This amount, which we denote by Vi(t, C), is given
by:5

Vi(t, C) =







ci
1−t

if i = 1
ci
1−t

− ci−1

1−t
t if i ∈ {2, . . . , n− 1}

ci −
ci−1

1−t
t if i = n.

(1)

We call Vi(t, C) the responsibility function of region i. We would like to highlight some
technical characteristics of this function that will be useful to prove several results along
the paper: Vi(t, C) is continuous in t and either strictly increasing and convex in t or
strictly decreasing and concave in t. Exceptionally, Vi(t, C) is constant in t in the following
cases: (i) V1(t, C) when c1 = 0; (ii) Vi(t, C), with i ∈ {2, . . . , n− 1}, when ci = ci−1; and
(iii) Vn(t, C) when cn−1 = 0.6

On the one hand, it would be desirable to have a method that, in these problems in which
the transfer rate is known, assigns to each region i a total cost equal to the value of
the responsibility function. On the other hand, in the cases in which the transfer rate is
unknown (t < t), a method should assign costs to each region i in the interval of the limits
of its possible responsibility that are, due to the strict monotonicity of the responsibility
function Vi in t, given by Vi(t, C) and Vi(t, C).7 It is noteworthy to mention here that the
information about the possible values of the transfer rate could be improved analyzing the
cost vector C, as the following example shows.

Example 1: Suppose a problem in which N = {1, 2, 3, 4}, the cost vector is C = {100, 200,
300, 400} and the social planner has the following information about the transfer rate: t = 1

5

and t = 3
5
. Then, although the information a priori about the actual transfer rate allows

5This value is calculated in the proof of Proposition 3 in Alcalde-Unzu et al. (2015).
6All these characteristics apply only for the interval t ∈ [0, 1). Observe that, when t = 1, Vi is not well

defined. This is because a transfer rate of t = 1 implies that all the waste is transferred to region n and,

then, ci = 0 for all i < n, which provokes that Vi equals an indeterminate form for all i ∈ N . In this case,

the social planner could not infer any information about the waste discharged by each region and, thus,

Vi(1, C) ∈ [0, cn] for all i ∈ N .
7Observe that, whenever Vi(t, C) is strictly increasing (respectively, decreasing), the lower (respectively,

higher) limit of the interval of possible responsibilities of region i is given by Vi(t, C) and the higher

(respectively, lower) limit by Vi(t, C).
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any value in the interval [1
5
, 3
5
], some of these values are not compatible with C. If, for

instante, the actual transfer rate of the river had the value 25
42
, we would have that V4(

25
42
, C)

is negative, which is not possible. �

This issue was analyzed by Alcalde-Unzu et al. (2015), who showed in its Proposition 3 a
maximum limit of the actual transfer rate for each problem (C, t, t). This limit, denoted
by t

∗
(t, C), can be obtained with the following formula:

t
∗
(t, C) = min

{

{

ci
ci−1

}

i∈{2,...,n−1}

,
cn

cn−1 + cn
, t

}

.8 (2)

Notice that t
∗
(t, C) ≤ t and, therefore, this new upper limit can also reduce the uncertainty

over the responsibilities of each region in the discharge of the waste present in the river.9

Specifically, the social planner can truncate at Vi(t
∗
(t, C), C) the random variable of the

responsibility of each region i that was defined initially over the interval limited by Vi(t, C)
and Vi(t, C). We could have, for example, an extreme case in which, although t < t, t =
t
∗
(t, C), allowing the social planner to apply directly the expression (1) to assign a total cost

to each region. For the remaining cases in which t < t
∗
(t, C), there is still uncertainty over

the responsibility of each region i because it could be the case that Vi(t, C) 6= Vi(t
∗
(t, C), C).

To finish this section, consider again the LRS and UES methods defined previously. As
we have mentioned before, they do not consider any information about the transfer rate,
so they do not satisfy the natural requirement of assigning costs in the interval limited by
Vi(t, C) and Vi(t

∗
(t, C), C), as can be illustrated with the previous example:

Example 1 (continuation) Remember that the cost allocation problem of Example 1 is
({100, 200, 300, 400}, 1

5
, 3
5
). According to expression (2), the new upper limit for the trans-

fer rate is t
∗
(t, C) = 4

7
. Observe that since the social planner knows that t ∈ [t, t

∗
(t, C)] =

[1
5
, 4
7
], the responsibility of region 1, V1(t, C), is in the interval [V1(t, C), V1(t

∗
(t, C), C)] =

[125, 233.33]. The LRS and the UES methods assign the solutions α(C, t, t) = (100, 200, 300,
400) and β(C, t, t) = (400, 300, 200, 100), respectively. Thus, we can observe that none of
them assigns to region 1 a value inside the interval of feasible responsibilities. �

3 Alternative methods for estimating responsibilities

We have a responsibility function Vi(t, C) that, knowing the transfer rate t, computes
the actual responsibility of each region i for the waste discharged in the river in any

8The possible quotients with the indeterminate form 0
0 have to be excluded in the determination of

t
∗
(t, C). Obviously, t

∗
(t, C) has to be not smaller than t because in other case the problem (C, t, t) would

not be well-defined.
9The cost vector C does not allow to infer a lower limit for the transfer rate because of the unidirectional

nature of the problem. Note that we cannot even discard a value of 0 for the transfer rate in any cost

vector C because this cost vector could come from a situation in which each region i has discharged the

amount of waste present in this region, ci, and no waste is transferred to next regions.
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cost allocation problem (C, t, t). However, since the social planner only knows that t is a
random variable defined over the interval [t, t

∗
(t, C)], the responsibility function inherits

this uncertainty and hence the social planner only knows that Vi(t, C) is a random variable
defined over the interval limited by Vi(t, C) and Vi(t

∗
(t, C), C). Then, since the expected

value and the median are the two most important centrality measures of random variables,
if the social planner wants to distribute the costs among the regions according to their
responsibilities, two natural candidates are the cost allocation method that assigns to
each region its expected responsibility, E(C,t,t)(Vi(t, C)), and the cost allocation method
that assigns to each region its median responsibility, med(C,t,t)(Vi(t, C)). As it is well-
known from statistics, the latter implies a minimization of the expected sum of absolute
deviations between the actual value of the responsibility of each region and its assigned cost,
meanwhile the former implies a minimization of the expected sum of squared deviations
between the actual value of the responsibility of each region and its assigned cost.

Remark 1 For all (C, t, t) and all i ∈ N :

E(C,t,t)(Vi(t, C)) = argmin
x

∫ t
∗

(t,C)

t

(Vi(t, C)− x)2dt.

med(C,t,t)(Vi(t, C)) = argmin
x

∫ t
∗

(t,C)

t

|Vi(t, C)− x|dt.

We first analyze the cost allocation method that assigns to each region i, in any problem
(C, t, t), the expected value of Vi(t, C). The following proposition states that this cost
allocation method coincides with assigning to each region i the value of its responsibility
function Vi for a particular transfer rate, which we denote by u(C, t, t).

Proposition 1 For all (C, t, t) and all i ∈ N , E(C,t,t)(Vi(t, C)) = Vi(u(C, t, t), C), where

u(C, t, t) =















t if t = t
∗
(t, C) or t

∗
(t, C) = 1

1− t
∗

(t,C)−t

ln 1−t

1−t∗(t,C)

if t 6= t
∗
(t, C) 6= 1.

This transfer rate u(C, t, t) is in [t, t
∗
(t, C)] for all (C, t, t).

Proof: If t = t
∗
(t, C), it is straightforward that E(C,t,t)(Vi(t, C)) = Vi(t, C) and, since

u(C, t, t) = t for this case, it is also immediate that u(C, t, t) ∈ [t, t
∗
(t, C)].

Suppose now that t 6= t
∗
(t, C) = 1. We can deduce from expression (2) that ci = 0 for all

i < n. Then, by expression (1), Vn(t, C) = cn for all t ∈ [t, t
∗
(t, C)) and Vn(t, C) ∈ [0, cn] if

t = t
∗
(t, C). Similarly, for any i < n, Vi(t, C) = 0 for all t ∈ [t, t

∗
(t, C)) and Vi(t, C) ∈ [0, cn]

if t = t
∗
(t, C). Therefore, given that the density of the interval [t, t

∗
(t, C)) is infinitely
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greater than the density of the unique point t
∗
(t, C), we have that E(C,t,t)(Vn(t, C)) = cn

and E(C,t,t)(Vi(t, C)) = 0 for all i < n. Thus, E(C,t,t)(Vi(t, C)) = Vi(t, C) for all i ∈ N . In
this case, since we have as before that u(C, t, t) = t, it is also immediate that u(C, t, t) ∈
[t, t

∗
(t, C)].

Suppose from now on that t 6= t
∗
(t, C) 6= 1. Consider first the most upstream region; that

is, i = 1. By expression (1), we have that Vi(t, C) = ci
1−t

. Given that the uncertainty over
t takes the form of an uniform variable, we have that

E(C,t,t)(Vi(t, C)) =

∫ t
∗

(t,C)

t
ci
1−t

dt

t
∗
(t, C)− t

=
ci(− ln(1− t))|

t
∗

(t,C)
t

t
∗
(t, C)− t

= ci ·
ln 1−t

1−t
∗

(t,C)

t
∗
(t, C)− t

=
ci

1− u(C, t, t)
.

(3)

Then, we have deduced that E(C,t,t)(V1(t, C)) = V1(u(C, t, t), C). Consider now any region
i ∈ {2, . . . , n− 1}. Then, we have that

E(C,t,t)(Vi(t, C)) =

∫ t
∗

(t,C)

t

(

ci
1−t

− ci−1·t
1−t

)

dt

t
∗
(t, C)− t

=

∫ t
∗

(t,C)

t
ci
1−t

dt

t
∗
(t, C)− t

−
ci−1 ·

∫ t
∗

(t,C)

t
t

1−t
dt

t
∗
(t, C)− t

. (4)

Observe that the minuend coincides with expression (3) and, then, we concentrate on the
subtrahend:

ci−1 ·
∫ t

∗

(t,C)

t
t

1−t
dt

t
∗
(t, C)− t

=
ci−1(−t− ln(1− t))|

t
∗

(t,C)
t

t
∗
(t, C)− t

= ci−1 ·
ln 1−t

1−t
∗

(t,C)
+ t− t

∗
(t, C)

t
∗
(t, C)− t

=

ci−1 ·
u(C, t, t)

1− u(C, t, t)
.

Thus, we obtain that E(C,t,t)(Vi(t, C)) = Vi(u(C, t, t), C) for all i ∈ {2, . . . , n− 1}.

Consider finally region i = n. Observe that E(C,t,t)(Vn(t, C)) is equal to cn minus the subtra-
hend of expression (4). Then, using the same calculus we can deduce that E(C,t,t)(Vn(t, C)) =
Vn(u(C, t, t), C).

To finish the proof it remains to be showed that the value u(C, t, t) is in the interval
[t, t

∗
(t, C)] for these cases in which t 6= t

∗
(t, C) 6= 1. First, suppose that there is at least

one region i for which the responsibility function Vi is not constant in the entire range of
t. In this case, observe that:

(i) The expected value of any random variable is always between its minimum and its
maximum and, applying this fact to the random variable of the responsibility function
of region i, we get that E(C,t,t)(Vi(t, C)) ∈ [ min

t∈[t,t
∗

(t,C)]
Vi(t, C), max

t∈[t,t
∗

(t,C)]
Vi(t, C)].
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(ii) The responsibility function Vi is either strictly increasing in the entire range of t
or strictly decreasing in the entire range of t and, then, the value of the respon-
sibility function for any value of t outside the interval [t, t

∗
(t, C)] is smaller than

min
t∈[t,t

∗

(t,C)]
Vi(t, C) or higher than max

t∈[t,t
∗

(t,C)]
Vi(t, C).

Therefore, we can conclude from (i) and (ii) that Vi(t̂, C) cannot equal the expected re-
sponsibility of region i for any t̂ /∈ [t, t

∗
(t, C)]. Since we also have that the responsibility

function Vi is continuous in t, any value between min
t∈[t,t

∗

(t,C)]
Vi(t, C) and max

t∈[t,t
∗

(t,C)]
Vi(t, C) is

obtained for some value of t ∈ [t, t
∗
(t, C)]. Thus, u(C, t, t) ∈ [t, t

∗
(t, C)].10

Second, suppose that Vi is constant in the entire range of t for all i ∈ N . This case refers to
those problems in which c1 = . . . = cn−1 = 0. Consider another problem (C ′, t, t) such that
c′1 = . . . = c′n−2 = 0, c′n−1 = ǫ, with ǫ arbitrarily small, and c′n = cn. Observe that Vn(t, C

′)
is not constant in the entire range of t. Then, applying the reasoning of the previous
paragraph, we have that u(C ′, t, t) ∈ [t, t

∗
(t, C ′)]. Given the structure of C and C ′, we

also have that t
∗
(t, C) = t

∗
(t, C ′) = t (see expression (2)). Therefore, u(C, t, t) = u(C ′, t, t)

and, thus, u(C, t, t) ∈ [t, t
∗
(t, C)]. �

Given Proposition 1, we can define this proposal of calculating the expected responsibility
of each region as the following cost allocation method.

Definition 3 The Expected Responsibility method (ER), δ, is such that, for all problems

(C, t, t) and all i ∈ N , δi(C, t, t) = E(C,t,t)(Vi(t, C)) = Vi(u(C, t, t), C).

We now analyze the cost allocation method that assigns to each region i, in any problem
(C, t, t), the median of the random variable Vi(t, C). The following proposition shows
that this cost allocation method coincides with assigning to each region i the value of its
responsibility function for the expected value of the random variable of the transfer rate t
defined over [t, t

∗
(t, C)]. We denote this expected value by E(C,t,t)(t).

Proposition 2 For all (C, t, t) and all i ∈ N , med(C,t,t)(Vi(t, C)) = Vi(E(C,t,t)(t), C).

Proof: The proof comes from the combination of the following three facts:

(i) For any region i ∈ N , we have that med(C,t,t)(Vi(t, C)) = Vi(med(C,t,t)(t), C), where
med(C,t,t)(t) is the median of the random variable t.

10We have proven that the value u(C, t, t) belongs to [t, t
∗
(t, C)] doing the analysis for a region i for

which the responsibility function Vi is not constant in the entire range of t. However, this analysis can

be extended for the remaining regions: if Vj(t, C) is constant in the entire range of t for some region

j ∈ N , we have that E(C,t,t)(Vj(t, C)) = Vj(t̂, C) for all t̂ ∈ [0, 1) and, therefore, we also have that

E(C,t,t)(Vj(t, C)) = Vj(u(C, t, t), C) for the value u(C, t, t) ∈ [t, t
∗
(t, C)] calculated for region i.

9



This is immediate for the case in which t
∗
(t, C) 6= 1, where Vi(t, C) is either constant

in the entire range of t, or strictly increasing in the entire range of t, or strictly
decreasing in the entire range of t.

Consider now the case in which t
∗
(t, C) = 1. Remember from the proof of Proposition

1 that this implies that ci = 0 for all i < n. Then, Vn(t, C) = cn for all t ∈ [t, t
∗
(t, C))

and Vn(t, C) ∈ [0, cn] if t = t
∗
(t, C). Similarly, for any i < n, Vi(t, C) = 0 for all

t ∈ [t, t
∗
(t, C)) and Vi(t, C) ∈ [0, cn] if t = t

∗
(t, C). Given that the density of the

interval [t, t
∗
(t, C)) is infinitely greater than the density of the unique point t

∗
(t, C),

we have that med(C,t,t)(Vn(t, C)) = cn and med(C,t,t)(Vi(t, C)) = 0 for all i < n. Thus,
med(C,t,t)(Vi(t, C)) = Vi(med(C,t,t)(t), C) for all i ∈ N .

(ii) The uncertainty over t takes the form of a uniform variable in the interval [t, t
∗
(t, C)].

This is because we assumed that, before analyzing the information on the cost vector,
the uncertainty over t took the form of a uniform variable in the interval [t, t]. Then,
the updating of the information about t from the cost vector (see expression (2)) im-
plies that this initial random variable should be truncated at t

∗
(t, C). The truncation

does not change the fact that the random variable follows a uniform distribution, but
only the interval of possible values from [t, t] to [t, t

∗
(t, C)].

(iii) Since a uniform distribution is symmetric about the mean, the median and the ex-
pected value of the random variable that describes the uncertainty on t coincide:
med(C,t,t)(t) = E(C,t,t)(t).

Then, we can conclude that med(C,t,t)(Vi(t, C)) = Vi(E(C,t,t)(t), C). �

According to Proposition 2, the median responsibility coincides with the cost allocation
method that uses the expected value of t as the transfer rate in the responsibility function.
Notice that therefore the median responsibility is equivalent to the Upstream Responsibility
(UR) method proposed by Alcalde-Unzu et al. (2015).

Definition 4 The Upstream Responsibility (UR) method, γ, is such that for all problems

(C, t, t) and all i ∈ N , γi(C, t, t) = med(C,t,t)(Vi(t, C)) = Vi(E(C,t,t)(t), C).

It can be seen with Propositions 1 and 2 that the expected responsibility of a region (i.e.,
the cost allocated to such a region by the ER method) differs from the responsibility that
this region would have if it were known that the transfer rate equals its expected value (i.e.,
the median responsibility or, what is the same, the cost allocated to this region by the UR
method). The reason of this difference is that the responsibility function Vi is not linear in
t and, then, the expected responsibility should be calculated with a value of the transfer
rate, u(C, t, t), different from its expected value, E(C,t,t)(t), to correct this non-linearity.
The following proposition compares these two values, u(C, t, t) and E(C,t,t)(t).

Proposition 3 For all (C, t, t) with t 6= t
∗
(t, C) 6= 1, u(C, t, t) > E(C,t,t)(t).
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Proof: First, we do the proof in the case in which there is at least one region i for which
the responsibility function Vi is not constant in the entire range of t. In this case, we know
that either Vi is strictly increasing and convex in t or strictly decreasing and concave in
t. On the one hand, if Vi is strictly increasing and convex in t, then E(C,t,t)(Vi(t, C)) >
med(C,t,t)(Vi(t, C)) and, thus, u(C, t, t) > E(C,t,t)(t). If, on the other hand, Vi is strictly
decreasing and concave in t, then E(C,t,t)(Vi(t, C)) < med(C,t,t)(Vi(t, C)) and, thus, we also
have that u(C, t, t) > E(C,t,t)(t).

Second, we do the proof in the case in which Vi is constant in the entire range of t for all
i ∈ N . This case implies that c1 = . . . = cn−1 = 0. Consider another problem (C ′, t, t)
such that c′1 = . . . = c′n−2 = 0, c′n−1 = ǫ, with ǫ arbitrarily small, and c′n = cn. Observe
that Vn(t, C

′) is not constant in the entire range of t. Then, applying the reasoning of
the previous paragraph, we have that u(C ′, t, t) > E(C′,t,t)(t). Given the structure of

C and C ′, we also have that t
∗
(t, C) = t

∗
(t, C ′) = t (see expression (2)). Therefore,

u(C, t, t) = u(C ′, t, t) and E(C,t,t)(t) = E(C′,t,t)(t). Therefore, u(C, t, t) > E(C,t,t)(t). �

Proposition 3 shows that to compute the expected value of Vi(t, C) it is necessary to take
a value of the transfer rate higher than its expected value. Given that V1(t, C) is strictly
increasing in t (except when c1 = 0 in which it is constant), Vn(t, C) is strictly decreasing
in t (except when cn−1 = 0 in which it is constant) and, for all i ∈ {2, . . . , n− 1}, Vi(t, C)
is increasing (respectively, decreasing) in t whenever ci ≥ ci−1 (respectively, ci ≤ ci−1), we
obtain the following corollary:

Corollary 1 For all (C, t, t) with t 6= t
∗
(t, C) 6= 1,

• V1(E(C,t,t)(t), C) < E(C,t,t)(V1(t, C)), except when c1 = 0 in which they are equal.

• Vn(E(C,t,t)(t), C) > E(C,t,t)(Vn(t, C)), except when cn−1 = 0 in which they are equal.

• For all i ∈ {2, . . . , n−1}, Vi(E(C,t,t)(t), C) ≥ E(C,t,t)(Vi(t, C)) if and only if ci ≤ ci−1.

Corollary 1 states that, on the one hand, the most upstream (resp. downstream) region
pays less (resp. more) with the UR method than with the ER method. On the other
hand, an intermediate region pays more (resp. less) with the UR method than with the
ER method if the cost of cleaning the preceding region is higher (resp. lower) than the
cost of cleaning its own segment.

We now illustrate how the ER and UR methods work with the cost allocation problem
introduced in Example 1.

Example 1 (continuation) Remember that the cost allocation problem of Example 1 is
({100, 200, 300, 400}, 1

5
, 3
5
) and that, according to expression (2), t

∗
(t, C) = 4

7
. On the one

hand, the UR method computes the expected value of the transfer rate E(C,t,t)(t) = 27
70
,

and introduces this value as the transfer rate in expression (1) to obtain the allocation
γ(C, t, t) = (V1(

27
70
, C), . . . , V4(

27
70
, C)) = (162.8, 262.8, 362.8, 211.6). On the other hand, the
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ER method calculates, using Proposition 1, u(C, t, t) = 0.405, and it introduces this value
as the transfer rate in expression (1) to obtain the allocation δ(C, t, t) = (V1(0.405, C), . . . ,
V4(0.405, C)) = (168.07, 268.07, 368.07, 195.79). We can now compare the solutions pro-
vided by both methods. First, as Proposition 3 states, the value u(C, t, t) = 0.4 is higher
than E(C,t,t)(t) =

27
70
. As a consequence, and as Corollary 1 states, we have that the most up-

stream region pays more with the ER method than with the UR one (δ1(C, t, t) = 168.07 >
162.8 = γ1(C, t, t)), the most downstream region pays less with the ER method than with
the UR one (δ4(C, t, t) = 195.79 < 211.6 = γ4(C, t, t)), and the intermediate regions pay
in this case more with the ER method because the cost sequence is strictly increasing
(δ2(C, t, t) = 268.07 > 262.8 = γ2(C, t, t) and δ3(C, t, t) = 368.07 > 362.8 = γ3(C, t, t)).
Finally, as stated by Remark 1, we can see that the UR method has a lower expected sum
of absolute deviations than the ER one, and that the opposite occurs with the expected
sum of squared deviations. As an example of that fact, we compute these values for region
1:

∫ t
∗

(t,C)

t

|V1(t, C)− γ1(C, t, t)| dt =

∫ 4
7

1
5

|V1(t, C)− 162.8| dt = 9.59

∫ t
∗

(t,C)

t

|V1(t, C)− δ1(C, t, t)| dt =

∫ 4
7

1
5

|V1(t, C)− 168.07| dt = 9.69

∫ t
∗

(t,C)

t

(V1(t, C)− γ1(C, t, t))
2 dt =

∫ 4
7

1
5

(V1(t, C)− 162.8)2 dt = 355.15

∫ t
∗

(t,C)

t

(V1(t, C)− δ1(C, t, t))
2dt =

∫ 4
7

1
5

(V1(t, C)− 168.07)2 dt = 344.95

�

4 A property of monotonicity

Both the UR and the ER methods are a priori reasonable candidates for allocating costs
according to the responsibility that each region has in the discharge of the waste. We
now study if they satisfy a property of monotonicity. This property reflects the natural
idea that if a region discharges more waste, ceteris paribus, it should not pay less in the
allocation of the costs. If a solution does not satisfy this property, regions could have
incentives to discharge more waste.

In order to understand the property and its formal definition that we will state later,
consider a river with an actual transfer rate t̂, but about which the social planner only
knows that t̂ ∈ [t, t]. The property that we want to study compares the performance of
a method in two related problems of this river: one in which the regions have discharged
some amounts of waste such that the resulting cost vector is C, and other in which all
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regions have discharged the same amounts of waste that in C except for one particular
region i that has discharged y > 0 units of waste more than in the previous situation. We
denote C ′ the cost vector of the second problem. To understand the relation between C
and C ′, observe first that the waste present in each region situated upstream of i is the
same in both problems because the additional waste discharged by i in the second problem
is finally located in region i and its downstream regions. Thus, c′j = cj for all j < i.

Moreover, since the actual transfer rate between two adjacent regions of this river is t̂, we
have that (1 − t̂) · y units of this additional discharge of region i remain in region i and,
thus, c′i = ci + y · (1− t̂). The other t̂ · y units of the additional waste discharged by region
i have passed to region i+1, from which a proportion t̂ has also passed to the next regions
and a proportion (1 − t̂) has remained in region i + 1. Then, c′i+1 = ci+1 + y · t̂ · (1 − t̂).
Applying the same reasoning with all intermediate regions situated downstream of i, it is
obtained that c′j = cj + y · t̂j−i · (1 − t̂) for all j ∈ {i + 1, . . . , n − 1}. The last region in
the river is different because all the waste that arrives to that region remains there and,
therefore, c′n = cn + y · t̂n−i. Then, we introduce the notation C →t̂

i C
′ whenever C and

C ′ come from a river with the same actual transfer rate t̂ and each region discharging the
same amount of waste in C and C ′, except region i that has discharged some additional
amount y > 0 in C ′ than in C: i.e., if c′j = cj for all j < i, c′j = cj + y · t̂j−i · (1− t̂) for all

j ∈ {i, . . . , n − 1}, and c′n = cn + y · t̂n−i. The formal definition of the property uses this
notation.

Monotonicity (MON): For all problems (C, t, t), (C ′, t, t) such that C →t̂
i C ′ for some

i ∈ N and some t̂ ∈ [t, t
∗
(t, C)], xi(C

′, t, t) ≥ xi(C, t, t).

Observe that if we have C and C ′ such that C →t̂
i C

′ and the social planner knew that the
actual value of the transfer rate is t̂ (i.e., t = t̂ = t), then she would allocate the same cost
to all regions in (C, t, t) and in (C ′, t, t), except to region i, to which she would allocate the
additional costs of C ′ with respect to C. However, when the social planner has uncertainty
over the actual value of the transfer rate, this reasoning cannot be used, because even
though C →t̂

i C
′, the social planner does not know that t̂ is the actual transfer rate. In

that case, the social planner could consider that it is also possible that the additional
waste in C ′ with respect to C is not only due to region i, but also to other regions. For
instance, consider the extreme case in which t̂ > 0, but 0 is also in [t, t]. Then, the social
planner cannot distinguish if t̂ or 0 is the actual transfer rate and, therefore, she does not
know if all the additional waste in C ′ than in C is responsibility of i or if each region
j ∈ {i, i+1, . . . , n} is responsible for c′j − cj additional units of waste. Thus, in the case of
uncertainty over the value of the transfer rate, it is not reasonable to require to a method
that all the additional waste is allocated to i. Then, MON requires at least that region
i should not pay less because the contrary would give perverse incentives to region i to
discharge more waste just to reduce its assigned cost in those cases in which the actual
transfer rate coincides with t̂.

The MON property is weaker than other monotonicity axioms in the literature of cost
allocation. In such axioms, it is usually imposed that any agent cannot pay less if the costs
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increase in any way. It can be easily checked that this stronger property is violated by any
method that allocates costs in terms of the responsibility function and that incorporates in
its calculus the information on the transfer rate embedded in the cost vector. To see why,
consider two problems (C, t, t), (C ′, t, t) such that c′1 = c1, c

′
i > ci for all i ∈ {2, . . . , n}, and

t
∗
(t, C ′) < t

∗
(t, C). Then, since the responsibility function of region 1 equals the quotient

between the cost of cleaning the first segment and 1 minus a value for the transfer rate, we
would obtain a lower cost allocated to region 1 in problem (C ′, t, t) than in (C, t, t). Instead
of requiring that all regions should not pay less in any increase of the cost vector, MON
only imposes that a particular region should not pay less for some particular increases of
the cost vector: those that can be the result of a unilateral discharge of waste by this
region.

We now analyze if the methods proposed in the previous section satisfy the MON property.
Unfortunately, the following result shows that the ER solution violates it.

Theorem 1 The ER method δ does not satisfy MON.

Proof: Consider the problem (C, t, t) such that C = (11, 10, 20, 500), t = 0 and t = 1.
Assume also that the actual transfer rate is t = 1

2
. The upper limit of the transfer rate

for the social planner is t
∗
(t, C) = 10

11
and, then, u(C, t, t) = 0.621. Therefore, region 1

should pay 29.024 monetary units with the ER method. If, however, region 1 had decided
to discharge one additional unit of waste, we would have had the cost cleaning vector
C ′ = (11.5, 10.25, 20.125, 500.125), in which the upper limit of the transfer rate would have
been t

∗
(t, C ′) = 0.891 and, then, u(C, t, t) = 0.598. Thus, region 1 would have paid 28.606

monetary units, less than what it would have paid if it had not discharged this additional
waste. �

The reason underlying this result is that if a region i discharges more waste, it affects δi
in two ways. On the one hand, this discharge weakly increases ci, which tends to increase
δi. On the other hand, this discharge may modify the upper limit of the transfer rate from
t
∗
(t, C) to t

∗
(t, C ′), transforming also the value u(C, t, t) into u(C ′, t, t), which also affects

δi. There are cases in which the second effect tends to decrease δi and in some of them this
effect is greater than the first effect, leading to an overall decrease in δi when i discharges
more waste.

We now show that the UR method does satisfy MON. Observe for example the prob-
lem defined in the proof of Theorem 1. The original problem was (C, t, t) such that
C = (11, 10, 20, 500), t = 0 and t = 1, and the actual transfer rate was t = 1

2
. Then,

t
∗
(t, C) = 10

11
and, thus, E(C,t,t)(t) = 5

11
. Therefore, region 1 should pay V1(

5
11
, C) =

20.166 monetary units with the UR method. If, however, region 1 had decided to dis-
charge one additional unit of waste, we would have had the cost cleaning vector C ′ =
(11.5, 10.25, 20.125, 500.125), in which the upper limit of the transfer rate would have been
t
∗
(t, C ′) = 0.891 and then, E(C′,t,t)(t) = 0.445. Therefore, the UR method would allocate

to region 1 V1(0.445, C
′) = 20.72 monetary units, more than what it would have paid if
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it had not discharged this additional waste. The following theorem, whose long proof is
shown in Appendix A, states that the fulfilling of MON by the UR method is not limited
to this case.

Theorem 2 The UR method γ satisfies MON.

To sum up, we have two main issues that differentiate both methods. On the one hand,
fixing any cost vector, the UR method minimizes the expected sum of absolute deviations
between the actual value of the responsibility of each region and the assigned cost, and the
ER one minimizes the expected sum of squared deviations between the actual value of the
responsibility of each region and the assigned cost. On the other hand, the ER method
does not satisfy MON, which implies that regions could have incentives to discharge more
waste and increase the values of the cost vector, meanwhile this problem is not present
with the UR method.

A social planner who ideally prefers to minimize the expected sum of squared deviations
between the actual value of each region’s responsibility and the assigned cost has a trade-
off: The method that produces her preferred result in each cost vector, the ER method,
tends to increase the discharged waste by the regions and, then, the values of the cost
vector. Then, a natural question for this social planner is whether there exists a method
closer than the UR method to the ER one that satisfies MON. The following result shows
that this is not the case in the family of solutions that assign to each region a cost using a
weighted combination of t and t

∗
(t, C) as the transfer rate in the responsibility function.

Theorem 3 Consider the family of functions fα(t, t
∗
(t, C)) = (1 − α) · t + α · t

∗
(t, C),

with α ∈ [0, 1]. Then, the method that allocates to each region Vi(fα(t, t
∗
(t, C)), C) satisfies

MON if and only if α ≤ 1
2
.

Proof: The proof is done by steps.

Step 1: We show that the method that allocates to each region Vi(fα(t, t
∗
(t, C)), C) does

not satisfy MON if α > 1
2
.

We know that V1(fα(t, t
∗
(t, C)), C) = c1

1−α·t
∗

(t,C)−(1−α)·t
. Consider the class of problems

(C, t, t) such that there are more than two regions, t = 0, t = 1, t
∗
(t, C) = c2

c1
→ 1

and where the actual transfer rate is t → 0. We have that c1 = V1(t, C) · (1 − t) and
c2 = V1(t, C) · t · (1− t) + V2(t, C) · (1− t). To simplify notation, denote V1(t, C) by x and

V2(t, C) by y. Then, t
∗
(t, C) = xt+y

x
. Therefore, V1(fα(0, t

∗
(t, C)), C) = x(1−t)

1−α·xt+y

x

. If the

method satisfies MON, the derivative of V1(fα(0, t
∗
(t, C)), C) with respect to x should be

non-negative. This derivative is:

(1− t)(1− αxt+y

x
)− (1− t)α y

x

(1− αxt+y

x
)2

.
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The denominator of the derivative is always positive and, then, we have to guarantee that
the numerator is non-negative. After doing some calculus, we obtain that this fact is
equivalent to

α ≤
x

xt + 2y
.

Given that t
∗
(t, C) → 1 and t → 0, we obtain that y → x(1 − t). Then, in the limit

α ≤
1

2− t
.

Since t → 0, we obtain that α ≤ 1
2
. Then, we have that α ≤ 1

2
is a necessary condition

to satisfy MON. Or, equivalently, that any method Vi(fα(t, t
∗
(t, C)), C), with α > 1

2
, does

not satisfy MON.

Step 2: We show that if the method that allocates to each region Vi(fα(t, t
∗
(t, C)), C) satis-

fies MON, then any method that allocates to each region Vi(fα′ (t, t
∗
(t, C)), C), with α

′

< α,
also satisfies MON.

Suppose by contradiction that the method that allocates to each region Vi(fα(t, t
∗
(t, C)), C)

satisfies MON for some α ∈ (0, 1], but Vi(fα′ (t, t
∗
(t, C)), C), with α

′

< α, does not satisfy

MON. Then, there is a region i ∈ N and two problems (C, t, t), (C ′, t, t) such that C →t̂
i C

′

for some t̂ ∈ [t, t
∗
(t, C)] and Vi(fα′ (t, t

∗
(t, C ′)), C ′) < Vi(fα′ (t, t

∗
(t, C)), C).

By construction, we have that fα(t, t
∗
(t, C)) > fα′ (t, t

∗
(t, C)) and |fα′ (t, t

∗
(t, C ′))−fα′ (t, t

∗
(t, C))| <

|fα(t, t
∗
(t, C ′)) − fα(t, t

∗
(t, C))|. It is also easy to see that ∂2Vi(t,C)

∂t ∂ci
≥ 0 for any i ∈ N .

Then, by the union of these three facts, it can be deduced that Vi(fα(t, t
∗
(t, C ′)), C ′) <

Vi(fα(t, t
∗
(t, C)), C). Then, the method that allocates to each region Vi(fα(t, t

∗
(t, C)) does

not satisfy MON and this is a contradiction.

Step 3: We complete the proof.

Since E(C,t,t)(t) =
1
2
·t

∗
(t, C)+ 1

2
·t, the UR method coincides with the method that allocates

to each region Vi(f 1
2
(t, t

∗
(t, C)), C). Then, Theorem 2 states that Vi(f 1

2
(t, t

∗
(t, C)), C)

satisfies MON. By Step 2, we can then deduce that Vi(fα(t, t
∗
(t, C)), C), with α < 1

2
also

satisfies MON. Finally, Step 1 shows that Vi(fα(t, t
∗
(t, C)), C), with α > 1

2
, does not satisfy

MON. �

We can deduce from Theorem 3, jointly with Proposition 3 and the fact that E(C,t,t)(t) =

f 1
2
(t, t

∗
(t, C)), C), the following corollary.

Corollary 2 The UR method is the one closest to the ER method that satisfies MON in

the family of methods that allocates to each region Vi(fα(t, t
∗
(t, C)), C) for any α ∈ [0, 1].
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5 Concluding remarks

There are several legislations that regulate the problem of river pollution. For instance,
the European Union Framework Directive (Directive 2000/60/EC) establishes that “The
European Parliament and the Council shall adopt specific measures against pollution of
water by individual pollutants or groups of pollutants presenting a significant risk to or
via the aquatic environment” and, more specifically, it states that “for those bodies of
groundwater which cross the boundary between two or more Member States [...] the
following information shall, where relevant be collected [...] (e) the rates of discharge at such
points”. In order to compute the rates of discharge by each region, this regulation states
that monitoring points along the river should be selected such that each of them is “required
to estimate the pollutant load which is transferred across member State boundaries, and
which is transferred into the marine environment”.

We have modeled the problem of allocating the costs of cleaning a transboundary river
using this approach: if the transfer rate between any two neighboring regions was known,
each region’s responsibility for the waste present in the river could be directly determined
by using the responsibility function. However, it could be the case that the estimation
of the transfer rate in the monitoring points were not totally precise (i.e., it could vary
from one day to another depending on factors such as the volume of flow) and, thus, there
would be inaccuracy about the exact responsibility of each region for the waste discharged.
We have represented this uncertainty with a random variable over the possibles values of
the transfer rate and, thus, the responsibility of each region is also a random variable.
Given that the expected value and the median are the most important centrality measures
of random variables, we have analyzed two cost allocation methods that assign to each
region its expected responsibility and its median responsibility, respectively. Meanwhile
the first of these proposals defines a new method in the literature (that we have called the
ER method), we have shown that the second one coincides with the UR method analyzed
in Alcalde-Unzu et al. (2015). We have found that the allocations proposed by these
two methods present systematic differences. For example, we have proved that the most
upstream region pays always more with the ER method than with the UR one, while the
opposite occurs with the most downstream region.

It is well-known that the expected value and the median, and hence the ER and UR meth-
ods, try to minimize the errors in the assignment of regions’ responsibilities with respect
to their actual values. In particular, fixing any cost vector, the UR method minimizes
the expected sum of absolute deviations between the actual value of each region’s respon-
sibility and the assigned cost, meanwhile the ER method minimizes the expected sum of
squared deviations between the actual value of each region’s responsibility and the assigned
cost. At this point, if the social planner only knew these differences between these two
methods, the choice would depend on the objective function that she wanted to minimize
with respect to the errors the method would make assigning responsibilities: the expected
sum of absolute deviations or the expected sum of squared deviations. However, we have
found another interesting difference between these two methods in terms of a property of
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monotonicity. The UR method satisfies the property of MON, which requires that if a
region discharges more waste, it should not pay less. The ER method does not satisfy it.
Then, if the social planner favors the minimization of the expected sum of squared devi-
ations between the actual value of each region’s responsibility and the assigned cost, she
confronts a trade-off: The method that optimizes her objective function could occasionally
give incentives to regions to discharge more waste in order to reduce their allocated costs.
In the search for other methods satisfying MON that assign costs closer to the ER method
to solve this trade-off, we have found that the closest method in a general family to the
ER method that satisfies this property is precisely the UR method.

It is interesting to remark two issues about our results. First, all our analysis has been
performed focusing on cost allocation methods, and not on cost allocation rules. Since
there are many cost allocation rules associated to each of these cost allocation methods,
it is interesting to define which one is the appropriate for each method. Alcalde-Unzu et
al. (2015) provided an axiomatic characterization of a cost allocation rule consistent with
the UR method. It is possible to adapt this characterization modifying only one axiom to
characterize a rule consistent with the ER method. We perform this analysis in Appendix
B.

Second, we have assumed along the paper that the uncertainty on the transfer rate takes
the form of a uniform distribution. To finish the paper, we discuss how the results depend
on this assumption. Our first results, Propositions 1 and 2, establish that the Expected
Responsibility and the Median Responsibility methods coincide with assigning to each re-
gion i the value of its responsibility function Vi for a particular transfer rate, u(C, t, t)
and E(C,t,t)(t), C), respectively. If other distributions different from the uniform one were
adopted, the existence of such transfer rates would be guaranteed, but the exact value
would obviously depend on the distribution. To see why, observe first that all the rea-
soning in the proof of Proposition 1 to show that the value u(C, t, t) is unique and in the
interval [t, t

∗
(t, C)] does not rely neither on the exact value taken by u(C, t, t) under the

assumption of the uniform distribution, nor on the own distribution itself. With respect
to Proposition 2, observe that one of the arguments of its proof is that, independently of
the distribution function assumed on the transfer rate, we always have that the median
responsibility coincides with the responsibility for the median transfer rate and, therefore,
it is always possible to compute the median responsibility of each region i by calculating
Vi(med(C,t,t)(t), C).11 Proposition 3 shows, under the assumption of a uniform distribu-
tion, that the value of the transfer rate needed to implement the Expected Responsibility
is higher than the one needed to implement the Median Responsibility. Since the respon-
sibility functions are increasing and convex or decreasing and concave, one should analyze

11In the case of the uniform distribution, we also have that med(C,t,t)(t) = E(C,t,t)(t) and, therefore,

the median responsibility can be calculated with Vi(E(C,t,t)(t), C). However, this equality may not occur

with other distributions because the other arguments in the proof of Proposition 2 do not hold for all

distributions. This could happen either because the distribution before updating the information from the

cost vector is not symmetric about the mean, or because after updating this information and truncating

the random variable at t
∗
(t, C) its distribution changes to one not symmetric about the mean.
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the skewness of the distribution function to determine this relation in the case of other
distributions: if it is positively skewed, we would have the same inequality as with the
uniform distribution, and the inequality only reverts if the distribution function is suffi-
ciently negatively skewed. Finally, the analysis of the fulfilment of the MON property in
the two methods done in Theorems 1 and 2 does depend on the assumption of a uniform
distribution and any other distribution would need an independent analysis. We consider
this as an interesting topic for further research.

Appendix A: Proof of Theorem 2

We start introducing new notation: C →t̂
i,y C ′ if C →t̂

i C
′ and

∑

i∈N

c′i =
∑

i∈N

ci + y. That

is, C →t̂
i,y C ′ when C ′ has been constructed from C by an additional discharge of y

units of waste by region i. We also define for each i ∈ {2, . . . , n} a mapping qi : R
n
+ →

(R+ ∪ {0
0
}) such that qi(C) = ci

ci−1
if i < n and qi(C) = ci

ci+ci−1
if i = n. Then, t

∗
(t, C) =

min{{qi(C)}i∈{2,...,n}, t}. Finally, we define a mapping d : (0, 1] × R
n
+ → 2N\{1} such that

for all t ∈ (0, 1] and all C̄ ∈ R
n
+, d(t, C̄) = {i ∈ (N \ {1}) | qi(N) = t

∗
(t, C̄)}. Observe that

whenever d(t, C̄) = ∅, this means that t
∗
(t, C̄) = t.

Then, consider a problem (C, t, t), an agent i ∈ N , a transfer rate t̂ ∈ [t, t
∗
(t, C)], and a

vector C ′ ∈ R
n
+ such that C →t̂

i C
′. Suppose by contradiction that γi(C

′, t, t) < γi(C, t, t).

Let y > 0 be the value such that C →t̂
i,y C

′.

If t̂ = 1, then cj = c′j = 0 for all j < n and c′n = cn+y. Therefore, γj(C
′, t, t) = γj(C, t, t) =

0 for all j < n and γn(C
′, t, t) = cn+ y > cn = γn(C, t, t). Thus, the previous contradiction

cannot occur and we can assume from now on that t̂ < 1.

If t
∗
(t, C ′) = t

∗
(t, C), then E(C′,t,t)(t) = E(C,t,t)(t). Since c′i > ci and c′i−1 = ci−1, we obtain

that γi(C
′, t, t) > γi(C, t, t). Then, the previous contradiction cannot occur and, therefore,

assume from now on that t
∗
(t, C ′) 6= t

∗
(t, C). We proceed now with a set of lemmas. The

objective of these lemmas is to show that there exist Ĉ, Ĉ ′ ∈ R
n
+ such that Ĉ →t̂

i Ĉ ′,

γi(Ĉ
′, t, t) < γi(Ĉ, t, t) and d(t, Ĉ) ∩ d(t, Ĉ ′) ∈ {{i}, {i+ 1}}. The first lemma is a simple

algebra result, whose proof is straightforward and we omit it.

Lemma 1 Let a, b, c, d, e, f ∈ R++ such that a
b
≤ c

d
. Then,

• a
b
≤ a+c

b+d
≤ c

d

• e ≥ f ⇔ ea+fc

eb+fd
≤ a+c

b+d
.

The second lemma describes the direction of the change of the functions qj , with j ∈
{2, . . . , n}, from C to C ′.

Lemma 2 qi(C
′) ≥ qi(C), qj(C

′) = qj(C) for all j < i and qj(C
′) ≤ qj(C) for all j > i.12

12This statement only applies if the function q does not equal the indeterminate form 0
0 .
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Proof: By construction, c′j = cj for all j < i and, then, qj(C
′) = qj(C) for all j < i.

If t̂ = 0, then c′j = cj for all j 6= i and c′i = ci + y > ci. Then, qj(C
′) = qj(C) for all

j ∈ {i+2, . . . , n}, qi(C
′) ≥ qi(C) and qi+1(C

′) ≤ qi+1(C). Then, assume from now on that
t̂ ∈ (0, 1). We divide the rest of the proof into two cases.

Case 1: i = n

We have that c′n = cn+y > cn. Observe then that qn(C) = cn
cn+cn−1

and qn(C
′) = cn+y

cn+cn−1+y
.

If we denote cn by a, (cn + cn−1) by b, y by c = d, qn(C) = a
b
and qn(C

′) = a+c
b+d

. Since

t̂ > 0, then cn > 0 and, thus, a, b, c, d ∈ R++. Since qn(C) ∈ (0, 1], then a
b
≤ 1 and, thus,

a
b
≤ c

d
. Then, by Lemma 1, qn(C

′) ≥ qn(C).

Case 2: i < n.

By construction, c′i = ci+y·(1−t̂) > ci, c
′
j = cj+y·t̂j−i·(1−t̂) > cj for all j ∈ {i+1, . . . , n−1}

and c′n = cn + y · t̂n−i > cn. If i > 1, we obtain that qi(C
′) ≥ qi(C) since c′i > ci and

c′i−1 = ci−1.

Consider now any j ∈ {i+1, . . . , n−1}. We have that qj(C
′) =

cj+y·t̂j−i·(1−t̂)

cj−1+y·t̂j−i−1·(1−t̂)
. Note that

if cj = cj−1 = 0, qj(C) = 0
0
and the lemma does not apply. Similarly, cj = 0 and cj−1 > 0

is not possible since t̂ > 0. If, however, cj > 0 and cj−1 = 0, qj(C) = ∞ and qj(C
′) < ∞

leading to qj(C
′) ≤ qj(C). Finally, if cj > 0 and cj−1 > 0, denote [y · t̂j−i · (1 − t̂)] by a,

[y · t̂j−i−1 ·(1− t̂)] by b, cj by c and cj−1 by d. Note that a, b, c, d ∈ R++, t̂ =
a
b
, qj(C) = c

d
and

qj(C
′) = a+c

b+d
. Given that qj(C) ≥ t

∗
(t, C) by definition, and that t

∗
(t, C) ≥ t̂, qj(C) ≥ t̂.

Then, a
b
≤ c

d
and we can apply Lemma 1 to obtain that qj(C

′) ≤ qj(C).

We also have that qn(C
′) = cn+y·t̂n−i

cn+cn−1+y·t̂n−i−1 . If we denote [y · t̂n−i] by a, [y · t̂n−i−1] by b, cn

by c and (cn + cn−1) by d, t̂ = a
b
, qn(C) = c

d
and qn(C

′) = a+c
b+d

. Since t̂ > 0, then cn > 0

and, thus, a, b, c, d ∈ R++. As before, qn(C) ≥ t
∗
(t, C) and, then, qn(C) ≥ t̂. Then, a

b
≤ c

d

and we can apply Lemma 1 to obtain that qn(C
′) ≤ qn(C). �

The next two lemmas study the case in which t
∗
(t, C ′) < t

∗
(t, C). The last one, which

needs the first one as an auxiliary result, shows that if t
∗
(t, C ′) < t

∗
(t, C), then there exist

Ĉ, Ĉ ′ ∈ R
n
+ such that Ĉ →t̂

i Ĉ
′, γi(Ĉ

′, t, t) < γi(Ĉ, t, t) and d(t, Ĉ) ∩ d(t, Ĉ ′) = {i+ 1}.

Lemma 3 Suppose that t
∗
(t, C ′) < t

∗
(t, C). Then, there exist Ĉ, Ĉ ′ ∈ R

n
+ such that ĉi = ci,

ĉi−1 = ci−1, Ĉ →t̂
i,y Ĉ ′, t

∗
(t, Ĉ) = t

∗
(t, C), t

∗
(t, Ĉ ′) ≤ t

∗
(t, C ′), and d(t, Ĉ) ∩ d(t, Ĉ ′) =

{i+ 1}.

Proof: Since t
∗
(t, C ′) < t

∗
(t, C), then d(t, C ′) 6= ∅ and, given Lemma 2, d(t, C ′) ⊆

{i + 1, . . . , n}. Consider k = min d(t, C ′), that is, k is the closest region to i of d(t, C ′).
Then, construct C̄ ∈ R

n
+ such that c̄j = cj for all j < k, c̄j = M · c̄j−1 for all j > k,

with M sufficiently big, c̄k = t
∗
(t, C) · c̄k−1 if k < n and c̄k = t

∗

(t,C)

1−t
∗

(t,C)
· c̄k−1 if k = n.

Observe that qk(C̄) = t
∗
(t, C) and that qj(C̄) ≥ t

∗
(t, C) for all j 6= k. Then, k ∈ d(t, C̄)

and t
∗
(t, C̄) = t

∗
(t, C).
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Consider now C̄ ′ ∈ R
n
+ such that C̄ →t̂

i,y C̄
′. We know that c̄j = cj for all j < k and, then,

c̄′j = c′j for all j < k. Since qk(C̄) = t
∗
(t, C), qk(C̄) ≤ qk(C). Then, since c̄k−1 = ck−1,

c̄k ≤ ck. Thus, c̄′k ≤ c′k. Then, since c̄′k−1 = c′k−1, qk(C̄
′) ≤ qk(C

′). Since k ∈ d(t, C ′), we
obtain that t

∗
(t, C̄ ′) ≤ t

∗
(t, C ′).

The selection of M sufficiently big guarantees that qk(C̄
′) < qj(C̄

′) for all j > k. Moreover,
given that qk(C̄

′) ≤ qk(C
′), that qk(C

′) < qj(C
′) for all j < k (because k = min d(t, C ′)) and

that qj(C
′) = qj(C̄

′) for all j < k, qk(C̄
′) < qj(C̄

′) for all j < k. Therefore, d(t, C̄ ′) = {k}.

If k = (i+ 1), then denote C̄ and C̄ ′ by Ĉ and Ĉ ′, respectively, and the proof is done.

Suppose then that k > (i + 1) and observe that this is only possible if t̂ > 0 (otherwise
c̄′k = c̄k and c̄′k−1 = c̄k−1, contradicting that qk(C̄

′) < qk(C̄)). Consider Ĉ ∈ R
n
+ such that

ĉj = c̄j for all j ≤ i, ĉj = t
∗
(t, C̄) · ĉj−1 for all j ∈ {i+1, . . . , n−1} and ĉn = t

∗

(t,C̄)

1−t
∗

(t,C̄)
· ĉn−1.

Observe that qj(Ĉ) = t
∗
(t, C̄) for all j > i by construction. We also know that qj(Ĉ) =

qj(C̄) ≥ t
∗
(t, C̄) for all j ≤ i. Thus, t

∗
(t, Ĉ) = t

∗
(t, C̄) = t

∗
(t, C) and (i+ 1) ∈ d(t, Ĉ).

Consider now Ĉ ′ ∈ R
n
+ such that Ĉ →t̂

i,y Ĉ ′. We now prove that t
∗
(t, Ĉ ′) ≤ t

∗
(t, C̄ ′)

by showing that qi+1(Ĉ
′) ≤ qk(C̄

′). If k < n (if k = n the proof is similar and thus

omitted), qi+1(Ĉ
′) = ĉi+1+y·t̂·(1−t̂)

ĉi+y·(1−t̂)
and qk(C̄

′) = c̄k+y·t̂k−i·(1−t̂)

c̄k−1+y·t̂k−i−1·(1−t̂)
. Observe that ĉi+1

ĉi
=

c̄k
c̄k−1

= t
∗
(t, C) ≥ t̂ = y·t̂·(1−t̂)

y·(1−t̂)
= y·t̂k−i·(1−t̂)

y·t̂k−i−1·(1−t̂)
. If we denote [y · t̂ · (1− t̂)] by a, [y · (1− t̂)] by

b, ĉi+1 by c and ĉi by d, a, b, c, d ∈ R++,
a
b
≤ c

d
, qi+1(Ĉ

′) = a+c
b+d

and qk(C̄
′) = ea+fc

eb+fd
, with

e = t̂k−i−1 and f = c̄k
ĉi+1

= c̄k−1

ĉi
. Note that c̄j ≥ t

∗
(t, C̄) · c̄j−1 for all j ∈ {i+ 2, . . . , k} and,

then, c̄k ≥ [t
∗
(t, C̄)]k−i−1 · c̄i+1. Since t

∗
(t, C̄) ≥ t̂, c̄k ≥ t̂k−i−1 · c̄i+1. Since, by construction,

ĉi+1 ≤ c̄i+1, we conclude that c̄k ≥ t̂k−i−1 · ĉi+1. Therefore, f ≥ e and applying Lemma 1
qi+1(Ĉ

′) ≤ qk(C̄
′), as desired. Then, t

∗
(t, Ĉ ′) ≤ t

∗
(t, C̄ ′) and, therefore, t

∗
(t, Ĉ ′) ≤ t

∗
(t, C ′).

Finally, we are going to prove that (i+1) = d(t, Ĉ ′) by showing that qj(Ĉ
′) > qi+1(Ĉ

′) for

all j 6= (i+ 1). If j ≤ i, by Lemma 2 qj(Ĉ
′) ≥ qj(Ĉ). Then, given that t

∗
(t, Ĉ ′) < t

∗
(t, Ĉ),

qj(Ĉ
′) > qi+1(Ĉ

′). If j ∈ {i + 2, . . . , n − 1} (if j = n, the proof is similar and thus

omitted), note that qj(Ĉ
′) =

ĉj+y·t̂j−i·(1−t̂)

ĉj−1+y·t̂j−i−1·(1−t̂)
= e′a+f ′c

e′b+f ′d
, with e′ = t̂j−i−1 and f ′ =

ĉj
ĉi+1

. By

construction, f ′ = [t
∗
(t, C̄)]j−i−1. Since t

∗
(t, C̄) > t

∗
(t, C̄ ′) and t

∗
(t, C̄ ′) ≥ t̂, t

∗
(t, C̄) > t̂.

Then, f ′ > e′ and we can apply Lemma 1 to obtain that qj(Ĉ
′) > qi+1(Ĉ

′) for all j ∈
{i+ 2, . . . , n− 1}. �

Lemma 4 If t
∗
(t, C ′) < t

∗
(t, C), then there exist Ĉ, Ĉ ′ ∈ R

n
+ such that Ĉ →t̂

i,y Ĉ
′, d(t, Ĉ)∩

d(t, Ĉ ′) = {i+ 1}, and γi(Ĉ
′, t, t) < γi(Ĉ, t, t).

Proof: Since t
∗
(t, C ′) < t

∗
(t, C), we know by Lemma 3 that there exist Ĉ, Ĉ ′ ∈ R

n
+

such that ĉi = ci, ĉi−1 = ci−1, Ĉ →t̂
i,y Ĉ ′, t

∗
(t, Ĉ) = t

∗
(t, C), t

∗
(t, Ĉ ′) ≤ t

∗
(t, C ′), and

d(t, Ĉ) ∩ d(t, Ĉ ′) = {i + 1}. Given that t
∗
(t, Ĉ) = t

∗
(t, C), E(C,t,t)](t) = E(Ĉ,t,t)(t). Then,

since we also have that ĉi = ci and ĉi−1 = ci−1, we obtain that γi(Ĉ, t, t) = γi(C, t, t).
Moreover, given that Ĉ →t̂

i,y Ĉ ′ and C →t̂
i,y C ′, we obtain that ĉ′i = c′i and ĉ′i−1 = c′i−1.
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On the other hand, since Vi(t, C) is a monotone function in t and t
∗
(t, C ′) < t

∗
(t, C), we

can deduce from γi(C
′, t, t) < γi(C, t, t) that Vi(t, C) is strictly increasing in t. Then, given

that t
∗
(t, Ĉ ′) ≤ t

∗
(t, C ′), γi(Ĉ

′, t, t) ≤ γi(C
′, t, t). Therefore, γi(Ĉ

′, t, t) < γi(Ĉ, t, t). �

The next lemma shows that if t
∗
(t, C ′) > t

∗
(t, C), there exist Ĉ, Ĉ ′ ∈ R

n
+ such that Ĉ →t̂

i Ĉ
′,

γi(Ĉ
′, t, t) < γi(Ĉ, t, t) and d(t, Ĉ) ∩ d(t, Ĉ ′) = {i}.

Lemma 5 If t
∗
(t, C ′) > t

∗
(t, C), then there exist C ′′ ∈ R

n
+ such that C →t̂

i C
′′, d(t, C) ∩

d(t, C ′′) = {i}, and γi(C
′′, t, t) < γi(C, t, t).

Proof: By Lemma 2 qi(C
′) ≥ qi(C) and qj(C

′) ≤ qj(C) for all j 6= i. Then, since

t
∗
(t, C ′) > t

∗
(t, C), {i} = d(t, C). Consider now C ′′ ∈ R

n
+ such that C →t̂

i,z C ′′, with

z ∈ R++ such that qi(C
′′) = t

∗
(t, C ′). We show now that z ≤ y. To do it, observe that

since qi(C
′) ≥ t

∗
(t, C ′), qi(C

′′) ≤ qi(C
′). If i < n (otherwise, the proof is very similar and

thus omitted), c′′i−1 = c′i−1, c
′′
i = ci + z · (1 − t̂), and c′i = ci + y · (1 − t̂). Therefore, z ≤ y

and then c′′i ≤ c′i.

We now show that t
∗
(t, C ′′) = t

∗
(t, C ′) and that, then, i ∈ d(t, C ′′). By construction,

qi(C
′′) = t

∗
(t, C ′) and, then, we only need to prove that qj(C

′′) ≥ qj(C
′) for all j 6= i

because qj(C
′) ≥ t

∗
(t, C ′) for all j 6= i. Observe first that qj(C

′′) = qj(C
′) for all j < i by

construction. Consider now any j > i (suppose that j < n, otherwise the proof is similar
and thus omitted). If t̂ = 0, then qj(C

′′) = qj(C
′) for all j > i + 1 and qi+1(C

′′) = ci+1

ci+z

and qi+1(C
′) = ci+1

ci+y
. Since y ≥ z, qi+1(C

′′) ≥ qi+1(C
′). If t̂ ∈ (0, 1), observe first that since

{i} = d(t, C), ci−1 > 0 and, then, cj > 0 for all j > i. Then, qj(C
′′) =

cj+z·t̂j−i·(1−t̂)

cj−1+z·t̂j−i−1·(1−t̂)
and

qj(C
′) =

cj+y·t̂j−i·(1−t̂)

cj−1+y·t̂j−i−1·(1−t̂)
. If we denote [z · t̂j−i · (1− t̂)] by a, [z · t̂j−i−1 · (1− t̂)] by b, cj by

c and cj−1 by d, a, b, c, d ∈ R+,
a
b
= t̂ ≤ c

d
= qj(C), qj(C

′′) = a+c
b+d

and qj(C
′) = ea+fc

eb+fd
, where

f = 1 and e = y

z
. Since z ≤ y, e ≥ f and, by Lemma 1, qj(C

′′) ≥ qj(C
′) for all j > i.

Finally, given that c′′i ≤ c′i, c
′′
i−1 = c′i−1 and t

∗
(t, C ′′) = t

∗
(t, C ′), γi(C

′′, t, t) ≤ γi(C
′, t, t).

Since γi(C
′, t, t) < γi(C, t, t) by assumption, we obtain that γi(C

′′, t, t) < γi(C, t, t). �

Then, we have deduced from Lemmas 4 and 5 that we can assume that d(t, C)∩ d(t, C ′) ∈
{{i}, {i+1}}. To do the proof of the theorem, consider a family of vectors {C(z)}z∈R+ such

that C →t̂
i,z C

(z). We are going to show that γi(C
(z), t, t) is weakly increasing on z, which

would imply that γi(C, t, t) ≤ γi(C
′, t, t), a contradiction. The proof is developed in four

cases.

Case 1: i = n.

Given that d(t, C(z)) = {n} and, therefore, t
∗
(t, C(z)) = c

(z)
n

c
(z)
n +c

(z)
n−1

. Then, E(C(z),t,t)(t) =

(t+1)(cn+z)+t·cn−1

2·(cn+z+cn−1)
. Therefore,

γn(C
(z), t, t) = Vn(E(C(z),t,t)(t), C

(z)) = cn + z − cn−1 ·
(t+1)(cn+z)+t·cn−1

(1−t)(cn+z)+(2−t)cn−1
.
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By doing some basic calculus,

∂Vn(E
(C(z),t,t)

(t),C(z))

∂z
= 1−

2c2n−1

((1−t)(cn+z)+(2−t)cn−1)2
.

Given that t
∗
(t, C) = cn

cn+cn−1
, t ≤ cn

cn+cn−1
and, therefore, cn ≥ t

1−t
· cn−1. Thus,

∂Vn(E(C(z),t,t)
(t),C(z))

∂z
≥ 1−

2c2n−1

(t·cn−1+(1−t)·z+(2−t)cn−1)2
= 1−

2c2n−1

((1−t)·z+2cn−1)2
.

It is easy to see that the numerator of the last fraction is strictly lower than the denominator
and, then, the derivative is strictly positive. Then, γn(C

(z), t, t) is strictly increasing on z.

Case 2: i = 1.

We have that d(t, C(z)) = {2} and, therefore, t
∗
(t, C(z)) =

c
(z)
2

c
(z)
1

. Then, E(C(z),t,t)(t) =

c2+z·t̂·(1−t̂)+t·c1+t·z·(1−t̂)

2c1+2z·(1−t̂)
. Therefore,

γ1(C
(z), t, t) = V1(E(C(z),t,t)(t), C

(z)) = 2(c1+(1−t̂)·z)2

(2−t)·c1−c2+(2−t−t̂)·(1−t̂)·z
.

By doing some calculus13

∂V1(E(C(z),t,t)
(t),C(z))

∂z
= (2−2t̂)·(c1+z(1−t̂))·(c1·(t̂+2−t)−2c2+(2−t−t̂)·(1−t̂)·z)

((2−t)·c1−c2+(2−t−t̂)·(1−t̂)·z)2
.

The denominator is clearly positive. With respect to the numerator, the first two terms of
the product are also positive given that t̂ ∈ [0, 1). To determine the sign of the last term of
the product, observe that t

∗
(t, C) = c2

c1
, which implies that c2 < c1. Observe additionally

that t ≤ t̂ and that both t and t̂ are not greater than 1. Therefore, this term is also
positive. Thus, we have arrived at the desired result.

Case 3: i ∈ {2, . . . , n− 2}.

We have that d(t, C(z)) ∈ {{i}, {i+ 1}}. Suppose first that d(t, C(z)) = {i+ 1} and, then,

t
∗
(t, C(z)) =

c
(z)
i+1

c
(z)
i

. Then, E(C(z),t,t)(t) =
t·ci+ci+1+(t+t̂)·z·(1−t̂)

2ci+2z·(1−t̂)
. Therefore, Vi(E(C(z),t,t)(t), C

(z)) =

ci+z·(1−t̂)
1−E

(C(z),t,t)
(t)

− ci−1 ·
E

(C(z),t,t)
(t)

1−E
(C(z),t,t)

(t)
. As in the previous cases, we are going to show that the

derivative of Vi(E(C(z),t,t)(t), C
′) with respect to z is strictly positive. Observe that the

new E(C(z),t,t)(t) coincides with the one of Case 2 and that, therefore, the minuend of the

expression Vi(E(C(z),t,t)(t), C
(z)) has the same structure as V1(E(C(z),t,t)(t), C

(z)) in Case 2,
whose derivative is strictly positive as we showed there. On the other hand, given that

t̂ ≤ ci+1

ci
< 1, it is easy see that

∂E
(C(z),t,t)

(t)

∂z
< 0 and that the subtrahend depends positively

13The details of the calculus can be provided upon request.
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on E(C(z),t,t)(t). Therefore, if the minuend depends positively on z and the subtrahend

depends negatively on z,
∂Vi(E(C(z),t,t)

(t),C(z))

∂z
> 0, as we wanted to prove.

Consider now the case in which d(t, C(z)) = {i} and, then, t
∗
(t, C(z)) =

c
(z)
i

c
(z)
i−1

. Then,

E(C(z),t,t)(t) =
tci−1+ci+z·(1−t̂)

2ci−1
and, therefore,

γi(C
(z), t, t) = Vi(E(C(z),t,t)(t), C

(z)) = ci−1·(ci+z·(1−t̂)−t·ci−1)

(2−t)·ci−1−ci−z·(1−t̂)
.

By doing some calculus14,

∂Vi(E(C(z),t,t)
(t),C(z))

∂z
=

(2−2t)·c2i−1·(1−t̂)

((2−t)·ci−1−ci−z·(1−t̂))2
.

The denominator is positive and, given that t ≤ t̂ < 1, the numerator too. Thus, the
derivative is strictly positive, as desired.

Case 4: i = n− 1.

We have that d(t, C(z)) ∈ {{n − 1}, {n}}. If d(t, C(z)) = {n − 1}, the analysis is the
same as the one followed at the second part of Case 3. Then, suppose from now on that

d(t, C(z)) = {n}. Then, E(C(z),t,t)(t) = t·cn−1+(t+1)·cn+(t+t̂)·z
2cn−1+2cn+2z

. Observe that E(C(z),t,t)(t) is

strictly decreasing with z. We also know that Vn−1(E(C(z),t,t)(t), C
(z)) = cn−1+z·(1−t̂)

1−E
(C(z),t,t)

(t)
−

cn−2 ·
E

(C(z),t,t)
(t)

1−E
(C(z),t,t)

(t)
. As in Case 3, the subtrahend of Vi(E(C(z),t,t)(t), C

(z)) depends positively

on E(C(z),t,t)(t), so if we prove that the minuend depends positively on z, we will have the
desired result. Then, by doing some calculus, the derivative of the minuend with respect
to z is

2·(c2n·(1−t)·(1−t̂)+2cn·(1−t)·(1−t̂)·(cn−1+z)+c2n−1·(t·(t̂−1)−t̂+2)+2cn−1·(2−t)·(1−t̂)·z+(1−t̂)·z2·(2−t−t̂))

((t−2)·cn−1+(t−1)·cn+(t+t̂−2)·z)2
.

It is easy to check that both the numerator and the denominator are strictly positive.
Therefore, we have arrived at the desired result.

Appendix B: A rule compatible with the ER method

The literature already includes cost allocation rules associated with the different methods
(see Alcalde-Unzu et al. (2015)). We now present an axiomatic characterization of a cost
allocation rule consistent with the ER method. In particular, adapting a characterization
of the UR rule, we characterize a new rule compatible with the ER method by modifying
one axiom. This axiom is the one that leads in the characterization of the UR rule to
consider E(C,t,t)(t) as the value of the transfer rate in the responsibility function.

14The details of the calculus can be provided upon request.
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The three axioms that coincide with the characterization of the UR rule are Limits of
Responsibility, No Downstream Responsibility and Consistent Responsibility. We are going
to present them briefly.15 To introduce the first one, it is important to note that Proposition
4 of Alcalde-Unzu et al. (2015) establishes that the knowledge that t is situated within
the interval [t, t

∗
(t, C)] allows to deduce some limits of the responsibility that each region

i has on the waste present in its own segment. These limits, denoted by lii and l
i

i, are the
following:

lii(C, t, t) =



















ci if i = 1
ci − ci−1 · t

∗
(t, C) if i ∈ {2, . . . , n− 1}

ci −
ci−1·t

∗

(t,C)

1−t
∗

(t,C)
if i = n and t

∗
(t, C) < 1

0 if i = n and t
∗
(t, C) = 1.

l
i

i(C, t, t) =







ci if i = 1
ci − ci−1 · t if i ∈ {2, . . . , n− 1}
ci −

ci−1·t
1−t

if i = n

Then, the first of these axioms requires that the cost paid by each region for cleaning its
own segment should always be within the interval established by these limits.

Limits of Responsibility (LR): For all problems (C, t, t), and for all i ∈ N , xi
i(C, t, t) ∈

[lii(C, t, t), l
i

i(C, t, t)].

The second of these axioms requires that no region has responsibility for the waste present
in another region situated upstream from it.

No Downstream Responsibility (NDR): For all problems (C, t, t) and all i, j ∈ N such
that i < j, xi

j(C, t, t) = 0.

The third of these axioms imposes that the rule should establish the same degree of re-
sponsibility of a region i relative to the responsibility of a region j for the waste present
in the most downstream region of this pair as the relative responsibilities established for
these regions in the waste present in a region k situated downstream from them.

Consistent Responsibility (CR): For all problems (C, t, t) and all i, j, k ∈ N such that
i < j < k,

xj
j(C, t, t) · x

k
i (C, t, t) = xk

j (C, t, t) · x
j
i (C, t, t).

Finally, the last axiom, Corrected Monotonicity with respect to Information on the Transfer
rate (CMIT), adapts the MIT property that is included in the characterization of the UR
rule. Both axioms study situations in which, ceteris paribus, the information improves in
such a way that some previously possible values for the transfer rate can be ruled out with

15Extended explanations are included in Alcalde-Unzu et al. (2015).
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the new information. That is, it compares the cost allocations in two problems, (C, t, t)
and (C, u, u), such that [u, u∗(u, C)] ⊂ [t, t

∗
(t, C)]. To see their differences, we first present

both of them formally:16

Monotonicity with respect to Information on the Transfer rate (MIT): For all
problems (C, t, t) and (C, u, u) such that [u, u∗(u, C)] ⊂ [t, t

∗
(t, C)] and for all j ∈ N ,

u− t > t
∗
(t, C)− u∗(u, C) ⇒ xj

j(C, u, u) ≤ xj
j(C, t, t)

u− t < t
∗
(t, C)− u∗(u, C) ⇒ xj

j(C, u, u) ≥ xj
j(C, t, t).

Corrected Monotonicity with respect to Information on the Transfer rate
(CMIT): For all problems (C, t, t), (C, u, u) such that [u, u∗(u, C)] ⊂ [t, t

∗
(t, C)] and for

all j ∈ N ,

u
∫

t

[xj
j(C, v, v)−xj

j(C, u, u)] dv >

t
∗

(t,C)
∫

u∗(u,C)

[xj
j(C, u, u)−xj

j(C, v, v)] dv ⇒ xj
j(C, u, u) ≤ xj

j(C, t, t)

u
∫

t

[xj
j(C, v, v)−xj

j(C, u, u)] dv <

t
∗

(t,C)
∫

u∗(u,C)

[xj
j(C, u, u)−xj

j(C, v, v)] dv ⇒ xj
j(C, u, u) ≥ xj

j(C, t, t).

MIT and CMIT impose conditions on the comparison between how much each region j
pays for cleaning its own segment in each of the two problems (that is, on the comparison
between xj

j(C, t, t) and xj
j(C, u, u)).

On the one hand, MIT states that the improvement in information will increase or decrease
xj
j(·) depending on the masses of probability of the intervals that are discarded for the

transfer rate. For example, if the lowest part of the interval that has been discarded
[i.e., (u − t)] is bigger than the highest part of the interval that has been discarded [i.e.,
(t

∗
(t, C)− u∗(u, C))], then xj

j(C, u, u) should be not higher than xj
j(C, t, t).

On the other hand, CMIT states that the comparison between xj
j(C, t, t) and xj

j(C, u, u)
depends on the responsibilities that each region would have in each of the cost allocation
problems defined with the values of the transfer rate that have been discarded. If the
responsibility function was linear in t, both proposals would be equal. However, given that
this is not the case, the distinction is important.

We now define formally the new cost allocation rule. This rule is similar to the UR one,
with the only difference that it considers the value u(C, t, t) for the transfer rate instead
of E(C,t,t)(t).

16In the original formulation of MIT included in Alcalde-Unzu et al. (2015), the condition is not imposed

directly on the comparison between each x
j
j(·), but on the comparison between each

∑

i<j

x
j
i (·). Given NDR,

these sums are inversely related to each x
j
j(·).
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Definition 5 The Expected Responsibility (ER) rule, δ, is given by:

δji (C, t, t) =















































0 if i > j,

ci · u(C, t, t)
j−i − ci−1 · u(C, t, t)

j+1−i if i ≤ j < n,

ci −
ci−1·u(C,t,t)

1−u(C,t,t)
if i = j = n,

ci·u(C,t,t)j−i−ci−1·u(C,t,t)j+1−i

1−u(C,t,t)
if i < j = n,

where c0 is set to 0 and the indeterminate form 00 is set to 1.

The following result states that the ER rule is characterized by the same axioms as the
UR one with the unique change of CMIT by MIT.

Theorem 4 A rule satisfies LR, NDR, CR and CMIT if and only if it is the Expected

Responsibility rule δ.

The proof technique parallels that of the characterization of the UR rule in Alcalde-Unzu
et al. (2015). Although the huge similarities, we have opted for including it. However, we
have opted for omitting the proof of the independence of this set of axioms. This issue can
be proven also in the same way as in Alcalde-Unzu et al. (2015).

Proof: First, it is easy to see that the ER rule δ satisfies LR, NDR, CR and CMIT.
To prove the other implication, consider a problem (C, t, t) and its corresponding t

∗
(t, C)

inferred from expression (2). Let x be a rule satisfying LR, NDR, CR and CMIT. We are
going to show that x has to correspond to δ.

We will calculate the assignment given by x in n steps. In the j−th step, we calculate the
values of xj

i (·) for all i ∈ {1, . . . , n}.

• Step 1: We distribute the cost c1. In this case, by NDR, x1
i (·) = 0 for all i > 1.

Then, by definition of a rule, x1
1(·) = c1. If n = 1, the proof is finished. If n > 1, go

to step 2.

• Step j, with j ∈ {2, . . . , n}: We distribute the cost cj . By the application of NDR,
xj
i (C, t, t) = 0 for all i > j. Consider other problem (C, u(C, t, t), u(C, t, t)), where

u(C, t, t) is the value determined in Proposition 1. Now, we have two cases:

– If j < n, by LR xj
j(C, u(C, t, t), u(C, t, t)) = cj − cj−1 · u(C, t, t). We now prove

that xj
j(C, u(C, t, t), u(C, t, t)) = xj

j(C, t, t). The equality holds trivially when

t = u(C, t, t) = t
∗
(t, C), so suppose instead that t 6= t

∗
(t, C) and then, t <
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u(C, t, t) < t
∗
(t, C). Consider all problems (C, r, r) such that r ∈ [t, u(C, t, t)).

Then, by LR xj
j(C, r, r) = cj − cj−1 · r. Observe that

r
∫

t

[xj
j(C, v, v)− xj

j(C, r, r)] dv <

t
∗

(t,C)
∫

r

[xj
j(C, r, r)− xj

j(C, v, v)] dv.

Then, by CMIT xj
j(C, r, r) ≥ xj

j(C, t, t). Therefore, xj
j(C, t, t) ≤ cj − cj−1 ·

(u(C, t, t) − ε) for all ε ≥ 0. Similarly, we can deduce that xj
j(C, r, r) ≤

xj
j(C, t, t) for all r ∈ (u(C, t, t), t

∗
(t, C)] and, then, xj

j(C, t, t) ≥ cj − cj−1 ·

(u(C, t, t) + ε) for all ε ≥ 0. Then, the unique possibility is that xj
j(C, t, t) =

xj
j(C, u(C, t, t), u(C, t, t)). Therefore, x

j
j(C, t, t) = cj − cj−1 · u(C, t, t).

Observe that, by definition, u(C, t, t) > 0. Let us concentrate first in the case
of j = 2. Then, by definition x2

1(C, t, t) = c1 · u(C, t, t) and the proof of step 2
is finished. Now, go to step 3.

If j ≥ 3,
j−1
∑

i=1

xj
i (C, t, t) = cj−1 · u(C, t, t). By CR xk

k(C, t, t) · x
j
i (C, t, t) =

xk
i (C, t, t) · x

j
k(C, t, t) for all i, k < j. Similarly, by CR xk

k(C, t, t) · x
j−1
i (C, t, t) =

xk
i (C, t, t) · x

j−1
k (C, t, t) for all i, k < j− 1. Then, we can deduce that xj

i (C, t, t) ·
xj−1
k (C, t, t) = xj

k(C, t, t) · x
j−1
i (C, t, t) for all i, k < j − 1. Therefore, we can

obtain that xj
i (C, t, t) ·

j−1
∑

i=1

xj−1
i (C, t, t) = xj−1

i (C, t, t) ·
j−1
∑

i=1

xj
i (C, t, t) for all i < j.

Given that
j−1
∑

i=1

xj−1
i (C, t, t) = cj−1 and that we also know from step j − 1 that

xj−1
i (C, t, t) = ci · (u(C, t, t))

j−1−i − ci−1 · (u(C, t, t))
j−i, we have that for all

i ∈ {1, . . . , j − 1},

xj
i (C, t, t) =

ci · (u(C, t, t))
j−1−i − ci−1 · (u(C, t, t))

j−i

cj−1
· cj−1 · u(C, t, t).

Therefore, for all i ∈ {1, . . . , j − 1},

xj
i (C, t, t) = ci · (u(C, t, t))

j−i − ci−1 · (u(C, t, t))
j+1−i.

Now, go to step j + 1.

– If j = n, by LR xn
n(C, u(C, t, t), u(C, t, t)) = cn − cn−1·u(C,t,t)

1−u(C,t,t)
. We now prove

that xn
n(C, u(C, t, t), u(C, t, t)) = xn

n(C, t, t). The equality holds trivially when
t = u(C, t, t) = t

∗
(t, C), so suppose instead that t 6= t

∗
(t, C) and then, t <
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u(C, t, t) < t
∗
(t, C). Consider all problems (C, r, r) such that r ∈ [t, u(C, t, t)).

Then, by LR xn
n(C, r, r) = cn −

cn−1·r
1−r

. Observe that

r
∫

t

[xn
n(C, v, v)− xn

n(C, r, r)] dv <

t
∗

(t,C)
∫

r

[xn
n(C, r, r)− xn

n(C, v, v)] dv.

Then, by CMIT xn
n(C, r, r) ≥ xn

n(C, t, t). Therefore, x
n
n(C, t, t) ≤ cn−

cn−1·(u(C,t,t)−ε)

1−(u(C,t,t)−ε)

for all ε ≥ 0. Similarly, we can deduce that xn
n(C, v, v) ≤ xn

n(C, t, t) for all

v ∈ (u(C, t, t), t
∗
(t, C)] and, then, xn

n(C, t, t) ≥ cn − cn−1·(u(C,t,t)+ε)

1−(u(C,t,t)+ε)
for all ε ≥

0. Then, the unique possibility is that xn
n(C, t, t) = xn

n(C, u(C, t, t), u(C, t, t)).

Therefore, xn
n(C, t, t) = cn − cn−1·u(C,t,t)

1−u(C,t,t)
and, by definition,

n−1
∑

i=1

xn
i (C, t, t) =

cn−1·u(C,t,t)

1−u(C,t,t)
. Observe that, by definition, u(C, t, t) > 0. Consider first the

case of n = 2. It implies that x2
1(C, t, t) = c1·u(C,t,t)

1−u(C,t,t)
. If n ≥ 3, by CR

xk
k(C, t, t) · x

n
i (C, t, t) = xk

i (C, t, t) · x
n
k(C, t, t) for all i, k < n. Similarly, by

CR xk
k(C, t, t) · x

n−1
i (C, t, t) = xk

i (C, t, t) · x
n−1
k (C, t, t) for all i, k < n− 1. Then,

we can deduce that xn
i (C, t, t) · x

n−1
k (C, t, t) = xn

k(C, t, t) · x
n−1
i (C, t, t) for all

i, k < n − 1. Therefore, we can obtain that xn
i (C, t, t) ·

n−1
∑

i=1

xn−1
i (C, t, t) =

xn−1
i (C, t, t) ·

n−1
∑

i=1

xn
i (C, t, t) for all i < n.

Given that
n−1
∑

i=1

xn−1
i (C, t, t) = cn−1 and that we also know from step j − 1 that

xn−1
i (C, t, t) = ci · (u(C, t, t))

n−1−i − ci−1 · (u(C, t, t))
n−i, we have that for all

i ∈ {1, . . . , n− 1},

xn
i (C, t, t) =

ci · (u(C, t, t))
n−i−1 − ci−1 · (u(C, t, t))

n−i

cn−1

·
cn−1 · u(C, t, t)

1− u(C, t, t)
.

Therefore, for all i ∈ {1, . . . , n− 1},

xn
i (C, t, t) =

ci · (u(C, t, t))
n−i − ci−1 · (u(C, t, t))

n−i+1

1− u(C, t, t)
.

�

We have shown in the main text that MON is satisfied by the UR method, but not by
of the ER method. We have also defined in Alcalde-Unzu et al. (2015) and here two
rules that are associated with these methods and whose characterizations only differ in one
axiom related to an idea of monotonicity: MIT in the case of the UR rule and CMIT in the
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case of the ER rule. Then, an interesting question is if the UR rule can be characterized
replacing MIT by MON. The answer is negative because for instance the following rule,
which differs with the UR and ER rules only in considering the value t for the transfer rate
instead of E(C,t,t)(t) or u(C, t, t), satisfies the three common axioms (LR, NDR and CR)
and also MON:

θji (C, t, t) =











































0 if i > j,

ci · t
j−i − ci−1 · t

j+1−i if i ≤ j < n,

ci −
ci−1·t
1−t

if i = j = n,

ci·tj−i−ci−1·tj+1−i

1−t
if i < j = n,

where c0 is set to 0 and the indeterminate form 00 is set to 1. Then, an interesting question
for further research is to characterize the rules that satisfy LR, NDR, CR and MON.
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