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Abstract

Several convergent expansions are available for most of the special functions of
the mathematical physics, as well as some asymptotic expansions [NIST Handbook of
Mathematical Functions, 2010]. Usually, both type of expansions are given in terms
of elementary functions; the convergent expansions provide a good approximation for
small values of a certain variable, whereas the asymptotic expansions provide a good
approximation for large values of that variable. Also, quite often, those expansions are
not uniform: the convergent expansions fail for large values of the variable and the
asymptotic expansions fail for small values. In recent papers [Bujanda & all, 2018-
2019] we have designed new expansions of certain special functions, given in terms of
elementary functions, that are uniform in certain variables, providing good approxima-
tions of those special functions in large regions of the variables, in particular for large
and small values of the variables. The technique used in [Bujanda & all, 2018-2019] is
based in a suitable integral representation of the special function. In this paper we face
the problem of designing a general theory of uniform approximations of special func-
tions based on their integral representations. Then we con51der the following integral
transform of a function g(t) with kernel h(t, z) = fo t)dt. We require
for the function A(t, z) to be uniformly bounded for z€DC (C by a function H (t)
integrable in ¢ € [0,1], and for the function g(¢) to be analytic in an open region 2
that contains the open interval (0,1). Then we derive expansions of F(z) in terms of
the moments of the function h, M[h(, fo (t, z)t"dt, that are uniformly con-
vergent for z € D. The convergence of the expanmon is of exponential order O(a™"),
a > 1, when [0,1] € Q and of power order O(n~?), b > 0, when [0,1] ¢ . Most of
the special functions F'(z) having an integral representation may be cast in this form,
possibly after an appropriate change of the integration variable. Then, special interest
has the case when the moments M|[h(-, z),n] are elementary functions of z, as the uni-
formly convergent expansion derived for F(z) is given in terms of elementary functions.
We illustrate the theory with several examples of special functions different from those
considered in [Bujanda & all, 2018-2019].
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1 Introduction

Most of the special functions of the mathematical physics have an integral representation
that may be written in the form of an integral transform of a function g(¢) with kernel (¢, z)
of the form [17],

F(z):/ h(t,z)g(t)dt.

In this formula, (a,b) is a bounded or unbounded interval, h(-, z)g(-) is integrable on (a, b)
and g¢(t) is analytic in a region @ C C that includes the open set (a,b) C Q. The function
F(2) could also be a function of other extra variables that we assume that are included in
h and/or g. We omit further reference to other possible extra variables, as we are interested
in the function F' as function of a single (selected) variable z.

After an affine change of variable and/or splitting the integration interval if necessary
we may assume, without loss of generality, that [a,b] = [0,1] when [a,b] is bounded, or
[a,b) = [0, 00) when (a,b) is unbounded. Then, without loss of generality,

F(z) = /0 h(t,z)g(t)dt, or F(z) = /OOO h(u, 2)g(u)du, (1)

with (0,1) C Q in the first case and (0,00) C € in the second case. But moreover, after
the change of variable u = —logt, the second integral in (1) may be written in the form of
the first one with h(t, 2) and ¢(t) identified with t=*h(—logt, z) and g(— logt) respectively.
Therefore, without loss of generality, we consider integral transforms of a function g(t) with
kernel h(t, z) of the form

F(z) = /0 h(t, z)g(t)dt, z €D, (2)

where D is a certain region (bounded or unbounded) of the complex plane. It is clear that,
when the integration interval of the original integral representation of the special function
F(z) is unbounded (second formula in (1)) then, in general, the transformation u = —logt
makes the point ¢ = 0 in (2) a singular point of g(t).

In previous papers [5, 6, 15|, we have derived analytic expansions of several examples
of special functions F(z) having the form of the first integral in (1). That is, we have
consider there several particular examples of functions h(t, z) and ¢(¢); and with the following
assumptions for the functions h and g:

e (i) |h(t,2)] < H(t) for z € D with H integrable on [0, 1],



Figure 1: Approximations of %Jl (z) (thicker graphics) given by the Taylor expansion [18, Sec. 2,
eq. (10.2.2)] (left), the asymptotic expansion [18, Sec. 17, eq. (10.17.3)] (middle) and the uniform
expansion [15, Theorem 1] (right) for = € [0,10] and five degrees of approximation n = 1,2,3,4,5
(thinner graphics). The approximations are similar for complex x and other values of v.

e (ii) g(t) is analytic in a region 2 C C that contains the open set (0,1) C €2,

e (iii) the moments of h, M[h(-, 2); k] := fol h(t, z)t*dt are elementary functions of z.

Then expansions derived in [5, 6, 15] have the following three properties:

e (a) The expansion is uniform for z in an unbounded subset D C C that contains the
point z = 0,

e (b) The expansion is convergent,

e (c) The terms of the expansion are elementary functions of z.

We have named those expansions uniform expansions because of the first property above.
As an illustration of this type of approximations, we mention the following formula derived
in [15] and valid for = > 0:

157 3x* — 14022 + 360

g3 3(7) = 320

5(x? — 18)
214

+ 01(56)] rsing + { +0y(z)| cosz,  (3)

with [61(x)] < 0.0062 and |65(x)| < 0.051. This approximation is the particular case n =
v = 3 of the general n—order uniform approximation of J,(x) given in [15, Theorem 1.
Figure 1 compares the n—th order approximation of J;(z) given in [15, Theorem 1] with the
well-known Taylor and asymptotic approximations of Ji(x).

Roughly speaking, the convergent (Taylor) expansions and the asymptotic expansions
of F(z) are obtained by replacing h(t, z) in the integrand above by its Taylor expansion,
as a function of z, at z = 0 (convergent) or at z = oo (asymptotic), and interchanging
sum and integral. In general, the Taylor remainder in the Taylor expansion of h(t,z) is
not uniformly bounded in z and then, the resulting convergent or asymptotic expansions
of F(z) are not uniform in z. We have derived the uniform expansions given in [5, 6, 15]
proceeding in the complementary way: by replacing ¢(t) in the integrand above by its Taylor



expansion at an appropriate point to, g(t) = Z;(l) a(t —to)* + g, (t), and interchanging sum

and integral. Then, we have proved, in those particular examples, that the remainder term
fol h(t, z)gn(t)dt is uniformly bounded in z and vanishes in the limit n — co.

The purpose of this paper is to generalize the above idea: the formulation of a general
theory of analytic expansions of integral transforms (2) (that include the unbounded case
given in the second formula in (1) after the logarithmic change of variable) that satisfy
the three properties (a), (b), (c) listed above. We will see below that, when 0 € D, the
requirement (i) mentioned above assures property (a). The requirement (ii) assures property
(b), and the requirement (iii) assures property (c). Although the meaning of "elementary
function" in (¢) must be clarified. If we want to be very general, we may just consider that
"elementary" means that the moments M|[h(-, z); k| are functions of fewer variables than
F(z) (this means that at least one of the "extra" variables of F'(z) is in g(¢)). On the other
hand, if we want to compare the uniform property of the expansion that we are going to
derive in this paper with the standard Taylor or asymptotic expansions of F'(z) given, quite
often, in terms of powers of z, we must be more demanding and establish that "elementary"
means that the moments MIh(-, z); k] must be some of the classical elementary functions of
z |20, Chap. 4].

In the particular examples of special functions considered in [5, 6, 15|, we have only
considered standard Taylor expansions of ¢g(t) at an appropriate point ¢ty € [0, 1]. This was
enough as long as, in those examples, the disk D, (ty) of convergence of the Taylor series is
contained in 2. But in other situations the function g(¢) may possess singularities located
near the integration interval (0, 1) such that D, (ty) ¢ €2 for any t, € Q. It has been argued
in [14] that, in this case, a multi-point Taylor expansion at conveniently chosen base points
is much more appropriate, because the lemniscate of convergence of the multi-point Taylor
expansion avoids the singularities of g(t) more efficiently than the disk of convergence of the
standard Taylor expansion. Then, in order to make the analysis more general, we do not
only consider the standard Taylor expansions of g(¢), but multi-point Taylor expansions of
g(t) [11, 12].

The paper is organized as follows. In sections 2, 3 and 4 we establish the theoretical
framework necessary for the derivation of the main result of the paper in Section 5. In Section
2 we briefly review the theory of multi-point Taylor expansions introduced in {11, 12]. The
hypotheses required on the functions g and h in the integral (2) are established in Section
3. In Section 4 we study the speed of convergence of the multi-point Taylor expansion of
g(t), specially when ¢ approaches the boundary of the convergence region of the expansion.
The end points 0,1 of the integration interval in (2) may be regular or singular points of
the function ¢(t), and this fact is an essential aspect in the analysis. Then, in the remaining
of the paper, we consider four different situations concerning the position of the end points

= 0,1 of the integration interval in (2) with respect to §2:

e Case (i) [0,1] C Q.
e Case (i) (0,1] C ©, [0,1] Z Q.
o Case (i) [0,1) € ©, [0,1] ¢ Q.



e Case (iv) (0,1) C ©, [0,1] £ Q.

The main result of the paper is contained in Section 5, where we derive a uniformly
convergent expansion of F'(z), with different bounds for the remainder for every one of
the above four cases. Section 6 contains some examples of special functions that illustrate
the theory. Finally, in appendices 1 and 2 we give some details on how to compute the
coefficients of the expansion when the integration interval is unbounded and the change of
variable u = — logt is required (second formula in (1)).

2 Multi-point Taylor expansions

In this section we summarize the main results about multi-point Taylor expansions of analytic
functions given in [11, 12|, adapted to the applications that we need in this paper. We assume
that g(w) is an analytic function of w in a region €2 that contains the open interval (0, 1).
Take m arbitrary real points t; <ty < t3 < ... <1, and define the open lemniscate

Dpi={weQ, [(w—t)(w—tz) - (w—tn)] <1}, r<p, (4)

with
p=Infyeore {|(w —t)(w —t2) -+ - (w — 1)} - (5)

The requirement r < p assures that the lemniscate D, C €, as D, is the largest possible
lemniscate with base points t;, k = 1,2, ..., m, that may be included in €2. We assume that
the points t; < ty < t3 < ... < t,,, and the "radius" r of the lemniscate are chosen in such a
way that (0,1) C D,., that is, that r > ry, with

ro := supye(o,n) {[(E = 1)t = o) - (E = L)}, (6)

Then, D, is the smallest possible lemniscate with base points ¢, k = 1, 2, ..., m, that contains
the interval (0,1). It is explained in [14] that, the more singularities of g(w) are located near
the interval (0,1) (the closer the border of € is to the interval (0, 1)), the more base points
t1, ta, ..., tm located along the interval (0, 1) and its vicinity must be taken in order to assure
that p > ro. Therefore, in practice, we can always find an appropriate selection of the base
points t; < ty < t3 < ... < t,, that assures rg < p and we can define a lemniscate D, with
ro <r < p, that is, (0,1) C D, C Q.

For example, for the function g(¢t) = (2t + 1)7!, we may take m = 1, ¢; = 1/2 and
1/2 < r < 1; in this case the lemniscate D, is nothing but a disk of radius 1/2 < r <1
with center at 1/2. For the function g(¢) = (5 — 16t + 16¢*)~!, we may take m = 2, t; = 0,
to = 1 and 1/4 < r < 5/16; in this case the lemniscate D, is a Cassini oval of "radius"
1/4 < r < 5/16 with foci at the points 0,1. For the function g(t) = (20t? — 8t + 1)~ we
may take m =3, t; = 0, ty = 1/2, t3 = 1 and 1/(12v/3) < r < v/13/(204/10); in this case D,
is a lemniscate of "radius" 1/(12v/3) < r < v/13/(204/10) with foci at the points 0,1/2, 1.
See Figure 2.
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Figure 2: In the tree pictures, the crossed points represent the singularities of the given functions
g(t) and define the value of p. (a) g(t) = (2t + 1)~!. Disk of radius 79 = 1/2 < r < p = 1 centered
at 1/2. (b) g(t) = (5 — 16t + 16t%)~!. Cassini oval of radius rp = 1/4 < r < p = 5/16 and foci
at 0,1. (c) g(t) = (20t> — 8¢ 4+ 1)~! Lemniscate of radius 79 = 1/(12v/3) < r < p = /13/(201/10)
and foci at 0,1/2, 1. In every example, the lemniscate D, contains the interval (0, 1) but avoids the
singularities of g(w). The more base points t1, to,..., t,, the lemniscate D, has, the better it avoids
the singularities of g(w), as D, becomes more and more thiner (always containing the interval (0,1))
as we can see in the sequence of examples (a)-(b)-(c).

The function g(w) has the following multi-point Taylor expansion at the m base points
t1, ta, ..., tm, that converges uniformly and absolutely in D, [11, 12]:

+ gn(w), (7)

m

o) =Y py(w) [r[(w )

s=1

where py(w) are polynomials of degree m — 1. In [11, 12] we can find the following Lagrange
representation of the polynomials py(w):

pk(w) — Z Hs:l,s;éj(w — ts) (8)

Ak 5 )
=1 ’ H?:l,s;é](t] - ts)

with

Ly L [ 9(w)/(w ~1,) ]
_ k— m _ k ’
B R U R DYWL

S O g(w)
ST pldwk | T (0 — t)F

S:1,S;éj

On the other hand, for the computational purposes of this paper, it is more convenient to
use the standard representation

pr(w) = Z Akaj. 9)

The coefficients Ay ; may be computed directly from (8) in terms of the coefficients ay, ; just
collecting equal powers of w. Alternatively, we may compute the coefficients Ay ; using the



following recurrent algorithm. For k = 1,2, 3, ..., we define the sequence of functions

m

Si(w) = ¢k—1(wé(—w])?k—1(W)7 bo(w) = g(w), Ulw) = H(w 1),

s=1

Then, for every k = 0,1,2, ..., the coefficients Ay ;, 7 = 0,1,2,...,m — 1, are the solution of
the following Van-Dermonde system

1ty 2 et Apo Pi(t1)
1ty t2 . otpt Ap1 Oi(t2)
1 t, t2 .. tm! Apm—1 Or(tm)

where, for £ =0,1,2,..., and j = 1,2, 3, ..., m, the numbers ¢ (¢;) are computed in the form

IRT Pr—1(w) — pr—1(w) _ 1 (ty) — Pl (L))
W) =T T It 1)

In formula (7), g,(w) is the multi-point Taylor remainder that may be represented by
means of the Cauchy integral

_ s (w —t)" g(s)ds .
Gn(w) = o j{; W [ (st € D,. (10)

In this formula, the integration contour C,. C €2 is the boundary of a lemniscate D, _., with
r — e > 0 and small enough € such that C, C €,

Cri={weQ, |(w—t)(w—ta) - (w—1tn)|=r—¢c CQ.

When w =t € (0,1) and [0,1] C © (case (i)) we may chose the base points g, k = 1,2,....,m
such that C, C Q with e = 0. When [0, 1] ¢ Q (cases (ii), (iii), (iv)) it is not possible to take
e = 0, as the contour C, would contain the points s = 0 and/or s = 1. In any case, for any
t € (0,1) and small enough ¢, the contour C, encircles, not only the points ti, to,..., t,,, but
also the point ¢.

In Section 5 we derive a convergent and uniform expansion of F(z) by replacing g(¢)
in the integrand in (2) by its multi-point Taylor expansion (7) and interchanging sum and
integral. We show the convergence of the resulting expansion for F(z) when the interval
(0,1) is contained in the lemniscate D, of uniform convergence of (7), that is, when p > 7.
In order to assure that p > rq, an appropriate election of the number and location of the base
points t1,...t,, is essential, specially in the more delicate case (0,1) C Q but [0,1] Z Q. In
any case, whenever (0, 1) C €, it is always possible to choose appropriate points t; < ... < t,,
such that p > rg.



3 Hypotheses

In this section we clearly set the hypotheses required for the two factors h(t, z) and g(t) in the
integrand of (2), according to the four different cases (i)-(iv) mentioned in the introduction,
and the hypothesis required for the base points 1, ta, ..., .

As we have already mentioned in the introduction, we assume that g(w) is analytic in an
open region ) that contains the interval [0, 1] except, possibly, for an integrable singularity
at w = 0 and/or at w = 1. More precisely:

Hypothesis 1. We assume that g(w) is analytic in an open region Q that contains the
interval (0,1) and the function f(w) = w'™7(1 —w)'g(w), with 0 < o,y < 1, is bounded
in . More precisely:
o=v=1 in case (i),
o<1l,v=1 in case (ii),
o=1,v<1 in case (iii),
0,7 <1 in case (iv).

We have also mentioned in the introduction that h(t, z) is uniformly bounded when z € D
by a function of ¢ integrable on [0, 1]. More precisely:

Hypothesis 2. We assume that |h(t,2)] < Ht*(1 —t)? for (t,z) € [0,1] x D, with H > 0
independent of z andt and o +o >0, B+ v > 0.

Observe that it is natural to assume this form for the bound of the function h(t, z), as
the function (-, z)g(-) must be integrable in [0, 1].

Finally, as we have mentioned in the previous section, the m base points t; < t, < ... < t1,,
can always be chosen appropriately:

Hypothesis 3. We choose m base points t| < ty < ... < t,, such that the lemniscate D,
defined in (4) satisfies (0,1) C D, C Q, that is, 1o < 1 < p (see equations (5) and (6)).

4 Analysis of the remainder g, ()

In this section we derive a bound for the remainder g,(t), t € (0, 1), of the multi-point Taylor
expansion of g(t) in the lemniscate D, (see (7)) appropriate for our purposes. The analysis
is more involved when one or both end points of the integration interval, w = 0 or w = 1,
are singular points of g(w). The analysis in this section resembles the analysis used in [8, 9]
to determine the asymptotic behavior of the standard Taylor coefficients of functions g(w)
with integrable singularities. Here we analyze the asymptotic behavior of the remainder
gn(t), and not only for the standard Taylor expansion, but for a general multi-point Taylor
expansion.

For every one of the four cases (i)-(iv) mentioned in the introduction, we consider a
different lemniscate D,., j = 1,2,3,4, with r; < p (recall the definition (5) of the maximum



"radius" p). According to Hypotheses 1 and 3, the base points ¢, k = 1,2,...,m, and the
"radius" r > ry of any lemniscate D, C Q with base points ¢ (recall the definition (6) of
the "minimal radius" r) must satisfy the following properties:

e Case (i) The "radius" 7y of the lemniscate D,, must satisfy the inequality r; > ro >
max{[TzZy [tel, TTpzy 11— tl}-

e Case (ii) We have t; > 0. The "radius" ry of the lemniscate D,, must satisfy ry :=
[Tiey [te] > ro > TTiL; [1 — t&]. This condition assures that the interval (0,1] C D,,;
the point w =0¢€ D,, but w=0¢ D,,.

e Case (iii) We have t,, < 1. The "radius" r3 of the lemniscate D,, must satisfy r3 :=
[Ty [T —ti] > 7o > T,y |tx]. This condition assures that the interval [0,1) C D,;
the point w =1¢€ D,, but w=1¢ D,,.

e Case (iv) We have 0 < t; < t,, < 1. The "radius" r4 of the lemniscate D,, must satisfy
74 = [z Itkl = TTi=y |1 — t&]. This condition assures that the interval (0,1) C D,,;
the points w =0,1 € D,, but w=0,1¢ D,,.

Recall the Cauchy integral representation of the remainder g,(w) given in (10), now
restricted to w =t € (0,1),

gu(t) = ez =) ]{ glw)dw , t e (0,1). (11)
2mi o, (W=t T (w—t,)"

where the w—integration contour C, is the boundary of the lemniscate D,_, with a "radius"
r —¢€, € > 0, such that C,. C 2. Then, in principle, only in case (i) we can take ¢ = 0 and
a "radius" r = 7y such that [0,1] C C, C Q. In the other three cases, in principle, we must
take € > 0 and a "radius" r = ry —€ < rg, k = 2,3,4, such that (0,1) C D, C Q but
0,1] ¢ D, C Q. In any of the four cases, in particular in the three cases (ii), (iii), (iv), the
above integral is a (constant) function of € that is defined for e = 0 (r = ) and is continuous
as a function of € as it is the integral of an integrable function. Therefore, in any of the cases
(i), (iii), (iv), we can take the limit € — 0 (r — %) and consider that the "radius" r of the
lemniscate used in the above integral is the radius r = r, k = 1,2, 3,4, considered above.
Then, in cases (ii), (iii), (iv), this limit lemniscate D, ¢ €, although D, \ {0,1} C Q. In
any case, we may consider that the "radius" r of the lemniscate boundary C) that defines
the integration contour in (11) is such that the interval [0, 1] C D,. Figure 3 illustrates this
discussion with m = 3 and a certain admissible selection of base points 1, t5 and 3.

In the remaining of this section we derive an appropriate bound for the remainder g, (t).
The analysis strongly depends on the case (i)-(iv) under consideration.

4.1 Case (i)

From the definition of D,, we have that [[}", |t — tx| < [, |w — tx| = r1 for any ¢ € [0, 1]
and w € C,,. Therefore,

nl0)] < o 1200 te o]
= 2mat Je,  Jw—t an’ T
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Figure 3: Consider three base points: m = 3. (a) Case (i) A possible selection of appropriate
base points is t; = 0, t = 1/2, t3 = 1 and r; = 1/20 > 79 = 1/(12V/3). (b) Case (ii) A possible
selection of appropriate base points is t; = 1/10, to = 1/2, t3 = 1 and ry = t1tats = 1/20 = ry.
(c) Case (iii) A possible selection of appropriate base points is t; = 0, to = 1/2, t3 = 9/10 and
rg = (1 —t1)(1 —t2)(1 — t3) = 1/20 = r¢. (d) Case (iv) A possible selection of appropriate base
pOiIltS 18 tl = 1/14, tg = 1/2, t3 =1- tl and rq4 = t1t2t3 = 13/392 =T0-

with the obvious definition of M > 0 and a := 71/ sup,c g1y [ [, [t —t&| > 1. Both constants
a and M are independent of ¢ and n.

4.2 Case (ii)

From the definition of D,, we have that [[}", [t — tx| < [[}Z, |w —tx| = ro for any t € [t;, 1]
and w € C,,, but [[o, |t — x| < [, |w —tx] = ro := [}, |ts| for any ¢ € [0,¢;] and
w € C,,. Then, for any t € [t;,1] we may derive a similar bound to the one derived in case

(1):
lg(w)dw| M

1
L] < =, tet,1],
001 < 5o b ST = 1,1

with M > 0 and a > 1 independent of ¢ and n.

But for ¢ € [0,¢;] we must be more careful. From Hypothesis 1 we have that g(w) =
w? ! f(w), with f(w) bounded in D,,, and [[;—, |w — tx| = [1re, Itx| and |t — tx| < & for
k=23,4,...m:

Mty —t)" w L f(w)dw
i) < LG f - T T, telo.n)
ity c lw — 1|
After the change of variable w — tw we find
Mty —t)"to* w ! f(tw)dw
i) < LU TSl teo.b,
27ty Cry/t lw —1]

10



where now, the integration contour is the scaled lemniscate boundary C,,/t. For any ¢ > 0,
the most left point of this scaled lemniscate is the point w = 0 and the most right point
is the point w = ty/t, where ty is the most right point of the lemniscate boundary C,,. In
the limit ¢ — 0 the scaled lemniscate boundary C,., /t becomes the imaginary axis traversed
downwards. In this new path we have that |f(wt)| < My, with My > 0 independent of
w € Cp,/t and t > 0, and the integral

a—ld
]{ u, 0<o<1l,
Cry /1t jw — 1]

is finite and independent of ¢. Therefore,

Mty —t)o !
tr ’

|gn ()] < t€[0,4],

with the obvious definition of M > 0 independent of ¢ and n.

4.3 Case (iii)

It is similar to the case (ii), but interchanging the roles of the points w = 0 and w = 1 and
the lemniscate D,, by D,,. In other words, case (iii) becomes case (ii) after the change of
variable w — 1 — w, considering the factorization g(w) = (1 — w)?""!f(w) instead of the
factorization g(w) = w?~!f(w), r3 instead of ro and reversing the order of the points ¢,
to,..., tm. Then, similarly we obtain that, for any ¢ € [0, ¢,,] we may derive a similar bound
to that one derived in case (i):

lgn(8)] < t € [0, tm],

Ea
with M > 0 and a > 1 independent of ¢ and n. On the other hand,

Mt —tp)"(1—t)7 !
(1 - tm)n 7

with 0 < v < 1, and a certain M > 0 independent of ¢ and n.

t € [tm, 1),

lgn(B)] <

4.4 Case (iv)

From the definition of D,, we have that [[}", [t —tx| < [[,=, |w—tx| = 74 for any t € [t1,t,,]
and w € C,,, but [[}2, [t — tu] < L, |w—te| = ra == T1, Itel = 1oy |1 — t| for any
w e C,, and t € [0,t,] or t € [t,,,1]. Then, for any ¢ € [ty,,,] we may derive a similar bound
to that one derived in case (i):

M
) te HlahﬂL

n t < —
a0 < —

with M > 0 and a > 1 independent of ¢ and n.
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Figure 4: Case (iv). Half-lemniscates Cy and C for the example m = 3, certain ¢t; > 0, to = 1/2
and t3 =1—1¢; < 1.

But for ¢ € [0,¢;] and ¢ € [t,,, 1] we must be more careful. We consider only the case
t € [0,t1], as the case t € [t,,, 1] is similar (the symmetry between cases (ii) and (iii) applies
here as well). We assume that the base points ¢ are symmetrically distributed with respect to
the middle point of the integration interval ¢ = 1/2. This condition is superfluous and could
be eliminated, but then the analysis would be more cumbersome without providing more
generality. Then, for the seek of simplicity in the analysis, and without loss of generality,
we assume this symmetric distribution of the base points t,. We divide the lemniscate C,,
into two mirror half-lemniscates Cy and Cf, obtained after cutting C,, with the vertical line
Rw =1/2; C,, = Cy U C}, (see Figure 4).

We use, in both half-lemniscates, Cy and C, that |t — ¢ < |tx| for k = 2,3,4,...,m and
that |w—t;] > t;. On the other hand, in Cyy we use the factorization g(w) = w’ ! fo(w), with
fo(w) := (1 —w)" ! f(w) bounded in Cy; whereas in C; we just use that g(w) is integrable:

(t1 —t)nj{ |w? ™" fo(w)dw| n (t1 —t)n% lg(w)dw|

27t |w — ¢ 27t} Cw—t]

lgn ()] <

In the second integral we have that |w —t| > ¢ > 0 for any w € C}, with ¢ independent of ¢.
In the first integral we perform the change of variable w — tw. We find

Mo(tl—t)"t”‘17{ |w? L dw| N (tl—t)"]{ lg(w)dw|
Co C

27t} s lw—1 27t} o |w—t]

lgn ()] <

where now, the integration contour in the first integral is the scaled half-lemniscate contour
Co/t, and My is a bound for fo(w) in Cy. For any t > 0, the most left point of this scaled
half-lemniscate is the point w = 0 and the most right points are the two points w that satisfy
Rw = 1/(2t). In the limit ¢ — 0 the scaled half-lemniscate Cj/t becomes the imaginary axis
traversed downwards. Both integrals above are bounded by a constant independent of ¢ and
n and then,

M'(t; —t)™ Mty — )™t
(1 )[ta—1+1]< (1 )

>~ ’ le (07t1]7
tr tr

lgn (8] <

with 0 < o < 1 and a certain constant M > 0 independent of ¢ and n.
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A similar analysis shows that, for ¢ € [t,,, 1), we have

|9n(t)] < Mt _(im_)i(l)n_ L <1

with M > 0 independent of ¢ and n.

5 The uniform expansion of the integral F(z)

After all the preliminary results of the previous sections, we can formulate the main result
of the paper in the following theorem.

Theorem 1. Assume hypotheses 1-3 of Section 3 for the functions h(t, z) and g(t) and the
base points ti, to, ..., ty,y. Then, forn=1,2,3, ...,

F(z):/olh(tz Y A MIh(-, 2); s, k| + R (2), (12)

k=0 s=0

where Ay s are the multi-point Taylor coefficients of the function g(t) at the base points tq,
to, ..., tm (see formulas (7)-(9)) that may be computed in either of the two forms described
in Section 2, and MIh(-, z); s, k| are the multi-point moments:

m

MIh(-, 2); 8, k] = /01 h(t, 2)t° [H@e - m] dt. (13)

=1

On the other hand, the remainder R, (z) may be bounded in the form

1 (o + o) n!T'(y + B)
R.(z)| < MH |— + At}* + B(1—t,)"" 14
[Ba(2)] < ar V" T(n+a+o+1) ( ) [(n+pB+vy+1) (14
with
(0,0) in case (i),
(A.B) (1,0) m case (22), (15)
(0,1) in case (i),

(1,1) in case (iv),

where the constants a > 1, H, M > 0 independent on n and z where introduced in Hypothesis
2 and Section 4. The parameters a, 3, o and ~y are defined in hypotheses 1 and 2. Therefore,
expansion (12) is uniformly convergent for z € D in any of the four cases (i)-(iv); the
convergence is exponential in case (i) and of power type in the other three cases. More
precisely, when n — 0o,

Ry(2) =0(a™™ + An~"* + Bn 7).
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Proof. Consider the multi-point Taylor expansion of the function g(t) at the base points
t1 <ty < ... < t,,, with the representation (9) of pi(t), that converges in the lemniscate D,.,
with (0,1) C D, and r = rq, 19, 73 or 74 according to the case (i)-(iv) considered. When we
replace the expansion (7) of g(¢) into the integral in the right hand side of (2) and interchange
sum and integral we obtain (12), with

R,.(z) ::/0 h(t,z)g,(t)dt. (16)

The multi-point moments (13) of the function h(-, z) exists because of Hypothesis 2. From
here the analysis is different in the four cases (i)-(iv):

e Case (i). From Section 4.1 it is clear that the remainder g,(t) may be bounded in the
form |g,(t)| < Ma™", with M a positive constant independent on n and t and a > 1.
When we introduce this bound and use Hypothesis 2 in (16) we get (14), case (i).

e Case (ii). Write

t1 1
Ro(z) = / h(t, 2)gn(t)dt + / h(t, 2)ga(t)dt.
0 i1
From Section 4.2 we have that |g,(t)] < Ma™™, with @ > 1, in the second integral
and |g,(t)] < M(t; — t)"t°"'¢]™ in the first one. Introducing these bounds and using
Hypothesis 2 in the above formula we get

MH/ jerto1 MH _MH !

|R,(z — 1) +MHta+”/t°‘+"_1(1 — t)"dt.
a" 0

Formula (14) for case (ii) follows immediately.

e Case (iii). Write

R(2) = /0 Ut 2)gn(t)dE + /t h(t, 2)gn(t)dt.

From Section 4.3 we have that |g,(t)] < Ma™™, with a > 1, in the first integral and
19, (8)] < M(t —t,,)"(1 —t)"1(1 —t,,)"™ in the second one. Introducing these bounds
and using Hypothesis 2 in the above formula we find

MH MH 1

< 1 — ﬁ+’yl n
B2 € T+ o | (=07 =

MH MH 1=tm

), O

_MH 1

+MH(1—t )7+5/ TN — )"t

a" 0

Formula (14) for case (iii) follows immediately.
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e Case (iv). Write

131 tm 1
R, (2) :/ h(t, z)gn(t) dt +/ h(t, z)gn(t) dt +/ h(t, z)g.(t)dt.
0 131 tm
From Section 4.4 we have that |g,(t)| < Ma™, with a > 1, in the second integral,
|9, (t)] < M(t;—1t)"t° '™ in the first one, and |g, ()] < M(t—t,,)"(1—t)7"1(1—t,,)™
in the third one. Introducing these bounds and using Hypothesis 2 in the above formula
and after similar steps to those given in cases (ii) and (iii) we find (14) for case (iv).®

Remark 1. The proof of Theorem 1 in cases (ii)-(iv) is more involved than in case (i). We
could have repeated step by step the simpler proof of case (i) for the other three cases, but
with @ = 1. Then that proof would not have shown the convergence of (12) in cases (ii)-(iv)
as the parameter a in formula (14) would not be large enough (> 1). Therefore, the more
involved proof in cases (ii)-(iv) is necessary to show the convergence.

Remark 2. In the best scenario, when the end points of the integration interval [0, 1] are
contained in the region ) of analyticity of the function g(w) (case (i)) the convergence of
the expansion (12) is of exponential type. In the worse scenario that one or both end points
are not contained in €2, then expansion (12) is still convergent, although the convergence is
only of power type.

Remark 3. It follows from (14) that, the larger a and 3 are, the faster the convergence of
the expansion of F'(z) in cases (ii)-(iv) is. We have only considered the possibility a = =0
in case (i) because the bound |h(t, z)| < Ht*(1 — t)? with o and/or 8 > 0 does not mean
any improvement in the convergence speed of expansion (12): regardless o and/or 5 vanish
or not, we would derive formula (14) for the remainder in case (i). On the other hand, as we
will see in the examples below, the bound |h(t, z)| < Ht*(1 —t)? with a and/or 8 > 0 is not
uncommon in practice, and then it is worth it to consider the possibility « and/or 8 > 0 in
any of the four cases (i)-(iv).

Remark 4. We could make the theory a little bit more general by relaxing Hypothesis 2:
replacing "H independent on z" by "H an integrable function of the variable ¢t". On the
one hand, the price to pay would be a more involved derivation of the uniform bounds of
R,(z). On the other hand, the theses of Theorem 1 would be essentially the same ones, with
a slight modification of the form of (14). But moreover, as we can see in the next section,
the requirement "H constant" is usually enough in practice. Therefore, we do not consider
here that possible generalization of Theorem 1.

6 Examples

In this section we illustrate the applications of Theorem 1 in the derivation of expansions of
special functions F'(z) in terms of elementary functions of z that are uniformly convergent
in large domains D of the variable z. Some of them are already known, other ones are new.
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Example 1. Define D = {z € C; Rz > § > 0}. Then, for 21,22 € D and u € C, consider
the confluent hypergeometric function

F(Zl + 22) /1 -1 —1 ut
_— t* 1 — )2 e"dt.
M) Jy | 470

It has the form considered in the above theorem with g(t) = e*, h(t, 21, z5) = t*1 7} (1 —t)*2 1
(we consider two uniform variables z; and 2, instead of only one). We may takea = = 0—1
and 0 =y =1 (case (i)).

From (12)-(13) we derive the standard Taylor expansion of the the confluent M function
in powers of u [16, Sec. 13.2, eq. 13.2.3|, with a remainder of the order O(a™"), for a certain
a > 1 uniformly in z1, 25 € D.

M (z1, 21 + 20;u) ==

Example 2. Define D = {z € C; Rz > 6 > 0}. Then, for 21,290 € D, d € C and
u € C\ [1,00), consider the hypergeometric function

['(21)(22)

1
Fi(d )= [ 271 =021 —wt) " dt
(2 + 2) 1(d, 21, 21 + 205 1) /0 ( )21 — ut) " dt,

We can apply Theorem 1 with g(t) = (1—ut)~% and h(t, 21, z3) = t** (1 —¢)*~!, considering
71 and 2o as uniform variables. We may take a = f = — 1, 0 =y =1 (case (i)). Then,
we take the points t; = 0 and t3 = 1 as base points (m = 2) in order to better avoid the
singularity at ¢ = 1/u. We obtain expansion [13, eq.(15)] with R,(z) = O(a™"),a > 1,
uniformly in zy, 29 € D.

Example 3. Define D = {z € C; Rz > ¢ € R} and consider the parameter ¢ € C \ N,
Re > 0. Consider the following integral representation of the incomplete gamma function

1
(e, z) = zc/ e #tdt.
0

(We do not consider natural values of the parameter ¢, as the incomplete gamma function
is an elementary function in this case.) We consider z as the uniform variable, so that we
can apply Theorem 1 with g(¢) := t*~[%¢l and h(t, 2) = e*¢/%I=1 where [x] denotes the
least integer greater or equal to z. We may take 0 = e — [Re| +1, vy =1, a = [Re] — 1
and f = 0 (case (ii)). We take only one base point ¢; = 1 (m = 1). We obtain a uniform
expansion similar to expansion [5, eq. (8)] with R,(2) = O(n~%¢) uniformly in 2 € D.

Example 4. Define D = {z € C; Rz < § € R} and consider the parameters (b,c) €
C x C\ N x N, with ®0 > Re > 0. Consider the following integral representation of the
confluent hypergeometric function

1
M(b,c;2z) = / tH (1 — )b le .
0

(We do not consider natural values for both parameters b and ¢, as the confluent hyper-
geometric function is an elementary function in this case.) We can apply Theorem 1 with
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g(t) =t el (1 — ¢)bme=RO=Rel and h(t, z) = e#Pel=1(1 — ¢)R*C=1=1 " considering z as the
uniform variable. We may take a = [Re] — 1, = [R(b—¢)] — 1, 0 = Re — [Re] + 1 and
vy=RMb—c)—[R(b—c)]+1. We are in case (ii) if b—c € Nand ¢ ¢ N, case (iii)) if b—c ¢ N
and ¢ € N or case (iv) if ¢,b — ¢ ¢ N. In any case, we take only one base point t; = 1/2
(m = 1). We obtain a uniform expansion similar to expansion [6, eq. (21)] with the uniform
bound for R, (z) given in Theorem 1.

Example 5. Define D = {z € C; Rz > § > 0}. Consider the following integral representa-
tion of the exponential integral

00 p—zu 1 tz—l
eE(z) = / du = / ———dt

We can apply Theorem 1 with g(t) = (1 —logt)™! and h(t,z) = t*7!, considering z as the
uniform variable. We may take a =6 —1, =0, =1 and any 0 < 0 < 1 (case (ii)). We
take only one base point t; =1 (m = 1):

n—1

= At — 1DF + ga(1).

k=0

The coeflicients Ay may be computed in the form (see Appendix B)

n k/’ .
Ay =1 A, =S"EB, w(n), n>1, 17
o=1, S EBim), n> (17)
where B,,(a) are the normalized Nérlund polynomials (see Appendix A). Then, from The-

orem 1,
n—1
k=0

where Hy(z) are the elementary functions

1 k k—j
Hy(2) ::/0 152—1(15—1)1%11t:(—1)1‘31;(@“%r Z() T

Jj=0

The remainder term behaves as R,(z) = O(n'=°79), with 0 < o < 1 as close to 1 as we wish,
uniformly in z € D.

Example 6. Define D = {z € C; Rz > ¢ > 0} and consider the parameters b,c € C with
Re > 0. Consider the following integral representation of the confluent hypergeometric U,

1

00 1 1
—/ ey 1+ u) " du = —/ t*1(—logt)* 1 (1 — logt)>~<"'at.
I'(e) Jo 0

U(c,b,z) = B
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We can apply Theorem 1 with g(t) = (—logt)°~1(1 —log#)*=*~! and h(t,z) = t*1, consid-
ering 2z as the uniform variable. We may take a =6 —1, =0, any0 <o <1l and v =1
if Re >1ory=%Rcif 0 < Re <1 (in order to ensure that f(w) := w' (1 — w)' 7g(w)
is bounded in C,). We are in case (ii) if ¢ € N or in case (iv) otherwise. In the first case
we could consider the Taylor expansion of the function g(¢) at the base point ¢; = 1 and
apply the results of Appendix B. Instead, we give only the expansion in the more general
case ¢ € C and consider ¢; = 1/2 as the only base point:

n—1 k
1
o) =3 e (1= 3 ) +a0)
k=0
The coefficients Ag(c,b) are elementary functions of ¢ and b:
Ao(e,b) = (log2)*™H (1 +log 2)" ",

AO(Cv b) - (_1)kb(na k) 1
A, (e, b) = b—c—k)goF1 (1 —c,—k;—c+b—Fk;1 ,n>1
(c,0) n! ; (1+log2)k (b=c= Rk ¢ et * log 2 "

(18)

where b(n, k) are partial ordinary Bell polynomials [19] that, for n = 1,2,3,..., can be
computed recursively in the form

b(0,0) =1, b(n, 0) =0, b(0,k) =0,
n— k+1

=S b k- )
(n —3)!

J=1

Therefore, from Theorem 1 we find

U(e,b,z) = (19)

with Ag(c,b) defined in (18) and Gi(z) given by

Gr(2) ::/Oltz—l (t——) ( )k%m k,l;z+1;2)zzk:(l;) (;)kai]

J=0

Moreover, R,(z) = O (nlf‘sf" + Bn”), with o as close to 1 as we wish and B =0if ¢ € N,
uniformly in z € D.
As an illustration, we derive the following formula from (19) with n = 3, valid for = > 0:

U< 3 ) 8 (2% + 3z + 2) log® 2 + 2 (922 +27x+10)10g22—|—(9$ +15x+34)10g2—16x
oo et

'2’ 8r(x +1)(z+2)(1 —|—log2)

—~
~—

Figure 5 compares the well-known Taylor and asymptotic approximations of the confluent
U(2,3/2,z) function with the approximation given by Theorem 1.
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Figure 5: Approximations of U(2, %,x) (thicker graphics) given by the Taylor expansion [16, Sec.
13, eq. (13.2.2) and (13.2.42)] (left), the asymptotic expansion [16, Sec. 13, eq. (13.7.3)] (middle)
and the uniform expansion (19) (right) for = € [0,10] and five degrees of approximation n =

1,2,3,4,5 (thinner graphics). The approximations are similar for complex x and other values of
c, b.

7 Appendix A. Computation of the Norlund polynomials

Consider the unbounded case given in the second formula in (1); see examples 5 and 6. In
this case, the above theory requires, as a previous step, the change of variable u — t given
by u = —logt to convert the second integral in (1) into the integral (2). Many times in
applications, the function g(u) in the integrand in (1) is analytic at u = 0, that is, g(— logt)
is analytic at t = 1 and then it is convenient to consider the standard Taylor expansion of
g(—logt) at t; = 1 Then, the theory given above requires the computation of the Taylor
coefficients of the composite function g(—logt) at ¢ = 1. But in practice, only the Taylor
coefficients of g(u) at u = 0 are available. Then, it is worth to consider the computation of
the Taylor coefficients Ay of the composite function g(—logt) at ¢t = 1,

g(—logt) = > Axt— 1), (20)
k=0

in terms of the coefficients aj of the Taylor expansion of g(u) at u = 0: g(u) = Y 7o, apu®.
Two possible algorithms are given in propositions 1 and 2 in Appendix B. The formulation of
Proposition 1 requires the use of the normalized Norlund polynomials B,,(«) that we study
in this Appendix.

Consider the normalized Nérlund polynomials By, (a) := By, (a)/m!, where B, (a) are

the standard Norlund polynomials |7, Sec. 24.16, eq. 24.16.9]. The polynomials B,,(«) are
generated by the function

F,(t) = (et t_ 1) = Z Bo (o)™, It| <27, aeC. (21)
m=0

Lemma 1. The normalized Norlund polynomials Em(oz) are polynomials in o of degree m,
Bo(a) =1 and, form = 1,2,3, ..., they may be recursively computed in either of the following
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three forms:

~ 1= alk—m) — k=
() B, (a) = - % (Mt 1—h) (), (22)
~ _a—mx=~Buila+l)  ax
(1) Bp(a+1) = > (k;k+ o 1 (), (23)
(4ii) B(a) = Zo.;cnak’ (24)
with i
oy = 1; o' =0, m=1,23, . o = (—1)

and, for k=m-1,m-2,m-3,....,1; m=2,34,...,

oSl zm: (k " 1) a;;"] . (25)

n=k+1

1

i

Proof. It is clear that By(c) = 1. The recurrence relation (22) is proved in [4, Theorem 2|
introducing the expansion (21) into the differential equation t(e! — 1)F/(t) = a[(1 — t)e' —
1]F,(t) and equating the coefficients of equal powers of ¢.

In order to prove (23), consider the Cauchy integral representation that follows from (21):

~ 1 t \" dt
Bute) = 5 f (o7 o (26)

where the integration contour is a closed loop around the point ¢t = 0, contained inside the
disk Dy(27) and traversed once counterclockwise. Then, on the one hand, a simple algebra

shows that
~ 1 £\t dt
B,,(a) =— ) —— =
(@) =35 f (et - 1> (¢ =1 e

ii]{ o\ dt _ZBm,k(aJrl)
— kl2mi ] \et -1 2=k (k+1)!

k=0

On the other hand, integrating by parts in (26) we find that, for m =1,2,3, ...,
mB(a) = a [Em(a) ~ Bya(a) — Bp(a+ 1)] . (28)

Solving the two equations (27) and (28) for {B,,(a), B (o + 1)} we find (23).
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In order to prove (24)-(25), replace the right hand side of (24) into formula (28), writing

§m<a+1)=§:o?(a+1 —ig??zk:( >O‘n:§:“k§:< )

k=1 k=0 n=0

We obtain, for m =0,1,2, ...,

m m+1 m
-0y 1oz+z [mak + o, 11} ab = —06”0(2 [02”1— Z (kzﬁl) 0'21] ak.
k=1 n

k=1 =k—1

When we identify the coefficients of every power o, k = 0,1,2,...,m + 1, we obtain
formulas (24)-(25).

From either of the three recursive formulas (i), (ii) or (iii), it is straightforward to show
that B,,(«) is a polynomial in a of degree m. ®

An alternative recursive formula to (24)-(25) may be found in [10], although it is more
involved. Norlund polynomials are the particular case x = 0 of the generalized Bernoulli
polynomials By (x). Several (more or less involved) explicit formulas, recurrences relation
and properties of the Bernoulli polynomials may be found in [1, 3, 10, 21].

In the following table we indicate the first polynomials Em(n +a);n=01,2,..;m=
0,1,2,..,n and how to compute them recursively using algorithms (i) or (ii).

Em(n—l-a—l) m=0|m=1 m =2 m=3
n=20 1
n=1 1 _%
n=2 1 —O‘T“ %
n= 1 _at2 | Ba+b)(a+2) | (at1)(a+2)?
— 2 24 I8

Table 1: Infinite triangle of the Norlund polynomials Em(n +a); n=012.;m =
0,1,2,..,n. The recurrence relation (22) let us compute every polynomial Em(n + «) from
the previous polynomials Ek(n +a), k =0,1,2,....,m — 1, located in its same row. The
recurrence relation (23) let us compute every polynomial Em(n + «) from the previous
polynomials ék(n +a), k=0,1,2,...,m — 1, located in its same row and the polynomial
Em,l(n + a — 1) located in the previous row and column.
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8 Appendix B. Computation of the Taylor coefficients of
the composite function g(—logt)

In this appendix we compute the Taylor coefficients Ay, of the composite function g(—logt)
at t =1,

g(—logt) = > At — 1), (29)
k=0

in terms of the coefficients aj of the Taylor expansion of g(u) at u = 0: g(u) = Y oo, aru®.
Two possible algorithms are given in the following two propositions.

Proposition 1. We have that Ay = ag := ¢(0) and, forn=1,2,3, ...,

"k ~ ®) (0
An=) 5a,ﬂ(—1)’<an_k(n), a =2 k'( ). (30)
k=0
Proof. We have that
(1
=0 () = (- log )
Therefore,
1 da 1 flu)
Ay = ——1g(—1 o ==— ¢ —————du, 31
n! du™ [g( 0g u)]u_l 21 c (u _ 1)n+1 u ( )
where the integration path is a circle C' of radius r < 1 centered at u = 1, |u — 1| = r,

traversed once counterclockwise, see Figure 6(a). After the change of integration variable
u — t given by u = e~ we have that

-1 g(t)e™
A, = — ¢ Iy 32
2mi Jp (e7t —1)nHl (82)

where the integration contour I' is the path |e™* — 1| = r depicted in Figure 6(b). Then we

have that "
—1 4 t " B
Avi= i [( ) ot ] ' (33)

t=0

() w0t = () o+ ()

Then, from this formula, equation (33), the expansions g(t) = > .- art* and tg(t) =
S oo ap—1t* and (21) we find that Ay = ag and, for n =1,2,3, ...,

We write

n

Ay =3 (~1Far[Buosor(n) + Boiln + 1)), (34)

k=0
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Re(u)
0 1+r
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(a) (b)

Figure 6: (a) The integration contour in (31) is a circle |u — 1| = r centered at v = 1 and radius
r < 1 contained inside the analyticity region of f(u). (b) The integration contour I' in (32) is the
path |e~! — 1| = r contained inside the analyticity region of g(t) = f(e™").

with B_1(1) := 0. Formula (30) follows from this one and (28). ©)

Formula (30) is an explicit formula for the computation of the coefficients A,. In the
following proposition we give some alternative recursive algorithms for the computation of
these coefficients.

Proposition 2. The coefficients A, in expansion (29) may be computed in the following
form: Ag = ag and, forn=1,2,3, ...,

n—1 (k:) 0
A, = b k10841, ap == J k'( ) (35)

where by, ., are the partial ordinary Bell numbers [19]. They may be computed recursively
as follows: byy =1, byy10 =0 forn =0,1,2,..., and the remaining ones are computed by
means of the formula

n—1

bkm
D G i 1; m=1,2,3,...n, n=123,.. (36)
k=m—1

Proof. In order to derive formula (35) we invoke Faé& di Bruno’s formula [2] for the succes-
sive derivatives of a composite function: the coefficients A, of the Taylor expansion of the
composite function f(¢(u)) at u = wug are given by the formula

n

- bnm m
= ZAn(U — up)", Ap = Z Wf( (to), to := t(uo)-
n=0 m=1
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Formula (35) is a particular case of this formula with ¢(u) = —logu and uy = 1.

In order to derive formula (36) we consider the recursive algorithm given in [19] for
the partial ordinary Bell polynomials b, ,,: boo = 1, bytr10 = 0 for n = 0,1,2, ..., and the
remaining ones are, for m =1,2,3,....,.n,n=1,2,3, ....,

n—1

Z t(nk uo bkml

k=m—1

Formula (36) is the particular case of this one with t(u) = —logu, uy = 1. ©)
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