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Abstract

Extending classical algorithms for ordinary weighted or string-to-string au-
tomata to automata with underlying more general algebraic structures is of
significant practical and theoretical interest. However, the generalization of
classical algorithms sets certain assumptions on the underlying structure. In
this respect the maximal factorization turns out to be a sufficient condition
for many practical problems, e.g. minimization and canonization. Recently,
an axiomatic approach on monoid structures suggested that monoids with
most general equalizer (mge-monoids) provide an alternative framework to
achieve similar results. In this paper, we study the fundamental relation
between monoids admitting a maximal factorization and mge-monoids. We
describe necessary conditions for the existence of a maximal factorization
and provide sufficient conditions for an mge-monoid to admit a maximal
factorization.

Keywords: monoid, most general equalizer monoid, factorization,
maximal factorization, fuzzy automata, weighted automata.

1. Introduction

During last decades, researchers in automata and languages theory have
offered effective generalizations of ordinary automata using different alge-
braic structures in order to cope with different domains of practical appli-
cations. Fuzzy automata and weighted automata are ones of the best-known
studied generalizations of automata [26][7]. For weighted automata, values
on transitions, as well on initial and final states, are usually taken from
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semirings such as tropical semirings [24] or hemirings [6]. Other more gen-
eral structures are also considered, as, for example, strong bimonoids [5][8].
For fuzzy automata, values on transitions are taken from certain ordered
structures: lattice-ordered monoids [23], lattice-ordered structures [22], com-
plete distributive lattices [3], general lattices [22], and complete residuated
lattices [19][27][28]. For those extensions of the automata theory, traditional
problems like determinization, minimization, and canonization of automata
have been studied and, nowadays, there are several methods and algorithms
to solve these problems efficiently. Mohri’s article [24] is one of most rep-
resentative works on presenting several practical algorithms to cope with
those problems in weighted automata.

In [20] the authors introduced the notion of factorization (see Definition
2) as an appropriate framework to extend these algorithms to a class of more
general semirings. In fact, previous minimization algorithms for weighted
automata proposed in [24][9] apply factorization on tropical semirings and on
division semirings respectively. Determinization methods based on factor-
izations have been also provided for weighted automata [20] and weighted
tree-automata [2]. In the context of fuzzy automata, factorizations have
been studied to obtain determinization methods [17][16][32], canonization
of fuzzy automata [14][15][31], and a generalization of the Myhill-Nerode
theorem [13].

Among the possible factorizations, the so-called maximal factorization
possesses a property (see (2)) that makes those constructions more efficient
for practical purposes. Kirsten and Mäurer [20] show that their determiniza-
tion algorithm of weighted automata is optimal using maximal factorizations
and the zero-divisor-free condition (Theorem 3.3 in [20]). This behaviour
has been also corroborated in some determinization methods for fuzzy au-
tomata [16][32]. The original Mohri’s minimization algorithm for weighted
automata over tropical semiring applies a maximal factorization [24]. Other
examples of applications of maximal factorizations are in [9][14][31][13].

Therefore, the motivation for this paper is to find out conditions for the
existence of maximal factorizations when the underlying algebraic structure
is a zero-divisor-free monoid1. Recent studies on the characterisation of

1We recognize that the zero-divisor-free condition is somewhat strong. In fact, Kirsten
and Mäurer [20] formulate factorizations without such a condition. However, they use
such a condition as we have indicated above. In fuzzy languages, the exclusion of such
a condition turns out in complex proofs of important results as the Pumping Lemma for
fuzzy regular languages [17]. In this paper, the relation between maximal factorizations
and zero-divisor-free monoids is stated and clarified in Lemma 1
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(sub)sequentinal rational functions for general class monoids [10][11] and
characterization of fuzzy languages [13] suggest that there is a tight relation
between the maximal factorization for zero-divisor-free monoids and infima
of countable sets. In this paper, we study such a relation in order to obtain
some conditions for existence of maximal factorizations. Our results can be
applied to weighted/fuzzy automata and languages.

2. Preliminaries

In this paper we shall consider monoids. A monoid is an algebraic struc-
ture 〈M, ·, 1〉 where (i) M is an arbitrary non-empty set; (ii) · is a binary
associative operation on M (called multiplication), and (iii) 1 is a unit el-
ement with respect to the multiplication, i.e. a · 1 = 1 · a = a for every
element a ∈M .

In many applications, the monoid of interest 〈M, ·, 1〉 has a zero element,
i.e., an element 0 ∈M such that a · 0 = 0 · a = 0 for any a ∈M . To indicate
that a monoid has a zero element 0 we shall write 〈M, ·, 1, 0〉. In such a
monoid, an element b ∈ M , b 6= 0, is called zero-divisor if there is c ∈ M ,
with c 6= 0, such that b · c = 0 or c · b = 0. If 〈M, ·, 1, 0〉 does not have
zero-divisors, then it is called zero-divisor-free.

Given a subset S of M , and an element a ∈M , a · S denotes the subset
of M defined by a · S = {a · b | b ∈ S}.

Let 〈M, ·, 1〉 be a monoid. Given two elements a, b ∈M , we define a ≤ b
if and only if there is an element c ∈M with a ·c = b. In that case, we could
say that a is a divisor of b. The relation divisor of defines a pre-order on
M (≤ is reflexive and transitive). Given a set S ⊆M , we define

up(S) = {b ∈M |∀s ∈ S(s ≤ b)}
low(S) = {a ∈M |∀s ∈ S(a ≤ s)}
sup(S) = {u ∈ up(S)|∀m ∈ up(S)(u ≤ m)}
inf(S) = {l ∈ low(S)|∀m ∈ low(S)(m ≤ l)}

In addition, we say that any element i ∈ inf(S) is an infimum2 for S. An
element c ∈ M is invertible if and only if there exists c′ ∈ M with c · c′ =
1 = c′ · c.

Note also, that for any set S ⊆ M , we have sup(S) = inf(up(S)) and
inf(S) = sup(low(S)).

2Clearly, one can introduce the notion of supremum as an element in sup(S), but we
do not need it and thus we do not use it in this paper.
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Monoids with most general equalizers, mge-monoids, were introduced
in [12]. Below we follow the equivalent definition from [10][11]:

Definition 1. A monoid 〈M, ·, 1〉 satisifies

Left Cancellation Axiom if c · a = c · b⇒ a = b

Right Cancellation Axiom if a · c = b · c⇒ a = b

Right Most General Equalizer Axiom if up({a, b}) 6= ∅ ⇒ sup({a, b}) 6= ∅

for any a, b, c ∈M .
A monoid 〈M, ·, 1〉 is called an mge-monoid if it satisfies the Left and

Right Cancellation and the Right Most General Equalizer Axioms.

Remark 1. As mentioned above sup(S) = inf(up(S)) for any set S ⊆ M .
Thus, the Right Most General Equalizer Axiom actually corresponds to the
existence of special kinds of infima in the monoid. More precisely, we have
that:

sup({a, b}) = inf(up({a, b})).

Thus, the assumption is that if up({a, b}) is not empty then so is inf(up({a, b})).

Remark 2. Note that in general, a set S may have zero, one, or more
infima in a monoidM = 〈M, ·, 1〉. Actually, if a ∈ inf(S) and c is invertible,
then one can easily see that a · c ∈ inf(S).

For mge-monoids, in particular if the monoid satisfies the left cancel-
lation axiom, the converse is also valid. Specifically, for any two elements
a, b ∈ inf(S) there must3 be an invertible element c with a = b · c.

Remark 3. Observe that either of the left and right cancellation axioms
prohibits the existence of a zero element in the monoid. In particular, no
mge-monoid admits a zero.

3. Factorizations

In this section, we recall the notion of a (maximal) factorization. Origi-
nally, [20], these notions have been studied in the context of semirings and
concern mostly the properties of the multiplicative monoid of the semiring

3Indeed, since a, b ∈ inf(S), a ≤ b. Thus, there is some c with a = b ·c. Similarly, b ≤ a,
and there is some c′ with b = a · c′. Substituting, we get a · (c · c′) = a and b · (c′ · c) = b.
Now, by the left cancellation, c′ is the inverse of c.
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that admits a zero element. Thus, we start by recalling the basic defini-
tions for the case of monoids with zero element. Next we show that under
some additional, but in a way natural, assumptions for the monoid, maxi-
mal factorizations imply the zero-divisor-free property. Finally, in the end
of the section, we show that the notions of (maximal) factorization can be
easily adapted for arbitrary monoids. Furhermore, we point out the relation
between both frameworks.

Throughout the rest of the paper we assume that U is an infinite countable
set.

As mentioned in the introduction the main application that we have in
mind are weighted and fuzzy automata. These are devices that represent
functions from the set of words over a finite (non-empty) alphabet to a
semiring or a monoid. Thus, the domain of these functions is a countable
set. The purpose of the set U is to abstract the domain of these functions.
Thus, even though most of the definitions and results, presented in the
sequel, can be adapted to a more general framework by taking into account
the cardinality of (an arbitrary set) U , we resort to the specific case where
U is an infinite countable set. We also consider that this makes the outline
easier to follow.

For notational convenience, elements of U are denoted by Greek letters.
Let 〈M, ·, 1, 0〉 be a monoid with zero, 0 ∈M . F (U,M) is defined as the set
of all total functions of the form X : U →M . We denote by 0 the function
0(γ) = 0 for every γ ∈ U . We also use 1 to denote the function 1(γ) = 1
for every element γ ∈ U . Given X ∈ F (U,M) and a ∈ M , the function
a · X ∈ F (U,M) is defined by (a · X)(γ) = a · X(γ) for every γ ∈ U . In
the following we introduce the notion of factorization as it was introduced
in [16].

Definition 2. Let 〈M, ·, 1, 0〉 be a monoid with zero. Let f be a function
f : F (U,M) → F (U,M), and let g be a function g : F (U,M) → M . The
pair 〈f, g〉 is a factorization of F (U,M) if for every function X ∈ F (U,M)
it holds:

(i) X = g(X) · f(X)
(ii) g(0) = 1

(1)

It is simple to prove that g(X) 6= 0 for every X ∈ F (U,M), and X = 0 ⇔
f(X) = 0.

A factorization 〈f, g〉 of F (U,M) is called maximal if

f(a ·X) = f(X) (2)
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for every a ∈M and every X ∈ F (U,M) such that a ·X 6= 0. Let us observe
that the notion of a maximal factorization becomes meaningless without the
restriction a ·X 6= 0 [20].

As we have indicated in the introductory section, factorizations and max-
imal factorizations 〈f, g〉 have been studied in several papers for particular
cases of algebraic structures: in [20] for semirings, in [14][32][31] for com-
plete residuated lattices, and in [16] for continuous t-norms over the unit
real interval [0, 1]. The next Lemma relates maximal factorizations and
zero-divisor-free monoids.

Lemma 1. Let 〈M, ·, 1, 0〉 be a monoid with zero. Assume that any four
elements g1, g2, c, d ∈M satisfy the implication:

g1 · c = 1
g1 · d = 0
g2 · c = 1

⇒ g2 · d = 0. (3)

If 〈f, g〉 is a maximal factorization of F (U,M) then 〈M, ·, 1, 0〉 is a zero-
divisor-free monoid.

Proof: Let α, β ∈ U be distinct elements of U . Further assume that 〈f, g〉 is
a maximal factorization of F (U,M). For the sake of contradiction, suppose
that a · b = 0 for some a 6= 0 6= b in M .

We define the functions Xa : U →M , X1 : U →M as:

Xa(γ) =


1, if γ = α

b, if γ = β

0, otherwise.

X1(γ) =

{
1, if γ = α

0, otherwise.

We have that (a · Xa)(γ) = a for γ = α and (a · Xa)(γ) = 0 for γ 6= α, in
the case γ = β this is due to the assumption a · b = 0. This shows that
a · Xa = a · X1. Clearly, since a 6= 0, both functions are distinct from 0.
Consequently, by the maximal factorization property of 〈f, g〉 we get:

f(Xa) = f(a ·Xa) = f(a ·X1) = f(X1).

Therefore:

1 = Xa(α) = g(Xa) · f(Xa)(α) = g(Xa) · f(X1)(α),

where the first equality is by definition, the second by the property of fac-
torization, and the last equality is by f(Xa) = f(X1). Similarly, we have

1 = X1(α) = g(X1) · f(X1)(α).
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Let us put c = f(X1)(α) = f(Xa)(α) and d = f(X1)(β) = f(Xa)(β). Then
we have:

g(X1) · c = g(X1) · f(X1)(α) = 1
g(X1) · d = g(X1) · f(X1)(β) = 0
g(Xa) · c = g(Xa) · f(Xa)(α) = 1
g(Xa) · d = g(Xa) · f(Xa)(β) = b 6= 0.

However, this contradicts the Condition (3) of the lemma. �

We will consider maximal factorizations and zero-divisor-free monoids
by the following reasons:
(a) zero-divisor-free condition is a necessary condition for the existence of a
maximal factorization in monoids with the additional Condition (3);
(b) maximal factorizations generate an optimal number of states in deter-
minization algorithms for nondeterministic weighted/fuzzy automata over
zero-divisor-free monoids, [20][16][32]; and
(c) algorithms for minimization of weighted/fuzzy deterministic automata
are more efficient by using maximal factorizations [24][9][14][32].

Let us observe that if 〈M, ·, 1, 0〉 is a zero-divisor-free monoid, then re-
moving 0 from M preserves the monoid structure, i.e., 〈M \ {0}, ·, 1〉 is a
monoid. This transformations converts total functions X : U →M to (pos-
sibly) partial functions X̃ : U → M \ {0} when restricting their image to
M \ {0}. Conversely, every monoid 〈M, ·, 1〉 can be extended to one with a
zero by introducing a fresh element, 0, that acts as a zero and by extending
appropriately the multiplication table. In this case the obtained monoid
〈M ∪ {0}, ·, 1, 0〉 is trivially zero-divisor-free. Furthermore, every partial
function X : U →M can be converted to a total function X : U →M ∪{0},
by simply replacing the undefined values with 0. Therefore, in order to
study factorizations and maximal factorizations under partial functions, we
introduce a slight modification in Definition 2.

Let 〈M, ·, 1〉 be a monoid without a zero element. We denote by Fp(U,M)

the set of all partial functions of the form X : U →M . In addition, ∅ denotes
the nowhere defined function. Given X ∈ Fp(U,M) and a ∈M , the function
a ·X ∈ Fp(U,M) is defined by (a ·X)(γ) = a ·X(γ) for every γ ∈ U whenever
X(γ) is defined, and undefined otherwise.

Definition 3. Let 〈M, ·, 1〉 be a monoid. Let f be a function f : Fp(U,M)→
Fp(U,M), and let g be a function g : Fp(U,M) → M . The pair 〈f, g〉 is a
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factorization of Fp(U,M) if, for every function X ∈ Fp(U,M), f and g
satisfy the following conditions:

(i) X = g(X) · f(X)

(ii) g(∅) = 1
(4)

Let 〈f, g〉 be a factorization of Fp(U,M). Then, clearly, f(X) = ∅ if and

only if X = ∅. A factorization 〈f, g〉 of Fp(U,M) is called maximal if

f(a ·X) = f(X) (5)

for every a ∈M and every X ∈ Fp(U,M) with X 6= ∅.
Following the above intuition, it is standard to establish the relation

between maximal factorizations of Fp(U,M) for arbitrary monoids (without
zero) and maximal factorizations F (U,M) when M contains a zero but is
zero-divisor-free. Recall, that for a partial function X : U → M \ {0}, we
denote with X its totalization in M . Similarly, X̃ is the restriction of a total
function X with range in M ∪ {0} to M \ {0}.

Lemma 2. If 〈M, ·, 1, 0〉 is a zero-divisor-free monoid, and 〈f, g〉 is a (max-
imal) factorization of F (U,M) then 〈f̃ , g̃〉 is a (maximal) factorization of
Fp(U,M \ {0}) where:

f̃(X) = f̃(X) and g̃(X) = g(X).

Lemma 3. If 〈M, ·, 1〉 is a monoid, and 〈f, g〉 is a (maximal) factorization
of Fp(U,M) then 〈f, g〉 is a (maximal) factorization of F (U,M∪{0}), where:

f(X) = f(X̃) and g(X) = g(X̃).

4. Results about maximal factorizations

In this section, we show that there is a tight relation between the exis-
tence of maximal factorizations for monoids and infima of non-empty count-
able sets. In view of Lemmas 2 and 3, it is equivalent whether we consider
maximal factorizations of Fp(U,M) and arbitrary monoids or maximal fac-
torization F (U,M) and zero-divisor-free monoids. However, for the state-
ments of our results, it would be more convenient to consider Fp(U,M). We
shall obtain the corresponding results for F (U,M) as corollaries by Lem-
mas 2 and 3.

Thus, we consider a monoid M = 〈M, ·, 1〉 (without zero). As before U
denotes an infinite countable set. Informally, the results we are presenting
in this section are:
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1. right cancellation in M and maximal factorization in Fp(U,M) imply
infima of countable sets in M.

2. mge-monoid M and infima of countable sets in M imply a maximal
factorization in Fp(U,M).

The formal statements and proofs are given below.

Lemma 4. Let M = 〈M, ·, 1〉 be a monoid with the right cancellation prop-
erty. If the set Fp(U,M) admits a maximal factorization 〈f, g〉, then every
non-empty countable (finite or infinite) subset S ⊆ M admits an infimum
in M, i.e.:

inf(S) 6= ∅.

Proof: Let 〈f, g〉 be a maximal factorization of Fp(U,M) and consider a
non-empty countable set S ⊆M . Since U is an infinite countable set, there
is a function X : U →M such that:

{X(γ) | γ ∈ U} = S.

Clearly, X 6= ∅.
We claim that g(X) ∈ inf(S). Indeed, by the equality

X(γ) = g(X) · f(X)(γ)

we have that g(X) ≤ X(γ) for every γ in the domain of X. Since S 6= ∅,
X 6= ∅, there is at least one γ in the domain of X. Hence g(X) ∈ low(S).

Next, let ` ∈ low(S) be arbitrary. Thus, in particular, S = ` ·S′ for some
S′ ⊆M and therefore:

X = ` ·X ′.
for some X ′. Obviously, ` · X ′ 6= ∅ and, consequently, X ′ 6= ∅. Now, by
the maximality (see (5)) of 〈f, g〉 we have that f(X ′) = f(X) and also
X ′ = g(X ′) · f(X ′). To conclude the proof, we use that S is non-empty and
therefore there is some γ ∈ U for which X(γ) is defined. Hence:

g(X) · f(X)(γ) = X(γ)

= ` ·X ′(γ)

= ` · g(X ′) · f(X ′)(γ)

= ` · g(X ′) · f(X)(γ)

where the last equality follows by f(X) = f(X ′). Finally, by the right
cancellation property, we obtain that:

g(X) = ` · g(X ′).
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The last equality implies, by definition, that ` ≤ g(X). Since ` ∈ low(S)
was arbitrary, we deduce that g(X) ∈ inf(S). �

For mge-monoids, the converse of Lemma 4 is also true. Before stepping
to the formal details, we recall the following important property of mge-
monoids that we need for the proof:

Lemma 5 (Lemma 7 in [10]). Let M = 〈M, ·, 1〉 be an mge-monoid. If
∅ ( S ⊆M and m ∈M are arbitrary, then:

inf(m · S) = m · inf(S).

Lemma 6. Let M = 〈M, ·, 1〉 be an mge-monoid. If every non-empty
countable subset S ⊆M admits an infimum, then Fp(U,M) admits a maxi-
mal factorization.

Proof: Consider the relation ≡⊆ Fp(U,M)×Fp(U,M) defined as:

X ≡ Y ⇐⇒ ∃m ∈M(m is invertible and Y = m ·X).

Clearly, ≡ is an equivalence relation on Fp(U,M). Assuming the Axiom of
Choice, for every equivalence class C of ≡ we fix an element ρ(C) ∈ C. Now
we can construct the factorization 〈f, g〉 as follows. For every X : U → M
we consider the set:

SX = {X(γ) | γ ∈ U and X(γ) is defined}.

First assume that X 6= ∅. Thus, SX 6= ∅. Clearly, SX is (possibly finite)
countable and by the assumption of the lemma there is an element:

sX ∈ inf(SX).

Therefore X = sX ·X ′ for some X ′. Let mX be the invertible element that
witnesses for ρ([X ′]≡) ≡ X ′. Then we set:

f(X) = ρ([X ′]≡) and g(X) = sX ·mX

Note that according to Remark 2, g(X) ∈ inf(SX).
An easy computation shows that

X = sX ·X ′ = sX ·mx · ρ([X ′]≡) = g(X) · f(X).

Furthermore, note that f(X) and g(X) do not depend on the specific choice
of sX . Indeed, let s′X ∈ inf(SX) be arbitrary, not necessarily sX , and let
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X = s′X ·X ′′. Since s′X and sX are both in inf(SX) it follows that s′X ·m′ = sX
and sX ·m′′ = s′X for some elements m′,m′′ ∈M . Therefore s′X = s′X ·m′ ·m′′
and, by the left cancellation property, m′ ·m′′ = 1. Interchanging sX and
s′X , we see that m′′ ·m′ = 1 and hence m′′ and m′ are invertible. Now, for
every γ ∈ U such that X(γ) is defined, we have that X(γ) = s′X ·X ′′(γ) and
X(γ) = sX ·X ′(γ). Substituting sX = s′X ·m′ and using the left cancellation
property we obtain that X ′′(γ) = m′ · X ′(γ). Since X ′, X ′′, and X have
the same domain, we conclude X ′′ = m′ ·X ′ and, since m′ is invertible, we
deduce X ′ ≡ X ′′. Thus, ρ([X ′]≡) = ρ([X ′′]≡) is independent of the choice
of sX . Now, since X = g(X) · f(X) and X 6= ∅, by the right cancellation
property for mge-monoids we conclude that g(X) is also independent of the
choice of sX .

Next, assume that Y = a ·X for some a ∈M , then SY = a · SX and by
Lemma 5 we get:

inf(SY ) = a · inf(SX).

Therefore, a·sX ∈ inf Y . Let Y = a·sX ·Y ′. Hence, for every γ in the domain
of Y , we have Y (γ) = a ·X(γ) = a · sX ·X ′(γ) and Y (γ) = a · sX · Y ′(γ).
By the left cancellation property, we conclude Y ′(γ) = X ′(γ) for every γ in
the domain of Y . Since the domains of Y, Y ′, X, and X ′ are the same, we
deduce that Y ′ = X ′. Therefore, by the above argument, we have f(X) =
ρ([X ′]≡) = ρ([Y ′]≡) = f(Y ).

Finally, in the special case where SX = ∅, which is equivalent to X =
∅, we set g(X) = 1 and f(X) = X. In conclusion, 〈f, g〉 is a maximal
factorization of Fp(U,M) �

Lemma 7. Let M = 〈M, ·, 1〉 be a monoid. Further, assume that every
element x ∈M that has a right inverse has also a left inverse, i.e.:

∃z(x · z = 1)⇒ ∃y(y · x = 1).

If Fp(U,M) admits a maximal factorization, then M satisfies the left
cancellation property.

Proof: Let 〈f, g〉 be a maximal factorization for Fp(U,M). First, let us
consider the constant function 1, i.e. 1(γ) = 1 for all γ ∈ U . Then, we have
that:

1 = g(1) · f(1).

We claim that Z = f(1) is also a constant function. Indeed let α ∈ U 6= ∅.
Then:

g(1) · Z(α) = 1.
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It follows that g(1) admits a right inverse Z(α). Therefore, by the assump-
tions of the lemma, it admits also a left inverse, g′ ∈M such that g′·g(1) = 1.
Now it is clear that:

Z(α) = 1 · Z(α) = g′ · g(1) · Z(α) = g′ · 1 = g′.

Since this equality is independent of α, we get that Z(α) = g′ for all α ∈ U .
Now we are ready to establish the left cancellation property of M. Let

a, b, c ∈M be such that:
a · b = a · c.

We prove that b = c. Let α ∈ U be arbitrary and let us consider the
functions X,X ′ ∈ Fp(U,M) defined as:

X(γ) = a · b and X ′(γ) =

{
b if γ = α

c otherwise.

Now, since a · b = a · c, X = a · X ′ and therefore f(X) = f(X ′). On the
other hand X = (a · b) · 1. We get that f(X ′) = f(X) = f(1) is a constant
function. We conclude that:

X ′ = g(X ′) · f(X ′)

is constant function. Since |U | ≥ 2, we conclude that b = c. �

Corollary 1. Let M = 〈M, ·, 1〉 be a commutative monoid. If Fp(U,M)
admits a maximal factorization, then M is an mge-monoid.

Proof: Indeed, if the monoid is commutative then x · z = 1 is equivalent
to z · x = 1. Thus, the assumptions of Lemma 7 are met. Therefore M
satisfies the left cancellation property. By the commutativity, we get the
right cancellation property forM as well. NowM has the right cancellation
property and Fp(U,M) admits a maximal factorization. By Lemma 4 every
non-empty countable (finite or infinite) subset of M admits an infimum. By
the Remark 1, we get that M satisfies also the right most general equalizer
axiom. Therefore M is an mge-monoid. �

In view of Lemma 2 and Lemma 3 the results for Fp(U,M) translate im-
mediately to F (U,M) where 〈M, ·, 1, 0〉 is a zero-divisor-free monoid. Since
the latter situation often occurs in practical applications, we state them
separately:

Corollary 2. LetM = 〈M, ·, 1, 0〉 be a zero-divisor-free monoid. LetM′ =
〈M \ {0}, ·, 1〉, then:
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1. If F (U,M) admits a maximal factorization, then every non-empty
countable subset S ⊆M \ {0} admits an infimum in M′.

2. If M′ is an mge-monoid and every non-empty countable set S ⊆
M \ {0} admits an infimum in M′, then F (U,M) admits a maximal
factorization.

Proof: The proof follows immediately by Lemma 2 and Lemma 3, Lemma 4
and Lemma 6 �

5. Applications to residuated lattices and t-norms

In this section, we consider the fuzzy automata and languages area to
study some implications of the results obtained in the previous sections. In
particular, we consider complete residuated lattices as the algebraic struc-
tures for modelling truth values and operations on fuzzy sets.

A complete residuated lattice is an algebra L = 〈L,∨,∧,⊗,→, 1, 0〉 such
that (i) 〈L,∨,∧, 1, 0〉 is a complete lattice with the least element 0 and the
greatest element 1; (ii) 〈L,⊗, 1〉 is a commutative monoid with the unit 1;
and (iii) ⊗ and → form and adjoint pair, i.e., they satisfy the adjunction
property : for all a, b, c ∈ L, a⊗ b ≤ c⇔ a ≤ b→ c.

In the following, ≤ denotes the order relation in L, and ≤⊗ denotes the
relation divisor of defined in the previous section, i.e., a ≤⊗ b if a⊗ c = b for
some c. The operations ⊗ (multiplication) and → (residuum) are intended
for modeling the conjunction and implication of the corresponding logical
calculus, and supremum (

∨
) and infimum (

∧
) are intended for modeling

the existential and general quantifier, respectively. It can be verified that
with respect to ≤, multiplication ⊗ is isotonic in both arguments, and → is
isotonic in the second and antitonic in the first argument. For any a, b ∈ L,
the following basic property is satisfied:

a⊗ (a→ b) = b⇔ a ≤⊗ b (6)

In addition, for any a ∈ L and any {bi}i∈I ⊆ L,

(
∨
i∈I

bi)⊗ a =
∨
i∈I

(bi ⊗ a). (7)

The reader is referred to [1, 4] for further properties on complete residuated
lattices. Let us observe that 0 ∈ L and 0 ⊗ a = 0 for any a ∈ L, i.e.,
〈L,⊗, 1, 0〉 is a monoid with a zero element.

Given a complete residuated lattice L, a fuzzy subset of a set U over
L, or simply a fuzzy subset of U , is any function from U to L [4]. Thus,
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F (U,L) denotes the set of all possible fuzzy subsets of U . As in previous
sections, we assume that U is an infinite countable set.

Let us notice that by monotonicity of ⊗, if, for a, b ∈ L, a ≤⊗ b then
b ≤ a. A complete residuated lattice L satisfies the divisibility property if
the converse is also true, i.e., for any a, b ∈ L,

b ≤ a⇒ a ≤⊗ b (8)

If L satisfies the divisibility property then it is possible to define a non-
trivial factorization4 (Definition 2) of F (U,L) [16].

Let us define fM : F (U,L)→ F (U,L) and gM : F (U,L)→ L as follows:

gM (X) =

{∨
γ∈U X(γ) if X 6= 0

1 if X = 0.

and
fM (X)(γ) = gM (X)→ X(γ)

for any X ∈ F (U,M) and γ ∈ U .
Let us observe that, for any X ∈ F (U,L) and γ ∈ U , gM (X) ≥ X(γ). By

the divisibility property (8) and property (6), X(γ) = gM (X) ⊗ fM (X)(γ)
holds for any γ ∈ U . Therefore, 〈fM , gM 〉 is a factorization of F (U,L).

For historical reasons, 〈fM , gM 〉 is called Mohri’s factorization [20]. Mohri’s
factorization is not the unique possible non-trivial factorization of F (U,L).
In fact, it is possible to define multiple non-trivial factorizations as it was
proved in [13]. Here, we study the necessary and sufficient conditions when
F (U,L) admits a maximal factorization given that L is a complete residu-
ated lattice.

Lemma 8. Let L = 〈L,∨,∧,⊗,→, 1, 0〉 be a complete residuated lattice that
satisfies the divisibility property. F (U,L) admits a maximal factorization if
and only if 〈L \ {0},⊗, 1〉 is an mge-monoid.

Proof: (⇒). As ⊗ is isotonic in both arguments, then, L satisfies Condi-
tion (3). Indeed, assume that g1, g2, c, d ∈ L and g1 ⊗ c = g2 ⊗ c = 1 and
g1 ⊗ d = 0. The first two equalities imply that g1 = g2 = 1. Thus, by the
third, we get d = 0 and therefore Condition (3) holds. Thus, by Lemma 1,
〈L,⊗, 1, 0〉 is a zero-divisor-free monoid. In addition, 〈L,⊗, 1, 0〉 is a com-
mutative monoid. Therefore, 〈L \ {0},⊗, 1〉 is a commutative monoid. By

4The trivial factorization is simply defined by g(X) = 1 and f(X) = X for every fuzzy
subset X.
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Lemma 2, Fp(U,L \ {0}) admits a maximal factorization. By Corollary 1,
〈L \ {0},⊗, 1〉 is an mge-monoid.

(⇐). Let 〈L\{0},⊗, 1〉 be an mge-monoid. We will prove that any countable
subset S ⊆ L \ {0} admits an infimum (with respect to ≤⊗). Let us recall
that low(S) = {a ∈ L|∀s ∈ S(a ≤⊗ s)} and inf(S) = {l ∈ low(S)|∀m ∈
low(S)(m ≤⊗ l)}.
By the divisibility property (8) and monotonicity of ⊗, v ≥ s if and only if
v ≤⊗ s. Thus, low(S) = {v ∈ L|∀s ∈ S(v ≥ s)}. The value vS =

∨
s∈S s

is well defined for S, and, obviously, vS ∈ low(S). In addition, any value
v ∈ low(S) satisfies v ≥ vS , i.e., v ≤⊗ vS . Therefore, vS ∈ inf(S). By
Corollary 2, F (U,L) admits a maximal factorization. �

In fuzzy automata and languages, many practical applications and ex-
amples have been developed using monoids based on triangular norms (t-
norms), 〈[0, 1],⊗, 0, 1〉 where [0, 1] is the real unit interval and ⊗ denotes
a t-norm. The reader is referred to the monographs on t-norms [18, 21]
for further details. More specifically, the common [0, 1]-valued-semantics for
fuzzy sets, are algebras defined by a left-continuous t-norm, i.e., algebras of
the form [0, 1]⊗ = 〈[0, 1],∨,∧,⊗,→, 0, 1〉 where ∨ denotes max operation, ∧
denotes min operation, and → denotes the R-implication [33].

These algebras [0, 1]⊗ are particular cases of complete residuated lat-
tices and the operation → is also called residuum. The importance of left-
continuity is due to the fact that ⊗ has a residuum → if and only if ⊗ is
left-continuous. In addition, a relevant result of t-norms establishes that a
left-continuous t-norm is continuous if and only if it satisfies the divisibil-
ity property. Equivalently, a t-norm is continuous if and only if ⊗ and →
satisfies:

a⊗ (a→ b) = a ∧ b (9)

for any a, b ∈ [0, 1].
The main examples of continuous t-norms are the  Lukasiewicz t-norm

(a⊗L b = max(a+ b− 1, 0), and a→L b = min(1− a+ b, 1)), the Product
t-norm (a ⊗Π b = ab, and a →Π b = 1 if a ≤ b and = b/a otherwise), and
the Gödel t-norm (a ⊗G b = min(a, b), and a →G b = 1 if a ≤ b and = b
otherwise). They are the most prominent examples of continuous t-norms
because a t-norm is continuous if and only if it is isomorphic to an ordinal
sum of the Gödel,  Lukasiewicz, and Product t-norm [21].

For these algebraic structures Mohri’s factorization is also a factorization
of F (U, [0, 1]⊗). However, as the Gödel t-norm does not satisfy cancellation
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properties and  Lukasiewicz t-norm is not a zero-divisor-free monoid, then,
by Lemma 8, they do not admit a maximal factorization. Let us observe that
the Product t-norm is a continuous t-norm, zero-divisor-free and satisfies the
cancellation properties. In addition, a Product t-norm based monoid is an
mge-monoid. Therefore, by Lemma 8, monoids based on continuous t-norms,
that are isomorphic to the Product t-norm, admit maximal factorizations.

6. Conclusions

We conclude that monoids of complete residuated lattices that satisfy
the divisibility property, and in particular, monoids based on continuous
t-norms, induce mge-monoids satisfying the existence of an infimum (with
respect to the relation ’divisor of’ ≤⊗) for any countable subset of L \
{0}. By the results provided in this paper those monoids admit a maximal
factorization.

Furthermore, certain constructions, provided for weighted automata with
values in an mge-monoid, could be adapted to fuzzy automata with truth-
values on the monoids considered in this section. In these scenarios U is
typically the set of words over a non-empty alphabet, thus it is an infinite
countable set. In [12] the authors describe a test for unambiguity for au-
tomata with values in an mge-monoid. In practice, this is the test whether
a non-deterministic transducer recognizes a function. Thus, this construc-
tion can be immediately transferred to fuzzy automata with truth-values.
Additionally, following [12], we can construct a bimachine, i.e. a deter-
ministic representation preserving the linear traversal, for such transducer.
Further examples are provided in [11] where constructions for canonization,
also known as early-on or frank according to [30] normal form, and min-
imization are presented. Essentially, the canonization strives at pushing
forward the outputs so that at soon as we have processed a given prefix
of a word we know the best estimate of its possible extensions. This is
important for practical applications, [24, 25]. These constructions depend
on an mge-monoid with two further axioms5 that are trivially satisfied for
commutative complete residuated lattices. Thus, we can translate them
to complete residuated lattices without complications. Finally, the general
framework provided by mge-monoids and maximal factorizations might be
of interest to other fields in automata theory, e.g. symbolic transducers, [29],
where minimization, canonization, and unambiguity play an important role.

5These are inf{a, b} 6= ∅ and b ≤ a · b · c⇒ b ≤ a · b.
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In this regard, the relation between mge-monoids and maximal factoriza-
tions described in this paper can be used as a theoretical basis to indicate
whether those problems in the specific domain can be solved by the means of
the classical constructions, [24, 25], or their appropriate modifications [11].
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automata by factorizations of fuzzy states and right invariant fuzzy
quasi-orders. Information Sciences, 469:79–100, 2018.

[33] E. Trillas and L. Valverde. On some functionally expressible implica-
tions for fuzzy set theory. In E. P. Klement, editor, Proceedings of the
3rd International Seminar on Fuzzy Set Theory, pages 173–190, 1981.

19




