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Abstract

Several convergent expansions are available for most of the special functions of
the mathematical physics, as well as some asymptotic expansions [NIST Handbook of
Mathematical Functions, 2010]. Usually, both type of expansions are given in terms
of elementary functions; the convergent expansions provide a good approximation for
small values of a certain variable, whereas the asymptotic expansions provide a good
approximation for large values of that variable. Also, quite often, those expansions are
not uniform: the convergent expansions fail for large values of the variable and the
asymptotic expansions fail for small values. In recent papers [Bujanda & all, 2018-
2019] we have designed new expansions of certain special functions, given in terms of
elementary functions, that are uniform in certain variables, providing good approxima-
tions of those special functions in large regions of the variables, in particular for large
and small values of the variables. The technique used in [Bujanda & all, 2018-2019] is
based in a suitable integral representation of the special function. In this paper we face
the problem of designing a general theory of uniform approximations of special func-
tions based on their integral representations. Then, we consider the following integral
transform of a function g(t) with kernel h(t, z), F (z) :=

∫ 1
0 h(t, z)g(t)dt. We require

for the function h(t, z) to be uniformly bounded for z ∈ D ⊂ C by a function H(t)
integrable in t ∈ [0, 1], and for the function g(t) to be analytic in an open region Ω
that contains the open interval (0, 1). Then, we derive expansions of F (z) in terms of
the moments of the function h, M [h(·, z), n] :=

∫ 1
0 h(t, z)tndt, that are uniformly con-

vergent for z ∈ D. The convergence of the expansion is of exponential order O(a−n),
a > 1, when [0, 1] ∈ Ω and of power order O(n−b), b > 0, when [0, 1] /∈ Ω. Most of
the special functions F (z) having an integral representation may be cast in this form,
possibly after an appropriate change of the integration variable. Then, special interest
has the case when the moments M [h(·, z), n] are elementary functions of z, as the uni-
formly convergent expansion derived for F (z) is given in terms of elementary functions.
We illustrate the theory with several examples of special functions different from those
considered in [Bujanda & all, 2018-2019].
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1 Introduction
Most of the special functions of the mathematical physics have an integral representation
that may be written in the form of an integral transform of a function g(t) with kernel h(t, z)
of the form [17],

F (z) =

∫ b

a

h(t, z)g(t)dt.

In this formula, (a, b) is a bounded or unbounded interval, h(·, z)g(·) is integrable on (a, b)
and g(t) is analytic in a region Ω ⊂ C that includes the open set (a, b) ⊂ Ω. The function
F (z) could also be a function of other extra variables that we assume that are included in
h and/or g. We omit further reference to other possible extra variables, as we are interested
in the function F as function of a single (selected) variable z.

After an affine change of variable and/or splitting the integration interval if necessary
we may assume, without loss of generality, that [a, b] = [0, 1] when [a, b] is bounded, or
[a, b) = [0,∞) when (a, b) is unbounded. Then, without loss of generality,

F (z) =

∫ 1

0

h(t, z)g(t)dt, or F (z) =

∫ ∞
0

h(u, z)g(u)du, (1)

with (0, 1) ⊂ Ω in the first case and (0,∞) ⊂ Ω in the second case. But moreover, after
the change of variable u = − log t, the second integral in (1) may be written in the form of
the first one with h(t, z) and g(t) identified with t−1h(− log t, z) and g(− log t) respectively.
Therefore, without loss of generality, we consider integral transforms of a function g(t) with
kernel h(t, z) of the form

F (z) =

∫ 1

0

h(t, z)g(t)dt, z ∈ D, (2)

where D is a certain region (bounded or unbounded) of the complex plane. It is clear that,
when the integration interval of the original integral representation of the special function
F (z) is unbounded (second formula in (1)) then, in general, the transformation u = − log t
makes the point t = 0 in (2) a singular point of g(t).

In previous papers [5, 6, 15], we have derived analytic expansions of several examples
of special functions F (z) having the form of the first integral in (1). That is, we have
consider there several particular examples of functions h(t, z) and g(t); and with the following
assumptions for the functions h and g:

• (i) |h(t, z)| ≤ H(t) for z ∈ D with H integrable on [0, 1],
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Figure 1: Approximations of 2
xJ1(x) (thicker graphics) given by the Taylor expansion [18, Sec. 2,

eq. (10.2.2)] (left), the asymptotic expansion [18, Sec. 17, eq. (10.17.3)] (middle) and the uniform
expansion [15, Theorem 1] (right) for x ∈ [0, 10] and five degrees of approximation n = 1, 2, 3, 4, 5
(thinner graphics). The approximations are similar for complex x and other values of ν.

• (ii) g(t) is analytic in a region Ω ⊂ C that contains the open set (0, 1) ⊂ Ω,

• (iii) the moments of h, M [h(·, z); k] :=
∫ 1

0
h(t, z)tkdt are elementary functions of z.

Then expansions derived in [5, 6, 15] have the following three properties:

• (a) The expansion is uniform for z in an unbounded subset D ⊂ C that contains the
point z = 0,

• (b) The expansion is convergent,

• (c) The terms of the expansion are elementary functions of z.

We have named those expansions uniform expansions because of the first property above.
As an illustration of this type of approximations, we mention the following formula derived
in [15] and valid for x > 0:

15π

2x3
J3(x) =

[
3x4 − 140x2 + 360

8x6
+ θ1(x)

]
x sinx+

[
5(x2 − 18)

2x4
+ θ2(x)

]
cosx, (3)

with |θ1(x)| < 0.0062 and |θ2(x)| < 0.051. This approximation is the particular case n =
ν = 3 of the general n−order uniform approximation of Jν(x) given in [15, Theorem 1].
Figure 1 compares the n−th order approximation of J1(x) given in [15, Theorem 1] with the
well-known Taylor and asymptotic approximations of J1(x).

Roughly speaking, the convergent (Taylor) expansions and the asymptotic expansions
of F (z) are obtained by replacing h(t, z) in the integrand above by its Taylor expansion,
as a function of z, at z = 0 (convergent) or at z = ∞ (asymptotic), and interchanging
sum and integral. In general, the Taylor remainder in the Taylor expansion of h(t, z) is
not uniformly bounded in z and then, the resulting convergent or asymptotic expansions
of F (z) are not uniform in z. We have derived the uniform expansions given in [5, 6, 15]
proceeding in the complementary way: by replacing g(t) in the integrand above by its Taylor
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expansion at an appropriate point t0, g(t) =
∑n−1

k=0 ak(t− t0)k +gn(t), and interchanging sum
and integral. Then, we have proved, in those particular examples, that the remainder term∫ 1

0
h(t, z)gn(t)dt is uniformly bounded in z and vanishes in the limit n→∞.

The purpose of this paper is to generalize the above idea: the formulation of a general
theory of analytic expansions of integral transforms (2) (that include the unbounded case
given in the second formula in (1) after the logarithmic change of variable) that satisfy
the three properties (a), (b), (c) listed above. We will see below that, when 0 ∈ D, the
requirement (i) mentioned above assures property (a). The requirement (ii) assures property
(b), and the requirement (iii) assures property (c). Although the meaning of "elementary
function" in (c) must be clarified. If we want to be very general, we may just consider that
"elementary" means that the moments M [h(·, z); k] are functions of fewer variables than
F (z) (this means that at least one of the "extra" variables of F (z) is in g(t)). On the other
hand, if we want to compare the uniform property of the expansion that we are going to
derive in this paper with the standard Taylor or asymptotic expansions of F (z) given, quite
often, in terms of powers of z, we must be more demanding and establish that "elementary"
means that the moments M [h(·, z); k] must be some of the classical elementary functions of
z [20, Chap. 4].

In the particular examples of special functions considered in [5, 6, 15], we have only
considered standard Taylor expansions of g(t) at an appropriate point t0 ∈ [0, 1]. This was
enough as long as, in those examples, the disk Dr(t0) of convergence of the Taylor series is
contained in Ω. But in other situations the function g(t) may possess singularities located
near the integration interval (0, 1) such that Dr(t0) 6⊂ Ω for any t0 ∈ Ω. It has been argued
in [14] that, in this case, a multi-point Taylor expansion at conveniently chosen base points
is much more appropriate, because the lemniscate of convergence of the multi-point Taylor
expansion avoids the singularities of g(t) more efficiently than the disk of convergence of the
standard Taylor expansion. Then, in order to make the analysis more general, we do not
only consider the standard Taylor expansions of g(t), but multi-point Taylor expansions of
g(t) [11, 12].

The paper is organized as follows. In sections 2, 3 and 4 we establish the theoretical
framework necessary for the derivation of the main result of the paper in Section 5. In Section
2 we briefly review the theory of multi-point Taylor expansions introduced in [11, 12]. The
hypotheses required on the functions g and h in the integral (2) are established in Section
3. In Section 4 we study the speed of convergence of the multi-point Taylor expansion of
g(t), specially when t approaches the boundary of the convergence region of the expansion.
The end points 0, 1 of the integration interval in (2) may be regular or singular points of
the function g(t), and this fact is an essential aspect in the analysis. Then, in the remaining
of the paper, we consider four different situations concerning the position of the end points
t = 0, 1 of the integration interval in (2) with respect to Ω:

• Case (i) [0, 1] ⊂ Ω.

• Case (ii) (0, 1] ⊂ Ω, [0, 1] 6⊂ Ω.

• Case (iii) [0, 1) ⊂ Ω, [0, 1] 6⊂ Ω.
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• Case (iv) (0, 1) ⊂ Ω, [0, 1] 6⊂ Ω.

The main result of the paper is contained in Section 5, where we derive a uniformly
convergent expansion of F (z), with different bounds for the remainder for every one of
the above four cases. Section 6 contains some examples of special functions that illustrate
the theory. Finally, in appendices 1 and 2 we give some details on how to compute the
coefficients of the expansion when the integration interval is unbounded and the change of
variable u = − log t is required (second formula in (1)).

2 Multi-point Taylor expansions

In this section we summarize the main results about multi-point Taylor expansions of analytic
functions given in [11, 12], adapted to the applications that we need in this paper. We assume
that g(w) is an analytic function of w in a region Ω that contains the open interval (0, 1).
Take m arbitrary real points t1 < t2 < t3 < ... < tm and define the open lemniscate

Dr := {w ∈ Ω, |(w − t1)(w − t2) · · · (w − tm)| < r}, r ≤ ρ, (4)

with
ρ := Infw∈C\Ω {|(w − t1)(w − t2) · · · (w − tm)|} . (5)

The requirement r ≤ ρ assures that the lemniscate Dr ⊂ Ω, as Dρ is the largest possible
lemniscate with base points tk, k = 1, 2, ...,m, that may be included in Ω. We assume that
the points t1 < t2 < t3 < ... < tm and the "radius" r of the lemniscate are chosen in such a
way that (0, 1) ⊂ Dr, that is, that r ≥ r0, with

r0 := supt∈(0,1) {|(t− t1)(t− t2) · · · (t− tm)|} . (6)

Then, Dr0 is the smallest possible lemniscate with base points tk, k = 1, 2, ...,m, that contains
the interval (0, 1). It is explained in [14] that, the more singularities of g(w) are located near
the interval (0, 1) (the closer the border of Ω is to the interval (0, 1)), the more base points
t1, t2, ..., tm located along the interval (0, 1) and its vicinity must be taken in order to assure
that ρ ≥ r0. Therefore, in practice, we can always find an appropriate selection of the base
points t1 < t2 < t3 < ... < tm that assures r0 ≤ ρ and we can define a lemniscate Dr with
r0 ≤ r ≤ ρ, that is, (0, 1) ⊂ Dr ⊂ Ω.

For example, for the function g(t) = (2t + 1)−1, we may take m = 1, t1 = 1/2 and
1/2 ≤ r < 1; in this case the lemniscate Dr is nothing but a disk of radius 1/2 ≤ r < 1
with center at 1/2. For the function g(t) = (5− 16t + 16t2)−1, we may take m = 2, t1 = 0,
t2 = 1 and 1/4 ≤ r < 5/16; in this case the lemniscate Dr is a Cassini oval of "radius"
1/4 ≤ r < 5/16 with foci at the points 0, 1. For the function g(t) = (20t2 − 8t + 1)−1, we
may take m = 3, t1 = 0, t2 = 1/2, t3 = 1 and 1/(12

√
3) ≤ r <

√
13/(20

√
10); in this case Dr

is a lemniscate of "radius" 1/(12
√

3) ≤ r <
√

13/(20
√

10) with foci at the points 0, 1/2, 1.
See Figure 2.
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Figure 2: In the tree pictures, the crossed points represent the singularities of the given functions
g(t) and define the value of ρ. (a) g(t) = (2t+ 1)−1. Disk of radius r0 = 1/2 < r < ρ = 1 centered
at 1/2. (b) g(t) = (5 − 16t + 16t2)−1. Cassini oval of radius r0 = 1/4 < r < ρ = 5/16 and foci
at 0, 1. (c) g(t) = (20t2 − 8t + 1)−1 Lemniscate of radius r0 = 1/(12

√
3) < r < ρ =

√
13/(20

√
10)

and foci at 0, 1/2, 1. In every example, the lemniscate Dr contains the interval (0, 1) but avoids the
singularities of g(w). The more base points t1, t2,..., tm the lemniscate Dr has, the better it avoids
the singularities of g(w), as Dr becomes more and more thiner (always containing the interval (0, 1))
as we can see in the sequence of examples (a)-(b)-(c).

The function g(w) has the following multi-point Taylor expansion at the m base points
t1, t2, ..., tm, that converges uniformly and absolutely in Dr [11, 12]:

g(w) =
n−1∑
k=0

pk(w)

[
m∏
s=1

(w − ts)

]k
+ gn(w), (7)

where pk(w) are polynomials of degree m− 1. In [11, 12] we can find the following Lagrange
representation of the polynomials pk(w):

pk(w) :=
m∑
j=1

ak,j

∏m
s=1,s 6=j(w − ts)∏m
s=1,s 6=j(tj − ts)

, (8)

with

ak,j :=
1

k!

dk

dwk

[
g(w)∏m

s=1,s 6=j(w − ts)k

]
w=tj

+
m∑

l=1,l 6=j

1

(k − 1)!

dk−1

dwk−1

[
g(w)/(w − tj)∏m
s=1,s 6=l(w − ts)k

]
w=tl

.

On the other hand, for the computational purposes of this paper, it is more convenient to
use the standard representation

pk(w) :=
m−1∑
j=0

Ak,jw
j. (9)

The coefficients Ak,j may be computed directly from (8) in terms of the coefficients ak,j just
collecting equal powers of w. Alternatively, we may compute the coefficients Ak,j using the
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following recurrent algorithm. For k = 1, 2, 3, ..., we define the sequence of functions

φk(w) :=
φk−1(w)− pk−1(w)

U(w)
, φ0(w) := g(w), U(w) :=

m∏
s=1

(w − ts).

Then, for every k = 0, 1, 2, ..., the coefficients Ak,j, j = 0, 1, 2, ...,m − 1, are the solution of
the following Van-Dermonde system

1 t1 t21 ... tm−1
1

1 t2 t22 ... tm−1
2

. . . ... .

. . . ... .

. . . ... .
1 tm t2m ... tm−1

m




Ak,0
Ak,1
.
.
.

Ak,m−1

 =


φk(t1)
φk(t2)
.
.
.

φk(tm)

 ,

where, for k = 0, 1, 2, ..., and j = 1, 2, 3, ...,m, the numbers φk(tj) are computed in the form

φk(tj) = lim
w→tj

φk−1(w)− pk−1(w)

U(w)
=
φ′k−1(tj)− p′k−1(tj)∏m

s=1,s 6=j(tj − ts)
.

In formula (7), gn(w) is the multi-point Taylor remainder that may be represented by
means of the Cauchy integral

gn(w) :=

∏m
k=1(w − tk)n

2πi

∮
Cr

g(s)ds

(s− w)
∏m

k=1(s− tk)n
, w ∈ Dr. (10)

In this formula, the integration contour Cr ⊂ Ω is the boundary of a lemniscate Dr−ε, with
r − ε > 0 and small enough ε such that Cr ⊂ Ω,

Cr := {w ∈ Ω, |(w − t1)(w − t2) · · · (w − tm)| = r − ε} ⊂ Ω.

When w = t ∈ (0, 1) and [0, 1] ⊂ Ω (case (i)) we may chose the base points tk, k = 1, 2, ...,m
such that Cr ⊂ Ω with ε = 0. When [0, 1] 6⊂ Ω (cases (ii), (iii), (iv)) it is not possible to take
ε = 0, as the contour Cr would contain the points s = 0 and/or s = 1. In any case, for any
t ∈ (0, 1) and small enough ε, the contour Cr encircles, not only the points t1, t2,..., tm, but
also the point t.

In Section 5 we derive a convergent and uniform expansion of F (z) by replacing g(t)
in the integrand in (2) by its multi-point Taylor expansion (7) and interchanging sum and
integral. We show the convergence of the resulting expansion for F (z) when the interval
(0, 1) is contained in the lemniscate Dr of uniform convergence of (7), that is, when ρ ≥ r0.
In order to assure that ρ ≥ r0, an appropriate election of the number and location of the base
points t1,...tm is essential, specially in the more delicate case (0, 1) ⊂ Ω but [0, 1] 6⊂ Ω. In
any case, whenever (0, 1) ⊂ Ω, it is always possible to choose appropriate points t1 < ... < tm
such that ρ ≥ r0.
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3 Hypotheses
In this section we clearly set the hypotheses required for the two factors h(t, z) and g(t) in the
integrand of (2), according to the four different cases (i)-(iv) mentioned in the introduction,
and the hypothesis required for the base points t1, t2, ..., tm.

As we have already mentioned in the introduction, we assume that g(w) is analytic in an
open region Ω that contains the interval [0, 1] except, possibly, for an integrable singularity
at w = 0 and/or at w = 1. More precisely:

Hypothesis 1. We assume that g(w) is analytic in an open region Ω that contains the
interval (0, 1) and the function f(w) := w1−σ(1− w)1−γg(w), with 0 < σ, γ ≤ 1, is bounded
in Ω. More precisely: 

σ = γ = 1 in case (i),
σ < 1, γ = 1 in case (ii),
σ = 1, γ < 1 in case (iii),

σ, γ < 1 in case (iv).

We have also mentioned in the introduction that h(t, z) is uniformly bounded when z ∈ D
by a function of t integrable on [0, 1]. More precisely:

Hypothesis 2. We assume that |h(t, z)| ≤ Htα(1 − t)β for (t, z) ∈ [0, 1] × D, with H > 0
independent of z and t and α + σ > 0, β + γ > 0.

Observe that it is natural to assume this form for the bound of the function h(t, z), as
the function h(·, z)g(·) must be integrable in [0, 1].

Finally, as we have mentioned in the previous section, them base points t1 < t2 < ... < tm
can always be chosen appropriately:

Hypothesis 3. We choose m base points t1 < t2 < ... < tm such that the lemniscate Dr

defined in (4) satisfies (0, 1) ⊂ Dr ⊂ Ω, that is, r0 ≤ r ≤ ρ (see equations (5) and (6)).

4 Analysis of the remainder gn(t)
In this section we derive a bound for the remainder gn(t), t ∈ (0, 1), of the multi-point Taylor
expansion of g(t) in the lemniscate Dr (see (7)) appropriate for our purposes. The analysis
is more involved when one or both end points of the integration interval, w = 0 or w = 1,
are singular points of g(w). The analysis in this section resembles the analysis used in [8, 9]
to determine the asymptotic behavior of the standard Taylor coefficients of functions g(w)
with integrable singularities. Here we analyze the asymptotic behavior of the remainder
gn(t), and not only for the standard Taylor expansion, but for a general multi-point Taylor
expansion.

For every one of the four cases (i)-(iv) mentioned in the introduction, we consider a
different lemniscate Drj , j = 1, 2, 3, 4, with rj ≤ ρ (recall the definition (5) of the maximum
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"radius" ρ). According to Hypotheses 1 and 3, the base points tk, k = 1, 2, ...,m, and the
"radius" r ≥ r0 of any lemniscate Dr ⊂ Ω with base points tk (recall the definition (6) of
the "minimal radius" r0) must satisfy the following properties:

• Case (i) The "radius" r1 of the lemniscate Dr1 must satisfy the inequality r1 ≥ r0 ≥
max{

∏m
k=1 |tk|,

∏m
k=1 |1− tk|}.

• Case (ii) We have t1 > 0. The "radius" r2 of the lemniscate Dr2 must satisfy r2 :=∏m
k=1 |tk| ≥ r0 >

∏m
k=1 |1 − tk|. This condition assures that the interval (0, 1] ⊂ Dr2 ;

the point w = 0 ∈ D̄r2 but w = 0 /∈ Dr2 .

• Case (iii) We have tm < 1. The "radius" r3 of the lemniscate Dr3 must satisfy r3 :=∏m
k=1 |1 − tk| ≥ r0 >

∏m
k=1 |tk|. This condition assures that the interval [0, 1) ⊂ Dr3 ;

the point w = 1 ∈ D̄r3 but w = 1 /∈ Dr3 .

• Case (iv) We have 0 < t1 < tm < 1. The "radius" r4 of the lemniscate Dr4 must satisfy
r4 :=

∏m
k=1 |tk| =

∏m
k=1 |1 − tk|. This condition assures that the interval (0, 1) ⊂ Dr4 ;

the points w = 0, 1 ∈ D̄r4 but w = 0, 1 /∈ Dr4 .

Recall the Cauchy integral representation of the remainder gn(w) given in (10), now
restricted to w = t ∈ (0, 1),

gn(t) :=

∏m
s=1(t− ts)n

2πi

∮
Cr

g(w)dw

(w − t)
∏m

s=1(w − ts)n
, t ∈ (0, 1). (11)

where the w−integration contour Cr is the boundary of the lemniscate Dr−ε with a "radius"
r − ε, ε > 0, such that Cr ⊂ Ω. Then, in principle, only in case (i) we can take ε = 0 and
a "radius" r = r1 such that [0, 1] ⊂ Cr ⊂ Ω. In the other three cases, in principle, we must
take ε > 0 and a "radius" r = rk − ε < rk, k = 2, 3, 4, such that (0, 1) ⊂ Dr ⊂ Ω but
[0, 1] 6⊂ Dr ⊂ Ω. In any of the four cases, in particular in the three cases (ii), (iii), (iv), the
above integral is a (constant) function of ε that is defined for ε = 0 (r = rk) and is continuous
as a function of ε as it is the integral of an integrable function. Therefore, in any of the cases
(ii), (iii), (iv), we can take the limit ε→ 0 (r → rk) and consider that the "radius" r of the
lemniscate used in the above integral is the radius r = rk, k = 1, 2, 3, 4, considered above.
Then, in cases (ii), (iii), (iv), this limit lemniscate Dr 6⊂ Ω, although Dr \ {0, 1} ⊂ Ω. In
any case, we may consider that the "radius" r of the lemniscate boundary Cr that defines
the integration contour in (11) is such that the interval [0, 1] ⊂ Dr. Figure 3 illustrates this
discussion with m = 3 and a certain admissible selection of base points t1, t2 and t3.

In the remaining of this section we derive an appropriate bound for the remainder gn(t).
The analysis strongly depends on the case (i)-(iv) under consideration.

4.1 Case (i)

From the definition of Dr1 we have that
∏m

k=1 |t− tk| <
∏m

k=1 |w − tk| = r1 for any t ∈ [0, 1]
and w ∈ Cr1 . Therefore,

|gn(t)| ≤ 1

2πan

∮
Cr1

|g(w)dw|
|w − t|

=
M

an
, t ∈ [0, 1],
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Figure 3: Consider three base points: m = 3. (a) Case (i) A possible selection of appropriate
base points is t1 = 0, t2 = 1/2, t3 = 1 and r1 = 1/20 > r0 = 1/(12

√
3). (b) Case (ii) A possible

selection of appropriate base points is t1 = 1/10, t2 = 1/2, t3 = 1 and r2 = t1t2t3 = 1/20 = r0.
(c) Case (iii) A possible selection of appropriate base points is t1 = 0, t2 = 1/2, t3 = 9/10 and
r3 = (1 − t1)(1 − t2)(1 − t3) = 1/20 = r0. (d) Case (iv) A possible selection of appropriate base
points is t1 = 1/14, t2 = 1/2, t3 = 1− t1 and r4 = t1t2t3 = 13/392 = r0.

with the obvious definition ofM > 0 and a := r1/ supt∈(0,1)

∏m
k=1 |t− tk| > 1. Both constants

a and M are independent of t and n.

4.2 Case (ii)

From the definition of Dr2 we have that
∏m

k=1 |t− tk| <
∏m

k=1 |w− tk| = r2 for any t ∈ [t1, 1]
and w ∈ Cr2 , but

∏m
k=1 |t − tk| ≤

∏m
k=1 |w − tk| = r2 :=

∏m
k=1 |tk| for any t ∈ [0, t1] and

w ∈ Cr2 . Then, for any t ∈ [t1, 1] we may derive a similar bound to the one derived in case
(i):

|gn(t)| ≤ 1

2πan

∮
Cr2

|g(w)dw|
|w − t|

=
M

an
, t ∈ [t1, 1],

with M > 0 and a > 1 independent of t and n.
But for t ∈ [0, t1] we must be more careful. From Hypothesis 1 we have that g(w) =

wσ−1f(w), with f(w) bounded in Dr2 , and
∏m

k=1 |w − tk| =
∏m

k=1 |tk| and |t − tk| ≤ tk for
k = 2, 3, 4, ...,m:

|gn(t)| ≤ M(t1 − t)n

2πtn1

∮
Cr2

|wσ−1f(w)dw|
|w − t|

, t ∈ [0, t1].

After the change of variable w → tw we find

|gn(t)| ≤ M(t1 − t)ntσ−1

2πtn1

∮
Cr2/t

|wσ−1f(tw)dw|
|w − 1|

, t ∈ [0, t1],
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where now, the integration contour is the scaled lemniscate boundary Cr2/t. For any t > 0,
the most left point of this scaled lemniscate is the point w = 0 and the most right point
is the point w = t0/t, where t0 is the most right point of the lemniscate boundary Cr2 . In
the limit t→ 0 the scaled lemniscate boundary Cr2/t becomes the imaginary axis traversed
downwards. In this new path we have that |f(wt)| ≤ M0, with M0 > 0 independent of
w ∈ Cr2/t and t > 0, and the integral∮

Cr2/t

|wσ−1dw|
|w − 1|

, 0 < σ < 1,

is finite and independent of t. Therefore,

|gn(t)| ≤ M(t1 − t)ntσ−1

tn1
, t ∈ [0, t1],

with the obvious definition of M > 0 independent of t and n.

4.3 Case (iii)

It is similar to the case (ii), but interchanging the roles of the points w = 0 and w = 1 and
the lemniscate Dr2 by Dr3 . In other words, case (iii) becomes case (ii) after the change of
variable w → 1 − w, considering the factorization g(w) = (1 − w)γ−1f(w) instead of the
factorization g(w) = wσ−1f(w), r3 instead of r2 and reversing the order of the points t1,
t2,..., tm. Then, similarly we obtain that, for any t ∈ [0, tm] we may derive a similar bound
to that one derived in case (i):

|gn(t)| ≤ M

an
, t ∈ [0, tm],

with M > 0 and a > 1 independent of t and n. On the other hand,

|gn(t)| ≤ M(t− tm)n(1− t)γ−1

(1− tm)n
, t ∈ [tm, 1),

with 0 < γ < 1, and a certain M > 0 independent of t and n.

4.4 Case (iv)

From the definition of Dr4 we have that
∏m

k=1 |t− tk| <
∏m

k=1 |w− tk| = r4 for any t ∈ [t1, tm]
and w ∈ Cr4 , but

∏m
k=1 |t − tk| ≤

∏m
k=1 |w − tk| = r4 :=

∏m
k=1 |tk| =

∏m
k=1 |1 − tk| for any

w ∈ Cr4 and t ∈ [0, t1] or t ∈ [tm, 1]. Then, for any t ∈ [t1, tm] we may derive a similar bound
to that one derived in case (i):

|gn(t)| ≤ M

an
, t ∈ [t1, tm],

with M > 0 and a > 1 independent of t and n.

11
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Figure 4: Case (iv). Half-lemniscates C0 and C1 for the example m = 3, certain t1 > 0, t2 = 1/2
and t3 = 1− t1 < 1.

But for t ∈ [0, t1] and t ∈ [tm, 1] we must be more careful. We consider only the case
t ∈ [0, t1], as the case t ∈ [tm, 1] is similar (the symmetry between cases (ii) and (iii) applies
here as well). We assume that the base points tk are symmetrically distributed with respect to
the middle point of the integration interval t = 1/2. This condition is superfluous and could
be eliminated, but then the analysis would be more cumbersome without providing more
generality. Then, for the seek of simplicity in the analysis, and without loss of generality,
we assume this symmetric distribution of the base points tk. We divide the lemniscate Cr4
into two mirror half-lemniscates C0 and C1, obtained after cutting Cr4 with the vertical line
<w = 1/2; Cr4 = C0 ∪ C1, (see Figure 4).

We use, in both half-lemniscates, C0 and C1, that |t− tk| ≤ |tk| for k = 2, 3, 4, ...,m and
that |w−t1| ≥ t1. On the other hand, in C0 we use the factorization g(w) = wσ−1f0(w), with
f0(w) := (1− w)γ−1f(w) bounded in C0; whereas in C1 we just use that g(w) is integrable:

|gn(t)| ≤ (t1 − t)n

2πtn1

∮
C0

|wσ−1f0(w)dw|
|w − t|

+
(t1 − t)n

2πtn1

∮
C1

|g(w)dw|
|w − t|

.

In the second integral we have that |w− t| ≥ c > 0 for any w ∈ C1, with c independent of t.
In the first integral we perform the change of variable w → tw. We find

|gn(t)| ≤ M0(t1 − t)ntσ−1

2πtn1

∮
C0/t

|wσ−1dw|
|w − 1|

+
(t1 − t)n

2πtn1

∮
C1

|g(w)dw|
|w − t|

.

where now, the integration contour in the first integral is the scaled half-lemniscate contour
C0/t, and M0 is a bound for f0(w) in C0. For any t > 0, the most left point of this scaled
half-lemniscate is the point w = 0 and the most right points are the two points w that satisfy
<w = 1/(2t). In the limit t→ 0 the scaled half-lemniscate C0/t becomes the imaginary axis
traversed downwards. Both integrals above are bounded by a constant independent of t and
n and then,

|gn(t)| ≤ M ′(t1 − t)n

tn1
[tσ−1 + 1] ≤ M(t1 − t)ntσ−1

tn1
, t ∈ (0, t1],

with 0 < σ < 1 and a certain constant M > 0 independent of t and n.

12



A similar analysis shows that, for t ∈ [tm, 1), we have

|gn(t)| ≤ M(t− tm)n(1− t)γ−1

(1− tm)n
, 0 < γ < 1

with M > 0 independent of t and n.

5 The uniform expansion of the integral F (z)
After all the preliminary results of the previous sections, we can formulate the main result
of the paper in the following theorem.

Theorem 1. Assume hypotheses 1-3 of Section 3 for the functions h(t, z) and g(t) and the
base points t1, t2, ..., tm. Then, for n = 1, 2, 3, ...,

F (z) =

∫ 1

0

h(t, z)g(t)dt =
n−1∑
k=0

m−1∑
s=0

Ak,sM [h(·, z); s, k] +Rn(z), (12)

where Ak,s are the multi-point Taylor coefficients of the function g(t) at the base points t1,
t2, ..., tm (see formulas (7)-(9)) that may be computed in either of the two forms described
in Section 2, and M [h(·, z); s, k] are the multi-point moments:

M [h(·, z); s, k] :=

∫ 1

0

h(t, z)ts

[
m∏
l=1

(t− tl)

]k
dt. (13)

On the other hand, the remainder Rn(z) may be bounded in the form

|Rn(z)| ≤MH

[
1

an
+ A tα+σ

1

n!Γ(α + σ)

Γ(n+ α + σ + 1)
+B (1− tm)γ+β n!Γ(γ + β)

Γ(n+ β + γ + 1)

]
, (14)

with

(A,B) :=


(0, 0) in case (i),
(1, 0) in case (ii),
(0, 1) in case (iii),
(1, 1) in case (iv),

(15)

where the constants a > 1, H,M > 0 independent on n and z where introduced in Hypothesis
2 and Section 4. The parameters α, β, σ and γ are defined in hypotheses 1 and 2. Therefore,
expansion (12) is uniformly convergent for z ∈ D in any of the four cases (i)-(iv); the
convergence is exponential in case (i) and of power type in the other three cases. More
precisely, when n→∞,

Rn(z) = O(a−n + An−σ−α +B n−γ−β).

13



Proof. Consider the multi-point Taylor expansion of the function g(t) at the base points
t1 < t2 < ... < tm, with the representation (9) of pk(t), that converges in the lemniscate Dr,
with (0, 1) ⊂ Dr and r = r1, r2, r3 or r4 according to the case (i)-(iv) considered. When we
replace the expansion (7) of g(t) into the integral in the right hand side of (2) and interchange
sum and integral we obtain (12), with

Rn(z) :=

∫ 1

0

h(t, z)gn(t)dt. (16)

The multi-point moments (13) of the function h(·, z) exists because of Hypothesis 2. From
here the analysis is different in the four cases (i)-(iv):

• Case (i). From Section 4.1 it is clear that the remainder gn(t) may be bounded in the
form |gn(t)| ≤ Ma−n, with M a positive constant independent on n and t and a > 1.
When we introduce this bound and use Hypothesis 2 in (16) we get (14), case (i).

• Case (ii). Write

Rn(z) =

∫ t1

0

h(t, z)gn(t)dt+

∫ 1

t1

h(t, z)gn(t)dt.

From Section 4.2 we have that |gn(t)| ≤ Ma−n, with a > 1, in the second integral
and |gn(t)| ≤ M(t1 − t)ntσ−1t−n1 in the first one. Introducing these bounds and using
Hypothesis 2 in the above formula we get

|Rn(z)| ≤ MH

tn1

∫ t1

0

tα+σ−1(t1 − t)ndt+
MH

an
=
MH

an
+MHtα+σ

1

∫ 1

0

tα+σ−1(1− t)ndt.

Formula (14) for case (ii) follows immediately.

• Case (iii). Write

Rn(z) =

∫ tm

0

h(t, z)gn(t)dt+

∫ 1

tm

h(t, z)gn(t)dt.

From Section 4.3 we have that |gn(t)| ≤ Ma−n, with a > 1, in the first integral and
|gn(t)| ≤M(t− tm)n(1− t)γ−1(1− tm)−n in the second one. Introducing these bounds
and using Hypothesis 2 in the above formula we find

|Rn(z)| ≤ MH

an
+

MH

(1− tm)n

∫ 1

tm

(1− t)β+γ−1(t− tm)ndt

=
MH

an
+

MH

(1− tm)n

∫ 1−tm

0

tγ+β−1(1− tm − t)ndt

=
MH

an
+MH(1− tm)γ+β

∫ 1

0

tγ+β−1(1− t)ndt.

Formula (14) for case (iii) follows immediately.

14



• Case (iv). Write

Rn(z) =

∫ t1

0

h(t, z)gn(t) dt+

∫ tm

t1

h(t, z)gn(t) dt +

∫ 1

tm

h(t, z)gn(t)dt.

From Section 4.4 we have that |gn(t)| ≤ Ma−n, with a > 1, in the second integral;
|gn(t)| ≤M(t1−t)ntσ−1t−n1 in the first one, and |gn(t)| ≤M(t−tm)n(1−t)γ−1(1−tm)−n

in the third one. Introducing these bounds and using Hypothesis 2 in the above formula
and after similar steps to those given in cases (ii) and (iii) we find (14) for case (iv).�

Remark 1. The proof of Theorem 1 in cases (ii)-(iv) is more involved than in case (i). We
could have repeated step by step the simpler proof of case (i) for the other three cases, but
with a = 1. Then that proof would not have shown the convergence of (12) in cases (ii)-(iv)
as the parameter a in formula (14) would not be large enough (> 1). Therefore, the more
involved proof in cases (ii)-(iv) is necessary to show the convergence.

Remark 2. In the best scenario, when the end points of the integration interval [0, 1] are
contained in the region Ω of analyticity of the function g(w) (case (i)) the convergence of
the expansion (12) is of exponential type. In the worse scenario that one or both end points
are not contained in Ω, then expansion (12) is still convergent, although the convergence is
only of power type.

Remark 3. It follows from (14) that, the larger α and β are, the faster the convergence of
the expansion of F (z) in cases (ii)-(iv) is. We have only considered the possibility α = β = 0
in case (i) because the bound |h(t, z)| ≤ Htα(1 − t)β with α and/or β > 0 does not mean
any improvement in the convergence speed of expansion (12): regardless α and/or β vanish
or not, we would derive formula (14) for the remainder in case (i). On the other hand, as we
will see in the examples below, the bound |h(t, z)| ≤ Htα(1− t)β with α and/or β > 0 is not
uncommon in practice, and then it is worth it to consider the possibility α and/or β ≥ 0 in
any of the four cases (i)-(iv).

Remark 4. We could make the theory a little bit more general by relaxing Hypothesis 2:
replacing "H independent on z" by "H an integrable function of the variable t". On the
one hand, the price to pay would be a more involved derivation of the uniform bounds of
Rn(z). On the other hand, the theses of Theorem 1 would be essentially the same ones, with
a slight modification of the form of (14). But moreover, as we can see in the next section,
the requirement "H constant" is usually enough in practice. Therefore, we do not consider
here that possible generalization of Theorem 1.

6 Examples
In this section we illustrate the applications of Theorem 1 in the derivation of expansions of
special functions F (z) in terms of elementary functions of z that are uniformly convergent
in large domains D of the variable z. Some of them are already known, other ones are new.
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Example 1. Define D = {z ∈ C; <z ≥ δ > 0}. Then, for z1, z2 ∈ D and u ∈ C, consider
the confluent hypergeometric function

M(z1, z1 + z2;u) :=
Γ(z1 + z2)

Γ(z1)Γ(z2)

∫ 1

0

tz1−1(1− t)z2−1eutdt.

It has the form considered in the above theorem with g(t) = eut, h(t, z1, z2) = tz1−1(1− t)z2−1

(we consider two uniform variables z1 and z2 instead of only one). We may take α = β = δ−1
and σ = γ = 1 (case (i)).

From (12)-(13) we derive the standard Taylor expansion of the the confluent M function
in powers of u [16, Sec. 13.2, eq. 13.2.3], with a remainder of the order O(a−n), for a certain
a > 1 uniformly in z1, z2 ∈ D.

Example 2. Define D = {z ∈ C; <z ≥ δ > 0}. Then, for z1, z2 ∈ D, d ∈ C and
u ∈ C \ [1,∞), consider the hypergeometric function

Γ(z1)Γ(z2)

Γ(z1 + z2)
2F1(d, z1, z1 + z2;u) =

∫ 1

0

tz1−1(1− t)z2−1(1− ut)−d dt,

We can apply Theorem 1 with g(t) = (1−ut)−d and h(t, z1, z2) = tz1−1(1−t)z2−1, considering
z1 and z2 as uniform variables. We may take α = β = δ − 1, σ = γ = 1 (case (i)). Then,
we take the points t1 = 0 and t2 = 1 as base points (m = 2) in order to better avoid the
singularity at t = 1/u. We obtain expansion [13, eq.(15)] with Rn(z) = O(a−n), a > 1,
uniformly in z1, z2 ∈ D.

Example 3. Define D = {z ∈ C; <z ≥ δ ∈ R} and consider the parameter c ∈ C \ N,
<c > 0. Consider the following integral representation of the incomplete gamma function

γ(c, z) = zc
∫ 1

0

e−zttc−1dt.

(We do not consider natural values of the parameter c, as the incomplete gamma function
is an elementary function in this case.) We consider z as the uniform variable, so that we
can apply Theorem 1 with g(t) := tc−d<ce and h(t, z) = e−zttd<ce−1, where dxe denotes the
least integer greater or equal to x. We may take σ = <c − d<ce + 1, γ = 1, α = d<ce − 1
and β = 0 (case (ii)). We take only one base point t1 = 1 (m = 1). We obtain a uniform
expansion similar to expansion [5, eq. (8)] with Rn(z) = O(n−<c) uniformly in z ∈ D.

Example 4. Define D = {z ∈ C; <z ≤ δ ∈ R} and consider the parameters (b, c) ∈
C × C \ N × N, with <b > <c > 0. Consider the following integral representation of the
confluent hypergeometric function

M(b, c; z) =

∫ 1

0

tc−1(1− t)b−c−1eztdt.

(We do not consider natural values for both parameters b and c, as the confluent hyper-
geometric function is an elementary function in this case.) We can apply Theorem 1 with

16



g(t) = tc−d<ce(1 − t)b−c−d<b−<ce and h(t, z) = ezttd<ce−1(1 − t)d<(b−c)e−1, considering z as the
uniform variable. We may take α = d<ce − 1, β = d<(b − c)e − 1, σ = <c − d<ce + 1 and
γ = <(b− c)−d<(b− c)e+ 1. We are in case (ii) if b− c ∈ N and c /∈ N, case (iii) if b− c /∈ N
and c ∈ N or case (iv) if c, b − c /∈ N. In any case, we take only one base point t1 = 1/2
(m = 1). We obtain a uniform expansion similar to expansion [6, eq. (21)] with the uniform
bound for Rn(z) given in Theorem 1.

Example 5. Define D = {z ∈ C; <z ≥ δ > 0}. Consider the following integral representa-
tion of the exponential integral

ezE(z) =

∫ ∞
0

e−zu

1 + u
du =

∫ 1

0

tz−1

1− log t
dt.

We can apply Theorem 1 with g(t) = (1 − log t)−1 and h(t, z) = tz−1, considering z as the
uniform variable. We may take α = δ − 1, β = 0, γ = 1 and any 0 < σ < 1 (case (ii)). We
take only one base point t1 = 1 (m = 1):

g(t) =
n−1∑
k=0

Ak(t− 1)k + gn(t).

The coefficients Ak may be computed in the form (see Appendix B)

A0 = 1, An =
n∑
k=0

k

n
B̃n−k(n), n ≥ 1, (17)

where B̃m(α) are the normalized Nörlund polynomials (see Appendix A). Then, from The-
orem 1,

ezE(z) =
n−1∑
k=0

AkHk(z) +Rn(z),

where Hk(z) are the elementary functions

Hk(z) :=

∫ 1

0

tz−1(t− 1)kdt = (−1)k
Γ(z)Γ(k + 1)

Γ(z + k + 1)
=

k∑
j=0

(
k

j

)
(−1)k−j

z + j
.

The remainder term behaves as Rn(z) = O(n1−δ−σ), with 0 < σ < 1 as close to 1 as we wish,
uniformly in z ∈ D.

Example 6. Define D = {z ∈ C; <z ≥ δ > 0} and consider the parameters b, c ∈ C with
<c > 0. Consider the following integral representation of the confluent hypergeometric U ,

U(c, b, z) =
1

Γ(c)

∫ ∞
0

e−zuuc−1(1 + u)b−c−1du =
1

Γ(c)

∫ 1

0

tz−1(− log t)c−1(1− log t)b−c−1dt.
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We can apply Theorem 1 with g(t) = (− log t)c−1(1 − log t)b−c−1 and h(t, z) = tz−1, consid-
ering z as the uniform variable. We may take α = δ − 1, β = 0, any 0 < σ < 1 and γ = 1
if <c ≥ 1 or γ = <c if 0 < <c < 1 (in order to ensure that f(w) := w1−σ(1 − w)1−γg(w)
is bounded in Cr). We are in case (ii) if c ∈ N or in case (iv) otherwise. In the first case
we could consider the Taylor expansion of the function g(t) at the base point t1 = 1 and
apply the results of Appendix B. Instead, we give only the expansion in the more general
case c ∈ C and consider t1 = 1/2 as the only base point:

g(t) =
n−1∑
k=0

Ak(c, b)

(
t− 1

2

)k
+ gn(t).

The coefficients Ak(c, b) are elementary functions of c and b:

A0(c, b) = (log 2)c−1(1 + log 2)b−c−1,

An(c, b) =
A0(c, b)

n!

n∑
k=1

(−1)kb(n, k)

(1 + log 2)k
(b− c− k)k 2F1

(
1− c,−k;−c+ b− k; 1 +

1

log 2

)
, n ≥ 1

(18)

where b(n, k) are partial ordinary Bell polynomials [19] that, for n = 1, 2, 3, ..., can be
computed recursively in the form

b(0, 0) = 1, b(n, 0) = 0, b(0, k) = 0,

b(n, k) =
n−k+1∑
j=1

(n− 1)!

(n− j)!
(−1)j+12jb(n− j, k − 1).

Therefore, from Theorem 1 we find

U(c, b, z) =
1

Γ(c)

[
n−1∑
k=0

Ak(c, b)Gk(z) +Rn(z)

]
, (19)

with Ak(c, b) defined in (18) and Gk(z) given by

Gk(z) :=

∫ 1

0

tz−1

(
t− 1

2

)k
dt =

(
1

2

)k
1

z
2F1(−k, 1; z + 1; 2) =

k∑
j=0

(
k

j

)(
−1

2

)k−j
1

z + j
.

Moreover, Rn(z) = O
(
n1−δ−σ +Bn−γ

)
, with σ as close to 1 as we wish and B = 0 if c ∈ N,

uniformly in z ∈ D.
As an illustration, we derive the following formula from (19) with n = 3, valid for x > 0:

U

(
2,

3

2
, x

)
'

8
(
x2 + 3x+ 2

)
log3 2 + 2

(
9x2 + 27x+ 10

)
log2 2 +

(
9x2 + 15x+ 34

)
log 2− 16x2

8x(x+ 1)(x+ 2) (1 + log 2)
7
2

.

Figure 5 compares the well-known Taylor and asymptotic approximations of the confluent
U(2, 3/2, x) function with the approximation given by Theorem 1.
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Figure 5: Approximations of U(2, 3
2 , x) (thicker graphics) given by the Taylor expansion [16, Sec.

13, eq. (13.2.2) and (13.2.42)] (left), the asymptotic expansion [16, Sec. 13, eq. (13.7.3)] (middle)
and the uniform expansion (19) (right) for x ∈ [0, 10] and five degrees of approximation n =
1, 2, 3, 4, 5 (thinner graphics). The approximations are similar for complex x and other values of
c, b.

7 Appendix A. Computation of the Nörlund polynomials

Consider the unbounded case given in the second formula in (1); see examples 5 and 6. In
this case, the above theory requires, as a previous step, the change of variable u → t given
by u = − log t to convert the second integral in (1) into the integral (2). Many times in
applications, the function g(u) in the integrand in (1) is analytic at u = 0, that is, g(− log t)
is analytic at t = 1 and then it is convenient to consider the standard Taylor expansion of
g(− log t) at t1 = 1 Then, the theory given above requires the computation of the Taylor
coefficients of the composite function g(− log t) at t = 1. But in practice, only the Taylor
coefficients of g(u) at u = 0 are available. Then, it is worth to consider the computation of
the Taylor coefficients Ak of the composite function g(− log t) at t = 1,

g(− log t) =
∞∑
k=0

Ak(t− 1)k, (20)

in terms of the coefficients ak of the Taylor expansion of g(u) at u = 0: g(u) =
∑∞

k=0 aku
k.

Two possible algorithms are given in propositions 1 and 2 in Appendix B. The formulation of
Proposition 1 requires the use of the normalized Nörlund polynomials B̃m(α) that we study
in this Appendix.

Consider the normalized Nörlund polynomials B̃m(α) := Bm(α)/m!, where Bm(α) are
the standard Nörlund polynomials [7, Sec. 24.16, eq. 24.16.9]. The polynomials B̃m(α) are
generated by the function

Fα(t) :=

(
t

et − 1

)α
=

∞∑
m=0

B̃m(α)tm, |t| < 2π, α ∈ C. (21)

Lemma 1. The normalized Nörlund polynomials B̃m(α) are polynomials in α of degree m,
B̃0(α) = 1 and, for m = 1, 2, 3, ..., they may be recursively computed in either of the following
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three forms:

(i) B̃m(α) =
1

m

m−1∑
k=0

α(k −m)− k
(m+ 1− k)!

B̃k(α), (22)

(ii) B̃m(α + 1) =
α−m
m

m∑
k=1

B̃m−k(α + 1)

(k + 1)!
− α

m
B̃m−1(α), (23)

or

(iii) B̃m(α) =
m∑
k=1

σmk α
k, (24)

with
σ0

0 := 1; σm0 := 0, m = 1, 2, 3, ...; σmm :=
(−1)m

2mm!

and, for k=m-1,m-2,m-3,...,1; m=2,3,4,...,

σmk = − 1

m+ k

[
σm−1
k−1 +

m∑
n=k+1

(
n

k − 1

)
σmn

]
. (25)

Proof. It is clear that B̃0(α) = 1. The recurrence relation (22) is proved in [4, Theorem 2]
introducing the expansion (21) into the differential equation t(et − 1)F ′α(t) = α[(1 − t)et −
1]Fα(t) and equating the coefficients of equal powers of t.

In order to prove (23), consider the Cauchy integral representation that follows from (21):

B̃m(α) =
1

2πi

∮ (
t

et − 1

)α
dt

tm+1
, (26)

where the integration contour is a closed loop around the point t = 0, contained inside the
disk D0(2π) and traversed once counterclockwise. Then, on the one hand, a simple algebra
shows that

B̃m(α) =
1

2πi

∮ (
t

et − 1

)α+1

(et − 1)
dt

tm+2
=

m+1∑
k=1

1

k!

1

2πi

∮ (
t

et − 1

)α+1
dt

tm+2−k =
m∑
k=0

B̃m−k(α + 1)

(k + 1)!
.

(27)

On the other hand, integrating by parts in (26) we find that, for m = 1, 2, 3, ...,

mB̃m(α) = α
[
B̃m(α)− B̃m−1(α)− B̃m(α + 1)

]
. (28)

Solving the two equations (27) and (28) for {B̃m(α), B̃m(α + 1)} we find (23).
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In order to prove (24)-(25), replace the right hand side of (24) into formula (28), writing

B̃m(α + 1) =
m∑
k=1

σmk (α + 1)k =
m∑
k=0

σmk

k∑
n=0

(
k
n

)
αn =

m∑
k=0

αk
m∑
n=k

(
n
k

)
σmn .

We obtain, for m = 0, 1, 2, ...,

−σm−1
0 α +

m∑
k=1

[
mσmk + σm−1

k−1

]
αk = −σm0 α

m+1∑
k=1

[
σmk−1 −

m∑
n=k−1

(
n

k − 1

)
σmn

]
αk.

When we identify the coefficients of every power αk, k = 0, 1, 2, ...,m + 1, we obtain
formulas (24)-(25).

From either of the three recursive formulas (i), (ii) or (iii), it is straightforward to show
that Bm(α) is a polynomial in α of degree m. �

An alternative recursive formula to (24)-(25) may be found in [10], although it is more
involved. Nörlund polynomials are the particular case x = 0 of the generalized Bernoulli
polynomials B(α)

n (x). Several (more or less involved) explicit formulas, recurrences relation
and properties of the Bernoulli polynomials may be found in [1, 3, 10, 21].

In the following table we indicate the first polynomials B̃m(n + α); n = 0, 1, 2, ...; m =
0, 1, 2, .., n and how to compute them recursively using algorithms (i) or (ii).

B̃m(n+ α− 1) m = 0 m = 1 m = 2 m = 3 · ·

n = 0 1

n = 1 1 −α
2

n = 2 1 −α+1
2

(3α+2)(α+1)
24

n = 3 1 −α+2
2

(3α+5)(α+2)
24 − (α+1)(α+2)2

48

· · · · · ·

· · · · · · ·

Table 1: Infinite triangle of the Nörlund polynomials B̃m(n + α); n = 0, 1, 2, ...; m =

0, 1, 2, .., n. The recurrence relation (22) let us compute every polynomial B̃m(n + α) from
the previous polynomials B̃k(n + α), k = 0, 1, 2, ...,m − 1, located in its same row. The
recurrence relation (23) let us compute every polynomial B̃m(n + α) from the previous
polynomials B̃k(n + α), k = 0, 1, 2, ...,m − 1, located in its same row and the polynomial
B̃m−1(n+ α− 1) located in the previous row and column.
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8 Appendix B. Computation of the Taylor coefficients of
the composite function g(− log t)

In this appendix we compute the Taylor coefficients Ak of the composite function g(− log t)
at t = 1,

g(− log t) =
∞∑
k=0

Ak(t− 1)k, (29)

in terms of the coefficients ak of the Taylor expansion of g(u) at u = 0: g(u) =
∑∞

k=0 aku
k.

Two possible algorithms are given in the following two propositions.

Proposition 1. We have that A0 = a0 := g(0) and, for n = 1, 2, 3, ...,

An =
n∑
k=0

k

n
ak(−1)kB̃n−k(n), ak :=

g(k)(0)

k!
. (30)

Proof. We have that

An :=
f (n)(1)

n!
, f(u) := g(− log u).

Therefore,

An :=
1

n!

dn

dun
[g(− log u)]u=1 =

1

2πi

∮
C

f(u)

(u− 1)n+1
du, (31)

where the integration path is a circle C of radius r < 1 centered at u = 1, |u − 1| = r,
traversed once counterclockwise, see Figure 6(a). After the change of integration variable
u→ t given by u = e−t we have that

An =
−1

2πi

∮
Γ

g(t)e−t

(e−t − 1)n+1
dt, (32)

where the integration contour Γ is the path |e−t − 1| = r depicted in Figure 6(b). Then we
have that

An :=
−1

n!

dn

dtn

[(
t

e−t − 1

)n+1

g(t)e−t

]
t=0

. (33)

We write (
t

e−t − 1

)n+1

g(t)e−t =

(
t

e−t − 1

)n+1

g(t) +

(
t

e−t − 1

)n
tg(t).

Then, from this formula, equation (33), the expansions g(t) =
∑∞

k=0 akt
k and tg(t) =∑∞

k=1 ak−1t
k and (21) we find that A0 = a0 and, for n = 1, 2, 3, ...,

An =
n∑
k=0

(−1)kak[B̃n−k−1(n) + B̃n−k(n+ 1)], (34)
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Re(u)

Im(u)

10

r

C

1-r 1+r

Im(t)

Re(t)

-Log(1+r)

ιπ/2

−ιπ/2

Γ

-Log(1-r)

-Log2

(a) (b)

Figure 6: (a) The integration contour in (31) is a circle |u − 1| = r centered at u = 1 and radius
r < 1 contained inside the analyticity region of f(u). (b) The integration contour Γ in (32) is the
path |e−t − 1| = r contained inside the analyticity region of g(t) = f(e−t).

with B̃−1(1) := 0. Formula (30) follows from this one and (28). �

Formula (30) is an explicit formula for the computation of the coefficients An. In the
following proposition we give some alternative recursive algorithms for the computation of
these coefficients.

Proposition 2. The coefficients An in expansion (29) may be computed in the following
form: A0 = a0 and, for n = 1, 2, 3, ...,

An =
n−1∑
k=0

bn,k+1ak+1, ak :=
g(k)(0)

k!
. (35)

where bn,m are the partial ordinary Bell numbers [19]. They may be computed recursively
as follows: b0,0 = 1, bn+1,0 = 0 for n = 0, 1, 2, ..., and the remaining ones are computed by
means of the formula

bn,m =
n−1∑

k=m−1

(−1)n−k
bk,m−1

n− k
, m = 1, 2, 3, ..., n, n = 1, 2, 3, .... (36)

Proof. In order to derive formula (35) we invoke Faá di Bruno’s formula [2] for the succes-
sive derivatives of a composite function: the coefficients An of the Taylor expansion of the
composite function f(t(u)) at u = u0 are given by the formula

f(t(u)) =
∞∑
n=0

An(u− u0)n, An =
n∑

m=1

bn,m
m!

f (m)(t0), t0 := t(u0).
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Formula (35) is a particular case of this formula with t(u) = − log u and u0 = 1.
In order to derive formula (36) we consider the recursive algorithm given in [19] for

the partial ordinary Bell polynomials bn,m: b0,0 = 1, bn+1,0 = 0 for n = 0, 1, 2, ..., and the
remaining ones are, for m = 1, 2, 3, ..., n, n = 1, 2, 3, ....,

bn,m =
n−1∑

k=m−1

t(n−k)(u0)

(n− k)!
bk,m−1.

Formula (36) is the particular case of this one with t(u) = − log u, u0 = 1. �
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